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ABSTRACT: The objective of this text is to give an overview of
some structural properties of the dynamical models of reaction
systems, in particular (but not uniquely) of chemical and
biochemical systems as well as environmental and ecological
systems, that can be interesting for the analysis and the design of
process estimation and control tools. We shall in particular consider
the notion of reaction invariants (that will allow us to rewrite part of
the system dynamics in a way that is independent of the reaction
kinetics) and of singular perturbations (slow/fast dynamics) (that
will allow us to generalize the notion of quasi steady states). We also
consider a transformation that allows us to diagonalize the
stoichiometric coefficient matrix (useful in the implementation of
some parameter estimators) and a simple condition based on the system reaction network that allows us to emphasize the
possible presence of inverse response/nonminimum phase. Finally, the link between adaptive linearizing control and PI control
will be discussed. Links with some important research of Dominique Bonvin will also be emphasized.

■ FOREWORD

This paper had been prepared with the objective of being
included in a special issue prepared in the honor of Dominique
Bonvin. It rapidly became obvious that the best contribution I
could provide should emphasize a research activity in which we
both have been very active over the years: the analysis of the
properties of reaction systems and their use for identification,
estimation, and control. If some of the properties presented
here have no connection with the work of Dominique Bonvin,
some exhibit a strong link even if their use, although similar, is
not fully identical.

1. INTRODUCTION

The chemical, biochemical, environmental, and ecological
systems are the key elements of the class of the reaction
systems. To know and understand well the properties of this
class of systems can be particularly useful when the purpose is
to understand their specific features and develop and
implement monitoring (software sensors) and control tools.
The main objective of this paper is to illustrate this viewpoint
by emphasizing some structural properties of models of
reaction systems and their link with the design and
implementation of monitoring and control tools for reaction
systems.
In this paper, we concentrate on homogeneous reaction

systems, i.e., those whose dynamics is characterized by
ordinary differential equations (ODE’s). Yet several properties
emphasized here can be rather straightforwardly extended to
the nonhomogeneous system (tubular reactors,1 for instance)
where partial differential equations are used to characterize the
system dynamics. We begin by introducing the dynamical

model that we call the “general dynamical model for reaction
systems in homogeneous medium” (Section 2). Section 3 is
devoted to a state transformation that is related to the notion
of reaction invariants and is useful for the design of state
observers that are independent of the reaction kinetics. In
Section 4, we consider model reduction and the notions of
singular perturbations and slow/fast systems. Section 5 is
dedicated to the introduction of another transformation that
allows us to diagonalize the stoichiometric coefficient matrix.
This transformation is useful in different situations including
the calibration of the design parameters of a parameter
estimator independently of the (nonlinear) system dynamics.
The last two sections are dedicated to control. In Section 6, the
link between adaptive linearizing control and PI control is
discussed, whereas Section 7 will show under which conditions
inverse response/nonminimum phase behavior can take place.

2. GENERAL DYNAMICAL MODEL OF REACTION
SYSTEMS IN HOMOGENEOUS MEDIUM

Let us consider a reaction system in which n components
interact via a number of reactions equal to m. Let us also
consider that the reaction medium is homogeneous or
confined (as is the case for a perfectly mixed reactor). The
reactions are possibly nonisothermal. The dynamical equations
of the system can then be obtained from mass balance
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equations for the components and energy balance for the

temperature. (Note that the latter is obtained by considering

some simplifying assumptions for the internal energy balance

and that a thermodynamically more consistent expression can

possibly be considered, see refs 3 and 4 for examples.) These

can be put under the following generic matrix form:2

x
t

Kr x F Q
q
V

x U T
d
d

( ) ( )= + − − +
(1)

where x represents the vector of the concentrations of the

components (reactants, products, biomass, species, resources,

etc.) of the reaction system (g/L) and of the temperature (K)

of the reaction medium (for nonisothermal systems). The

matrix K is the stoichiometric coefficient matrix (thee

coefficients usually called yield coefficients in biological

systems), r(x) (g/(L h)) is the reaction rate vector, F (g/h)

is the feed rate vector, Q (g/h) is the gaseous outflow rate

vector, and U(T) (K/h) is the heat exchange vector related to

the cooling or heating system (this term is usually a function of

the temperature of the reaction medium). q (L/h) is the

volumetric inlet flow rate and V is the volume of the reaction

medium. It is important to note (or more prosaically, to recall)

that a fundamental aspect of this model is that the dynamics of

a reaction system is generically the sum of a conversion term

Kr(x) and of a transport dynamics term F − Q − qx/V +

U(T). It is also worth noting that this model is valid whatever

the operating mode, batch, fed-batch, or continuous.5 The only

necessary modification is the addition of a volume balance

V
t

q
d
d

=
(2)

in the fed-batch operating mode.
As a matter of illustration, let us consider the Van de Vusse

reaction scheme:6

A A A A A, 21 2 3 1 4→ → → (3)

If we consider nonisothermal reactions, we can choose the

following state vector and reaction rate vector:

x

T
C

C

C

C

r

r
r
r

,

A

A

A

A

1

2

3

4

1

2

3

= =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
(4)

where CAi (i = 1−4) and rj (j = 1−3) represent the

concentrations of the components Ai (i = 1−4) and the rates

of reactions 1, 2, 3, respectively. If there is no product in the

gaseous phase, the matrix K and the vectors F, Q, and U are

written as follows:

K

H
C

H
C

H
C

F

q
V

T

q
V

C
Q U

hA
C V

T T

1 0 2
1 1 0
0 1 0
0 0 1

,
0
0
0

, 0,

( )

0
0
0
0

1

p

2

p

3

p

in

in

p
c

ρ ρ ρ

ρ

=

−
Δ

−
Δ

−
Δ

− −
−

= =

=

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÄ

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (5)

with ΔHi (i = 1−3), ρ, Cp, Tin, Cin, h, A, and Tc being the
enthalpies of each reaction, the density, the specific heat of the
fluid, the inlet temperature, the inlet component concentration,
the heat exchanger coefficient, its exchange area, and the
temperature of the fluid in the exchanger, respectively.

3. STATE TRANSFORMATION, REACTION
INVARIANTS, AND DESIGN OF ASYMPTOTIC
OBSERVERS

Let us define by p the rank of the matrix K in model (1).
Generally speaking, if the considered reactions are independ-
ent, p will be equal to the number of reactions (p = m). (A
typical case of dependent reactions is the reversible reaction
where two reactions with the same stoichiometric coefficients
and reactions rates of opposite signs are considered. It is worth
noting that in that case, a single reaction whose reaction rate is
the difference of the rates of the forward reaction and of the
backward reaction (i.e., which can be either positive or
negative) can be considered.) Let us consider the following
state partition:

x
x
x

a

b
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (6)

such that the submatrix Ka corresponding to xa is full rank
(rank(Ka) = p). We can then rewrite the model under the
following form:

x
t

K r x F Q
q
V

x U T
d
d

( ) ( )a
a a a a a= + − − +

(7)

x
t

K r x F Q
q
V

x U T
d
d

( ) ( )b
b b b b b= + − − +

(8)

We can then state the following structural property: for the
system (1), there exists a state transformation

z A x xa b0= + (9)

with A0 solution of the matrix equation:

A K K 0a b0 + = (10)

such that the dynamical system (1) can be written under the
following form:

x
t

K r x F Q
q
V

x U T
d
d

( ) ( )a
a a a a a= + − − +

(11)
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z
t

q
V

z A F Q U T F Q U T
d
d

( ( )) ( )a a a b b b0= − + − + + − +

(12)

The interest of this property is that it provides a model
description whose a part of the dynamics (eq 12) is
independent of the kinetics r(x). This notion corresponds to
the notion of reaction invariants7 for closed systems (F = Q =
U = q = 0). Observe that then eq 12 reduces to z

t
d
d

= 0, which

explains the notion of reaction invariants, which is then a
mathematical invariant. The use of reaction invariants in
automatic control dates back from works of Fjeld and co-
workers.8 It is also at the core of a large part of the research
activities of Dominique Bonvin starting from his 1990 seminal
paper.9 This activity developed (and is still developing)
methods for estimation and control around the notion of
variants, invariants and extents, and results in a impressive
number of scientific publications10−16 (to cite a few).
The reaction invariant property can be very useful in the

design of software sensors that allow reconstruction of the
unmeasured variables of a reaction system. It is well-known
that the balance models are the basis for modeling the
dynamics of reaction systems. (Originally, we were not aware
of the fact that the above property was the invariant reaction
property, and our source of inspiration was a paper by Aborhey
and Williamson (1978),18 where the authors had been
designing an observer for the biomass concentration by using
the measurement of substrate concentration in the scalar
version of the above transformation in a simple microbial
growth system. We indeed originally used it to rewrite the
dynamics of the system in the context of the online estimation
of specific growth rates in biological systems.19) The modeling
of the kinetics is often their weak point (because of fthe lack of
appropriate models and/or experimental data sufficiently
informative to provide sufficiently reliable models). It is
therefore important to be able to be free from the knowledge

of the kinetics to provide reliable values of the unmeasured
variables. This is the case of the “asymptotic” observer.2,5,17

Let us consider that q variables (concentrations and possibly
temperature in the nonisothermal case) are measured on line,
with q ≥ p. Let us call x1 the vector of the measured variables
and let us put in a vector x2 the unmeasured variables. We can
therefore rewrite the state vector x with the following new state
partition:

x
x
x

1

2
=

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ (13)

We can rewrite z as a function of x1 and x2:

z A x A x1 1 2 2= + (14)

The asymptotic observer computes the value of x2 on the basis
of eqs 12 and 14:

z
t

q
V

z A F Q U T F Q U T
d
d

( ( )) ( )a a a b b b0
̂ = − ̂ + − + + − +

(15)

x A z A x( )2 2 1 1̂ = ̂ −+
(16)

where A2
+ is a left inverse of the matrix A2. In the frequent case

when q = p = m, A2
+ is the inverse of A2 (A2

+ = A2
−1). Let us draw

attention to the fact that the submatrix K1 associated with the
vector of the measured variables has to be full rank (it is the
case if the reactions are independent and if the variables of the
vector x1 are independent). (One example of the loss of
independence of the variables is the case of the respiratory
quotient equal to one in an aerobic biological system.5)
Figure 1 presents implementation results of the asymptotic

observer for a fixed bed reactor used in the synthesis of ethyl
tertio-butyl ether (ETBE), used in particular as additive in
unleaded gasoline.1720 The reactants of the synthesis of ETBE
are ethanol and isobutene:

Figure 1. Asymptotic observer applied to a ETBE synthesis process.
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ethanol isobutene ETBE+ → (17)

and the reaction is exothermic (ΔH = −40 kJ/kmol). The
measured variable used for the asymptotic observer is the
temperature. This one is measured at 4 locations in the reactor
(including the inlet and the outlet) and in the heat exchanger.
Figure 1 illustrates the reconstruction of the concentrations in
ethanol CA, isobutene CB, and ETBE CD at both internal
locations of the reactor (indices 1 and 2) and at the outlet
(index 3).
The design of asymptotic observers has been extended to

distributed parameter tubular reactor models.17 In that paper it
is also shown how to introduce design parameters in the
observer in the case of multitank systems to arbitrarily assign
the observer dynamics. Another interesting extension of the
asymptotic observers are the interval observers21,22 that take
advantage of the cooperativity properties of the system.23

Note also that the notion of reaction invariants and the
related transformation appears to be very useful when
identifying the parameters of a reaction system. Indeed,
because it allows us to provide a dynamical description that is
independent of the reaction kinetics, the use of the dynamical
equations of the variable z allows us to proceed with the
identification of the yield/stoichiometric coefficients and of the
transfer coefficients independently of the choice of kinetic
models (and therefore of the calibration of the parameters of
the selected kinetic models). This calibration can be performed
subsequently once the calibration of the other parameters has
been validated by coming back to the original mass and energy
balance model. This approach is discussed in particular in5,24

4. DIAGONALIZATION OF THE STOICHIOMETRIC
COEFFICIENTS AND CALIBRATION OF
PARAMETER ESTIMATORS

Let us go back to the general dynamical model (1) for which
we consider m variables of the state vector x that we shall call y
such that the submatrix of the stoichiometric coefficients Ky is
full rank. Then the dynamical equations of y are written:

y
t

K r
q
V

y F Q U
d
d y y y y= − + − +

(18)

Let us consider the following transformation ζ:

K yy
1ζ = −

(19)

The dynamical equations of ζ are then written as follows:

t
q
V

r K F Q U
d
d

( )y y y y
1ζ ζ= − + + − +−

(20)

We observe that the dynamics of ζ has the property that one
reaction rate is associated with each entry of ζ, i.e., for all i = 1
to m:

t
q
V

r f
d
d

i
i i i

ζ
ζ= − + +

(21)

where f i is the ith row of Ky
−1(Fy − Qy + Uy).

This property is useful for, for instance, the calibration of
parameter estimators, in particular for the online estimation of
reaction rates (observer-based estimators).25 In this case, we
are often not interested in the online estimation of the
complete reaction rate but rather to one parameter of the
kinetic expression. For instance, the objective will be to
reconstruct the online evolution of the specific growth rate μ of
a growth reaction (r = μX), where X is the biomass

concentration; or the kinetic constant k0 for a reaction of
order α (r = k0C

α). The vector of the reaction rates r can then
be rewritten as the product of a diagonal matrix G(x) (which
is, generally speaking, a function of the system variables) and of
a vector of parameters to be estimated on line θ: r = G(x)θ.
Then eq 18 becomes

y
t

K G x
q
V

y F Q U
d
d

( )y y y yθ= − + − +
(22)

We can then use the following software sensor525 to estimate θ
on the basis of the measurements of y:

y
t

K G x
q
V

y F Q U y y
d
d

( ) ( )y y y yθ
̂
= ̂ − + − + − Ω − ̂

(23)

t
K G x y y

d
d

( ) ( )y
Tθ ̂

= [ ] Γ − ̂
(24)

The matrices Ω and Γ are the gains of the estimator. The
calibration of the estimator may be performed via the choice of
appropriate values of the entries of Ω et Γ. The basic rule is
that the matrix ΩTΓ + ΓΩ has to be negative definite. This
being said, it is important to know that the convergence speed
of the estimator depends on the value of the variables x via
G(x). Indeed, the state matrix of the estimation error system

e
y y

θ θ
=

− ̂

− ̂

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (25)

is equal to

A
K G x

K G x

( )

( ( )) 0

y

y
T

=
Ω

− Γ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ (26)

This difficulty can be circumvented by using the above
transformation. Indeed, in that case, the parameter estimator
takes the following form:

t
G x

q
V

K F Q U
d
d

( ) ( ) ( )y y y y
1ζ θ ζ ζ ζ

̂
= ̂ − + − + − Ω − ̂−

(27)

t
d
d

( )
θ ζ ζ

̂
= Γ − ̂

(28)

Because G(x) is diagonal and by choosing diagonal matrices
for Ω and Γ

i a pdiag , diag , 0, 0, 1i i i iω γ ω γΩ = {− } Γ = { } > > = ′
(29)

we see that we obtain a system of second-order differential
equations that allows us to estimate each unknown parameter
independently of the other parameters. Let us now see how to
make the dynamics of the estimator independent of the
operating conditions of the system. To do so, let us redefine
the estimation error

e
ζ ζ

θ θ
=

− ̂

− ̂

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (30)

whose dynamics can be derived from eqs 20, 27, and 28):
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e
t

Ae b
d
d

= +
(31)

where A is a block-diagonal matrix with blocks of dimension 2:

A A A
g x

i a pdiag ,
( )

0
, 1i i

i i

i

ω

γ
= { } =

−

−
= ′

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ (32)

and where b is equal to

b
t t

d

t
0

d
d

0
d
d

... 0
d

p
T

1 2θ θ θ
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ (33)

The characteristic polynomial associated with the matrix A,
det(λI − A), is here written as follows:

I A g xdet( ) ( ( ))
i

p

i i i
1

2∏λ λ ωλ γ− = + +
= (34)

The central idea of the choice of the calibration parameters
consists of choosing each γi inversely proportional the
corresponding term gi(x) (that has to be different from zero):

g x
i a p

( )
, 0, 1i

i

i
iγ

γ
γ= ̅

̅ > = ′
(35)

We can then rewrite the characteristic eq 34 as follows:

I Adet( ) ( )
i

p

i i
1

2∏λ λ ωλ γ− = + + ̅
= (36)

In other words, the dynamics of the estimator is now
independent of the operating conditions. Such a choice of
the calibration parameters de calibration corresponds to a
Lyapunov transformation.26 An interesting choice consists of
considering double poles, i.e.:

4i
i
2

γ
ω

̅ = (37)

In such a case, the calibration of each estimator reduces to the
choice of only one ωi. This allows to have a calibration
procedure that has the double avantage to be simple (a single
calibration parameter per unknown parameter) and flexible
(each calibration parameter may have a value which is different
depending on the rate of variation of each unknown
parameter).
Figure 2 illustrates the application of this result to the

estimation of 2 specific growth rates μR (oxidation reaction)
and μF (glycolysis reaction) in a fed-batch process of
production of animal cells in a pilot reactor of 22 L.27 The
associated reaction scheme can be put under the following
form:

Xoxidation: glucose oxygen+ → (38)

Xglycolysis: glucose lactate→ + (39)

Glucose (Figure 2a) and lactate (Figure 2b) are measured via a
biosensor of the FIA (Flow Injection Analysis) type. In the
absence of reliable models for the specific growth rates, the
validation of the estimation has been performed on the basis of
biomass concentration data: Figure 2e compares the off-line
biomass data (o) with the estimation Xv (dotted line) of the
biomass computed from the balance equation and the
estimated values of the specific growth rates μ̂R and μ̂F:

X
t

X X
q
V

X
d
d

v
R v F v vμ μ= ̂ + ̂ −

(40)

This diagonalization transformation appears to be also of
interest in other situations, for instance, in the design of
observers where the structure of the kinetic model is known
while the parameters of the kinetic model are known (or at
least poorly known).2829

Figure 2. Estimation of specific growth rates for an animal cell culture.
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Note that this transformation allows us to make another
strong link with the work of Dominique Bonvin because the
same transformation has been considered to emphasize the
dynamics of reaction variants with a number of methodological
developments, in particular, in the context of identification and
parameter estimation, yet in a different context.13−1530

5. SLOW−FAST DYNAMICS AND MODEL REDUCTION
The models of reaction systems can rapidly become high-order
ones once the number of components and reactions that are
taken into account is increasing. In practice, it can be of
interest to use models of reduced complexity that appear to be
more reliable from parameter identification, monitoring, or
control design viewpoints.
The notion of slow/fast dynamics and the singular

perturbations techniques are tools that allow order reduction
of dynamical models31 and in particular of reaction system
models.32 In very simple terms, the central idea is to separate
the model dynamics into fast and slow dynamics and to keep
only the slow dynamics while reducing the fast dynamics into
algebraic equations. Singular perturbations are applicable in
particular to slow and fast reactions and low solubility gaseous
products. Let us concentrate here on a typical example of slow
and fast reactions. Let us consider the following sequential
reaction scheme:

A a A A a A,1 2 2 2 3 3→ → (41)

where the first reaction is slow and the second is fast. The
dynamical balance of the components gives the following
equations:

C
t

q
V

C
q
V

C r
d

d
A

A
1

in 1 1= − −
(42)

C
t

q
V

C a r r
d

d
A

A
2

2 2 1 2= − + −
(43)

C
t

q
V

C a r
d

d
A

A
3

3 3 2= − +
(44)

where the reaction rates r1 and r2, in agreement with the
chemical kinetics laws, can take the following form

r k C C C r k C C C( , ), ( , )A A A A A A1 01 1 1 1 2 2 02 2 2 2 3ϕ ϕ= = (45)

with ϕ1 and ϕ2 positive (and possibly nonlinear) functions (ϕ1
> 0, ϕ2 > 0) of the components intervening in the reaction (for
instance in the case of first-order reactions, ϕ1 = 1 et ϕ2 = 1).
The fact that the reaction is slow can be formalized via the
kinetic constants as follows: k01 < < k02. At the limit, k02 is very
large or, in other words, its inverse ε =

k
1

02
tends to zero.

Let us consider the following auxiliary variable: C̃ = a3CA2
+

CA3
. Its dynamics is directly obtained from eqs 43 and 44:

C
t

q
V

C a a r
d
d 2 3 1

̃
= − ̃ +

(46)

Moreover by introducing the kinetic expressions and by
dividing by k02, we can rewrite the dynamical balance of A2 (eq
43) as follows:

C
t

q
V

C a k C C C C C
d

d
( ( , )A

A A A A A A
2

2 2 01 1 1 1 2 2 2 3ε ε ε ϕ ϕ= − + −

(47)

If k02 is very large, ε tends to zero, and the above equation
becomes

C C C0 ( , )A A A2 2 2 3ϕ= − (48)

Because ϕ2 > 0, this implies that CA2 = 0. Coming back to eq
46, we obtain

C
t

q
V

C a a r
d

d
A

A
3

3 2 3 1= − +
(49)

In other words, since the intermediate product CA2 does not
accumulate, this results in considering only one reaction

A a a A1 2 3 3→ (50)

This result is similar to the one that would be obtained by
considering the hypothesis of quasi steady-state (QSS) well-
known in chemical engineering. The singular perturbations and
the notion of slow−fast allow us to provide a formal
mathematical framework for this type of model order reduction
methods.32

Another typical case of application of the singular
perturbation techniques is the case of gaseous products P
that have a low solubility. The mass balance equation can then
be written as follows:

P
t

q
V

P Q r
d
d

= − − +
(51)

We can show5 that in this case we can rewrite the balance
equation under the following algebraic form:

Q r= (52)

A typical case is the production of CH4 in anaerobic digestion
processes.
Therefore, we can then see that generically the singular

perturbation techniques allow to reduce to algebraic equations
the differential equations of low solubility gaseous products
and of components intervening (only) as reactants in fast
reactions. By noting xi the concentration of each of those, we
simply have to put both the derivative and the dilution term to
zero: x

t
d
d

i = 0, xq
V i = 0.

6. DESIGN OF LINEARIZING CONTROL LAWS AND PI
CONTROL

The inflow rate q is often considered in (bio)process control as
a potential control input. Many other options are possible but
we shall concentrate on this option with the essential objective
of simplicity. Let us also consider that at least one part of the
feed rates are in the liquid phase and can therefore be written
as Fi = qxi, in/V, where xi, in is the inlet concentration of
reactant xi. In the case of a monovariable control problem (one
control input, one controlled output), after having processed, if
necessary, to an order reduction of the dynamical model, the
dynamical equation of the controlled output can be written as
follows:5

y
t

q
V

x y Q r
d
d

( )inα β γ= − − +
(53)

where xin is the inlet reactant concentration vector and α, β,
and γ are vectors coming from the order reduction and are,
generally speaking, nonlinear functions of the stoichiometric
coefficients of matrix K. One rather natural way to design a
control law is to use adaptive linearizing control, which simply
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consists to invert the output dynamical eq 53 by imposing a
stable dynamics of the following type:

y
t

y y
d
d

( ), 0λ λ= * − >
(54)

for a given set point value y* while integrating a parameter
adaptation law to estimate on line the badly known parameters
of the model. In other words, by combining eqs 53 and 54 and
if we consider only the parameter uncertainty in the yield
coefficients and in the kinetics, the following control law is
obtained:

q
V

x y
y y Q r( ( ) )

inα
λ β γ=

̂ −
* − + ̂ − ̂

(55)

where α̂, β̂, are γr ̂ are estimates of the “parameters” α, β, and
γr. The parameter estimators will be for instance those
presented above (Section 5). A Lyapunov-based design
approach will also be considered (example here below). We
shall also see later that these play the role of an integral action
in the closed loop dynamics.
As a matter of illustration, let us consider the case of the

control of the COD (chemical oxygen demand) in an
anaerobic digestion process. The process can be characterized
by the following (simple) reaction scheme:

S X S P1 1 2 1→ + + (56)

S X P P2 2 1 2→ + + (57)

where S1, S2, X1, X2, P1, P2 represent the organic matter, the
volatile fatty acids, the acidogenic and methanogenic bacteria,
the CO2, and the CH4, respectively. If we consider that the
variable to be controlled is the sum of the substrate
concentrations S = S1 + S2, that the second reaction is fast,
and that the methane is a low solubility product, we can
rewrite the mass balance equation of S as follows:

S
t

q
V

S S Q
d
d

( )in β= − −
(58)

where Sin is the inlet COD concentration and Q lis the
methane gaseous outflow rate. Because the reaction scheme is
already a simplification of the reality and we have performed a
further model simplification, it is reasonable to think that the
parameter β is most likely poorly known and might be time-
varying. The control law will then take the following form:

q
V

S S
S S Q( ( ) )

in
λ β=

−
* − + ̂

(59)

where S* is the set point for the COD. One way to compute
on line the value of β̂ is to consider the design of the control
law by imposing Lyapunov stability criteria and by considering
the Lyapunov function S S( )1

2
2* − ,5 which imply, in our

example, to include the following adaptation law:

t
S S

d
d

( ), 0
β δ δ

̂
= * − >

(60)

If we integrate this equation by assuming for simplicity reasons
that the initial value of β̂ is equal to zero and that the flow rate
of CH4 is almost constant, the adaptive control law can be
rewritten as follows:

q
V

S S
S S Q S S( ) ( ( ))d

t

in 0
∫λ δ τ τ=

−
* − + * −

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ (61)

Therefore, we can note that our control law has the basic form
of a PI controller26 with a proportional action λ(S* − S) and
an integral action δQ∫ 0

t (S* − S(τ))dτ (via the parameter
adaptation) weighted by the term V

S Sin −
, which is nothing but a

feedforward action because it allows us via Sin to anticipate the
effect of what is in our case a disturbance (S is nothing but the
wastewater load that has to reduced below an acceptable

Figure 3. Control of the COD in ananaerobic digestion pilot process
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threshold). The behavior of such a controller is illustrated in
Figure 3 in the case of a 60 L pilot reactor.33

7. INVERSE RESPONSE AND LINEARIZING CONTROL
In the preceding section, we mentioned that the linearizing
control law consisted in inverting the dynamical model of the
reaction system. In control engineering words, this means that
in the linear case, the open loop zeroes are poles of the
controller. In other words if the system is nonminimum phase
(i.e., exhibits an inverse response) (“unstable” zeroes), the
control law will be unstable, which will destabilize the closed
loop system. It is therefore important not to consider
nonminimum phase models to design a linearizing control law.
The questions that we can then have is to know if the

inverse response phenomenon can be present in a reaction
system and, if yes, in which conditions it may appear. The
response can be formulated in a few words: the inverse
response phenomenon may appear once there are two
sequential reactions in the case of the dynamical relation
between the inlet flow rate q and the concentration of the
produit of the first reaction (which is also a reactant of the
second reaction).34 Let us go back to the simple case of the
sequential reaction that we have considered above (41) in the
case of first order kinetics: r1 = k01CA1, r2 = k02CA2. The transfer
function between CA2 and q around the equilibrium point
(noted by a bar above the value of the variable) is equal to

( )
( )( )

( )
( )( )

H s
ak C

V k k

s k k

s k s k

( ) q
V

q
V

q
V

q
V

q
V

01 in

01 02

2
01 02

01 02

=
− ̅

+ +

+ −

+ + + +

̅ ̅

̅

̅ ̅
(62)

We therefore see that the system is minimum phase for any
operating condition such that the square of the ratio of the
inlet q̅ over the reactor volume V is smaller than the product of
the kinetic constants k01k02.
Several solutions to circumvent the difficulty in the

linearizing control framework are suggested in,34 including
the order reduction considered above or a dynamical version of
the control law.

8. CONCLUSIONS
This paper was intended to emphasize some properties of
reactions systems that may appear to be useful in the context of
identification, estimation and control. The objective was
double: to gather a number of analysis results about reaction
systems that has been gathered within my research group and
to connect some of them with those developed by Dominique
Bonvin and his group. The potential of all the results
(including many of those from Dominique Bonvin that have
not be presented here) have proved to be very useful in many
applications of identification, estimation and control of
reaction systems.
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