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5



6

Dr. Rudi Labarbe, PhD
Ion Beam Applications SA (IBA), Louvain-la-Neuve

Prof. John A. Lee, PhD, Ir
Molecular Imaging, Radiotherapy and Oncology, Université catholique
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Abstract

Proton therapy is an advanced form of radiation therapy which is in-
creasingly used worldwide. Unlike photons, protons deliver a sharp dose
at a precise location corresponding to their range in the patient. Thanks
to this physical property, proton therapy has the potential to spare
healthy tissues better than conventional radiation therapy. However,
a consequence of this dosimetric property is that the range of the pro-
tons inside the patient must be accurately predicted to deliver the dose
as planned. Unfortunately, several uncertainties arising during treat-
ment planning may significantly impact the range of the protons and
hence jeopardize dose conformity. To better quantify and potentially
reduce the uncertainties, the implementation of imaging techniques that
would provide a direct information on the energy reduction of protons
in the patient is highly desirable. In the present thesis, such a method is
introduced: proton radiography. The system that we propose relies on
the use of protons having an energy high enough for them to traverse the
patient and stop inside a detector which measures their residual range.
By comparing measured and predicted residual ranges, it is possible to
quantify range uncertainties in the patient in clinical conditions.

Although the principle of proton radiography is relatively straight-
forward, a clinical implementation of such a measurement device is a
complex issue. This thesis aims at developing a proton radiography
system and also at conceiving an acquisition process that could be con-
veniently implemented in clinics. The methodologies to correctly take
advantage of proton radiography measurements are also discussed, in
order to further optimize the dose delivered to the patient and improve
de facto the treatment outcome.
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Chapter 1

Range uncertainty in
proton therapy

1.1 Proton therapy

1.1.1 Rationale of proton therapy

Cancer is, according to the World Health Organization (WHO), the sec-
ond leading cause of death in the world. This type of disease is character-
ized by the uncontrolled growth of abnormal cells. It can affect any kind
of organs and spread to other locations, creating metastases. Depending
on the diagnostic outcome, various treatment types may be considered:
surgery, radiotherapy, chemotherapy, ... Estimates show that approx-
imately fifty percents of patients having a cancer would benefit from
radiotherapy [48, 6]. This technique is based on the use of radiation to
damage cancerous cells by ionization processes. In this context, the aim
of treatment planning is to maximize the dose received by the tumor
and to minimize the one collaterally given to healthy tissues. In other
words, it is a matter of reaching a high probability of local control of
the tumor (tumor control probability, TCP) and a low probability of
complications in normal tissues (normal tissue complication probability,
NTCP).

The vast majority of radiotherapy treatments rely on the use of pho-
tons. Nonetheless, those particles have a dose deposition profile which
is essentially a decreasing function of the depth into the matter. Con-
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20 CHAPTER 1. RANGE UNCERTAINTY

sequently, significant dose is deposited on the way to the target and,
to a lower extent, downstream. To better confine most of the dose to
the tumor solely, conventional radiotherapy has benefited from exten-
sive developments over the past decades. In the first instance, intensity
modulated radiotherapy (IMRT) was developed to deliver beams with
distinct intensities and geometrical shapes at determined angles [52].
More recently, helical tomotherapy extended the potential of IMRT by
delivering such treatments for a large number of arcs in very limited
amount of time.

Figure 1.1: Depth-dose deposition profiles of photons vs. protons vs.
carbon ions. From [20].

Despite the major technological developments achieved in conven-
tional radiotherapy, the characteristic dose deposition profiles of pho-
tons is an intrinsic limitation in the continuous quest for lower NTCP.
There exists a form of radiation therapy, however, which does not have
this limitation and which is increasingly used worldwide: ion therapy.
The rationale behind the use of ions of which the most frequently en-
countered types in clinics are protons, resides in a depth-dose profile
characterized by a peak, named the Bragg peak. This is illustrated in
Fig. 1.1 which presents a comparison between dose deposition profiles of
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photons and two types of ions: protons and carbon ions.

Figure 1.2: Depth-dose deposition profiles of photons vs. protons. A
spread-out Bragg peak (SOBP) may be obtained by modulating the
initial energy of protons. From [51].

The sharp distal fall-off of the Bragg peak makes it ideal to spare
tissues located after the tumor. Moreover, the peak is preceded by a
low-dose plateau which may potentially reduce the dose delivered on
the way to the tumour. Finally, by modulating the initial energy of
protons to form a spread-out Bragg peak (SOBP), most of the dose can
be confined to the target volume, as illustrated in Fig. 1.2.

1.1.2 Proton therapy delivery

Bringing protons from the accelerator to the tumour involves the use
of a complex system, as illustrated in Fig. 1.3. First, hydrogen atoms
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are ionized. The protons generated in this process are then accelerated
which may be typically done by a cyclotron. For IBA cyclotrons, the
kinetic energy is usually around 230 MeV. This corresponds to a range
of 33 cm in water. In the next step, the protons energy may be adjusted
to fit the desired range using a degrader. The beam is then directed to
the treatment room via a beam line equipped with focusing magnets.

Figure 1.3: Proton therapy facility treatment level: cyclotron (1), en-
ergy degrader (2), momentum analysis magnets (3), slits (4), brass
aperture (5), beamstop at isocenter (6). Plan also shows the main con-
trol room (b), treatment room maze exit (m, n, o, a), and various cor-
ridors and occupied rooms on the level above (c–k). From [36].

As we pointed it out in Fig. 1.2, the use of a single energy is not
sufficient to cover a tumor all the way from its proximal to distal side.
A combination of beams of distinct energies is required in order to form
a SOBP. Moreover, the delivered beam must achieve lateral conformity
of the prescribed dose. To do so, two main categories of delivery tech-
niques exist. Initially, ”passive” methods were employed. They rely
on a beam shaping system, typically a collimator which contains a hole
shaped according to the tumour. This system has several drawbacks.



CHAPTER 1. RANGE UNCERTAINTY 23

The first one is the intrinsic limitation of the distal or proximal dose
conformity. Secondly, neutrons are emitted close to the patient because
of interactions of protons with the beam shaping system. Finally, colli-
mators must be designed patient specifically which leads to additional
cost, QA, and in-room time. To remedy this situation, a second gen-
eration of delivery technique called pencil beam scanning (PBS) was
developed which works by painting the desired shape for each given en-
ergy. This was made possible by the use of scanning magnets which can
give the beam an angle, as illustrated in Fig. 1.4.

PBS can deliver complex heterogeneous dose which led to a new
treatment technique called intensity modulated proton therapy (IMPT).
In this thesis, we only consider this delivery method given the secured
trend to replace passive systems with PBS.

Figure 1.4: Pencil beam scanning using scanning magnets. From [31].

1.1.3 Proton range and treatment planning

The proton range is usually defined as the depth at which half of the
protons of the beam come to rest in the medium [35], which in the case of
a pristine Bragg peak corresponds to the point where the dose decreases
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to 80% of the maximum dose. Nevertheless, other definitions like the
90% fall-off position are sometimes preferred [37]. Another definition
commonly used consists in integrating the inverse of the energy loss rate
from the initial energy down to rest [35]. It is however an approximation
since fluctuations in energy loss arising from the stochastic nature of
proton interactions with the medium are neglected. According to this
definition called the continuous slowing down approximation (CSDA),
the range named RCSDA may be expressed as:

RCSDA =

∫ 0

E0

1
dE
dx

dE (1.1)

where E0 is the initial energy of the protons.
Because of the dependence of the range to the energy loss rate, dE

dx
is paramount in proton therapy. The proton stopping power is defined
as the opposite of this physical property and is referred to as S:

S = −dE
dx

(1.2)

It is a function of the nature of the encountered material and of the
energy of the particle, as illustrated in Fig. 1.5 for a medium composed
of water.

Conveniently, the stopping power of tissues is commonly considered
relative to water since this physical quantity is almost independent on
the energy for the range used in proton therapy. The relative stop-
ping power (RSP) is also sometimes referred to as stopping power ratio
(SPR). In this thesis, both names are used interchangeably:

RSP = SPR =
S(E)

Swater(E)
(1.3)

During treatment planning, the 3D map of the patient’s RSP is es-
timated based on a CT scan which provides an attenuation map of pho-
tons. Those data are expressed in Hounsfield units (HU). This image
modality is not only useful to compute RSP; it also provides a represen-
tation of the patient’s anatomy based on which tumor areas and various
organs are contoured.

The RSP map and organ contours are prerequisites to the compu-
tation of the different beam angles and energy layers that will lead to
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Figure 1.5: Proton stopping power of water vs. proton energy. From
the PSTAR database of the National Institute of Standards and Tech-
nology, USA.

the delivery of the prescribed dose. To accurately estimate the beam
parameters, the dose distribution inside the patient must be modelled.
There are two main types of methods: analytical algorithms which rely
on macroscopic models and Monte Carlo simulations which model the
stochastic interactions of protons within the materials encountered in
the patient.

1.2 Range uncertainty in proton therapy

Uncertainties in range prediction are critical: they may result in under-
dosage of the tumour and over-dosage of surrounding healthy organs. In
his widely celebrated paper, Paganetti [37] listed the various sources of
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uncertainties taking place during range computation. Those are shown
in Table 1.1 which does not include impacts of changes in the patient’s
anatomy (between treatment fractions), organs motions (during treat-
ment fraction), imaging artifacts and biological effects.

Source of range uncertainty in the
patient

Range uncer-
tainty with-
out Monte
Carlo

Range uncer-
tainty with
Monte Carlo

Independent on dose calculation
Measurement uncertainty in water
for commissioning

±0.3mm ±0.3mm

Compensator design ±0.2mm ±0.2mm
Beam reproducibility ±0.2mm ±0.2mm
Patient setup ±0.7mm ±0.7mm
Dose calculation
CT imaging and calibration ±0.5% ±0.5%
CT conversion to tissue (excluding
I-values)

±0.5% ±0.2%

CT grid size ±0.3% ±0.3%
Mean excitation energy (I-values)
in tissues

±1.5% ±1.5%

Range degradation; complex inho-
mogeneities

−0.7% ±0.1%

Range degradation; local lateral
inhomogeneities ∗ ±2.5% ±0.1%

Total 4.6% + 1.2mm 2.4% + 1.2mm
Total excluding ∗ 2.7% + 1.2mm 2.4% + 1.2mm

Table 1.1: Sources of range uncertainty. From [37].

Table 1.1 unveils two major contributions. First, range degradation
caused by the presence of lateral inhomogeneities along the path of the
beam and the effects of multiple Coulomb scattering (MCS) are poorly
modelled by analytical methods. Knowledge of proton stopping powers
only is not enough to correctly predict its effect through deterministic
computation techniques. As emphasized by Paganetti, the use of Monte
Carlo simulations can significantly increase the accuracy.
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A second major contribution to the range uncertainty takes place in
the conversion of the planning CT into proton RSP. Because the energy
attenuation of protons along their trajectories is given by the stopping
powers of the encountered tissues, a 3D map of the patient’s RSP is re-
quired for treatment planning. Ideally, such an image should be obtained
with proton computed tomography. Although an increasing number of
groups worldwide are investigating 3D proton imaging, there exists no
commercial system yet. Implementing a proton computed tomography
system in a clinical environment remains a huge challenge. Therefore,
the current approach to obtain a 3D RSP map of the patient relies on the
conversion of an x-ray CT scan. Nevertheless, because there is no unique
relationship between Hounsfield unit (HU) and RSP, their computations
are tainted by uncertainties.

There exists several methods to perform this conversion. The stoi-
chiometric calibration is widely accepted as the most accurate. To es-
tablish the conversion curve, both HU and RSP are computed based on
mean atomic compostion of human tissues. Those data can be found in
tables such as ICRU’s [22], Woodard and White’s [56], White et al. [54].
The curve is obtained by interpolating between the points correspond-
ing to the tissues listed in those tables. As an example, the calibration
curve obtained by Schneider et al. in their seminal paper [43] is shown
in Fig. 1.6.

RSP may be computed through the approximated Bethe-Bloch for-
mula [43]:

RSP = ρe,t
ln
(
2mec

2β2/It(1− β2)
)
− β2

ln (2mec2β2/Iw(1− β2))− β2
(1.4)

where ρe,t is the relative electron density of the tissue, me is the mass
of the electron, β is the relative speed of the incident protons, It is the
mean excitation energy of the tissue and Iw is the mean excitation energy
of water. On the contrary, HUs depend on the CT scanner spectrum.
Consequently, the relationship between HU and elemental compositions
must be empirically established, for a specific device.

One of the main criticisms usually leveled about this method is the
difference that may exist between elemental compositions found in tables
and the actual compositions of the tissues of a specific individual. The
content of human tissues is known to vary considerably between people
being the same age [22]. Moreover, the composition of a given type of
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Figure 1.6: Calibration curves for the transformation of HU into RSP.
The solid line shows the stoichiometric calibration (A) for biological
tissues, the dotted and dashed lines show tissue substitute calibrations
for two different types od tissue subsitutes (B and C). The squares
represent calculations for tissue substitutes and the stars are calcu-
lations based on the chemical composition of real tissues. The small
plot shows in detail the Hounsfield number range corresponding to soft
tissue. From: [43].

tissue may depend on its location in the body.

Another major source of uncertainty taking place during the process
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of establishing the conversion curve is related to the mean excitation
energies of the tissues. Their values differ depending on the source [8,
23, 25]. Furthermore, the recommended value for the mean excitation
energy of water has changed many times over the past decades [8, 23, 30,
38, 16, 5]. Any inconsistency between values used for water and tissues
can contribute up to 3% to errors in RSP prediction [5, 37, 50].

1.3 In vivo range verification

1.3.1 Different techniques to reduce range uncertainty

Range uncertainty could be better understood, assessed and potentially
corrected if in vivo range verification methods could be used. Unfortu-
nately, there is still a remarkable lack of adequate techniques.

The most commonly used method is positron emission tomography
(PET). It reconstructs an activation map of the tissues which have been
irradiated by the protons. The quality of the results rapidly decreases
over time which might be an issue when PET imaging has to be per-
formed in a different room than the one used for treatment. An alter-
native method consists in imaging the gamma rays which are emitted
during the excitation of tissues by the incident protons. A major ad-
vantage is that it is performed during treatment and does not require
any additional in-room time. However, it has a much lower signal to
noise ratio than direct measurements performed with a range probe, for
instance. Experiments performed with a prototype of prompt gamma
camera showed a 1 - 2 mm standard deviation in the range estimation
inside homogeneous media [29].

1.3.2 Proton imaging

Despite their limitations, PET and prompt gamma imaging provide in-
teresting perspectives in the context of adaptive proton therapy. Nonethe-
less, obtaining a 3D map of the RSP with proton computed tomography
would directly solve the issue of the CT conversion. Furthermore, pro-
ton CT is not impacted by beam hardening which generates artifacts
during an x-ray tomography reconstruction.

The use of protons for medical imaging applications was first sug-
gested by Cormack more than fifty years ago in his seminal paper on
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image reconstruction from line integrals [11]. Proton imaging has ben-
efited from continuous developments since then. In 1981, a prototype
of proton CT scanner was used at Los Alamos National Lab to image
several objects including human organs [21]. Their experimental set-
up is shown in Fig. 1.7. A multi-wire proportional chamber was used to
measure the position of each proton at the exit of the phantom. A range
telescope provided the residual energy. One of the drawbacks of such
a system comes from the fact that protons undergo multiple Coulomb
scattering (MCS) in objects. Hence, their paths and consequently their
integral energy losses is a stochastic process which impacts CT recon-
struction. Contemporary proton CT systems have a slightly different
set-up, as shown in Fig. 1.8. It comprises two position trackers, one
placed before and one after the phantom. The information provided
by the two trackers can be used to estimate the most likely path of
individual protons [44, 39].

Figure 1.7: Schematic of an early proton CT scanner developed at the
Los Alamos National Lab. A multi-wire proportional chamber and a
range telescope were placed after the patient to measure individual
proton histories. From [26].

In addition to the list-mode described above, proton imaging may be
performed in the so-called integrated mode [41, 40]. Instead of tracking
protons individually, their contributions are integrated. In pencil beam
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Figure 1.8: Schematic of a typical contemporary proton CT system.
Position sensitive detectors are placed before and after the patient to
track protons individually. From [21].

integrated mode proton radiography, the acquisition system is similar to
the one presented in Fig. 1.8 but without the tracking planes. To deal
with the lack of spatial resolution, proton beamlets are shot at known
positions according to a regular grid of spots. Each spot correspond to
a measurement performed by the detector. This decreases the overall
complexity, cost and acquisition time of the system. However, this usu-
ally comes with higher dose delivered to the patient and lower image
quality.

Despite the huge potential of proton CT to reduce range uncertainty
and the continuous developments achieved in the field, no system can
be considered as ready for clinical trials yet [26]. Moreover, the applica-
bility of proton imaging is limited by the proton therapy system used in
clinics. To achieve proton CT, the particles must traverse the patient in
various directions. The energy of the protons must thus be significantly
higher than those commonly used for treatment. Nevertheless, such high
energies are rarely provided in most proton therapy facilities.

A correction of the CT conversion with a simple proton radiograph
could appear satisfactory enough in most of the cases [49, 15]. Such
optimization would be performed based on a map of range errors. This
would be obtained by comparing measured ranges of high energy protons
going through the patient with the ranges predicted based on the 3D map
of the patient’s estimated RSPs.
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Proton radiography systems are fundamentally identical to those
used for proton CT, except that there is no relative displacement of
the acquisition device with respect to the phantom. Because of its sim-
plicity and low cost, integrated mode proton radiography could rapidly
be developed for a clinical usage. Paradoxically, it has been slightly
forsaken during the last decade by research groups worldwide for the
benefit of list-mode proton CT. The two last major developments were
probably the energy resolved method [7] and the use of multi-layer ion-
ization chambers (MLIC) [41, 19]. The energy resolved technique re-
lies on a single layer detector. By varying the energy step by step, an
energy-dose profile can be measured and the water equivalent thickness
(WET) crossed by the protons can subsequently be inferred. On the
contrary, with a multi-layer detector such as a MLIC, the WET may be
directly determined from the measured dose deposition profile and from
the knowledge of the incident energy. Some authors draw a distinction
between WET and water equivalent path length (WEPL). In this thesis
both names are used interchangeably.

Fig. 1.9 illustrates the principle of proton radiography using a MLIC.
If protons have an initial energy large enough to traverse the patient,
they eventually reach the detector. The integral dose deposition profile
measured by the MLIC (measured IDD) is a shifted version of the one
that would be measured without the patient through the beam path
(reference IDD). Assuming that the detector was calibrated against wa-
ter, this shift between the IDDs is equivalent to the WET of the patient.
A radiograph is eventually obtained by performing such measurements
on a regular grid of spots.

The use of a single energy for each spot is a great advantage from
a dose perspective. Hence, the use of a MLIC for proton radiogra-
phy presents all the advantages of integrated mode proton radiography
while limiting the dose to be delivered to the patient. Moreover, com-
mercially available devices, such as the Giraffe (IBA, Belgium), offer a
sub-millimeter range accuracy. For these reasons, the use of a MLIC is
the foundation of this thesis.
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Figure 1.9: (a) Schematic of a proton imager relying on a MLIC. The
WET of the patient may be directly determined based on the mea-
sured IDD and the reference one.

1.4 Aim and overview of the thesis

Proton imaging would certainly be the most direct way to quantify and
reduce range uncertainty in proton therapy. In addition to yield quan-
titative information that are so far remarkably missing, it could also
potentially be used to improve proton range estimation during treat-
ment planning.

Since the use of protons for tomographic imaging was first suggested
by Cormack in 1963 [11], many developments have been made with the
aim of improving the estimation of RSPs for treatment planning. De-
spite those continuous developments in the field, no system is currently
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used on patients although at least one private company - ProtonVDA
Inc. - has engaged in bringing this technology in clinics [1]. However,
several authors have shown that proton radiography could be satisfac-
tory enough to quantify and potentially correct some of the contributions
to range uncertainty [49, 15, 10]. In this thesis, we follow this last ap-
proach and aim at implementing a radiography technique that could
achieve those objectives. To this end, we first conceive the acquisition
process and demonstrate that it could measure range error in clinical
conditions, ie. in vivo, and with a clinically acceptable accuracy. In
addition, the possibility to reduce range uncertainty is also discussed in
a more global context.

Particular emphasis is placed on designing a process that could be
directly translatable in clinics. Therefore, we decide to focus on a simple
and affordable technique which relies on a MLIC and which has benefited
from some preliminary investigations carried out by Farace et al. [19].
The authors showed that the use of a MLIC was a promising solution
both from a practical point of view and in term of performance. In this
work, they compared measurements with simulations performed with
their treatment planning system (TPS) to generate range error maps.
However, some limitations should be addressed. First, a method inde-
pendent on the use of a specific TPS would be desirable. In addition,
the spatial resolution was pretty limited so as to maintain the delivered
dose and the irradiation time relatively low. Particular attention should
be paid to the fact that any increase in the spatial resolution should not
be at the cost of this duration which must be sufficiently low, ie. within
one minute, to mitigate the possibility of organ movements during the
acquisition. Finally, range mixing which is caused by the presence of lat-
eral inhomogeneities along the beam path is known to be a major issue
in integrated mode proton radiography since it introduces some kind of
’blurring’ in the data. The solution proposed by Farace et al. was to
compare the measured data with simulations in which the range mixing
was also modeled. But most analytic TPS poorly account for lateral
inhomogeneities which may introduce large errors in range difference
maps.

In this thesis, we push the technique further to have a complete sys-
tem that first would not rely on a TPS. In addition, we develop methods
to estimate more accurately range error maps without being impacted
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by range mixing which is one of the biggest challenges of integrated
mode proton radiography. To determine the required measurement ac-
curacy, it must be taken into account that the range errors that we wish
to measure are associated with an estimated uncertainty of about 3%.
Moreover, the object to be imaged is considered to have of thickness of
a few equivalent centimeters up to less that 33 equivalent centimeters
since it is generally the maximum available range in clinical facilities.
Therefore, we must be able to measure range errors ranging from one to
several equivalent millimeters. Hence, a sub-millimeter accuracy is desir-
able. Finally, we implement post-processing methods to use larger spot
spacings while having a spatial resolution of range error maps equivalent
to the one of the planning CT.

At last, the main purposes of proton radiography as mentioned above
are on the one hand to accurately quantify range uncertainty and on
the other to offer a way to possibly correct it. Since RSPs are typically
estimated based on a planning CT and a calibration curve, we investigate
whether CT conversion could benefit from proton radiography to reduce
errors in the estimated RSPs.

1.5 Thesis outline

This dissertation is conceived as a collection of chapters from published
and sometimes not yet submitted articles so that a reader familiar with
in vivo range verification could read them independently. Therefore, a
few points are introduced redundantly in the different chapters.

In this thesis, we work at designing a proton radiography acquisition
workflow that could easily be translated into clinical practice. The ap-
proach that we follow relies on the integrated mode acquisition method
and more specifically on the use of a MLIC. It is a straight continua-
tion of the pioneering study carried out by Farace et al. [19] which was
briefly introduced in Section 1.3.2. If the simplicity of the system was
highlighted as a major asset by the authors, it comes at the cost of
limited spatial resolution and range accuracy. Therefore, a major part
of this thesis focuses on elaborating post-processing methods aiming at
producing range error maps with clinically acceptable characteristics.

We start by introducing, in Chapter 2, the acquisition technique
which is based on the work of Farace et al. [19]. In a collaboration with
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Ion Beam Applications (IBA, Belgium) and the authors, we fine-tune
several parameters to make the technique acceptable for clinical trials.
These include irradiation time as well as delivered dose. In addition, a
module is implemented to load the data and permit future developments
of post processing tools in openREGGUI, a Matlab based platform for
adaptive proton therapy.

In Chapter 3, we develop a first method to generate range error maps
in the context of CT conversion assessment. A fast and direct ray-tracing
algorithm is implemented to simulate IDDs of which the comparison with
data measured with a MLIC lead to an estimation of the range errors.
The validity of the method is assessed with respect to the analytical
and Monte Carlo dose engines of our treatment planning system. It
outperforms analytical TPS and gives similar results compared to Monte
Carlo with a considerably reduced computation time.

At this stage of the thesis, important limitations prevent any clin-
ical workflow to be established as a straightforward implementation of
the work presented in Chapter 2 and 3. First, the acquisition time is
too high for common use in clinics mainly because of the limited en-
trance size of the commercial detector used in our preliminary studies.
The duration to fully image a head phantom is approximately twenty
minutes. However, it could be greatly decreased if a larger MLIC were
available. To this end, a dedicated device is developed. With a field-of-
view of 105 × 185 mm2 proton radiographs of equivalent size could be
acquired ten times faster. In order to limit production costs, a different
type of electrode coating is proposed and tested in Chapter 4. More-
over, the study conducted in Chapter 3 shows a high sensitivity of range
error maps to residual patient set-up errors. To mitigate the presence
of this confounding factor in the context of CT conversion assessment,
a specific registration method is developed in Chapter 5. The algorithm
relies on the IDD simulation method developed in Chapter 3 and ben-
efits from the information contained in the IDDs. In Chapter 6 we are
able to experimentally show that it can correct set-up errors better than
conventional kV-kV alignment.

Furthermore, we propose in Chapter 6 a method to better estimate
and increase the spatial resolution of range error maps. Specifically, it
relies on sparse optimization to estimate high resolution WET maps from
low resolution proton radiographs. We show that the maps obtained
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through the optimization have a submillimeter range accuracy which is
acceptable for a clinical usage in the context of quality assurance.

Finally, in Chapter 7, we focus on the use of proton radiography to
optimize the conversion curve from HU to RSP. A scientific critique of
the state-of-the-art methods brings to light limitations that were not
considered by the authors. Based upon these observations and some
recent progresses in the field of treatment planning we discuss the rele-
vance of the original idea to use proton radiography as a tool to improve
CT conversion. We finally close this thesis by discussing more widely
the scope of applications of proton radiography in the context of modern
proton therapy.
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Chapter 2

Pencil beam proton
radiography using a
commercial multi layer
ionization chamber

The work in this chapter is based on a previous study carried out by
Farace et al. [19]. It was presented at the following meetings:

• P Farace, R Righetto, S Deffet, F Vander Stappen, 2016. Pen-
cil beam proton radiography using a multilayer ionization cham-
ber, Proton therapy co-operative group (PTOCG) annual meeting,
Prague, Czech Republic (Poster)

• S Deffet, P Farace, R Righetto, F Vander Stappen, 2016. Pen-
cil beam proton radiography using a multilayer ionization cham-
ber, IBA annual users meeting, Trento, Italy (Poster and software
demo)

2.1 Introduction

Proton therapy has the potential to confine most of the dose to the target
thanks to the physical property of protons called the Bragg peak. Un-
fortunately, range computation during treatment planning is tainted by
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various uncertainties. To better ensure conformity of the dose delivered
to the tumor and potentially reduce range uncertainty, it is necessary to
acquire in vivo clinical data.

Among the various methods that could be used to perform in vivo
range verification, proton radiography has the potential to achieve sub-
millimeter accuracy. Although the feasibility of this concept has been
investigated for more than fifty years [11], nowadays there is no com-
mercial system available yet. Moreover, proton therapy has benefited,
in the mean time, from the development of a second generation of treat-
ment delivery technique based on the pencil beam scanning technology.
Mumot et al. [34] proposed to take advantage of the capabilities of such
a system to locally check the integrated stopping power with a range
probe. Later, Rinaldi et al. [41] and Farace et al. [19] extended the con-
cept to perform 2D radiography. In their study, Farace et al. presented a
method to acquire pencil beam proton radiographs with a commercially
available multi-layer ionization chamber (MLIC). The data measured by
the device could then be compared with those predicted by their treat-
ment planning system. This radiography technique forms the foundation
of the studies presented throughout this thesis.

In collaboration with Ion Beam Applications (IBA, Belgium) and
Paolo Farace and Roberto Righetto from the proton therapy center of
Trento (APSS Trento, Italy) we settled measurements sessions to fine-
tune several parameters in order to make the technique acceptable for
preliminary clinical trials. These include irradiation time as well as dose
delivered. Moreover, a plugin was implemented in the openREGGUI
framework1 to load and post-process the data.

In this chapter, we present the method imagined by Farace et al. with
the slight improvements made during our stays at the proton therapy
center of Trento.

1OpenREGGUI is a Matlab based open-source platform for adaptive proton
therapy: https://openreggui.org/.
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2.2 Materials and methods

2.2.1 MLIC

For our investigation of proton radiography using a MLIC, we used the
same device that was considered by Farace et al. for their experimental
study [19]. This detector, named Giraffe (IBA Dosimetry, Belgium),
consists in a stack of 180 parallel plates ionization chambers as shown
schematicaly in Fig. 2.1. The collecting plates are connected to a multi-
channel electrometer of which the best achievable sampling time is 10 ms.
The diameter of the MLIC entrance is 10 cm. However, the useful area
at the entrance of the detector is only a 45 x 45 mm2 square because of
the angle formed by the beam and the center line of the detector. When
a pencil beam of the highest energy available (230 MeV) is sent outside
this square, the dose deposition at the Bragg peak may not be fully
contained in the active area of electrodes located deeper in the MLIC.

Each chamber composing the MLIC has a depth of 1.8 mm equivalent
to water. This value results from two parameters: the air gap between
two electrodes (approximately 1 mm) and the thickness of each material
present in the printed circuit board (PCB). The base material of the
PCB shown schematically in Fig. 2.2 consists in DE156, a type of FR4
based on a modified epoxy resin. The collecting electrodes are made out
of carbon which is closer to water than copper in term of density.

The output data of the MLIC were recorded in csv files with the
OmniPro-Incline software (IBA Dosimetry, Belgium).

2.2.2 Acquisition set up

Proton radiographs were obtained by sending pencil beam shots having
a high energy of 210 MeV capable of crossing the phantom later consid-
ered in this study. Each spot was spaced by 5 mm. As a result, each
acquisition of a 45 x 45 mm2 contained 81 spots. The beam irradiation
was performed by the ProteusPlus (IBA, Belgium) of the APSS proton
therapy center located in Trento, Italy, using 0.01 MU. The phantom
was placed on the treatment couch and the MLIC was positioned at its
exit side so as to measure the integral depth-dose profiles (IDD) of the
protons after they crossed the phantom. A picture of the experimental
set-up is shown in Fig. 2.3.
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Figure 2.1: Schematic of the MLIC named Giraffe. It consists of 180
parallel plates separated by an air gap of approximately 1 mm. A bias
voltage of 150V is applied between facing electrodes.

For our investigation of the use of the Giraffe for proton radiography,
the anthropomorphic head phantom model 731-HN (CIRS, USA), was
acquired in two directions corresponding to gantry angles of 270◦ and
0◦ so that the first radiograph was taken along the lateral direction and
the second one along the antero-posterior direction.

To acquire a proton radiograph of the full area to be imaged, the
couch supporting the phantom was moved to irradiate adjacent frames
of size 45 x 45 mm2, as shown in Fig. 2.4. For each frame, the data were
recorded by OmniPro-Incline into a csv file. A program implemented
in the openREGGUI framework was then used to read the data and to
stick together all the frames.

In order to use the MLIC electrometer at its full potential (sampling
time of 10 ms), the settling time of the proton therapy unit was increased
to 30 ms. Such a value ensured that the electometer would measure a
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Figure 2.2: Top view of an electrode - Image intentionally removed
from the online version.

null signal after each pencil beam shots, allowing spot discrimination in
post processing.

2.3 Results

2.3.1 Measurements

Proton radiographs are a collection of pairs consisting of the position of
each one of the pencil beam shots and its corresponding measured IDD.
This IDD is the integral on planes perpendicular to the beam direction
of the dose deposition of each individual proton of the pencil beam shot.

The two orthogonal proton radiographs of the head phantom are
shown in Fig. 2.5. At interfaces, the shape of the IDDs significantly
differs from a pristine Bragg curve as a result of the transit of pro-
tons through lateral inhomogeneities. This phenomenon comes from the
finite size of a proton pencil beam. When protons encounter lateral
inhomogeneities, as illustrated in Fig. 2.6, the protons going through
the dense tissues only will loose much more energy than the one going
through the soft tissues. In addition, multiple Coulomb scattering may
also contribute to the alteration of the measured curve.

The time required to move the couch between the acquisition of each
frame composing the whole proton radiograph and to load the beams
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Figure 2.3: Experimental set up used for the acquisition of a proton
radiograph of a head phantom along the lateral direction (gantry at
270◦).

from the record and verify system was around 45 seconds. With a set-
tling time of 30 ms, the time for acquiring a full proton radiograph such
as the one of the head along the antero-posterior direction was approx-
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Figure 2.4: Acquisition of a full proton radiograph consists of multiple
45 x 45 mm2 squares measurements interleaved by couch movements.
Courtesy of Farace et al. [19].

imately 20 minutes, the irradiation time being negligible in comparison
with the one spent in moving the couch.

2.3.2 openREGGUI

Two post-processing tools were implemented in the openREGGUI frame-
work to process the data acquired with OmniPro-Incline. First, a loading
interface takes charge of reading the data recorded in the csv files and
stick them together in the right order based on some additional informa-
tion encoded by the user. Secondly, a visualization tool allows to display
a projection of a proton radiograph and the integral depth-dose profile
associated with each pixel.

Fig. 2.7 shows a capture of the visualization interface. Several pro-
ton radiographs can be superimposed to simultaneously compare their
underlying IDDs. To do so, a click on a pixel displays the corresponding
data on the right panel.

2.4 Discussion

A method to obtain pencil beam proton radiographs with a MLIC was
recently proposed [19]. In collaboration with IBA and the authors of this
paper, we settled measurements sessions at the proton therapy center
of Trento to fine-tune several parameters in order to make the tech-
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Figure 2.5: Projection in the form of range maps of the proton radio-
graphs (a) obtained with a gantry angle of 270◦and (b) with a gantry
angle of 0◦and examples of the IDD underlying each pixel such as (c)
the one corresponding to the square dot and (d) the one corresponding
to the round dot.

Figure 2.6: Monte Carlo simulation of the dose deposited by a 150
MeV proton pencil beam into a heterogeneous phantom composed of
lung, water, and bone materials. From: [27].

nique acceptable for clinical trials. With the settling time presented in
this study, a whole lateral proton radiograph of a head phantom was ac-
quired in approximately 20 minutes, which can be considered feasible for
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Figure 2.7: Capture of the proton radiograph visualization interface
implemented in the openREGGUI framework. The Bragg curve dis-
played on the right panel corresponds to the pixel that was clicked on
and which is marked by a red dot.

preliminary clinical trials. Most of the time needed to acquire a proton
radiograph is now mainly spent in couch movements and in communi-
cations between the record and verify system and the treatment control
system. Nevertheless, this acquisition time is too high for common use
in clinics. It could be decreased by automatizing the actions manually
performed to move the couch and prepare the beam or by considering
the use of a larger MLIC.

Measured IDD were impacted by range mixing. This resulted from
the finite size of the beam and the presence of lateral inhomogeneties
in the beam path. In the proton therapy facility of Trento where our
measurements were performed, proton beam was characterized by a bi-
dimensional Gaussian cross section and a spot size of 3 mm (one sigma).
Because of this range mixing, the integrated attenuation of the protons
through the body cannot be directly determined. As an alternative for a
quality analysis of the prescribed treatment and in particular, for seeking
potential CT calibration errors, the measured data could be compared
with simulations performed by the treatment planning system in order to
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produce range error maps [19]. However, the potential sources of errors
are not only CT calibration errors but they may also be modifications
in the anatomy of the patient as well as set-up error during the proton
radiography. In order to reduce the risk of anatomy deformation between
the planning CT acquisition and the proton radiography, the present
technique could be applied just after the acquisition of a CT.

In a previous study using a range probe for one-dimensional range
verification, Mumot et al. [34] pointed out that range errors are sensi-
tive to misalignment, particularly on areas presenting substantial lateral
heterogeneities along the path of the beam. Because of this very high
sensitivity, conventional kilovoltage alignment might not be sufficient
and it could be necessary to develop a registration algorithm between
proton radiographs and x-ray CT allowing correction of set-up errors in
post-processing.

Finally, estimations performed with our treatment planning system
showed that the dose delivered with such a method is less than 1cGyE
which is comparable to the one delivered by megavoltage portal imag-
ing [19].

2.5 Conclusions

This study presents a method that could be used for proton range mea-
surements on patients with a sub-millimeter range accuracy. As pro-
posed by other authors, the acquired data could be compared with sim-
ulations performed by the treatment planning system in order to pro-
duce range error maps. Both acquisition time and dose delivered to the
patient are acceptable for preliminary clinical trials. Nevertheless, the
acquisition time should be decreased before the method could be used
in clinical routine.



Chapter 3

A direct ray-tracing
method to compute integral
depth dose in pencil beam
proton radiography with a
multilayer ionization
chamber

This chapter was written in the context of a collaborative work between
UCLouvain, IBA and APSS Trento. It is a slightly adapted version of
the paper mostly written by Paolo Farace [18] in which we have taken
part in the data acquisition, the implementation of the data processing
tools and the results analysis.

This work was presented in the following journal article and at the
following meetings:

• P Farace, R Righetto, S Deffet, A, Meijers, F Vander Stappen,
2016. A direct ray-tracing method to compute integral depth dose
in pencil beam proton radiography with a multilayer ionization
chamber, Medical physics 2016 43 (12), 6405-6412

• S Deffet, P Farace, R Righetto, F Vander Stappen, 2016. Pen-
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cil beam proton radiography using a multilayer ionization cham-
ber, IBA annual users meeting, Trento, Italy (Poster and software
demo)

• S Deffet, P Farace, R Righetto, B Macq, F Vander Stappen, 2017.
SU-G-TeP2-13: Patient-Specific Reduction of Range Uncertainties
in Proton Therapy by Proton Radiography with a Multi-Layer Ion-
ization Chamber, Fifty-eighth annual meeting of the american as-
sociation of physicists in medicine, Washington DC, USA (Poster)

The full text of this chapter may be found in
P Farace, R Righetto, S Deffet, A, Meijers, F Vander Stappen, 2016.
A direct ray-tracing method to compute integral depth dose in pencil
beam proton radiography with a multilayer ionization chamber, Medi-
cal physics 2016 43 (12), 6405-6412



Chapter 4

Design and implementation
of a MLIC dedicated to
proton radiography

4.1 Introduction

Proton radiography based on multi-layer ionization chamber (MLIC)
has benefited from a recent body of research which demonstrated its
potential to better quantify and potentially reduce the range uncer-
tainty [41, 19]. In Chapter 2, we presented an acquisition method
first developed by Farace et al. [19] for a commercially available device,
the Giraffe (IBA, Belgium). Radiographs were obtained by scanning
through a phantom and recording the pairs consisting of the position of
each of the pencil beam shots and its corresponding measured integral
depth-dose (IDD) profile.

With a sub-millimeter range accuracy and a dose received by the pa-
tient comparable to the one delivered by mega-voltage portal imaging,
MLIC appeared to be a promising tool for proton radiography. Nonethe-
less, the acquisition time (twenty minutes) could limit clinical applica-
tions. This long duration was the result of the relatively small field of
view (45 x 45 mm2) and of the couch movements required to image the
full area. To establish the full potential of proton radiography using a
MLIC, we need to assess the feasibility of a large field-of-view device. In
this chapter, we develop such a detector. In the first instance, techni-
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cal choices and main characteristics are detailed. In particular, to limit
production costs, we propose to use standard copper over FR4 for the
electrodes. The suitability of the materials are then assessed via Monte-
Carlo simulations. Finally, some preliminary measurements performed
with a prototype are presented.

4.2 Materials and methods

4.2.1 Design and implementation

Multi-layer ionization chamber

The MLIC consists in a series of electrodes with an active area of 160 x
260 mm2 and which are separated by 1.3 mm of air. The area was limited
so as to keep a weight such that manual use and transportation would
be possible. It was estimated to 16 kg, without housing. Assuming that
the lateral scattering caused by the protons crossing the electrodes is
negligible, such a surface should result in a field of view (projected on
the isocenter plane) of 133 x 223 mm2 (computed for a source - axis
distance (SAD) of two meters, a detector placed at thirty centimeters
from the isocenter, and a spot size of 5.9 millimeter at 1.96σ).

The collecting side of an electrode is shown in Fig. 4.11. As opposed
to the Giraffe, it exhibits a rectangle area which is more suitable for
scanning than a circular one. A guard ring encircles the tracks and
the areas conveying signals, wherever it is possible. The printed circuit
board (PCB) has only two layers to achieve a uniform thickness.

The core material of the electrodes is a standard FR4 substrate of
thickness 1.2 mm. Copper thickness is 35 µm. An electroless nickel
immersion gold (ENIG) surface finish was chosen for its planarity, small
thickness and high shelf life. It is a two layer metallic coating of approx-
imately 1 µm gold over 3 µm nickel2. As a result, the water equivalent
thickness (WET) of an electrode was estimated to be approximately 2.5
mm. Consequently, 128 of those were required to cover 320 mm which
is the range in water of 226 MeV protons.

Electrodes were imbricated into two PCBs of which the drawings may
be found in appendix B: a base plate and a top plate. The aim of the

1More technical drawings may be found in appendix B.
2Surface finish thickness may vary from one manufacturer to another.
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Figure 4.1: Electrode (collecting side) - Image intentionally removed
from the online version.

base plate is to convey signals and voltages whereas the top plate only
plays a mechanical role. As for electrodes, signal tracks on those PCBs
were protected from leakage current by guard rings. The connectors
(DB37) are identical to those of the electrometer detailed below. High
voltage is brought via a coaxial cable and is shared by all the electrodes.
Hence, electrometers must all have the same reference.

The final assembly in a housing made out of laser-cut acrylic glass
is shown in Fig. 4.2. A shielding in aluminum sheets was later added.

Electrometer

The electrometers used in this study were primarily designed by Dekimo
(Germany) to measure ionization currents in the ionization chambers of
IBA nozzles. The system is based on DDC316 chips from Texas Instru-
ments which are 16-channel current-input analog-to-digital converters.
Each electrometer has four of these chips so that two devices are required
for our 128 electrodes MLIC. The provided resolution after internal pro-
cessing is 1 bit / 3 fC yet the minimal readable current is only specified
as lower than 10 pA. The internal sampling frequency is 50 kHz. Chan-
nel offsets and gains are configurable. The gain calibration is a factory
setting that can be updated anytime with a specific hardware. Offset
compensation depends on the environment and should be recalculated
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Figure 4.2: Final assembly in a housing made out of laser-cut acrylic
glass - Image intentionally removed from the online version.

before any measurement.

4.2.2 Experimental characterization

Monte-Carlo simulations

The composition of the electrodes is detailed in Table 4.1. Material
thicknesses were provided by the manufacturers (Kapi s.a., Belgium -
PCBWay, China - Eurocircuits, Belgium). FR4 composition may vary
between manufacturers and could not be precisely determined. A mix of
60% glass fiber (E-glass) and 40% epoxy resin (Epotek 301-1) was used
in the simulations.

The use of materials of relatively high atomic number (ZNi = 28,
ZCu = 29, ZAu = 79) and density might lead to differences in multiple
Coulomb scattering (MCS) and energy straggling. This can not only im-
pact expected signals but also the field of view. To assess their effects,
Geant4 simulations were conducted via GATE. The reference physics list
QuarkGluonStringG4Precompound – BInaryCascade – HighPrecision neu-
tron (QGSP-BIC-HP) was used with the SingleScattering process enabled
instead of the MultipleScattering.

For each simulation performed in this study, the entrance of the
detector was placed at 30 cm from the isocenter, the exit of the nozzle
was at 50 cm from the isocenter and the SAD was 2 m. The spot size
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Volume No Material Thickness
(mm)

Density Composition
(mass fractions)

1 Gold 0.001 19.3 wAu = 1
2 Nickel 0.003 8.91 wNi = 1
3 Copper 0.035 8.96 wCu = 1
4 FR4 1.2 1.9 wSi = 0.15

wO = 0.36
wCa = 0.08
wAl = 0.04
wMg = 0.01
wB = 0.01
wK = 0.01
wC = 0.27
wH = 0.03
wN = 0.03
wNa = 0.01

5 Copper 0.035 8.96 wCu = 1
6 Nickel 0.003 8.91 wNi = 1
7 Gold 0.001 19.3 wAu = 1
8 Air 1.3 1.29 10−6 wN = 0.76

wO = 0.23
wAr = 0.01

Table 4.1: Electrodes elemental composition.

was 3 mm (one sigma at 100 MeV). The initial energy of the incident
protons was 210 MeV.

In the first instance, the difference of impacts between the cumu-
lated thickness of metals and an equivalent thickness of water is stud-
ied. In the MLIC, the cumulated thicknesses, T , are: TCu = 8.96 mm,
TNi = 0.76 mm, TAu = 0.256 mm. These three volumes were placed at
the isocenter and the dose was recorded in a water tank positioned at
their exit side, in the path of the beam. A similar simulation was then
performed with an equivalent thickness of water in place of the metals.
This water equivalent thickness, named WETm, would be determined
by computing the shift between the IDD simulated with the volumes
of metals, named IDDm, and the one obtained after removing them,
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named IDDair:

WETm = arg min
s

N∑
i=1

(IDDair(zi + s)− IDDm(zi))
2 (4.1)

Secondly, the use of FR4 was also investigated. The same experi-
mental plan as detailed above for metals was used. The FR4 cumulated
thickness is 153.6 mm. For the experiment, only 120 mm were considered
so as to have a Bragg peak fully contained in the water tank.

Thirdly, the MLIC was fully modelled as a series of volumes which
were repeated 128 times. Their characteristics were those listed in Ta-
ble 4.1. An actor was attached to each volume of air to record the
integrated dose. Two experiments were done: one without any ob-
ject through the beam path and one with a volume of water (thickness
Tw = 150 mm). The WET of the electrodes would be estimated by
computing the shift between the IDD simulated with no object through
the beam path, named IDDair, and the one obtained with the water
tank placed at the isocenter, named IDDw:

WET =
Tw

arg mins
∑N

i=1 (IDDair(zi + s)− IDDw(zi))
2

(4.2)

Finally, the field of view was investigated by scanning through the
detector with a spot spacing of 5 mm and an initial energy of 210 MeV.

Measurements

Some preliminary measurements were performed at the proton therapy
facility of Essen (Germany) with a prototype corresponding to the 3D
drawing shown in Fig. 4.2. For this first measurement session, the MLIC
was only populated with 36 electrodes. A volume of solid water (thick-
ness 2.5 inch.) was added at the entrance of the device. The beam was
operated in continuous mode and the energy was varied. Corresponding
ranges in water were 8.72 cm, 9.72 cm, 10.72 cm, 11.72 cm, 12.72 cm,
13.72 cm, and 14.72 cm. For each energy, an IDD was measured with
an integration period of 20 ms.
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4.3 Results

4.3.1 Monte-Carlo simulations

Fig. 4.3 shows the experimental set-up implemented in GATE on the left
panel and the IDD simulated with an initial energy of 210 MeV on the
right panel. In this first study, a water tank was placed instead of the
detector so as not to introduce additional sources of perturbation. The
aim was to study the impact of 8.96 mm of copper, 0.77 mm of nickel and
0.26 mm of gold on the dose profiles. Two curves are shown. A first one
was obtained without any object in the beam path. The second curve
was acquired after adding the cumulated volumes of metals between the
nozzle and the MLIC. The shift between the IDD is 61 mm.

(a)

0 50 100 150 200 250 300 350

mm (in water)

0

0.5

1

1.5

2

2.5

3

3.5

D
o
s
e
 (

a
.u

.)

×10 -7

210 MeV - through air

210 MeV - through Cu, Ni and Au

(b)

Figure 4.3: (a) Experimental set-up implemented in GATE. The
beamline is simply modelled as a vacuum tube. Depending on the ex-
periment a volume (shown in gray on the figure) may be present in the
beam path and the MLIC may be fully modelled or replaced by a wa-
ter tank. (b) IDDs simulated with and without metals (9mm Cu, 0.77
Ni and 0.26 mm Au) through the beam path.

In Fig. 4.4, a similar simulation performed with 61 mm of water
placed at the isocenter is compared with the previous case. Moreover,
2D dose maps were recorded at a depth of 50 mm in the water tank.
The IDD in both cases perfectly coincide but the dose maps significantly
differ. An increase of the spot size related to a higher scattering is clearly
visible when protons go through the volumes of metals. Fortunately, this
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did not have an impact on the shape of the IDD. Although the size of the
beam increased because of the presence of metals, the integrated dose
delivered in planes perpendicular to the beam remained fairly identical.
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Figure 4.4: (a) IDDs simulated in a water tank (resolution 1mm) after
protons traversed 61 mm of water and 8.96 mm of copper, 0.76 mm of
nickel and 0.256 mm of gold. (b) 2D dose map at a depth of 50 mm in
the water tank after protons traversed 61 mm of water and (c) after
they traversed 8.96 mm of copper, 0.76 mm of nickel and 0.256 mm of
gold.

A similar experiment was reproduced for FR4. A volume having a
thickness of 120 mm was placed at the isocenter and the IDD simulated
in the water tank was compared with the one obtained with an equiva-
lent thickness of water. Results are shown in Fig. 4.5. Again, the IDDs
perfectly coincide. MCS appears to be similar in both cases but inter-
estingly the IDD obtained in the case of water shows a slightly higher
energy straggling.
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Figure 4.5: (a) IDDs simulated in a water tank (resolution 1mm) after
protons traversed 201 mm of water and 120 mm of FR4. (b) 2D dose
map at a depth of 50 mm in the water tank after protons traversed
201 mm of water and (c) after they traversed 120 mm of FR4.

Fig. 4.6 shows IDDs simulated with the detector fully modelled. Two
simulations were performed: one with a water box (thickness 150 mm)
placed at the isocenter and one without any object through the beam
path. The corresponding IDDs are named IDDMLIC

water and IDDMLIC
air .

On the right panel, IDDMLIC
air was shifted so as to match IDDMLIC

water in
term of squared difference. Their coincidence is almost perfect, which
demonstrates that the difference in energy straggling is tiny and that
there is no signal degradation caused by MCS. Using Eq. 4.2, we found
that the WET of each electrode was 2.45 mm.

Finally, four simulations were performed to assess the field of view of
the device. Fig. 4.7 shows IDDs simulated on a horizontal line of spots
spaced by 5 mm with an energy of 210 MeV. Position X = 0 corresponds
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Figure 4.6: (a) IDDs obtained by simulating all layers of the MLIC.
Two curves are shown: one obtained with 150 mm of water placed
at the isocenter and one without any object through the beam path
(b) The IDD simulated through air was aligned with the one obtained
with the volume of water in the beam path.

to the isocenter. Fig. 4.8 shows a similar experiment with a vertical line
of spots. The IDDs appear to be degraded after X = 52.5 mm on
the horizontal axis and Y = 92.5 mm on the vertical axis. To check
that IDDs are not further degraded at the corners of the electrode, two
similar experiments were performed with a horizontal line of spots at
Y = 92.5 mm and a vertical line at X = 52.5 mm but are not graphically
presented here. They confirmed a field of view of 105× 185mm2.

4.3.2 Measurements

Fig. 4.9 shows some preliminary measurements for various energies per-
formed with a prototype populated with only 36 electrodes.

The WET of an electrode is 2.5 mm which is in agreement with
both Monte Carlo simulations and theoretical expectations formulated
in Section 4.2.1.

4.4 Discussion

Recent works have demonstrated the potential of MLIC to acquire pro-
ton radiographs. In 2016, Farace et al. proposed an acquisition tech-
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Figure 4.7: IDDs simulated in the MLIC fully modelled, for a horizon-
tal line of spots spaced by 5 mm. Initial energy was 210 MeV.

nique relying on the Giraffe (IBA, Belgium) [19]. A set of dedicated
tools were then developed to assess range uncertainty of which a major
part comes from the conversion from the CT into RSP [18, 12, 13]. Im-
age quality and dose delivered to the patient were considered acceptable
for clinical use [19, 18]. Nevertheless, this radiography technique would
benefit from a decrease in the acquisition time which was twenty minutes



62 CHAPTER 4. MLIC

0

-100

-50

0

50

100

0 50 100 150

Channel

0

2

4

6

D
o
s
e
 (

a
.u

.)

×10 -11 Y = 137.5

0 50 100 150

Channel

0

2

4

6
D

o
s
e
 (

a
.u

.)

×10 -10 Y = 132.5

0 50 100 150

Channel

0

1

2

3

D
o
s
e
 (

a
.u

.)

×10 -9 Y = 127.5

0 50 100 150

Channel

0

2

4

6

8

D
o
s
e
 (

a
.u

.)

×10 -9 Y = 122.5

0 50 100 150

Channel

0

0.5

1

1.5

D
o
s
e
 (

a
.u

.)

×10 -8 Y = 117.5

0 50 100 150

Channel

0

0.5

1

1.5

2

D
o
s
e
 (

a
.u

.)

×10 -8 Y = 112.5

0 50 100 150

Channel

0

1

2

3

4

D
o
s
e
 (

a
.u

.)

×10 -8 Y = 107.5

0 50 100 150

Channel

0

2

4

6

D
o
s
e
 (

a
.u

.)

×10 -8 Y = 102.5

Figure 4.8: IDDs simulated in the MLIC fully modelled, for a vertical
line of spots spaced by 5 mm. Initial energy was 210 MeV.

to fully image a head phantom. Most of the time was spent in couch
movements.

In this chapter, we have studied the feasibility of a MLIC having a
sensing area of 160 × 260 mm2. Monte Carlo simulations showed that
the field of view (projected on the isocenter plane) should be around
105 × 185 mm2 for a SAD of 2 m, a detector placed at 30 cm from
the isocenter, and a spot size of 3 mm (one sigma). Consequently, a
proton radiograph of 210 × 185 mm2 could be acquired with only one
couch movement and so in approximately one minute. This field of view



CHAPTER 4. MLIC 63

0 5 10 15 20 25 30 35

Channel

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
o
s
e
 (

a
.u

.)

Figure 4.9: Measurement performed with a prototype MLIC. Corre-
sponding ranges in water are 8.72 cm, 9.72 cm, 10.72 cm, 11.72 cm,
12.72 cm, 13.72 cm, and 14.72 cm. A volume of solid water (thickness
2.5 inch.) was placed in front of the device.

is actually smaller than the one theoretically expected in Section 4.2.1.
This probably results from MCS of which the importance is increased
by the presence of metals (copper, nickel and gold) in the electrodes.
This is actually a major difference with respect to the Giraffe of which
the electrodes are coated with carbon. Nevertheless, we demonstrated
via Monte Carlo simulations that the IDDs were not impacted by the
presence of metals.

Another difference with respect to the Giraffe is the WET of the
electrodes which is 35% larger in our design. There is currently a lack
of studies on the optimal sampling of IDDs in the context of proton
radiography. This is however a paramount information that should be
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discussed in regards to the processing methods that have been developed
to assess range uncertainty with proton radiography using a MLIC. Ob-
viously, the PCB thicknesses could be chosen smaller if necessary.

An incomplete prototype was tested during a short night shift at
the proton facility of Essen (Germany). Although limited, the results
shown in Fig. 4.9 are promising. The WET of the electrodes correspond
to the ones estimated from the assumed compositions listed in Table 4.1.
Regarding future perspective, the MLIC should be fully characterized
through measurements in order to confirm the results of the Monte Carlo
simulations and before acquiring the first proton radiographs. The signal
to noise ratio should also be studied with respect to the dose since this
parameter is paramount in medical imaging.

4.5 Conclusions

Throughout this thesis, we consider a commercially available MLIC, the
Giraffe (IBA, Belgium), to perform proton radiography. Nonetheless,
our method could benefit from a decrease in the acquisition time. To
this end, a prototype of a MLIC with a larger field of view is being
developed. In this study, we demonstrated via Monte Carlo simulations
that standard copper over FR4 PCB could be used for the electrodes,
with adequate surface finish. The field of view of the device is expected
to be 105 × 185 mm2 which is more than nine times the one of the
Giraffe.
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Registration of proton
radiography data with
x-ray CT

The work in this chapter was presented in the following journal article
and at the following meeting:

• S Deffet, B Macq, R Righetto, F Vander Stappen, P Farace, 2017.
Registration of Pencil Beam Proton Radiography Data With X-
Ray CT. Medical physics 2017 44(10) 5393–5401 (Research article)

• S Deffet, P Farace, F Vander Stappen, B Macq, 2018. Inno-
vative Post-Processing Methods For Proton Radiography Data.
Belgian Hospital Physicists Association (BHPA) annual meeting,
Charleroi, Belgium (Oral)

The full text of this chapter may be found in
S Deffet, B Macq, R Righetto, F Vander Stappen, P Farace. Regis-
tration of Pencil Beam Proton Radiography Data With X-Ray CT.
Medical physics 2017 44(10) 5393–5401
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Chapter 6

Water equivalent thickness
estimation via sparse
deconvolution of proton
radiography data

The work in this chapter was presented at the following meetings:

• S Deffet, P Farace, F Vander Stappen, B Macq. 2017, Status of
the development of a proton imaging system, Réunion du GdR
ISIS: Co-conception : capteurs hybrides et al.gorithmes pour des
systèmes innovants, Paris, France (Poster)

• S Deffet, B Macq, F Vander Stappen, P Farace, 2018. Water
Equivalent Thickness Estimation via Sparse Deconvolution of Pro-
ton Radiography Data. IEEE International Conference on Acous-
tics, Speech and Signal Processing, Calgary, Canada (Oral)

6.1 Introduction

During the last decade, two main types of proton radiography systems
emerged. On the one hand, the so-called list-mode proton radiography
relies on proton trackers placed before and after the patient and on
a detector that can measure the residual energy. By tracking protons
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individually, their trajectories inside the patient may be estimated and
linked to their measured energy loss. On the other hand, in the so-called
integrated mode proton radiography, the contributions of every protons
are summed up. This decreases the overall complexity of the system
of which the main limitations are the high data acquisition rate of the
electronics and costs. Reciprocally, the main limitation of the integrated
mode is the degradation of the signal caused by the presence of lateral
inhomogeneties along the path of the beam and, to a lesser extent, by
multiple Coulomb scattering (MCS).

Recently, the use of multilayer ionization chambers (MLIC) has ben-
efited from a body of research which demonstrated its clinical poten-
tial [41, 19]. The radiography were performed with pencil scanning by
delivering a set of beamlets uniformly spaced. An integral depth dose
(IDD) profile was measured for each spot by the detector placed at the
exit side of the patient. Because the shape of IDDs are impacted by
the transit of protons through lateral inhomogeneties in a process called
range mixing, one can not directly determine the integrated relative
proton stopping power, also referred to as water equivalent thickness
(WET), from the measurements. Two approaches currently exist. On
the one hand, Farace et al. [19] implemented the idea proposed by Mu-
mot et al. [34] of performing a comparison between the IDDs measured
by the MLIC with those simulated by a treatment planning system. On
the other hand, Krah et al. [28] proposed to decompose each IDD into
a set of pristine Bragg curves from which the WET would be directly
obtained. To spatially distribute the WET determined by the decom-
position, the use of a WET map estimated from the planning CT was
shown to improve greatly the results of a demosaicing step based on the
radiography data only.

However, one can be concerned by the robustness of such a two-
step method. In proton therapy, pencil beams exhibit a bi-dimensional
Gaussian cross sectional profile. The WET estimation problem is conse-
quently particularly ill-posed and the solution might be strongly affected
by measurement noise. Moreover, the use of the planning CT in the two
methods makes them sensitive to errors in the relative proton stopping
power (RSP) computation and to residual set-up errors. The WET map
estimate could also be altered by changes in the anatomy of the pa-
tient and relative displacements of moving organs that could take place



CHAPTER 6. DECONVOLUTION 69

between the CT acquisition and the proton radiography.

In this chapter, we show that under the assumption that the WET
map has a sparse representation, it can be obtained without using any
prior knowledge derived from the planning CT. An iterative algorithm is
built to perform a deconvolution of the IDDs and to increase the spatial
resolution of the WET map. We then propose to combine planning
CTs and proton radiographs, in a robust fashion, to further increase the
deconvolution accuracy. The two methods are applied to both synthetic
data and actual proton radiography acquisitions.

6.2 Materials and methods

6.2.1 Deconvolution

As experimentally demonstrated by Farace et al. [18] the measured
IDDs, named IDDm consists of a convolution of a Gaussian kernel G
having a standard deviation equal to the spot size with shifted versions
of a pristine Bragg curve, called IDDref , which corresponds to the IDD
that would be measured without the phantom through the beam path:

IDDm(xi, yi, z) ≈
∑
j∈Si

G(xi − xj , yi − yj)

IDDref (z +W (xj , yj)) (6.1)

where (xi, yi) are the coordinates of each pencil beam, z refers to the
depth axis of the IDD, W refers to the water equivalent thickness of
the phantom along the path of the beam and Si denotes the set of the
indices of the pixels lying in the cross-section of the beamlet. In the case
of parallel beamlets, the WET can be estimated from the Hounsfield
units (HU) of the planning CT via

W (x, y) =
∑
z

RSP (HU(x, y, z))sz (6.2)

where RSP is usually a piecewise linear function associating to each HU
the RSP, and sz is the size of a voxel along the z-direction.

In the absence of any other information than the proton radiograph,
the WET estimation could be expressed in the form of an optimization
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problem:

W opt(x, y) = arg min
W

∑
x

∑
y

∫ ld

0
(IDDm(x, y, z)

−D (( G(x, y)

?IDDr(z +W (x, y)))))2 dz (6.3)

where D is the down-sampling function associated with the spot spacing
and ld is the depth of the detector.

Because of the down-sampling and the convolution with a Gaussian
kernel, this problem is ill-posed.

For clarity, we now consider a matrix formulation of the equations.
In this matrix format, Eq. 6.1 becomes:

IDDm(z) ≈ G IDDr(z1 +W ) (6.4)

where G is the circulant matrix associated with the convolution kernel
G and IDDr is defined by

IDDr,i(z) = IDDref (z) (6.5)

We consider a transform Ψ such that the WET can be represented
through the coefficients α:

W = Ψα (6.6)

In this study, Ψ is the matrix associated with an inverse wavelet
transform.

Under sparsity assumptions, one could recover the WET by solving
the problem

αopt = arg minα ||α||0
s.t. f1(α) ≤ ε (6.7)

where the function f1(α) is a similarity measure (already introduced in
Eq. 6.3) between the measured data and the model consisting of Eq. 6.4
and 6.6:

f1(α) =

∫ ld

0
||IDDm(z)

−G IDDr(z1 + Ψα)||22 dz (6.8)
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Relaxing Eq. 6.7 with a l1 norm and assuming that f1 is convex, the
minimization problem can be solved with the proximal method which
provides an iterative algorithm:

αn+1 = proxγ,f2
(αn − γ∇f1(αn)) (6.9)

with

f2(λ,α) =
1

2λ
||α||1 (6.10)

The following expression was used for ∇f1:

∇f1(α) = 2ΨT

∫ ld

0
(DIDDr(z1 + Ψα)

◦ (G (G IDDr(z1 + Ψα)

−IDDm(z)))) dz (6.11)

where ◦ is the Hadamard product and DIDDr is defined as:

DIDDr,i(z) =
d

dx
IDDref (x)

∣∣∣∣
x=z

(6.12)

and was computed by finite difference.

To increase the spatial resolution, a downsampling operator was
added into Eq. 6.4:

IDDm(z) ≈D G IDDr(z1 +W ) (6.13)

and Eq. 6.8 and the expression of its gradient were adapted accordingly.

6.2.2 Combining x-ray CT with proton radiography

In proton therapy, a x-ray CT is always acquired for treatment planning.
This additional high resolution information could be used to improve the
WET estimation. Nevertheless, because of the uncertainty in the con-
version from HUs to RSPs and the lack of in vivo data, there currently
does not exist any experimental high resolution WET map nor any way
to accurately simulate one. With the non-unicity of the relationship
between CT and WET maps, this restricts the types of methods that
could be used [45].
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The uncertainty on the proton range is usually considered to be
around 3.5%, a significant part of which is imputed to the conversion
of the planning CT into RSP which is usually done via an empirically
determined relationship [37]. Assuming that a high resolution RSP map
could be computed with reasonable accuracy for each patient of whom a
CT would be acquired, the sought WET, W , could be expressed as the
sum of the WET estimated based on the high resolution CT, WETCT ,
and a corrective term, Wc :

W (x, y) = WCT (x, y) +Wc(x, y) (6.14)

With this additional information, problem 6.3 can be reformulated
as follow:

W opt
CT (x, y) = WCT (x, y)

+ arg min
Wc

∑
x

∑
y

∫ ld

0
(IDDm(x, y, z)

−D(x, y) ( G(x, y)

?IDDr(z +WCT (x, y) +Wc(x, y))))2 dz (6.15)

Minimization of Eq. 6.15 shows similar conditioning characteristics
to Eq. 6.3. To solve it, Wc may be expressed in some basis Ψ where it
benefits from a sparse representation, through its coefficients αc:

Wc = Ψαc (6.16)

Assuming that Wc can be sparse coded, problem 6.15 can be refor-
mulated in a matrix-like format as:

αoptc = arg minαc ||αc||0
s.t. f2(αc) ≤ ε (6.17)

where f2(αc) is defined as:

f2(αc) =

∫ ld

0
||IDDm(z)

−G IDDr(z1 +WCT + Ψαc)||22 dz (6.18)

This problem can be solved similarly to Eq. 6.8 with the iterative
algorithm 6.9.
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6.2.3 Experimental validation

Proton radiography

The experimental validation relies on an anthropomorphic head phan-
tom model 731-HN (CIRS, USA).

Proton radiography data were acquired with the commercially avail-
able MLIC named Giraffe (IBA, Belgium), according to the acquisition
method described by Farace et al. [19]. The MLIC was placed at the
exit side of the object that was imaged, at a short distance from its
surface. To perform the acquisition, the proton therapy delivery system
was operated in pencil beam scanning mode. The initial energy was 210
MeV and the spot size was 3 mm (one sigma). For each beamlet sent
at a specified location, an IDD was measured by the Giraffe. Since this
device has a restricted field of view (45 x 45 mm2), a whole radiography
requires several acquisitions, between each of which the object must be
translated. The translations were performed by moving the couch with
a distance equal to the field of view. A single direction of acquisition
was considered. The gantry angle was 270◦ which gave a radiograph
along the lateral direction.

In addition, a single energy CT scan of the head phantom was ac-
quired at 120 kV in a 512×512 matrix, 512×512 mm2 field of view and
with a slice thickness of 1.5 mm.

Monte Carlo simulations

To test the WET estimation methods, we must have a set of proton
radiographs for which the WET maps are accurately known. To do so,
we decided to use simulations based on a x-ray CT of the object under
consideration. The MLIC was modeled by a water tank added to the
CT, at the exit side of the patient. Proton radiographs were simulated
with the Monte-Carlo simulation tool named MCsquare [27]. The dose
maps were exported separately for each beamlet so that the IDDs could
have been later reconstructed.

In order to perfectly mimic an acquisition with the Giraffe and in
particular to take into account its limited field of view, a treatment
plan with a specific isocenter was made for each position at which the
object should have been placed. The IDDs obtained from those simula-
tions were then re-sampled to correspond to the depth resolution of the
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Giraffe.

As for the actual measurements, the initial energy was 210 MeV
and the spot size was 3 mm (one sigma). Five different spot sizes were
considered: 4 mm, 5 mm, 6 mm, 7 mm and 8 mm.

To compute W , the CT was converted into RSP using the same
conversion tables that were fed into MCsquare. Specifically, two tables
were used by the simulation tool: one to map the HU of the CT to mass
densities and one to map the HU to material compositions. The WET
map corresponding to the simulation was then obtained by integrating
the RSP along the path of the beamlets.

Range uncertainty model

WCT was computed with a calibration curve derived from the conver-
sion tables used for the computation of W . To introduce differences
between WCT and W , random variations can be added into the cali-
bration curve [28, 12]. This was done so as to have a mean absolute
relative error between 3% and 4%. For each spot spacing considered in
this study, the deconvolution method was applied to ten different WCT ,
each obtained with a randomly altered version of the calibration curve.

6.3 Results

6.3.1 Deconvolution accuracy

Fig. 6.1 shows examples of WET maps obtained with our methods, for
a spot spacing of 5 mm, a value often used for integrated-mode proton
imaging [41, 19, 28, 12]. For the method combining the planning CT,
only one result among the ten performed experiments is illustrated. A
WET map obtained from a range map estimated after a bi-cubic inter-
polation of the IDDs is also shown to provide a naive reference. It’s
hardly possible to visually distinguish between the ground truth data
and the WET resulting from the sparse optimizations.

The difference between the optimized maps shown in Fig. 6.1 and
the ground truth data are depicted in Fig. 6.2. Gamma index maps [3]
are also presented for the sake of comparison with the state of the
art method [28]. The acceptance level was a relative WET difference
(RWET) of 2 % and a distance to agreement (DTA) of 2 mm. The
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Figure 6.1: (a) Ground truth WET, W . (b) WET map obtained after
converting a range map estimated from a bi-cubic interpolation of the
IDDs (c) WET map determined through sparse deconvolution using
the proton radiography data solely (d) WET map determined through
sparse deconvolution with an estimate WCT obtained using the plan-
ning CT.

passing ratio for those values was 100 % for the two method presented
in this paper and for all WCT considered.

Figure 6.3 shows the accuracy of the two optimization methods with
respect to spot spacing. For the method combining the proton radio-
graph and the CT, the results of all the the ten random experiments were
aggregated for each spot spacing. The errors appeared to be almost non
biased since they are symmetrically distributed around null medians.
This is confirmed by Fig. 6.4 which graphically shows the distributton
of the WET errors for a spot spacing of 5 mm.

95% intervals are listed in Table 6.1. The accuracy is submillimeter
for the second method and a spacing up to 6 mm. For the first method,
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Figure 6.2: Examples of (a) |W − WCT | (b) gamma index between
WCT and W (c) |W −W opt| (d) gamma index between W opt and W
(e) |W −W opt

CT | (f) gamma index between W opt
CT and W .

the accuracy was better than 3 mm for spacings up to 6 mm.

The proposed method was also applied to real measurements as
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Figure 6.3: Deconvolution accuracy (absolute errors) expressed in wa-
ter equivalent mm, with respect to spot spacing.

Method \Spacing (mm) 4 5 6 7 8

Proton radiograph only 2.7 2.3 2.8 3.8 4.3
Proton radiograph + CT 0.7 0.7 0.4 1.8 2.6

Table 6.1: Deconvolution accuracy (95% intervals) expressed in water
equivalent mm, with respect to spot spacing.

shown in Fig. 6.5. In Fig. 6.5a-b, the WET maps obtained from the ac-
quired proton radiograph were compared with the one estimated by our
treatment planning system. First, the error on the skull, at the interface
with the air, seems to suggest that there remained a residual misaligne-
ment between the CT and the acquired proton radiograph, despite an
accurate kV-kV alignment manually performed before the radiography.
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Figure 6.4: Distribution of the WET error for proton radiographs ac-
quired with a spot spacing of 5 mm. Bin width is 0.2 mm.

The application in post-processing of the registration method proposed
by Deffet et al. [12] significantly decreased this error, as can be seen in
Fig. 6.5c-d. This is a striking example of the benefit of generating such
high resolution WET maps as it clearly appears that the RSP of the
titanium implant was wrongly estimated and the conversion curve to
RSP could accordingly be corrected.

6.3.2 OpenREGGUI

The deconvolution methods presented in this chapter were integrated in
the openREGGUI proton radiography module. In addition, a graphical
user interface was created to compare WET maps and their associated
proton radiographs, as shown in Fig. 6.6
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Figure 6.5: Absolute error maps between WET estimated from actual
measurements and WET estimated based on a x-ray CT (a) from de-
convolution using the proton radiograph solely (b) from deconvolution
combining the proton radiograph and the x-ray CT (c) same as (a)
after co-registration (d) same as (b) after co-registration.

6.4 Discussion

Range uncertainty is a crucial issue in proton therapy for which exper-
imental data are still remarkably missing. It is usually accounted for
by the use of margins during treatment planning. Among the various
potential methods that could be used for in vivo range verification, pro-
ton radiography using a MLIC is certainly one of the easiest to enforce,
which, undoubtedly, is an asset from a clinical perspective. Neverthe-
less, as a technique relying on dose integration, it provides data which
are affected by some kind of blurring. It is a consequence of the finite
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Figure 6.6: Capture of the graphical interface implemented in the
openREGGUI framework to compare WET maps and associated pro-
ton radiographs.

width of the proton pencil beams.

The method to extract WET from IDD explored up to this day was
relying on a linear decomposition of the curves [28]. This problem is
particularly ill-posed and obviously requires some regularization to be
solved. Instead, their authors proposed the linear decomposition to be
followed by a demosaicing step which uses the prior information from the
planning CT. This only partially copes with the non-unicity of the linear
decomposition and may potentially introduce errors caused by residual
misalignment between CT and proton radiography or non-bijectivity in
the relationship between HU and RSP.

In the present paper, we first presented a WET estimation tech-
nique which does not require any prior information from the planning
CT. Then, we showed how this method can benefit from the additional
information of the planning CT which is only made possible after accu-
rate co-registration. The technique focuses on the difference between the
true WET map and the one that can be relatively well predicted with
standard conversion of the HU to RSP. No additional use of this con-
version is made during the optimization. This makes the deconvolution
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robust against any kind of uncertainty in the conversion to RSP such as
non-bijectivity of the relationship between HU and RSP, for instance.

In this paper, an experimental study was carried out on a anthropo-
morphic head phantom. This anatomical site is particularly well suited
for proton radiography since its limited WET whatever the acquisition
direction does only require moderate energy. For this phantom, the
WET could be determined with less than 3 mm uncertainty (95% inter-
val) using the proton radiography data only and a spot spacing smaller
or equal to 6 mm. In a combination with the CT, the WET could be
estimated with a submillimeter accuracy for spot spacing up to 6 mm.
Furthermore, the error appeared to be almost non-biased. This is a key
result in the context of CT conversion assessment where errors in the
calibration curve generate systematic errors in the WET estimation.

The method combining x-ray CT and proton radiography is thus well
suited to assess a range uncertainty usually considered to be around 3.5%
of the nominal range. Moreover, the largest discrepancies were located
in area presenting a high level of lateral inhomogeneities. It would not
actually be appropriate to consider those areas when assessing range
uncertainty because of the dependence of their WET to the smallest
misalignment.

The spot spacing that can be used is 6 mm maximum. This value
also leads to a co-registration with a high level of accuracy [13]. Thus,
the spatial resolution of the WET map can be much better than the
spot spacing, limiting the dose to be delivered to the patient.

6.5 Conclusions

In this chapter, we have developed an algorithm to estimate WET maps
from integrated-mode proton radiography data in combination with a x-
ray CT. It was tested with Monte Carlo simulations and measurements
performed with the Giraffe. WET maps with pixels of 1 × 1mm were
estimated from proton radiographs acquired with spot spacings rang-
ing from 4 mm to 8 mm. The larger spot spacing that can be used
while maintaining submillimeter accuracy is 6 mm, thus decreasing the
delivered dose by 36.

Such a WET-map could be used to assess the RSP computation in
a comparison with the one that could be computed by the treatment
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planning system. Our experimental validation showed that this kind
of comparison can be impacted by residual set-up errors which were
correctly mitigated by applying the registration method for proton ra-
diography data proposed by Deffet et al. [12].



Chapter 7

On the use of proton
radiography to improve CT
conversion

7.1 Introduction

7.1.1 The role of the planning CT

In proton therapy, treatment planning requires a 3D map of the relative
proton stopping powers (RSP) of the patient. Ideally, this would be
obtained through proton computed tomography. Although an increas-
ing number of groups worldwide are investigating 3D proton imaging,
there exists no commercial system yet. Therefore, the current approach
consists in acquiring a CT scan of the patient and then convert it into
RSP. Unfortunately, this conversion is tainted by uncertainties which
approximately represent 1.8% of the 3.5% treatment margins that are
commonly used [58, 37]. The main reason arises from the differences
between the physical properties on which rely x-ray attenuation coeffi-
cients on the one hand and proton stopping powers on the other hand.
Whereas the linear attenuation coefficient is a function of the electron
density and the cross sections, the proton stopping power depends on
the electron density and the mean excitation energy of the tissue.

In proton therapy, RSP computation is usually done through the
approximated Bethe-Bloch formula, of which the use was first proposed

83
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by Schneider at al [43]:

RSP = ρe,t
ln
(
2mec

2β2/It(1− β2)
)
− β2

ln (2mec2β2/Iw(1− β2))− β2
(7.1)

where ρe,t is the relative electron density of the tissue, me is the mass
of the electron, β is the relative speed of the incident protons, It is
the mean excitation energy of the tissue and Iw is the mean excitation
energy of water.

Fig. 7.1 shows a typical relationship between Hounsfield units (HU)
and RSPs for human tissues of which the compositions taken from the
ICRU44 report [22] are listed in Table 7.1. It strikingly shows that
there is actually no bijective relationship between HU and RSP. More-
over, because HUs depend on the spectrum of the CT scanner, such a
calibration curve must be specifically established for each machine used
for treatment planning. In the case of Fig. 7.1, a typical x-ray spectrum
was generated by Spektr [24] for a tube voltage of 120 kVP.

Attenuation coefficients of tissues, named µt are related to the atomic
composition of tissues according to the following formula:

µt(E) = ρtNA

N∑
i

wi
Zi
Ai
σe,i(E) (7.2)

where ρt is the mass density, NA is th Avogadro number, N is the largest
atomic number of elements present in the tissues, wi is the mass fraction
of element i in the tissue, Zi is the atomic number, Ai is the atomic mass
and σe,i is the (per) electron cross section of element i of which the values
used to generate Fig. 7.1 were found in the XCOM database [33].

In the case of Fig. 7.1, proton RSP were computed according to
Eq. 7.1 and the Bragg additivity rule for mean excitation energies:

ln It =

∑N
i wi

Zi
Ai

ln Ii∑N
i wi

Zi
Ai

(7.3)

where Ii is the mean excitation energy of element i.
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Figure 7.1: Relationship between HU and RSP theoretically computed
for the list of tissues of ICRU report 44.
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Material ρ H He C N O Na Mg P S Cl K Ca Fe
Adipose 0.95 11.4 0 59.8 0.7 27.8 0.1 0 0 0.1 0.1 0 0 0
Eye lens 1.07 9.6 0 19.5 5.7 64.6 0.1 0 0.1 0.3 0.1 0 0 0
Liver 1.06 10.2 0 13.9 3 71.6 0.2 0 0.3 0.3 0.2 0.3 0 0
Lung (deflated) 1.05 10.3 0 10.5 3.1 74.9 0.2 0 0.2 0.3 0.3 0.2 0 0
Lung (inflated) 0.26 10.3 0 10.5 3.1 74.9 0.2 0 0.2 0.3 0.3 0.2 0 0
Muscle (skeletal) 1.05 10.2 0 14.3 3.4 71 0.1 0 0.2 0.3 0.1 0.4 0 0
Ovary 1.05 10.5 0 9.3 2.4 76.8 0.2 0 0.2 0.2 0.2 0.2 0 0
Skeleton (red
marrow)

1.03 10.5 0 41.4 3.4 43.9 0.1 0 0.2 0.2 0.2 0 0 0.1

Skin 1.09 10 0 20.4 4.2 64.5 0.2 0 0.1 0.2 0.3 0.1 0 0
Testis 1.04 10.6 0 9.9 2 76.6 0.2 0 0.1 0.2 0.2 0.2 0 0
Thyroid 1.05 10.4 0 11.9 2.4 74.5 0.2 0 0.1 0.1 0.2 0.1 0 0
Skeleton (cortical
bone)

1.92 3.4 0 15.5 4.2 43.5 0.1 0.2 10.3 0.3 0 0 22.5 0

Blood (whole) 1.06 10.2 0 11 3.3 74.5 0.1 0 0.1 0.2 0.3 0.2 0 0.1
Brain 1.04 10.7 0 14.5 2.2 71.2 0.2 0 0.4 0.2 0.3 0.3 0 0
Breast
(mammary
gland)

1.02 10.6 0 33.2 3 52.7 0.1 0 0.1 0.2 0.1 0 0 0

GI tract
(intestine)

1.03 10.6 0 11.5 2.2 75.1 0.1 0 0.1 0.1 0.2 0.1 0 0

Heart (blood
filled)

1.06 10.3 0 12.1 3.2 73.4 0.1 0 0.1 0.2 0.3 0.2 0.1 0

Kidney 1.05 10.3 0 13.2 3 72.4 0.2 0 0.2 0.2 0.2 0.2 0.1 0
Lymph 1.03 10.8 0 4.1 1.1 83.2 0.3 0 0 0.1 0.4 0 0 0
Pancreas 1.04 10.6 0 16.9 2.2 69.4 0.2 0 0.2 0.1 0.2 0.2 0 0
Skeleton
(cartilage)

1.1 9.6 0 9.9 2.2 74.4 0.5 0 2.2 0.9 0.3 0 0 0

Skeleton
(spongiosa)

1.18 8.5 0 40.4 2.8 36.7 0.1 0.1 3.4 0.2 0.2 0.1 7.4 0.1

Skeleton (yellow
marrow)

0.98 11.5 0 64.4 0.7 23.1 0.1 0 0 0.1 0.1 0 0 0

Spleen 1.06 10.3 0 11.3 3.2 74.1 0.1 0 0.3 0.2 0.2 0.3 0 0

Table 7.1: Mean composition of typical human tissues. Source: [22].



CHAPTER 7. OPTIMIZATION OF CT CONVERSION 87

7.1.2 CT conversion methods

Tissue surrogate calibration

The most straightforward method to convert a x-ray CT into proton
RSPs relies on the use of tissue surrogates to derive an empirical rela-
tionship. It is a three-step method:

1. The HU of the tissue surrogates are experimentally measured with
the CT scanner.

2. The corresponding RSP are determined. This can be done ex-
perimentally with the ion line. Alternatively, the RSP can also
be theoretically computed based on the elemental compositions of
the surrogates, using Eq. 7.1.

3. The conversion curve is obtained by plotting the measured HUs
vs. the RSPs and by interpolating between those points.

This straightforward method, however, presents a major drawback
which arises from the non-bijectivity of the HU-RSP relationship [43].
Surrogates manufacturers design them so that they exhibit the same
attenuation characteristics for a given energy range and so that they
show similar physical properties such as mass and density. Nonetheless,
because the surrogates atomic compositions differ from those of real
tissues, their attenuation characteristics cannot be identical for the entire
energy range used in radiation therapy and particularly for low energy
x-rays and high energy protons [59].

Stoichiometric calibration

To overcome this problem, Schneider [43] proposed an indirect method
to establish the HU-RSP curve, the so-called stoichiometric calibration.
The method is composed of four steps:

1. Parametrize the response of the CT scanner using the following
equation:

HU = ρe,t
(
AZ3.62 +BZ1.86 + C

)
(7.4)

where Z is the effective atomic number. Constants A, B, C are
determined by a least-square minimization with measured HUs of
materials of known chemical compositions.
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2. Predict HUs of human tissues with Eq. 7.4 using tables of chemical
compositions from the literature such as Woodard and White [56],
White et al. [54], and ICRU [22].

3. Predict RSPs of human tissues with Eq. 7.1 using the same tables
of chemical compositions.

4. Plot the HUs vs. the RSPs and interpolate between the points.

7.1.3 Range uncertainty in CT conversion

The majority of conversion methods from single energy CT to RSP rely
on a piecewise linear curve. As stated above, various sources of uncer-
tainties interfere in this process.

First, the relationship between HU and RSP is clearly not bijective.
Secondly, the relevance of the model depends on the materials used

to establish the curve. In the so-called stoichiometric calibration, tables
of mean composition of human tissues are used. The atomic content
of patient tissues may differ, however. Small variations in elemental
compositions and in mass density were shown to significantly change
CT numbers [57]. Since single energy CT cannot be used to obtain both
information, it limits the precision to which tissues can be resolved.
Consequently, this limitation is also reflected into the stoichiometric
calibration.

Finally, inconsistencies and approximations in the mean excitation
energies may also impact the conversion. Their values differ depending
on the source ([8, 23, 25]. Furthermore the recommended value for the
mean excitation energy of water has changed many times over the past
decades [8, 23, 30, 38, 16, 5]. Any inconsistency between values used for
water and tissues can contribute to the errors in RSP estimation up to
3% [5, 37, 50].

7.1.4 Patient-specific calibration curves

One of the initial aim of proton radiography was to generate patient-
specific calibration curve [42, 15] so that the residual range error would
be minimized. Several authors proposed optimization methods to finely
tune piecewise linear curves [15, 10, 4], in the context of treatment plan-
ning based on single energy CT. Nevertheless, we believe that these
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state-of-the-art methods only work under limited conditions which are
rarely met in a real patient.

In this chapter, we present a theoretical study that brings to light
important limitations that were not considered by the authors. We con-
sider an anthropomorphic head phantom. This anatomical site is par-
ticularly well suited for proton radiography thanks to its limited water
equivalent path length (WEPL) whatever the direction of acquisition.

7.2 Materials and Methods

7.2.1 An overview of optimization methods

The type of calibration curve considered in this paper is a piecewise lin-
ear function of the HU. The points of interpolation are named (HUint,i, RSPint,i)
or in vector format (HUint,RSPint) and the interpolation function is
refered to as fHUint,RSPint : ΩHU → ΩRSP : HU 7→ fHUint,RSPint(HU)
where ΩHU and ΩRSP are the sets of possible values for HUs and RSPs,
respectively.

Doolan’s optimization

Doolan et al. first proposed a method to optimize the calibration curve [15].
They sought the values of RSPint that would minimize the difference
between predicted WEPLs, named WEPLplan and measured WEPLs,
named WEPLm:

RSP opt
int = arg min

RSPint

∑
x,y

(∑
z

fHUint,RSPint(HU(x, y, z))sz

−WEPLm(x, y))2

=arg min
RSPint

∑
x,y

(WEPLplan(x, y)−WEPLm(x, y))2 (7.5)

where sz is the voxel thickness.

Collins-Fekete’s optimization

Since f is a piecewise linear function, Eq. 7.5 can also be written:

RSP opt
int = arg min

RSPint
||Aint RSPint −WEPLm||22 (7.6)
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where Aint represents the total length crossed by the protons in each
HUint,i. This alternative formulation was introduced by Collins-Fekete
et al. in the context of list-mode proton radiography [10].

Albert’s optimization

Very recently, Albert et al. proposed a third method [4] in a study based
on prompt gamma data. However, the method itself does not restrict to
prompt gamma only and can be adapted to any kind of in vivo range
verification technique, including proton radiography.

The cost function they use is the squared difference between mea-
sured ranges and predicted ones. Moreover, they assume that the dif-
ference between the calibration curve used for treatment planning and
the ideal one is a piecewise linear function of the HU. The points of
interpolation of the corrective function are named (HUφ,i, RSPφ,i) or in
vector format (HUφ,RSPφ). Therefore, we can write

WEPLopt = AintRSPint +AφRSP
opt
φ (7.7)

This is obviously equivalent to the two previous techniques men-
tioned above but Albert’s work extended its applicability to other in
vivo range verification techniques such as prompt gamma imaging.

He first approximated the difference between the predicted range,
named Rplan, and the measured one, named Rm, as:

Rplan(x, y)−Rm(x, y) =
WEPLtrue(x, y,Rphys)−WEPLtrue(x, y,Rplan)

∂Wtrue(x,y,z)
∂z |z=Rplan

(7.8)
where WEPLtrue is the actual WEPL an Rphys is the actual range.

Nevertheless, in proton radiography, the exact expression can be
used, assuming that the detector is calibrated in water :

R(x, y)−Rm(x, y) =WEPLtrue(x, y,Rphys)

−WEPLtrue(x, y,Rplan)

=WEPLtrue(x, y, zpatient surf.)

−WEPLplan(x, y, zpatient surf.)

=WEPLm(x, y, zpatient surf.)

−WEPLplan(x, y, zpatient surf.) (7.9)
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where WEPLplan is the predicted WEPL. This can be re-written in a
matrix-like format :

R−Rm = Aφ RSPφ (7.10)

which again shows the equivalence with previous methods.

The last step was an approximation of Eq. 7.10 in powers of RSPφ
but this is not necessary for proton radiography since this equation is a
linear system which can be solved directly.

Variant

In proton radiography using a multi-layer ionization chamber, the de-
termination of the WEPL map from the measured integral depth-dose
profiles (IDD) might be computationally expensive [13]. In certain cir-
cumstances, it might be profitable to perform the optimization directly
on raw data:

RSP optφ = arg min
RSPφ

||IDDm −G IDD (Aint RSPint

+ Aφ RSPφ)||22 (7.11)

where IDDm are the measured IDDs, G is the circulant matrix associ-
ated with the bi-dimensional Gaussian convolution kernel of which the
sigmas equal those of the beam. The drawback of this method, however,
resides in the potential non-convexity of the cost function.

7.2.2 Stability

We showed that Doolan’s, Collins-Fekete’s and Albert’s cost functions
are mathematically equivalent in the context of proton radiogrpahy. The
formalism used hereafter is the one of Collins-Fekete.

Matrix Aint (m × n) may be expressed through a singular value
decomposition:

Aint = USV ∗ (7.12)

where U (m×m) and V (n×n) are unitary matrices and S (m×n) is
a diagonal matrix of which the diagonal elements are the singular values
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of Aint. If the number of non-zero singular values of Aint is n, then the
solution to problem 7.6 is unique and is given by:

RSP optint = A+
intWEPLm (7.13)

where A+
int = (A∗

intAint)
−1A∗

int is the generalized inverse matrix.

On the contrary, if at least one singular value of Aint is null, the de-
terminant of (A∗

intAint) is null and there exists an infinity of solutions.

During the optimization, at least four sources of errors may be en-
countered:

• Uncertainty in the WEPL measurement;

• CT noise and reconstruction artefacts;

• Difference in the anatomy of the patient between the CT image
and the proton radiograph;

• Misalignment between the CT image and the proton radiograph.

The first source of uncertainty may be modelled as a perturbation,
named δWEPL, of the WEPLm vector. The three other sources cor-
respond to a perturbation δA of matrix Aint. Considering those per-
turbations separately, we can show (see appendix A for proof) that:

||δRSP ||2
||RSPint||2

≤
|||A+

int||| ||WEPLm||2
||A+

intWEPLm||2
||δWEPL||2
||WEPLm||2

(7.14)

and

||δRSP ||2
||RSPint||2

≤
|||A+

int|||
2 |||Aint|||

1− |||δAA+
int|||

||WEPLm||2
||A+

intWEPLm||2
|||δA|||
|||Aint|||

(7.15)

where |||.||| is the operator norm defined as:

|||A||| = sup
x∈Rn\{0}

||Ax||2
||x||2

(7.16)



CHAPTER 7. OPTIMIZATION OF CT CONVERSION 93

Moreover, inequation. 7.14 may be reformulated in a form similar to
inequation. 7.15:

||δRSP ||2
||RSPint||2

≤
|||A+

int||| ||WEPLm||2
||A+

intWEPLm||2
|||A+

intAint|||
1− |||δAA+

int|||
||δWEPL||2
||WEPLm||2

≤
|||A+

int|||
2 |||Aint|||

1− |||δAA+
int|||

||WEPLm||2
||A+

intWEPLm||2
||δWEPL||2
||WEPLm||2

(7.17)

Therefore, an upper bound of the relative variation of the norm of
theRSPint with respect to those ofAint andWEPLm is proportional

to
|||A+

int|||
2 |||Aint|||

1−|||δAA+
int|||

||WEPLm||2
||A+

intWEPLm||2
.

7.2.3 Experimental data

Our study relies on the case of an anthropomorphic head phantom model
731-HN (CIRS, USA). A single energy CT scan of this phantom was
acquired at 120 kV in a 512× 512 matrix, 512× 512 mm2 field of view
and with a slice thickness of 1.5 mm. The CT was later resampled on a
1× 1× 1 mm grid by linear interpolation.

A single direction of acquisition was considered. The gantry angle
was 270◦. This gave a radiograph along the lateral direction. The spot
spacing was 5 mm and the proton acquisition grid contained 45 × 64
spots, as shown in fig. 7.2.

We assume that the noise in the WEPL estimation is normally dis-
tributed:

WEPLm(x, y) =
∑
z

RSP (HU(x, y, z)) sz +WEPLnoise (7.18)

where sz is the voxel thickness and WEPLnoise is a normally distributed
random variable of zero mean and standard deviation σnoise.

The generic calibration curve shown in Fig. 7.3 was used to construct
vector HUint and to simulate the proton radiograph based on the CT.

Matrix Aint was built from the CT data and the spots position
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Figure 7.2: Head phantom and spot map (red dots) considered in the
experimental study.

using:

Ainti,j =

 ∑
HU∈Sij

HU −HUint,j
HUint,j+1 −HUint,j

+
∑

HU∈Sij−1

(
1− HU −HUint,j−1

HUint,j −HUint,j−1

) sz (7.19)

where Sij is the set of CT voxels traversed by beamlet i such that
HUint,j ≤ HU < HUint,j+1 and Sij−1 is the set of CT voxels traversed
by beamlet i such that HUint,j−1 ≤ HU < HUint,j .
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Figure 7.3: Generic calibration curve composed of 26 linear segments.

7.3 Results

The proton radiograph was simulated with a map of 45× 64 spots and
the the calibration curve had 27 interpolation points. Hence, the size
of matrix Aint was 2430 × 27. The solution in the case of σnoise = 0
perfectly coincided with the generic calibration curve. The rank of Aint
was indeed 27.

If δWEPL = WEPLnoise with σnoise = 1 for instance, ||δWEPL||
behaves according to a χ distribution of which the mean and variance
are [53]:

µ =
√

2
Γ
(
n+1
2

)
Γ
(
n
2

) (7.20)

and

σ2 = 2
Γ
(
n
2

)
Γ
(
1 + n

2

)
− Γ2

(
n+1
2

)
Γ2
(
n
2

) (7.21)
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where Γ is the gamma function:

Γ(z) =

∫ ∞
0

xz−1e−xdx (7.22)

In this case, µ = 49.29 and σ2 = 0.5. Moreover ||WEPLm|| = 5251.2.
Consequently, inequation 7.14 yields, in this case, to

||δRSP ||
||RSPint||

≤ 60.0 (7.23)

In other words, ||δRSP ||may possibly be 60.0 times higher than ||RSP ||.
Nonetheless, this corresponds to a worst case situation that might never
happen. Twenty-five experiments were run with σnoise = 1 (mm) and
the optimized curves are shown in Fig. 7.4. They significantly differs
from the generic one. The mean value of ||δRSP ||

||RSPint|| was 9% and the

standard deviation 5%.
A similar experiment was conducted with the assumption that the

WEPL measurement can be carried out with an accuracy of 1% (95%
interval). Hence σnoise = 1

1.96%. Results are shown in Fig. 7.5.
To analyze perturbation on matrix Aint, we decided to consider its

singular value decomposition (Eq. A.2). A plot of the singular values, Si,
is shown in Fig. 7.6. The five highest Si are several orders of magnitude
higher than the others. Matrix Aint could be approximated by keeping
only the highest singular values. The approximated matrix is hereafter
referred to as Ãint. For this example, we chose to keep the twenty
highest Si. This led to:

||Aint|| − ||Ãint||
||Aint||

= 8.6641 10−6 (7.24)

and
||Aint − Ãint||
||Aint||

= 0.0042 (7.25)

In other words, this simplification in the spectral content of Aint only
very slightly changed its Frobenius norm. However, it had a huge conse-
quence on the solution of problem 7.6. Because the rank of Aint was 20
after approximation, there were an infinite number of solutions to the
least-square problem. Actually, seven RSPint,i cannot be determined.
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Figure 7.4: Calibration curves resulting from optimizations performed
on altered WEPL map (σnoise = 1 (mm)).

If those variables are set to 0 for instance, the calibration curve shown
in Fig. 7.7 is obtained. This choice is arbitrary and other values would
have led to a different curve.

Eq. 7.24 and 7.25 showed that small changes in matrix Aint could
have dramatic consequences on the solution. Actually, Fig. 7.6 shows
that a system with matrix Aint is close to under-determination.

7.4 Discussion

By providing a direct information about the energy loss of protons
through the patient, proton radiography offers the potential to cor-
rect the conversion of planning CT. In 2015, Doolan et al. proposed a
method to establish a patient specific calibration curve based on WEPL
maps [15]. The authors demonstrated the robustness of their optimiza-
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Figure 7.5: Calibration curves resulting from optimizations performed
on altered WEPL map (σnoise = 1/1.96%).

tion with respect to CT noise and measurement uncertainties. Later,
Collins-Fekete et al. proposed a similar technique for list-mode pro-
ton radiography [10]. Finally, Albert et al. developed an optimization
method working with most of in vivo range verification techniques in-
cluding prompt-gamma imaging and proton radiography.

In this chapter, we first demonstrated the mathematical equivalence
between the three methods mentioned above, in the case of proton radio-
graphy. However, their respective authors came to different conclusions.
Doolan judged he could decrease the range uncertainty by a few tenths
of a percent. On the contrary, Collins-Fekete determined calibration
curves with local errors up to a few percents for the case of anthropo-
morphic phantoms. Finally, Albert obtained similar results on curves
optimized using prompt gamma data.

In the previous section, we showed that the optimization problem
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Figure 7.6: Singular values of matrix Aint sorted by magnitude.

may be particularly ill-posed. This characteristics was not studied with
details by the authors mentioned above although Doolan performed two
robustness analyses with respect to noise in CT and in proton radio-
graphs. His work actually had flaws that should be discussed. First,
to study the impact of multiple Coulomb scattering (MCS) on the opti-
mizer, he considered an artificial phantom made out of uniform blocks
having a thickness of 5 cm, arranged in four rows. It artificially gave
an excellent conditioning to system 7.6 which was far from the very
poor one encountered with real anatomy. As a result, what he solved
was a perfectly conditioned least-square problem. Secondly, the robust-
ness analysis with respect to CT noise was on the contrary based on an
anthropomorphic CT but the organs were overridden by four different
HU: bladder HU=0, prostate HU=58, muscle HU=66, rectum HU=66,
cortical bone HU=1194. This again significantly changed the content
of matrix A. Then, CT noise was modelled as a random variable of
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Figure 7.7: Calibration curve resulting from an optimization per-
formed with an approximation of rank 20 of matrix Aint (initially of
rank 27) and from setting the seven undetermined variables to 0.

zero mean and standard deviation, named σnoise, ranging from 1% to
10% of the HU value. Because the relationship between HUs and RSPs
was piecewise linear, RSPs exhibited the same uncertainty. The final
uncertainty on the WEPL was thus of zero mean and standard devia-
tion σnoise/

√
N (%) where N was the number of voxels traversed by the

protons. For instance, if there were 100 voxels, the standard deviation
of the WEPL would have been comprised between 0.1% and 1%. More-
over, having overwritten HU with a limited amount of values altered the
validity of the noise model. In practice, the combination of CT noise
and the piecewise property of the curve lead to a bias in the estimation
of the RSP, even if noise is symmetric, as shown by Brousmiche et al. [9].

To restrict the solution domain, regularization or hard constraints
could be used. Doolan and Albert imposed the monotonicity of the
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curve which is questionable because the relationship between HU and
RSP does not theoretically respect this assumption, as shown in Fig. 7.1.
Secondly, Albert bounded the values that could be taken by RSPφ. Yet
this restricts the domain of the solution, it does not necessarily solve the
unicity issue.

Since the conditioning of Eq. 7.7 depends on the choice of HUφ, it
might be possible to find a sampling which would guarantee the unicity
of the solution but this, of course, also depends on the anatomy being
considered. Trivially, if HUφ only contains one single point, the mini-
mum is unique. This particular case may find applications in processes
to determine the stopping power of specific materials such as metal im-
plants, for instance. With this aim in mind, a graphical interface was
added to our proton radiography module in openREGGUI. It relies on
the optimization formalism proposed by Collins-Fekete (Eq. 7.6) but it
gives additional control to the user. It can select the points of the cal-
ibration curve to be adapted, as shown in Fig. 7.8. Moreover, it may
select specific spots among the data. This is useful because of the strong
correlation existing between the presence of lateral inhomogeneities and
WEPL estimation inaccuracies [18, 13]. One might want not to consider
such areas for the optimization. Up to this day, the input WEPL is de-
termined from a comparison with simulated IDDs. In a future improved
version, it could benefit from the deconvolution method discussed in
Chapter 6.

Finally, the benefit of proton radiography could be questioned with
regards to the issue of establishing patient specific calibration curves. It
results from the present study that proton radiography cannot be consid-
ered yet as an efficient technique to improve RSPs estimation. Nonethe-
less, its application on patient would enable the quantification of range
errors and therefore permit treatment margin optimization. Moreover,
recent studies have shown that the use of dual energy computed tomog-
raphy (DECT) instead of single energy computed tomography (SECT)
for treatment planning could significantly decrease the uncertainty in the
RSPs prediction. Taasti et al. showed a median difference of 1.9 mm
(1.5 %) between the WEPLs of eight patients of whom the RSP were
computed based on a DECT on the one hand and on a SECT on the
other hand [47]. Furthermore, another study theoretically demonstrated
the over-evaluation of the uncertainty associated to the mean excitation
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Figure 7.8: Capture of the graphical interface implemented in the
openREGGUI framework to patient specifically optimize calibration
curves. The optimization of the generic calibration curve (in blue) for
the point corresponding to titanium led to the curve shown in red.
The spots in blue (on the left panel) were chosen by the user to create
the WEPL vector.

energies of tissues which intervene in the RSP computation [50]. Several
experimental investigations have been conducted to assess these theo-
retical hypotheses but were pretty limited because of the lack of suitable
systems to acquire range data. Recently, Michalak et al. [32] showed a
better estimation of RSPs computed based on DECT using range mea-
surements. However, those were only carried out on homogeneous phan-
toms. More recently, Wohlfart et al. [55] performed a similar assessment
on an anthropomorphic phantom having a complex geometry but the
ground truth stopping power map was based on a high resolution CT
and on a table of reference RSP values measured on homogeneous areas
of the phantom using a range probe. Consequently, the ground truth
map of RSPs cannot be considered as perfectly independent on the CT.
In view of the potential significance of DECT for treatment planning
accuracy, it is striking that no direct high resolution assessment on pa-
tients having a complex geometry has been performed up to this day.
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With a spatial resolution equivalent to the one of a planning CT and a
submillimeter accuracy on the measured range, the proton radiography
methods developed in this thesis could be used to perform such in vivo
assessment. More generally, proton radiography paves a way to a better
assessment of CT calibration by permitting measurements on animal or
human tissues.

7.5 Conclusions

Three methods have recently been proposed to optimize the conver-
sion from HUs to RSPs using range data. Thus far, it was believed by
some medical physicists that such a patient specific optimization would
decrease the range uncertainty. In this paper, we showed that the opti-
mization problem may likely be ill-posed in clinical conditions. This, of
course, depends on the geometry and on the acquisition parameters such
as the spots positions. This was clearly the case for the head phantom
and its associated proton radiograph considered in the present study.
Hence, care should be taken if such optimization method were to be
applied on patients.

Furthermore, the range uncertainty problem is more complex than
just differences existing between the patient’s ideal curve and the generic
one implemented in the TPS. The piecewise linear model is a restriction
itself since the relationship between HU and RSP is actually non bijec-
tive. It is worth noting that multi-energy CT (of which the most basic
and commonly found form is dual energy CT) might be part of the solu-
tion to this issue by providing data acquired with distinct x-ray spectra.
However, despite an increasing number of studies, its advantage in the
quest for a solution to the unicity issue of the conversion to RSP must
be further investigated [17]. In this context, proton radiography with a
multi-layer ionization chamber appears as an intriguing option. Offering
a spatial resolution equivalent to the one of a planning CT and a sub-
millimeter resolution on the measured range, it could be used to validate
CT conversion on animal or human tissues having complex geometries.
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Chapter 8

Discussion and conclusion

Proton therapy has the potential to confine most of the dose to the
target. Unfortunately, range computation during treatment planning is
tainted by various uncertainties, a major source of which arises from
the conversion of Hounsfield units (HU) to stopping powers. Despite
this being known for decades, there is still a remarkable lack of related
experimental data and of method to obtain them. Moreover, recent
works [15, 10, 4] have brought to light that the difference between range
measurements and predictions made with the calibration curve used for
treatment planning could serve as an objective function to optimize the
conversion of the Housnfield units (HU) of the planning CT to relative
proton stopping powers (RSPs). To better quantify range uncertainty
and to potentially correct it, it is necessary to develop techniques to
measure high resolution range maps of protons going through a patient.
In this thesis, we developed an acquisition process to obtain such range
maps and we discussed its applications without hesitating to question
the admitted hypotheses on the use of range measurements to generate
patient specific calibration curves.

Design of a proton radiography system for clinical use of
proton therapy

The six first chapters of this thesis were focusing on the design of a
proton radiography acquisition process and post-processing methods to
obtain range error maps with a clinically acceptable accuracy. This

105
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work was a straight continuation of the acquisition technique relying
on a multi-layer ionization chamber (MLIC) first proposed by Farace
et al. [19]. In collaboration with these authors, several novel tools were
developed.

To begin with, we proposed a first method to generate range error
maps that could be used in the context of CT conversion assessment.
A fast and direct ray-tracing algorithm was implemented to simulate
integral depth dose profiles (IDD) of which the comparison with data
measured with a MLIC led to an estimation of the range error. The
validity of the method was assessed against both analytical and Monte
Carlo dose calculation of our TPS. Our algorithm relying on a direct
ray-tracing appeared to be faster and surprisingly more accurate than
TPS computation when modeling lateral inhomogeneities. This IDD
model was at the core of two additional post-processing methods which
are discussed later.

In this preliminary study, a commercial MLIC, the Giraffe (IBA,
Belgium) was used and important limitations were highlighted. First,
the acquisition time of twenty minutes was too long for common clinical
use. Secondly, we showed a high sensitivity of range error maps to
residual set-up errors which must be mitigated before they could be
used for CT conversion assessment.

To develop faster proton radiography, a larger detector would be
desirable. In order to validate the possibility to build such a device,
a large field-of-view MLIC was designed and implemented. To limit
production costs, a different type of electrode coating was proposed and
tested.

To mitigate the potential presence of residual set-up errors, a specific
registration method between an x-ray CT and proton radiographs was
developed. It relies on the direct ray-tracing method to compute a cost
function of which the optimization yields to the best alignment between
a CT and proton radiographs. The robustness of the method was studied
with respect to measurement noise and calibration errors. The accuracy
appeared to be better than 0.3◦ for angles and 0.3 mm for translations.

The last post-processing method developed in this thesis performs
a deconvolution of measured IDDs to better estimate the underlying
water equivalent path length (WEPL) of the patient. It also relies on
the direct ray-tracing algorithm to compute a cost function which ben-
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efits from the fact that the measured curves contain more information
than single value pixels. The overall problem is solved in the context
of sparse optimization. An asset of the method is its capability to in-
crease the spatial resolution. We could thereby estimate WEPL maps
with a submillimeter accuracy and a pixel size of 1×1 mm2 from proton
radiographs acquired with a spot spacing of 6 mm maximum.

Interestingly, 6 mm appeared to be the maximum allowable spot
spacing with respect to both WEPL estimation and registration accu-
racies. This is a paramount parameter in proton radiography since it
is linked to the delivered dose. The previous results thus indicate that
the dose could be decreased by thirty-six while maintaining the same
quality of range error assessment.

Together, these tools can be used to determine the WEPL with a
sub-millimeter accuracy and a spatial resolution equivalent to the one
of the planning CT, hence permitting accurate assessment of range un-
certainty. All the post-processing methods developed in this thesis were
implemented in an openREGGUI module so that it could be possible to
make them available to proton therapy centers to achieve first clinical
trials.

CT conversion optimization with proton radiography

Several authors have proposed optimization methods to solve the issue
of range uncertainty arising from the conversion of the planning CT
into RSP [15, 10, 4]. Those techniques aiming at generating patient
specific calibration curves were reviewed in Chapter 7. Unfortunalty,
we brought to light important limitations that were not considered by
their authors. Namely, depending on the anatomy and the spots map
used for the acquisition, the problem might be ill-posed and the solution
might be extremely sensitive to measurement noise and to slight changes
in the anatomy of the patient. Nonetheless, for specific materials, such
as metal implants, the corresponding part of the calibration could be
adapted in a robust manner. This offers the possibility to treat through
artificial materials with an increased confidence on the range value.

The results presented in chapter 7 question the potential of proton
radiography to reduce the range uncertainty arising from the CT conver-
sion. Moreover, recent studies showed that the use of dual energy com-
puted tomography (DECT) for treatment planning could significantly
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increase the accuracy in the RSP estimation [17]. Nonetheless, these
studies would benefit from an in vivo validation. Since the lack of suit-
able range verification method, this is currently almost impossible, yet
limited attempts have been done [32, 55, 47]. The work presented in
this thesis fill this gap by proposing a radiography technique that could
be used to perform direct measurements on samples that could be non
synthetic and non-uniform. More generally, if offers a way to better as-
sess the calibration of CT scanners used in proton therapy facilities by
offering testing possibilities on samples closer to a patient anatomy.
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Figure 8.1: Range uncertainty assessment based on a proton radio-
graph of a head phantom acquired with (a) a spot spacing of 5 mm
from which (b) a WEPL map was estimated and then (c) compared
with the one predicted using the same calibration curve as the TPS.
Residual set-up errors can be mitigated using a specific registration
method (d).
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Fig. 8.1 illustrates the application of the methods developed in this
thesis to assess CT conversion errors and suggests a potential workflow
to validate CT calibration. In Fig. 8.1a, a proton radiograph was ac-
quired with a spot spacing of 5 mm using a Giraffe. In Fig. 8.1b, a
high resolution WEPL map (pixel size 1× 1 mm2) was estimated using
the deconvolution algorithm. In other words, the spatial resolution was
increased by 25 with respect to the spots map. In Fig. 8.1c, the WEPL
map was compared with the one estimated from a CT converted to rel-
ative stopping powers (RSP) using the same conversion as the TPS. A
residual setup error is observed. Applying our dedicated registration
method before the deconvolution, we obtained the WEPL error map
shown in Fig. 8.1d where impacts of misalignment can not be seen any-
more. In the case of this head phantom, the WEPL error map shows
wrong estimation of the RSP of a metal implant attached to vertebrae
and of the teeth.

Other perspectives

Many uncertainties intervene in proton therapy. In addition to those
taking place during treatment planning, changes in anatomy between
fractions, organ motions and residual setup errors contribute greatly
to the range uncertainty. To take them into account, more elaborated
planning strategies must be adopted. Typically, an optimization is per-
formed on several scenarios to determine the parameters that will give
the highest robustness to the plan with respect to the variations men-
tioned above [46]. Nonetheless, an increase in the robustness generally
comes at the cost of the irradiation of a larger volume and a trade-off
involving the dose conformity must be obtained. In case of substantial
changes in the anatomy, it may be required to adapt the treatment plan.
This is generally done offline and takes several hours. Recently however,
the first online adaptive workflow was incorporated in commercial sys-
tems [2]. In this process, a daily cone-beam CT (CBCT) was used to
detect anatomy changes and accordingly adapt the treatment plan. Fur-
thermore, increasing efforts are made to develop faster planning tools so
that it is most likely that re-planning could be performed online in a
near future.

Because proton radiography provides a direct information about the
protons range with a high spatial resolution, we may question the role
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that it could play in the context of adaptive therapy. In this thesis, we
showed that patient alignment could be better performed with proton
radiographs rather than x-rays. Interestingly, aligning the patient with
the beam used for treatment also removes uncertainties arising from
geometric calibration of the x-ray imaging system. Adapting the rigid
registration algorithm to detect changes in anatomy could allow such
modification assessment in which context re-planning strategies could
be elaborated. However, although such non-rigid registration is theo-
retically feasible, the information would be bi-dimensional and hence
would be likely not to outperform CBCT which is increasingly used in
proton therapy. Moreover, the proton radiography method that we pro-
posed has no advantage from the point of view of dose nor in-room time
compared to CBCT.

The proton imaging technique investigated in this thesis was rapidly
chosen to be 2D in order to avoid the pitfalls of not being easily imple-
mentable in clinics. In was indeed many times demonstrated that 3D re-
construction algorithms require an accurate estimation of the proton tra-
jectory inside the patient and hence the use of position trackers [44, 39].
Nonetheless, the efficient deconvolution algorithm that we developed
to determine the WEPL could be adapted for 3D reconstruction, as a
member of the family of iterative reconstruction algorithms which are
for instance sometimes used for CBCT reconstructions. This could po-
tentially pave a way for proton computed tomography with much less
hardware and data throughput, especially in the light of recent advances
enabling simultaneous irradiation and rotation of the gantry around the
patient [14]. Nevertheless, the potential improvement in RSP determi-
nation would not be worth the proton imaging dose and irradiation time
in the light of modern treatment planning methods such as those relying
on DECT. Moreover, proton imaging is limited by the maximum energy
that can be provided by the accelerator. If it is generally enough to go
through a human head whatever the gantry angle, it is likely not the
case for other anatomical sites which enormously limit proton computed
tomography applications.

Final conclusion

Proton therapy has the potential to spare healthy tissues better than
conventional radiation therapy. However, this promise is currently lim-



CHAPTER 8. DISCUSSION AND CONCLUSION 111

ited by uncertainties arising during treatment planning. A better quan-
tification of range uncertainty would help optimize the dose delivered to
healthy organs. To achieve this objective, we proposed a proton radio-
graphy technique and a set of post-processing methods that we demon-
strated to be clinically acceptable both from a practical point of view
and in term of accuracy. Nevertheless, we brought to light that proton
radiography would generally not be suitable to improve planning CT
conversion. Moreover, recent studies have demonstrated the superiority
of DECT over SECT for RSP prediction. Consequently, it is most likely
that DECT will become the preferred modality for treatment planning
in a close future. Nonetheless, quantification of this increase in range
certainty would benefit from in vivo validations which are still missing.
The radiography technique proposed in this thesis is suitable to perform
such analysis. It offers a very practical way to assess on patients or on
heterogeneous phantoms any method aiming at predicting RSPs.

Finally, the conversion of the planning CT to RSPs is only one, yet a
major contribution to the range uncertainty. Achieving the full potential
of proton therapy requires to consider all contributions simultaneously.
Combining better certainty in RSPs estimation with online adaptive
workflows and more flexible delivery techniques will greatly help reach
this goal.
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Appendix A

Mathematical proofs

A.1 Perturbation of the independent term of an
over-determined system

Consider the following least-square problem:

||Ax− b||22 (A.1)

where A ∈ Rm×n with m > n and b ∈ Rm \ {0}.
Matrix A may be expressed through a singular value decomposition:

A = USV ∗ (A.2)

where U and V are unitary matrices and S is a diagonal matrix of
which the diagonal elements are the singular values of A. If the number
of non-zero singular values is n, then the solution to problem A.1 is
unique and is given by:

xopt = A+b (A.3)

where A+ = (A∗A)−1A∗ is the generalized inverse matrix.
Consider perturbations, named δb, of the independent term. The

solutions becomes:

xopt + δxopt = A+(b+ δb) (A.4)

We have
||δxopt||2 ≤ |||A+||| ||δb||2 (A.5)
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where |||.||| is the operator norm defined as:

|||A||| = sup
x∈Rn\{0}

||Ax||2
||x||2

(A.6)

Moreover,
||xopt||2 = ||A+b||2 (A.7)

Hence,

||δxopt||2
||xopt||2

≤ |||A
+||| ||δb||2
||A+b||2

=
|||A+||| ||b||2
||A+b||2

||δb||2
||b||2

(A.8)

A.2 Perturbation of matrix A

Consider the following least-square problem:

||(A+ δA)x− b||22 (A.9)

where A ∈ Rm×n with m > n, δA ∈ Rm×n and b ∈ Rm \ {0}.
If the number of non-zero singular values is n, then the solution to

problem A.9 is unique and is given by:

xopt + δxopt = (A+ δA)+b (A.10)

We have

δxopt = (A+ δA)+b− xopt

= (A+ δA)+b−A+b

= A+((I + δAA+)+ − I)b (A.11)

||δxopt||2 = |||A+||| |||((I + δAA+)+ − I)||| ||b||2

≤ |||A+||| |||δAA+|||
1− |||δAA+|||

||b||2

≤ |||A+|||2 |||A|||
1− |||δAA+|||

|||δA|||
|||A|||

||b||2 (A.12)

, if |||δA||| < 1

|||A+|||
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Moreover,
||xopt||2 = ||A+b||2 (A.13)

Hence,

||δxopt||2
||xopt||2

≤ |||A+|||2 |||A|||
1− |||δAA+|||

||b||2
||A+b||2

|||δA|||
|||A|||

(A.14)
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Drawings

Section intentionally removed from the online version.
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