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ABSTRACT 

A new coupled finite-volume scheme based on the Augmented-Roe solver adapted to 
simulate morphological evolution of arbitrary cross-sections is presented. In pure 
hydrodynamic conditions, the Augmented-Roe scheme has proven to provide accurate results 
and a constant discharge in steady-flow conditions. Here, this scheme is extended to solve the 
one-dimensional Saint-Venant-Exner system of equations written for arbitrary cross-sections. 
Therefore, new eigenvalues and source term calculations are proposed to account for the 
irregular shape of the cross-sections. The performances of the proposed scheme are assessed 
by comparison with three different one-dimensional numerical models aimed at simulating 
morphological changes, with coupled or uncoupled approaches, and based on HLL or Roe-
based flux calculations. 

Numerous test cases were examined, including water at rest, steady flows and transient flows 
for which experimental results exist. The results show that the proposed scheme provides 
stable and accurate results for a wider range of situations compared to other classical models. 

KEY WORDS: arbitrary cross-sections; finite volume; morphological evolution; sediment 
transport 

INTRODUCTION 

Floods can be highly damaging natural disasters and their impact is often increased by the 
presence of sediments. In such cases, the strong morphological changes following an 
important flood completely reshape the riverbed and the landscape of the surrounding area. 
Predicting such floods and their morphological consequences is thus important to prevent 
human loses and damages. In solving this problem, 1D models could play a role as they have 
the advantages of needing less data and being faster than 2D models. Of course, they are not 
able to capture as many complex patterns as the 2D models. However, during a flood crisis, 
time is a key factor, if not the most important factor. In this aspect, 1D models are still much 
faster than 2D models even with latest developments on the use of GPU to increase the 
computation speed (Lacasta et al. 2014, Juez et al. 2016a). 

In a depth-averaged framework, the shallow-water equations describing the water flow are 
used together with additional equations describing the morphological evolution of the bed 
following erosion and deposition of sediments. The links between these sets of equations, and 



consequently the impact of the presence of sediments on the water flow, are described in the 
literature using various approaches: (a) only mass conservation is considered for the 
sediments, and their effect on the flow density is neglected (e.g. Kassem and Chaudry 1998; 
Goutière et al. 2008); (b) the effect of the sediment concentration on the flow is considered by 
providing some additional coupling between the equations, either weak (e.g. Wu and Wang 
2007; Garegnani et al. 2011) or strong (Juez et al., 2016b); (c) the moving sediments are 
represented using a transport layer, leading to fully coupled equations, which consider 
momentum exchanges between layers (e.g. Savary and Zech 2007; Zech et al. 2008); and (d) 
the moving sediments are considered as a separate and immiscible phase in the water flow 
with exchanges between the two phase providing a significant level of coupling between the 
equations (Greco et al. 2012). 

In the present research, where only bed load transport is considered, the first approach (a) has 
been favored because in such cases, the concentration of sediment in the water column is low 
and can be neglected. The considered sediments consist of non-cohesive particles, such as 
sand, that are more often transported by bed load rather than suspension load. In this approach, 
the flow is considered as consisting of a layer of clear water, without sediment, flowing on top 
of a movable bed. The three main equations in this model are the two shallow-water equations 
describing mass and momentum conservations of the water layer, and the Exner equation 
describing the mass conservation of the sediment bed. Two types of numerical strategies can 
be considered to solve these equations. In the first one, corresponding to uncoupled (or 
weakly coupled) schemes (Juez et al. 2014), the equations are solved using a two-step method. 
First, the shallow water equations are solved without considering the sediment transport. Then, 
the Exner equation is solved without changing the hydraulic variables. In the second approach, 
the three equations are solved simultaneously, leading to a coupled solver in 1D (Goutière et 
al. 2008) and also in 2D (Murillo and Garcia-Navarro, 2010). 

The proposed scheme is a coupled solver based on the Augmented Roe (A-Roe) approach 
developed by Murillo and Garcia-Navarro (2014) that was extended to sediment transport and 
morphological evolution for arbitrary cross-sections. Particular attention is paid to the 
treatment of cross-sections of arbitrary shape which requires adaptations of the fluxes and 
source terms calculations. The A-Roe approach has the advantage of allowing for accurate 
steady-state simulation where the computed discharge remains constant even in highly 
irregular topographies (Franzini and Soares-Frazão 2016). As sediment transport calculations 
depend on the discharge, this approach allows avoiding excessive erosion or deposition on 
abruptly changing beds. In addition, the proposed scheme was complemented with a bank 
failure mechanism adapted from (Swartenbroekx et al. 2010) in order to represent local mass 
failures and thus more accurate evolution of the cross-sections. 

This paper is divided as follows. First, the governing equations used to represent the flow and 
sediment transport in a one-dimensional framework with arbitrary cross-sections are 
presented. Then, the proposed new A-Roe solver is presented together with three other more 
classical finite-volume based approaches used for morphological evolution. In the next 
section, a series of tests are conducted, including water at rest, steady flows and transient 
flows for which experimental results exist to assess the performances of the proposed solver 
in comparison with the results provided by the other approaches. The applicability of the 
proposed A-Roe solver is also tested in cases where the cross-section present initial steep 
banks, highlighting the importance of including a bank failure mechanism as proposed here. 



Finally, the performances of the proposed A-Roe solver for unsteady flows involving 
morphological evolution are discussed and conclusions are drawn. 

GOVERNING EQUATIONS 

The models used in the present study are based on three equations: the one-dimensional 
shallow-water equations or Saint-Venant equations for the hydrodynamics in arbitrary cross-
sections, and the Exner equation for the mass conservation of the sediments. 

The main assumptions for the Saint-Venant equations are an incompressible fluid, a 
hydrostatic pressure distribution, and, as stated before, a negligible concentration of sediments 
in the water. For a cross-section of arbitrary shape, they read 

∂A

∂t
+

∂Q

∂x
=0 (1) 

∂Q

∂t
+

∂

∂x
ቆ

Q2

A
+gI1ቇ  = g ቀI2+A൫S0-Sf൯ቁ (2) 

Where Q is the discharge, A the area of water, S0 the bed slope defined by:  

S0= -
𝜕zb0

𝜕x
 

(3) 

With zb0 the bed level, more precisely the thalweg level. The integral gI1 represents the 
hydrostatic pressure thrust while the integral gI2 represents the longitudinal component of the 
lateral pressure due to the longitudinal width changes. They are integrals written as 

 gI1 = g න ሺh-ηሻb dη
h

0
 (4) 

 gI2 = g න ሺh-ηሻ
∂b

∂x
dη

h

0
 (5) 

With η a local variable for the depth integration and b(x, η) the width of the channel at a 
determined depth (Figure 1). It is important to note that these two relations can be linked and 
this allows another way of writing of the source terms (Franzini and Soares-Frazão, 2016). 
Indeed, the derivative of I1 with respect to x can be developed, using the Leibniz rule, as 
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This results in the following expressions linking I1, I2 and A: 

 



g
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∂x
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∂h

∂x
 +  gI2 (7) 

 g (I2  + A S0) = g ൬
∂I1

∂x
 - A

∂h

∂x
 + A S0൰ (8) 

 g (I2  +A S0) =  g ൬
∂I1

∂x
 - A

∂z

∂x
൰ (9) 

In particular, considering a constant level z , (8) becomes 

 g (I2  +A S0) =  g
∂I1

∂x
ฬ
zത
 

(10) 

 

 

Figure 1. Definition of the hydrostatic pressure 

 

The friction is modeled using the Manning equation 

Sf =
n2Q2P 4/3

A10/3  
(11) 

With the roughness coefficient n (also called Manning coefficient) and the wetted perimeter P. 

The Exner equation represents the conservation of the mass of sediments in the bed of the 
river. In arbitrary topographies, it reads  

∂Ab

∂t
+

1

1 - ε0

∂Qs

∂x
 = 0 

(12) 

Where Ab is the area of the bed of sediments (Figure 2), Qs the sediment transport rate and ε0 
the bed porosity.  



 

Figure 2. Definition of the area of erodible bed 

In this research, the bed porosity is considered constant in both time and space. The Exner 
equation can thus be rewritten as  

∂Ab

∂t
+
∂

∂x
ቆ

Qs

1 - ε0
ቇ = 0 

(13) 

Finally, it is necessary to add a closure equation to determine the sediment transport (Qs). 
Several relationships exist in the literature such as Meyer-Peter and Müller, Smart and Jäggi 
or Camenen and Larson, summarized e.g. by El Kadi Abderrezzak and Paquier (2011) or 
Garcia (2008). In the present paper, it has been decided to use the Meyer-Peter and Müller 
formula. This equation is only valid for non-cohesive particles moving as bedload, without 
suspension or wash load, and provides the unit-width sediment transport rate as  

qs=8ටgሺs-1ሻd50
 3  ൬

RSf

ሺs-1ሻ d50
 - θcr൰

1.5

 
(14) 

where s is the specific gravity of the sediments, d50 the median bed sediment diameter, R the 
hydraulic radius (defined as R = A/P), and θcr the non-dimensional shear stress for initial 
sediment motion (the value is set here to 0.047). According to Garcia (2008), the sediment 
transport over the entire cross-section is obtained by multiplying the unit-width sediment 
transport by the width B of the channel at the level of the free-surface. The final expression 
for the sediment transport is, thus,  

Qs=8Bටgሺs-1ሻd50
 3  ൬

RSf

ሺs-1ሻd50
 - θcr൰

1.5

 
(15) 

The final system of equations can be written in vector form as  

∂U

∂t
+

∂F

∂x
 = S (16) 

with U the vector of conserved variables, F the vector of fluxes and S the source terms 
(divided into topographical Sg and friction Sτ source terms). 
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A
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 S= 
0
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0
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 Sg= 
0
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0

൩ (20) 

 Sτ= 
0

-gASf

0
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NUMERICAL DISCRETISATION 

Finite-volume schemes are used to solve system (15). The discretized equations are written as 

Ui
n+1=Ui

n+
Δt

Δx
൫Fi-1/2

*  - Fi+1/2
* ൯ + S Δt (22) 

where the superscript n refers to the time step and the subscript i to the computational cell.  

The details of the uncoupled and coupled solvers are presented below. In uncoupled solvers, 
the hydrodynamic equations are solved first, considering no evolution of the bed elevation 
due to erosion or deposition of sediment. Then, the morphological changes are computed 
considering no changes in the hydraulic variables (wetted area A and discharge Q). In coupled 
solvers, all three equations are solved simultaneously using appropriate flux expressions and 
wave propagation speeds. The proposed scheme belongs to this latter category, with adapted 
wave-speeds and source term treatments. Finally, all solvers presented below are subject to 
the CFL condition for the time step t, without any additional restriction due to the 
morphological evolution. 

Uncoupled models 

In this approach, the system is rewritten to separate the hydrodynamic (subscript h) and the 
sediment parts (subscript s). It, now, reads  

∂Uh

∂t
+

∂Fh

∂x
 = Sh (23) 

∂Us

∂t
+

∂Fs

∂x
 = Ss (24) 

With  
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A
Q൨ 

(25) 
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Q

Q2

A
+gI1

 

(26) 

Sh=Sgh+Sτh= 
0

gሺI2+AS0ሻ-gASf
൨ 

(27) 

Us =ሾAbሿ (28) 

Fs= ቈ
Qs

1 - ε0
 

(29) 

Ss=Sgs+ Sτs=ሾ0ሿ (30) 

The finite-volume scheme (22) is applied to the hydrodynamic system (23) only while 
equation (24) is solved by simple finite-differences. For the flux calculations of the 
hydrodynamic system (22), several flux calculation schemes can be used. Two different 
schemes are presented here and used in the comparisons: (i) the Lateralized HLL scheme 
(Petaccia et al. 2013) and (ii) the Augmented Roe solver (Murillo and Garcia-Navarro 2014). 
Considering only pure hydrodynamic flows, the performances of these schemes were 
compared by Franzini and Soares-Frazão (2016) on a selection of test cases. The conclusion 
was that the Augmented Roe scheme is more accurate in terms of water level and discharge in 
the computational cells but less robust than the Lateralized HLL (LHLL) scheme in the sense 
that the computed mass flux between cells is not more constant in the LHLL approach. The 
key features of these solvers are briefly recalled below.  

LHLL solver 
This solver is a variation of the HLL solver (Harten et al. 1983) developed for cross-sections 
of arbitrary shape (Petaccia et al. 2013). To compute more accurately the impact of irregular 
topographies, the topographical sources terms Sgh are included in the fluxes computations 
while the friction source terms Sτh remain separated, leading to a two-step scheme as 

Uh,i
ሺn+1ሻ=Uh,i

n +
Δt

Δx
൫Fh,i-1/2

*R  - Fh,i+1/2
*L ൯ 

(31) 

Uh,i
n+1=Uh,i

ሺn+1ሻ+Sτh Δt (32) 

where vectors Uh contain the hydrodynamic conservation variables defined in (25) and Fh are 
the vectors containing information of the hydrodynamic mass and momentum fluxes (26). 

In the first step (31), the mass fluxes are calculated by taking the impact of the topography 
into account using a method based on the Nujic variation (Nujic 1995) – considering the water 
level instead of the water depth. In arbitrary topographies, the method is adapted considering 
𝐴,௭̅ defined as the wetted area of cell i at an average level  z̅= ሺzi + zi+1ሻ 2⁄  (Figure 3). The 
resulting mass flux is written as 

Qi+1/2
*  = 

λ2Qi - λ1Qi+1 - λ1λ2(Ai - Ai,z̅ - Ai+1 + Ai+1,z̅)

λ2 - λ1
 (33) 



 

Figure 3. Definition of the area for the Lateralized HLL model  

The wave celerities used in this model were defined by Davis (1988):  

λ1 = min (ui - ci , ui +1- ci +1 , 0) (34) 

λ2 = max (ui + ci , ui+1 + ci+1 , 0) (35) 

with  u = Q/A and  c = ඥgA/B 

As regards the momentum fluxes in the first step (31), where the frictionless system is solved, 
the topographical source terms are included in the fluxes, leading to the lateralized “left” and 

“right” fluxes Fh
*R  and Fh

*L  linked by the relation Fh
*R - Fh

*L= Sgh Δx. The momentum fluxes 

thus read, with 𝛴 = Q2/A + gI1: 

𝛴i+1/2
*L =

λ2𝛴i - λ1𝛴i+1 - λ1λ2(Qi - Qi+1)

λ2 - λ1
+
λ1g ΔI1|ziഥ

λ2 - λ1
 

(36) 

𝛴i+1/2
*R =

λ2𝛴i - λ1𝛴i+1 - λ1λ2(Qi - Qi+1)

λ2 - λ1
 +
λ2g ΔI1|zi+1തതതതത

λ2 - λ1
 

(37) 

Then, in the second step described by (32) the effect of the friction source terms is computed 

using the provisionally updated variables Uh,i
ሺn1ሻ, leading to an implicit treatment of this term.  

Augmented Roe solver 
The Augmented Roe solver (A-Roe) is a modified version of the Roe solver (Roe 1981) in 
which the source terms are represented using a stationary wave allowing for energy 
conservation. It was developed for arbitrary sections by Murillo and Garcia-Navarro (2014) 
who showed that this approach results in a well-balanced scheme, satisfying the C-property. 
In this solver, all the source terms (topographical and friction) are included in the fluxes 
computation. The finite-volume scheme (22) thus becomes 

Uh,i
n+1 = Uh,i

n  + 
Δt

Δx
൫Fh,i-1/2

*R  - Fh,i+1/2
*L ൯ (38) 

Following Murillo and Garcia-Navarro (2014), the fluxes are treated in a lateralized way and 
are written as  

Fh,i+1/2
*L  = Fh,i + ൫ሺλα - βሻe൯

m,i+1/2

m

λm<0

 (39) 



Fh,i+1/2
*R  = Fh,i+1 - ሺ(λα - β)eሻm,i+1/2

m

λm>0

 (40) 

where  represents the wave celerity,  the source terms,  the wave strength and e the 
eigenvector of the hydrodynamic system, as detailed below. The wave celerities  are given 
by 

λ1 = u - c (41) 

λ2 = u + c (42) 

with the overbar denoting the Roe averages defined as  

u = 
ඥAi ui + ඥAi+1 ui+1 

ඥAi + ඥAi+1 

 (43) 

c = ඨ
g

2
൬
Ai+1 

Bi+1
+

Ai

Bi
൰ (44) 

The matrix of eigenvectors 𝐄 ൌ ሾ𝐞ଵ 𝐞ଶሿ  with the eigenvectors being 𝐞ଵ ൌ ሾ1 𝜆ଵሿ்  and 
𝐞ଶ ൌ ሾ1 𝜆ଶሿ். The wave strengths  are obtained using  

α = E-1 ΔUh (45) 

α1 = 
λ2ΔA - ΔQ

2c
 (46) 

α2= - 
λ1ΔA  - ΔQ

2c
 (47) 

The source terms are included in the flux calculation using a stationary wave representation 
given by parameter  in (39)-(40), as follows 

β = E-1 Sh (48) 

β1 = - 
ζ

2c
 (49) 

β2 = 
ζ

2c
 (50) 

In (49)-(50),  is the expression for the source terms, with g representing the topographical 
part of this source term as follows 

ζ = ζg- gAഥ Sf
ഥ  Δx (51) 

The friction terms gAഥ Sf
ഥ   are written considering the spatial average values denoted by the 

overbar: 

Aഥ = 
Ai + Ai+1

2
 (52) 



Sf
ഥ  = u|u|nini+1 ൬

Pi + Pi+1

Ai + Ai+1
൰

4/3

 (53) 

To introduce the energy conservation in the model, the topographical source terms g are 
written as a linear combination ζg = ሺ1-ωሻ ζga + ωζgb with a weighting coefficient  and 

ζga= - gAഥΔz + c2ΔA (54) 

ζgb = - gAminΔz + c2ΔA (55) 

The weighting coefficient is calculated by imposing the energy conservation 

Δ ቆ
Q2

2gA2  + zቇ  = - Sf
ഥ  Δx (56) 

By combining (56) with the momentum conservation equation, the weighting coefficient is 
obtained as 

 ω = 

Δ ቆ
Q2

A ቇ  - Aഥ Δ ቆ
Q2

2A2ቇ

ζgb - ζga

 
(57) 

In a shock, such as a hydraulic jump, as the energy is not conserved but dissipated, ω = 0.  

Morphological evolution  
The Exner equation describing the morphological evolution is solved using an upwind finite-
difference scheme with the following discretization: 

ΔAb=
Δt

Δx
ቀQs,i-1/2

*  - Qs,i+1/2
* ቁ (58) 

In this approach, the sediment transport at the interface i-1/2 has the value of either the 
upstream sediment transport rate Qs,i-1 or the downstream one Qs,i. The choice is made 
according to the Froude number, as Savary and Zech (2007) showed that the eigenstructure of 
the Exner equation is such that information comes either from downstream or upstream 
depending on the Froude number, and on the derivative of the sediment transport with respect 
to the bed level. Such an approach consists in considering for the sediment transport the 
celerity of a single equation as follows: 

If  Fr > 1 or  ∂Qs/∂zb< 0: 

Qs,i-1/2
 ∗  = 

Qs,i

1 െ 𝜀,
 (59) 

else 

Qs,i-1/2
 ∗ = 

Qs,i-1

1 െ 𝜀,ିଵ
 (60) 

The sediment discharge Qs in this model can be evaluated using any sediment transport 
equations using the flow variables at time n in an explicit way. In the applications presented 



here, the Meyer-Peter and Müller formula was used. Then to calculate the morphological 
evolution of the cross-section after evaluation of (58), the variation Ab has to be distributed 
over the initial shape of the cross-section. Two possible approaches are described in section 
3.3.  

Coupled models 

As stated before, in coupled models, all three equations of system (16) are solved 
simultaneously. The two approaches described in 3.1.1 (LHLL scheme) and 3.1.2 (A-Roe 
solver) are extend to include the third equation, representing the morphological evolution. 
This means that new wave propagation speeds need to be calculated to account for the effect 
of the sediment movement equation in the system. To be able to calculate the wave 
propagation speeds as the eigenvalues of the Jacobian matrix, the system of equations (16) is 
rewritten considering a relation describing the variation of the bed elevation Δzb0 as a function 
of the variation of cross-section area as Δzb0 = ΔAb Bs⁄ , where Bs is a representative cross-
section that depends on the erosion assumptions, as detailed further. 

System (16) now reads: 

∂U

∂t
 + 

∂F

∂x
 + H

∂U

∂x
 ൌ S (61) 
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A
Q
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൩ (62) 

 F = 

⎣
⎢
⎢
⎢
⎢
⎡
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Q2

A
 + gI1

Qs

1 - ε0 ⎦
⎥
⎥
⎥
⎥
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 (63) 

 S = 
0

gI2 - gASf

0
൩ (64) 

 H = ൦

0 0 0

0 0
gA

Bs

0 0 0

൪ (65) 

The Jacobian matrix of the new system (61) is 

 J = 
∂F

∂U
 + H = 

⎣
⎢
⎢
⎢
⎡

0 1 0

c2 - u2 2u
gA

Bs

1

1-ε0 

∂Qs

∂A

1

1-𝜀0 

∂Qs

∂Q
0

⎦
⎥
⎥
⎥
⎤

 (66) 

and the eigenvectors can be found by solving the eigenquation |J - I λ| = 0, resulting in 



λ3 + a2λ
2 + a1λ + a0 = 0 (67) 

with  

a2 = - 2u (68) 

a1 = u2 - c2 - 
gA

Bs

1

1 - ε0

∂Qs

∂Q
    (69) 

a0 = - 
gA

Bs

1

1 - ε0

∂Qs

∂A
 (70) 

 

The solution to equation (67) is not straightforward and the eigenvalues cannot be expressed 
analytically in a simple form, especially because of the irregular shape of the cross-sections. 
Novel extensions of the Coupled Lateralized HLL and the Coupled A-Roe schemes are 
presented below, as these two schemes require different methodologies to solve this problem. 

Coupled Lateralized HLL 
This model was developed by Goutière et al. (2008) for a rectangular channel. An extension 
to arbitrary topographies is presented here. The general finite-volume discretization (22) is 
rewritten as follows, with the topographical source terms included in the flux terms and S 
representing the friction source term only  

Ui
n+1 = Ui

n+
Δt

Δx
൫Fi-1/2

*R  - Fi+1/2
*L ൯ + Sτ Δt (71) 

To find the three wave celerities, i.e. the eigenvalues of (66) and thus the solutions of (67), it 
is first assumed that the largest eigenvalue is not influenced by the sediment (Lyn and 
Altinakar 2002). This yields 

λ3,i = ui + ci (72) 

Then, using the definitions in equations (68) to (70), the relations linking together the roots  
of a polynomial equation of the third degree are written  

λ1,i + λ2,i + λ3,i =  - a2 = 2 ui (73) 

λ1,iλ2,iλ3,i =  - a0 = 
gAi

𝐵s,i

1

1 - ε0
ቆ
∂Qs

∂A
ቇ

i

 (74) 

Equations (73) and (74) can be solved for the wave celerities 1 and 2 

  

λ1,i = 

ui - ci - ඨሺui - ciሻ2 - 4
gAi
Bs,i

1
1 - ε0

൬
∂Qs
∂A ൰

i
 1
ui + ci

  

2
 

(75) 

  



λ2,i = 

ui - ci + ඨሺui - ciሻ2 - 4
gAi
Bs,i

1
1 - ε0

൬
∂Qs
∂A ൰

i
 1
ui + ci

  

2
 

(76) 

With these expressions for the wave celerities, the fluxes can now be written as follows, 
considering a lateralized treatment of the momentum flux: 

Qi+1/2
*  = 

λ3Qi - λ1Qi+1 - λ1λ3(Ai - Ai,z̅ - Ai+1 + Ai+1,z̅)

λ3 - λ1
 (77) 

𝛴i+1/2
*R  = 

λ3𝛴i - λ1𝛴i+1 - λ1λ3(Qi - Qi+1)

λ3 - λ1
 + 
λ3g ΔI1|zi+1തതതതത

λ3 - λ1
 (78) 

𝛴i+1/2
*L  = 

λ3𝛴i - λ1𝛴i+1 - λ1λ3(Qi - Qi+1)

λ3 - λ1
 + 
λ1g ΔI1|z̅

λ3 - λ1
 (79) 

Qs, i+1/2
* =

λ2 

Qs,i
1 - ε0

 - λ1

Qs,i+1
1 - ε0

 - λ1λ2 
Bs,i + Bs,i+1

2 ൫zb0,i - zb0,i+1൯

λ2 - λ1
 

(80) 

Using the definitions (72), (75) and (76), the wave celerities are written as 

λ1= min൫λ1,i , λ1,i+1 , 0൯ (81) 

λ2= max൫λ2,i , λ2,i+1 , 0൯ (82) 

λ3= max൫λ3,i , λ3,i+1 ,0൯ (83) 

It is important to note that, if no sediment transport occurs, i.e. if Qs = 0, the flux expressions 
(77)-(79) become the same as those of the LHLL scheme for hydrodynamics as λ1 = 0 
according to (75).  

Coupled Augmented Roe  
This model is based on the 2D model developed by Murillo and Garcia-Navarro (2010). It is 
here adapted to one-dimensional cross-sections with arbitrary shapes, which implies an 
adaptation of the concept of energy conservation (Murillo and Garcia Navarro 2014; Franzini 
and Soares-Frazão 2016) to this particular context. The finite-volume discretization (22) is 
adapted to include all source terms and is written as  

Ui
n+1 = Ui

n + 
Δt

Δx
൫Fi-1/2

*R  - Fi+1/2
*L ൯ (84) 

where the fluxes require adapted expressions for the wave celerity , the wave strength  and 
the source term stationary wave   

Fi+1/2
*L  = Fi + ൫ሺλα - βሻe൯

m,i+1/2

m

λm<0

 (85) 

Fi+1/2
*R  = Fi+1 -  ሺ(λα - β)eሻm,i+1/2

m

λm>0

 (86) 



The wave celerities  are the solution of the system eigenequation 

λ3 + a2λ
2 + a1λ + a0 = 0 (87) 

with coefficients ai given by (68)-(70). The solution requires the calculation of derivatives of 
the sediment transport rate, which can be evaluated using a wide range of sediment transport 
formula. To obtain simple expressions for these derivatives, the Grass formulation (Grass 
1981) is used 

Qs= G u3 (88) 

The methodology can however be adapted to any sediment transport formula. In the case of 
the Grass formulation, considering a constant coefficient G, the coefficients ai, expressed in 
terms of appropriate Roe averages 𝑢 , �̃�, 𝐵௦෪ (representative average width) become 

a0 = - 
gA

𝐵௦෪
1

1 - ε0

- 3 Gu2

A
𝑢  =  

gA

𝐵௦෪ 𝑘෪ீ𝑢  (89) 

a1 = 𝑢2 - �̃�2 - 
gA

𝐵௦෪
1

1 - ε0

3G𝑢2

A
 =  𝑢2 - �̃�2 - 

gA

𝐵௦
 𝑘෪ீ  (90) 

a2 = - 2𝑢  (91) 

where the Roe averages between cell i and i+1 are estimated using  

u = 
ඥAi ui + ඥAi+1 ui+1 

ඥAi + ඥAi+1 

 (92) 

c =ඨ
g

2
൬
Ai+1 

Bi+1
+

Ai

Bi
൰  (93) 

𝐵௦෪ = 
𝐵s,i + Bs,i+1

2
 (94) 

kG෩  = 
Gi + Gi+1

2

1

1 - ε0

ui
2 + uiui+1 + ui+1

2

ඥAiAi+1

 (95) 

In order to apply the energy conservation principles, the area A෩ at the interface is written using 
the weighting coefficient ω defined in equation (57) as 

A෩ = ሺ1 - ωሻ
Ai + Ai+1

2
 + ω min (Ai , Ai+1) (96) 

Then, the eigenvalues are obtained directly as the solution of (87) as 

λ1 = 2ඥ-ϕ  cos ൬
θ+2π

3
൰  - 

a2

3
 (97) 

λ2 = 2ඥ-ϕ cos ൬
θ - 2π

3
൰  - 

a2

3
 (98) 



λ3 = 2ඥ-ϕ cos ൬
θ

3
൰ -

a2

3
 (99) 

with  

 θ = acos

⎝

⎛ ψ

ට-ϕ3
⎠

⎞ (100) 

ϕ =
3a1 - a2

2

9
 (101) 

ψ =
9a2a1 - 27a0 - 2a2

3

54
 (102) 

It is important to note that the system (61) is hyperbolic only if  ϕ3+ ψ2< 0. This condition is 
fulfilled in all the types of flows considered here. With the eigenvalues, the matrix of 
eigenvectors can be determined as 

em = 

⎣
⎢
⎢
⎢
⎡

1
λm

 λm
2  + u2 - c2 - 2uλm 

gA෩/𝐵௦෪ ⎦
⎥
⎥
⎥
⎤
 (103) 

E = [e1  e2  e3] (104) 

and the wave strengths and the source terms are obtained using   

α = E-1ΔU (105) 

β = E-1S (106) 

With the vector of source terms written as 

 S= ൦

0

c2ΔA - gA෩Δh - g
Ai + Ai+1

2
Sf
ഥ Δx

0

൪ (107) 

As stated before, other sediment transport formulations can be used, such as e.g. the Meyer-
Peter and Müller formula. In that case, the model has to be slightly modified to ensure the 
sediment mass conservation. First, the MPM formula has to be expressed in the same form as 
the Grass formula considering now a variable G coefficient (Murillo and Garcia-Navarro 
2010) defined by 

 G =
ඥgn3

ሺs-1ሻ√R
 8B ൬1-

θcr

θ
൰

1.5

   (108) 

Even though this formulation of the Grass coefficient is a function of the water velocity, it 
will be considered constant in each cell at each time step leading, for interface i+1/2, to the 
following sediment fluxes in cells i and i+1 



Qs,i =
Gi + Gi+1

2
 ui

3 (109) 

Qs,i+1 = 
Gi + Gi+1

2
 ui+1

3  (110) 

where Gi is calculated using the variables in cell i at time n. Expressions (109) and (110) are 
then included in (95) for the flux calculation. 

Erosion in arbitrary cross sections 

When the variation of the bed area Ab has been obtained as the solution of (58) or (71), it is 
necessary to translate it into a variation of the cross-section shape (Figure 4). This can be done 
using different assumptions on the way the computed erosion is distributed over the cross-
section, resulting in uniform or non-uniform erosion as detailed below. Consider the case 
illustrated in Figure 4: a cross-section A undergoes an erosion Ab that is represented by a 
variation of the bed elevation zbj of each node describing the cross-section. 

 

Figure 4. Discretization of the cross-section 

According to Figure 4, the total bed area variation Ab is given by  

ΔAb = 
Δzb1+Δzb2

2
 B12 + 

Δzb2+Δzb3

2
 B23 + 

Δzb3+Δzb4

2
 B34   (111) 

The variation zbj of the bed elevation of each single node will depend on the assumptions 
made for the erosion mechanism, as described below. The partial width Bjk is defined as the 
free-surface width between node j and node k. 

Uniform erosion 
In this case, the erosion is uniformly distributed over all the immerged bed, yielding  

Δzb j = Δzbk (112) 

Introducing this relation into the total bed area variation relation for any node j yields 

ΔAb = 
 Δzbj+Δzbj

2
 B12 + 

Δzbj+Δzbj

2
 B23 + 

Δzbj+Δzbj

2
 B34   (113) 

ΔAb ൌ Δzbj ሺB12 B23 B34ሻ   (114) 



ΔAb = Δzbj B   (115) 

Finally, the bed level variation of node j is obtained with 

Δzbj = 
ΔAb

B
 (116) 

So, in the case of uniform erosion assumption, the equivalent average width Bs of equation (61) 
is equal to width at the free surface B 

B௦ = B (117) 

Non-uniform erosion 
In the reality, erosion is not distributed uniformly over the entire cross-section. The amount of 
erosion is proportional to the bed shear stress exerted on each portion of the bed, which is in 
turn proportional to the local water depth. So, in the proposed non-uniform erosion model, the 
bed level variation is distributed according to the local water depth, in such a way that no 
erosion occurs if the water depth is equal to zero. This last characteristic renders the operator 
smoother as the transition between submerged and emerged bed is directly taken into account. 
So, the relation linking the bed level variation of two adjacent points j and k (Figure 4) is 

Δzj = Δzk ቆ
hj

hk
 ቇ

n

 (118) 

Assuming a linear relation (n =1), and introducing this into the total bed area variation 
relation (111) for node j yields 

ΔAb=
Δzbj 

h1
hj 

 +Δzbj 
h2
hj

2
 B12+

Δzbj
h2
hj

+Δzbj
h3
hj

2
 B23+

Δzbj
h3
hj

+Δzbj
h4
hj

2
 B34 

(119) 

ΔAb=
Δzbj

hj
൬
h1+h2

2
 B12+

h2+h3

2
 B23+

h3+h4

2
 B34൰   (120) 

ΔAb=
A

hj
Δzbj (121) 

Finally, the level variation of point j is obtained from (121) as 

Δzbj=
hj

A
 ΔAb (122) 

In this method, the equivalent average width Bs is defined as 

 B௦ =
A

zw - zb0
 (123) 

with zw the water level and zb0 the thalweg level. It can be observed that, in rectangular 
channels, the non-uniform erosion gives the exact same results as the uniform erosion.  



Bank Failure 

In nature, when erosion starts at the toe of the bank of a river, the bank slope can become 
steeper than the stability limits of the constituting material. This will then result in a failure of 
the bank. However, in numerical schemes where only bed deepening is represented as a result 
of the governing equations and using processes such as those described in section 3.3, global 
mass failures and the resulting channel widening cannot be represented. To account for such 
mass failures, a bank failure mechanism has to be included in the model. The bank failure 
mechanism proposed here is derived from Zech et al. (2008) and Swartenbroekx et al. (2010) 
and is based on a tilting of the unstable portion of the bank. For an irregular cross-sections 
described by straight segments, the stability of each segment is checked and the tested 
segment is tilted if its slope exceeds the stability limit. Doing this, an adjacent segment can 
become unstable. So, the whole process is repeated until complete stability of the cross 
section. The process is described in Figure 5: segment BC is initially unstable and after the 
tilting, segment B’C’ is stable but segment AB’ has become unstable, and will thus be tilted in 
the next iteration. The convergence of the procedure was demonstrated by Swartenbroekx et 
al. (2010). 

 

Figure 5. Bank failure operator 

As only non-cohesive sediments are considered, the slope limit depends solely on the internal 
friction angle of the material. It is important to add that, as the bank failure operator is 
operated separately from the rest of the model¸ it only changes the shape of the section 
without affecting the sediment transport Qs. The sediment deposited at the toe of the bank 
after a failure event will be transported by the flow during the next time step. No dynamical 
effects are thus taken into account. 

RESULTS 

In this section, the results of the novel Coupled A-Roe model are compared to the solutions 
provided by the three other models. Here, the models are abbreviated as follows: UH for 
uncoupled LHLL, UR for uncoupled A-Roe, CH for the coupled LHLL and CR for the 
coupled A-Roe model. All tests were run with a CFL number equal to 0.9. 

Water at rest 

To assess the well-balancedness of the models, it is important to check if they are able to keep 
water at rest. The selected tests consider a trapezoidal channel (Murillo and Garcia-Navarro 
2014) with a shape defined by  



 Bሺxሻ=B0ሺxሻ+0.2ሺB0ሺxሻ-9.5ሻh (124) 

With B0 the width of the channel at h = 0 m, as represented in Figure 6 for the CR model. All 
models are able to maintain the water at rest with a maximum error on the discharge of 
10-13 m³/s and, therefore, respect the C-property (Vazquez-Cendon 1999), so only the results 
for the CR model are illustrated, as they are very similar for the four models.  

 

Figure 6. Results for the water at rest using the CR model  

Equilibrium Slopes 

This test compares the models results to the analytical solution of a progressive slope 
aggradation or degradation in a prismatic channel. Both supercritical (slope S0 = 5%) and 
subcritical (slope S0 = 0.5%) cases are investigated. For each case, three initial configurations 
are studied (Figure 7 and Figure 8): (1) starting at the equilibrium slope, with equilibrium 
upstream sediment supply, (2) starting from a steeper slope (6% and 0.8% for the supercritical 
and subcritical cases, respectively), with a sediment supply corresponding to the final 
equilibrium to be reached after erosion and thus slope degradation, (3) starting from a milder 
slope (4% and 0.25% for the supercritical and subcritical cases, respectively), with a sediment 
supply corresponding to the final equilibrium to be reached after deposition and thus slope 
aggradation.  

Supercritical 
For the supercritical case, the equilibrium solution for a liquid discharge Q = 100 m³/s and a 
sediment supply of Qs = 1.517 m³/s corresponds to a bed slope S0 = 5%. All models provide 
the exact solution, regardless of the initial condition. Figure 7a shows the three initial 
conditions: the upper line corresponds to the initial steeper slope, the middle line to the 
equilibrium slope and the lower line to the initial milder slope. All tested schemes were run 
for 150000 time steps with a CFL number of 0.9. The correct equilibrium slope is obtained as 



illustrated in Figure 7b showing the final situation, with the following RMSE on the bed 
elevation: 4.62 10-6 m for UR, 4.55 10-6  m for CR, 9.16 10-6  m for UL and 0.039  m for CL. 
These values do not depend on the initial conditions. Moreover, it appears that the largest 
error is obtained for the CL model. 

 

Figure 7. Results for the equilibrium of a supercritical slope: (a) initial conditions and (b) 
final computed bed elevation. All tested models (CR-CH-UR-UH) provide the same results. 

Subcritical 
For the supercritical case, the equilibrium solution for a liquid discharge Q = 100 m³/s and a 
sediment supply of Qs = 0.111 m³/s corresponds to a bed slope S0 = 0.5%. All models but the 
coupled LHLL (CH) give the same, and correct, results (Figure 8), regardless of the initial 
condition. This means that starting from an initial slope steeper or milder than the equilibrium 
one as illustrated in Figure 8, the correct final equilibrium slope is obtained, except for the CH 
scheme. For this case, the RMSE are: 1.81 10-6 m for UR, 1.81 10-6 m for CR, 4.77 10-5 m for 
UL and 0.0084 m for CL. 

The failure of the CH model can be explained by looking at the sediment mass flux 
expression: 

Qs, i+1/2
* =

λ2 

Qs,i
1 - ε0

 - λ1

Qs,i+1
1 - ε0

 - λ1λ2 
Bs,i + Bs,i+1

2 ൫zb0,i - zb0,i+1൯

λ2 - λ1
 

(125) 

The last term of the equation, which constitutes the diffusive part of the flux expression, only 
cancels out if the bed elevation is constant. This problem, already pointed out by Goutière et 
al. (2008) for rectangular channels, can be solved by adding a term, which is a function of the 
equilibrium slope, in the diffusive term. However, this solution proposed by Goutière et al. 
(2008) was not adopted here, as it cannot be extended to arbitrary topographies with abruptly 
changing bed slopes. Therefore, the CH model should not be considered for general 
applications and the proposed CR model can thus be considered as an improvement of 
coupled models for this type of problems. 



 

Figure 8. Results for the equilibrium of a subcritical slope: (a) initial and (b) final 

Dam break flow over a flat erodible bed 

Experiments of dam-break flow over an initially flat mobile bed were presented by Spinewine 
and Zech (2007). The channel is 6 m long and 0.25 m wide. Upstream, the first 3 m are 
initially filled with 0.35 m of water. At  𝑡 ൌ 0, the dam is removed and the water starts 
flooding the flume. The sediment bed is composed of PVC particles with a median diameter 
d50 = 3.9 mm and a specific mass s = 1.58. During the experiment, three flow regions were 
observed: a layer of pure water, a layer of sediment transport composed of a mixture of water 
and sediments and the motionless bed. Therefore, two interfaces were captured: the interface 
between the flow of pure water and the mixture and the interface between the mixture and the 
motionless bed. However, the models presented in this paper do not compute a layer of 
moving sediments. They only provide the bed elevation after erosion or deposition. This level 
is assumed to correspond to an intermediate value between the lower and upper limits of the 
moving sediment layer. So, numerical results are considered to be in good agreement with the 
measurements when the computed bed elevation is located between the two recorded 
interfaces. The results are presented for t = 1 s (Figure 9). They show that all four models give 
similar erosion, with values between the upper and lower limits of the moving sediment layer 
(dots in the figure). However, the CR model shows a more regular bed evolution than the 
other three models that present spurious bed level variations (zoom in Figure 9 and thus 
appear less stable. These spurious bed level variations are reduced but not eliminated by 
reducing the time-step. 



 

Figure 9. Dam-break flow over a mobile bed. Comparison simulations (lines) and 
experimental results (dots) 

Dike failure by overtopping 

This experiment studying erosion and failure of a a sand dike was conducted at the Hydraulics 
Laboratory of the Université catholique de Louvain, Belgium (Van Emelen et al. 2015). The 
dike was built in a 10 m long, 0.2 m wide and 0.3 m high horizontal flume. The dike is of 
trapezoidal shape, 0.20 m high with slopes of 1V:2H (Figure 10) and is made of sand with a 
mean diameter of 0.61 mm. During the erosion process, both water and bed level evolutions 
were recorded.  

 

Figure 10. Dike failure: experimental setup 

The results are shown in Figure 12 to Figure 15 for four time steps: 8 s, 24 s, 64 s and 200 s 
(t = 0 s corresponds to the initial overtopping of the dike) for each model. At each considered 
time instants, the computed water and bel levels (continuous lines) are compared to the 
measurements (discrete symbols). The results are then summarized in Figure 15 where the 
evolution of the average absolute error is presented for the bed level, the water level and the 
water depth. The errors are computed for t = 8, 14, 24, 64 and 200 s. Finally, Figure 16 
represents the signed error for the bed level, water level and water depth computed as the 
difference between the predicted and measured values.  



 

Figure 11. Comparison between measured and computed bed and water levels for 
the uncoupled lateralized HLL model at (a) 8 s, (b) 24 s, (c) 64 s and (d) 200 s. 
Measured bed level ( ), computed bel level ( ), measured water level ( ) and 

computed water level ( ) 

 

Figure 12. Comparison between measured and computed bed and water 
levels for the uncoupled augmented Roe model at (a) 8 s, (b) 24 s, (c) 64 s 
and (d) 200 s. Measured bed level ( ), computed bel level ( ), measured 

water level ( ) and computed water level ( ) 



 

Figure 13. Comparison between measured and computed bed and water levels 
for the coupled lateralized HLL model at (a) 8 s, (b) 24 s, (c) 64 s and (d) 200 s. 
Measured bed level ( ), computed bel level ( ), measured water level ( ) and 

computed water level ( ) 

 
Figure 14. . Comparison between measured and computed bed and water 

levels for the coupled augmented Roe model at (a) 8 s, (b) 24 s, (c) 64 s and (d) 
200 s. Measured bed level ( ), computed bel level ( ), measured water level 

( ) and computed water level ( ) 
 

As observed from Figure 12 to Figure 15, the results are similar for the coupled and 
uncoupled version of the A-Roe model (CR and UR) for 8 s, 24 s and 64 s. All models also 
reach similar results at 64 s. However, the intermediary results (at 24 s) show significant 



differences. CR erodes the dike faster than the experiment while UH erodes slower. Only CH 
is able to capture the correct crest level evolution. However, all models fail to represent the 
correct behavior of the bed and water level at 64 s when antidunes start to form in the 
experiment.  

 
Figure 15. Evolution of the average absolute error for the dike failure 

considering the bed level, the water level and the water depth 

 

In Figure 15 and Figure 16, it can be observed that the error remains constant for the coupled 
A-Roe model (CR) for the bed level prediction contrarily to the other models where the error 
progressively decreases. In addition, LHLL based model (CH and UH) provided better bed 
evolution than A-Roe based models (CR and UR) that in turn provided better predictions of 
the water depth. Figure 16 shows that all models have the same error for the prediction of the 
dike erosion. First, at 8 s, the models do not transport enough sediments and the erosion is 



underestimated. Then, at 14 and 24 s, the erosion of the dike is overestimated before being 
again underestimated at 64 s. Finally, for the prediction of the volume of water, the coupled 
Roe model (CR) gives the best prediction with an average error of less than 2 10-4 m after 24 s. 

These conclusions in terms of error can be compared to the conclusions drawn in Franzini and 
Soares-Frazão (2016), where similar schemes where compared on pure hydrodynamic cases 
with complex topographies. The lowest errors in terms of discharge and water level 
predictions were obtained for the schemes using the energy balance (HLLS and A-Roe). In 
the present cases involving morphological evolution, it appears that the major part of the error 
is due to the computation of the elevation that is highly dependent on the sediment transport 
relations, as shown for example by Van Emelen et al. (2015) 

 

Figure 16. Average error for the bed level, water level and water depth 
computed as the difference between the predicted and measured values.  



Dam-break flow in a trapezoidal channel 

Experiments of a dam-break flow in an initially trapezoidal channel made of coarse sand with 
steep banks were conducted at the Hydraulics Laboratory of the Université catholique de 
Louvain, Belgium (Soares-Frazão et al. 2007). This test aims at validating the procedures 
described in section 3.3 for the distribution of bed level variations zb over the cross-sections: 
the uniform erosion, i.e constant bed level variation zb over the entire submerged part of the 
cross-section, and the non-uniform erosion, i.e. a distribution of zb over the cross sections 
according to the actual bed shear stress. Two types of results are presented: the uniform 
erosion without any bank failure mechanism denoted UE-NBF, and the non-uniform erosion 
with bank failure mechanism denoted NUE-BF. The initial conditions consist of a semi-
trapezoidal, 5.7 m long channel as sketched in Figure 17, the reservoir being filled with a 15 
cm water depth. The sediment used is sand with a median diameter (d50) of 1.8 mm and a 
specific density s of 2.615. The angle of repose are 37° for submerged sand and 85° for humid 
sand.  

 

Figure 17. Dam-break on a trapezoidal channel: experimental setup. (a) Top view, (b) cross-
section and (c) initial conditions 

In Figure 18, the results are shown for cross-section S2 located at x = 0.5 m downstream from 
the gate using the coupled A-Roe approach. It can be easily observed that for the bank 
evolution the NUE-BF approach gives better results than considering a classical, simpler, UE-
NBF approach. Only the NUE-BF is able to capture the variation in the slope of the banks. It 
is thus important to consider local 2D phenomena in the models by means of non-uniform 
erosion and bank failure.  



 

Figure 18. Dam-break flow in a trapezoidal channel: 
comparison between UE-NBF and NUE-BF approaches 

using the coupled Roe  

 

DISCUSSION AND CONCLUSIONS 

A new coupled finite-volume scheme based on the Augmented-Roe solver with energy 
balance is presented. It was adapted to simulate morphological evolution of arbitrary cross-
sections. The proposed model has also been compared to three more classical models, coupled 
or uncouped: a coupled LHLL, an uncoupled LHLL model and an uncoupled Augmented Roe 
model. First, the distinction between uncoupled (or weakly coupled) and fully coupled models 
has been described. While the former solve the equations in two steps (shallow water 
equations then Exner equation), the latter solve them together resulting in a more complex 
scheme. Secondly, from the point of view of the model formulation, as the HLL method uses 
approximate value for the celerities, it results in simpler expression than Roe based models.  

The coupled Augmented Roe was compared to the other models using different test cases. 
These tests were both numerical and experimental. It could be observed that although much 
more simple, even the uncoupled models provided reasonably good results on most of the test 
cases. However, the proposed CR model provided more regular and realistic results than the 
other models, i.e. without spurious oscillations. The tests also highlighted the fact that the 
coupled LHLL model failed in reproducing bed aggradation or degradation in subcritical flow 
conditions. 

Finally, the necessity to consider non-uniform erosion distribution and a bank failure model 
for arbitrary cross sections was highlighted by studying a dam-break flow in a semi-
trapezoidal channel. It was shown that these two parameters influence greatly the 
morphological changes created by a dam-break flow in arbitrary topographies.  
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