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be members of my thesis committee. My thesis has also benefited from in-
teractions with researchers including Vladimir Gusev, François Gonze, Alex
Olshevsky, Julien Dewez, Jürgen Eckhoff, Jean-Paul Doignon, Samuel Fiorini,
Julien Leroy.

I would like to thank my successive office mates: Adrien, Gianni, Nikos
and François. I am also thankful to all the people who made of the Euler
building a pleasing work environment: Corentin, Pierre-Alexandre, Maxime,
Luc, Benoı̂t, Matthew, Romain, Nicolas and to the administrative and techni-
cal people: Nathalie, Marie-Christine, Isabelle, Étienne, François W. and Pas-
cale.

Finally, I would like to thank my family, my friends and of course my part-
ner Anaı̈s.





Contents

1 Introduction 9

1.1 Consensus Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Consensus and Products of Stochastic Matrices . . . . . . . . . . 10

1.3 State of the Art and Contributions . . . . . . . . . . . . . . . . . 11

1.4 Additional Application: Markov Chains . . . . . . . . . . . . . . 14

1.5 Stochastic Matrices and Generalizations . . . . . . . . . . . . . . 15

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 17

1.7 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Matrix Classes Related to Convergence 21

2.1 Definition and Properties of the Matrix Classes . . . . . . . . . . 22

2.2 From SIA to a Positive Column . . . . . . . . . . . . . . . . . . . 27

I Contractive Sets 33

3 Invariant Polyhedra 35

3.1 Polyhedra and Faces . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Polyhedra and Polytopes . . . . . . . . . . . . . . . . . . 36

3.1.2 Faces, Open Faces and Facets . . . . . . . . . . . . . . . . 36

3.1.3 Invariant Polyhedra . . . . . . . . . . . . . . . . . . . . . 39

3.1.4 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.5 Centrally Symmetric Polyhedra and Seminorms . . . . . 42

3.2 Invariant Polyhedron for Stochastic Matrices . . . . . . . . . . . 43

3.2.1 Combinatorial Structure of P . . . . . . . . . . . . . . . . 45

3.2.2 Other Invariant Polyhedra for Stochastic Matrices . . . . 49

5



4 Complexity of Deciding Consensus 51
4.1 Contractive Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1 Properties of Contractive Sets . . . . . . . . . . . . . . . . 54
4.2 Algorithmic Decision of Consensus . . . . . . . . . . . . . . . . . 57

4.2.1 Graph Representation of Products . . . . . . . . . . . . . 58
4.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Sets of two stochastic undirected matrices . . . . . . . . . . . . . 63
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Tight Bound for Consensus 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 The case of the Polyhedron P . . . . . . . . . . . . . . . . . . . . 75

5.3.1 A New Finiteness Bound for Contractive Sets . . . . . . 78
5.3.2 Stochastic Matrices . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Relation with SIA Matrices . . . . . . . . . . . . . . . . . 81

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Application to Other Polyhedra 83
6.1 Primitivity of Matrix Sets . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 A Face Lattice without the Sperner Property . . . . . . . . . . . 87

6.2.1 Existence of a Suitable Projective Transformation . . . . 89

II Almost Contractive Sets 97

7 Synchronizing Automata 99
7.1 Automata and Synchronization . . . . . . . . . . . . . . . . . . . 100
7.2 Reset Threshold and Černý Conjecture . . . . . . . . . . . . . . . 102
7.3 Deciding Synchronization . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Negative Complexity Results . . . . . . . . . . . . . . . . . . . . 105
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Almost Contractive Sets of Matrices 107
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2 Indices and Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Relation between Indices . . . . . . . . . . . . . . . . . . . . . . . 112
8.4 Bounds on the Positive-Column Index . . . . . . . . . . . . . . . 119



8.5 Bounds on the SIA index . . . . . . . . . . . . . . . . . . . . . . . 119
8.5.1 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . 120
8.5.3 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.6 Complexity Results . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.6.1 Deciding whether a Set is Almost Contractive . . . . . . 126
8.6.2 Complexity of Approximating the Indices . . . . . . . . . 126

8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

III Conclusion 133





Chapter 1

Introduction

1.1 Consensus Systems

The problem of how a group of agents can reach agreement on some value has
attracted a lot of attention in recent years. The need for coordination schemes
is present in many applications: autonomous platoons of vehicles [BJMP12],
data fusion in systems with distributed measurements [OSS05, XBK07], dis-
tributed optimization [NO09] or coordination of groups of mobile agents (see
[JLM03] and references therein). Consensus systems describe the dynamics of
these coordination procedures. They have also been used as models for natu-
ral phenomena such as flocking [VCBJ+95] or opinion dynamics [BHT09]. See
also [OSFM07, ME10] for a survey.

In many of these models, each agent has a value xi and it updates this
value by taking a weighted average of the values of agents with which it can
communicate:

xi(t+ 1) =
∑
j

aij(t)xj(t) (1.1)

where aij is the weight of the value of agent j in the computation of the new
value of agent i. Because the agents compute their new value as a weighted
average of the values of other agents, the weights satisfy

aij(t) ≥ 0 and
∑
j

aij(t) = 1. (1.2)

The values of the agents can be put in a single state vector x and Equation (1.1)
becomes the following update equation.

x(t+ 1) = A(t)x(t), (1.3)
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Chapter 1. Introduction

for which the conditions in Equation (1.2) become

A(t) ≥ 0 (elementwise), and A(t)1 = 1, (1.4)

with 1 =
(

1 . . . 1
)>

being the all-one vector. Matrices whose elements
satisfy the conditions of Equation (1.4) are called stochastic.

1.2 Consensus and Products of Stochastic Matrices

Agents following these dynamics tend to be more and more in agreement,
in the sense that their values generally get closer to each other. A general
question is whether System (1.3) converges to a state of consensus, i.e., a state
in which all agents have the same value or, equivalently, a multiple of the
vector 1. We can see that system (1.3) converges for any initial condition x(0)

if and only if the limit
lim
t→∞

A(t) . . . A(1)A(0). (1.5)

exists and is a rank-one matrix, i.e., all its rows are equal. We will therefore
study the convergence of the products of the transition matricesA(t) . . . A(1)A(0).

In a large class of systems, the transition matrix A(t) depends on the state
x, making the system nonlinear [JLM03, BHT09]. Deciding whether the sys-
tem converges to consensus is therefore a hard problem. See for example
[BHT07] that presents a relatively simple model for which no conditions for
convergence to consensus are known. In some situations, even if it is hard to
explicit the complete sequence of matricesA(t) corresponding to System (1.1),
it may be possible to guarantee that these matrices remain in some set S. In
this thesis, we study convergence conditions based only on the knowledge of
the set S. We will study two types of question.

• In Part I, we study questions regarding all sequences of transition matrices
taken from the set S, for example: does System (1.3) converge for every
sequence of transition matrices taken from the set S?

• In Part II, we will study questions regarding one sequence of transition
matrices taken from S, for example: is there one sequence of transition ma-
trices from S such that System (1.3) converge?

These questions can be formulated as questions on the set S, because of the
equivalence between the convergence of the trajectories and convergence of
the products. The first question becomes: do all left-infinite products of matrices
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1.3. State of the Art and Contributions

from S converge to a rank-one matrix? and we will call contractive [PV12] the sets
that have a positive answer to this question. These sets are called contractive
because for a contractive set all infinite products of matrices taken from the
set contract the space Rn to the subspace span{1}.

These sets have also been called quasidefinite [Paz65], weakly-ergodic [CW08]
in the context of Markov chains and consensus sets [BO14] in the context of con-
sensus. We will study the properties of contractive sets and we will develop
an algorithm to recognize them. The second question becomes is there one left-
infinite product of matrices from S that converges to a rank-one matrix? and we will
call almost contractive [PV12] the sets for which the answer to this question is
positive.

A third important question is whether all products converge to a rank-
one matrix with probability one, in the case where the transition matrix is
chosen randomly at each step. Under the assumption that each matrix has
a nonzero probability to be chosen a each step, this question is equivalent
to that of the existence of a left-infinite product that converges to a rank-one
matrix, as explained in [PV12, Section 5]. This is the reason why we denote
almost contractive the sets for which one infinite product converges to a rank-
one matrix. Our Part II will therefore have consequences for systems with
random switching.

In light of this, one could wonder whether studying convergence for all
sequences of transition matrices is useful at all and why convergence for almost
all sequences is not always satisfying. If fact, in many situations the sequence
of transition matrices of System 1.3 is deterministic but unknown (as in, for
example, [BHT09, JLM03]) and the convergence with probability one does not
guarantee anything about the convergence of the system for that particular
deterministic sequence.

We will see that these questions about infinite products are in fact equiv-
alent to simpler questions on finite products. Contractive sets are the sets for
which all sufficiently long products have a positive column, while almost con-
tractive sets are the sets for there is a product that has a positive column.

1.3 State of the Art and Contributions

A characterization of contractive sets of stochastic matrices has been known
since [Wol63], in which the author shows that a set of stochastic matrix is con-
tractive if and only if every finite product of matrices from S is SIA [Wol63],
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Chapter 1. Introduction

where a matrix is called SIA – Stochastic Indecomposable Aperiodic – if it is
stochastic and the limit limn→∞An exists and is a rank-one matrix. Said dif-
ferently all infinite products converge to a rank-one matrix if and only if all
infinite periodic1 products converge to a rank-one matrix. A more workable
characterization was established by V.D. Blondel and A. Olshevsky who stud-
ied the complexity of deciding whether a set is a consensus set [BO14], or
equivalently a contractive set. They prove that a set of stochastic matrices is
contractive if and only if a certain condition is met for every product of length

B =
1

2
(3n − 2n+1 + 1), (1.6)

from which they can conclude that the problem of deciding if a set is contrac-
tive is algorithmically decidable. They also prove that the problem is NP-hard
for sets of at least two matrices. They based some of their results on earlier
work on inhomogeneous Markov chains which also involve long products of
stochastic matrices. In particular, they make use of a result by A. Paz, that
states that, for a given set of stochastic matrices, all sufficiently long products
are scrambling if and only if all products of length at most B (as defined in
(1.6)) are scrambling, where a matrix is called scrambling if the supports2 of
any two rows intersect [Paz71, Section A.4 of Chapter II].

The first part of this thesis will build on these results. In Chapter 4, we will
propose a singly exponential algorithm to decide whether a set is contractive,
and in Chapter 5, we will improve the bound (1.6). To obtain these results, we
use the fact that System (1.3) is a switching system. In particular we use the fact
that stochastic matrices have a common invariant polyhedron and we make use
of techniques developed for switching systems that have an invariant poly-
hedron [Bar88, Mar06, LW95]. Invariant polyhedra have been used to study
the joint spectral radius of matrix sets. The joint spectral radius of a set is the
maximal asymptotic growth rate among all possible infinite products of matri-
ces taken from the set [Jun09]. This quantity is closely related to convergence
to consensus. Indeed, it has been shown [BHOT05, Section IV] that conver-
gence to consensus of all products taken from a set S is equivalent to the joint
spectral radius of an associated S′ being strictly smaller than 1. The idea is
that stochastic matrices have 1 as a common eigenvector and that the conver-
gence to consensus corresponds to the convergence to this common eigenvec-
tor. The convergence to consensus is therefore equivalent to the convergence

1We say here that an infinite product is periodic if it is the infinite power of a finite product.
2We call the support of a row, the set of columns in which the elements of the row are positive.
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1.3. State of the Art and Contributions

to zero once this component in 1 has been projected. Finally, the convergence
to zero of all infinite products of matrices taken from a set is equivalent to the
joint spectral radius of this set being smaller than one. Considering this close
relation between consensus and joint spectral radius, we will be able to use
techniques developed for the joint spectral radius [LW95] to study contractive
sets.

Almost contractive sets of matrices have been analyzed in [PV12, Section
5], where the authors develop a polynomial-time algorithm to decide whether
a set of stochastic matrices is almost contractive. A particular subclass of al-
most contractive sets of matrices has also been studied in the context of au-
tomata theory. Indeed, the synchronization of automata – that we will introduce
in Chapter 7 – is equivalent to the almost contractivity for the subclass of au-
tomaton matrices, that is, matrices that have one 1 on each row and 0 every-
where else. Synchronization of automata has been studied intensively in an
attempt to prove the Černý conjecture that states that a set of automaton matri-
ces has either a product of length at most (n−1)2 that has a positive column or
no product that has a positive column3. We will see that many results obtained
in the context of automata can be generalized to sets of stochastic matrices. For
instance, the algorithm that decides whether a set of stochastic matrices is al-
most contractive is an extension of a classical algorithm that decides whether
automaton is synchronizing [PV12]. We will define the SIA index of a contrac-
tive set of stochastic matrices as the length of the shortest SIA product of the
set. The SIA index is related to the well-studied notion of exponent – the length
of the shortest (entrywise) positive product, if one exists (see [BR91, Section
3.5] for a survey of the single matrix case, and [GGJ18, PV12] for more recent
work on matrix sets). Similar quantities have been defined for different matrix
classes. For instance, the scrambling index is defined as the length of the short-
est scrambling product. We will make use of results from automata theory and
we will also show that the study of this quantity could have consequences in
automata theory and for the state of the art of the Černý conjecture. We will
also consider some related quantities in Chapter 8: the positive-column index,
the scrambling index and the Sarymsakov index. These different indices come
from different matrix classes that have been used to study the convergence of
products of stochastic matrices. We will define these classes in Chapter 2 and
we will study the relation between them.

3This formulation is equivalent to the classical formulation of the conjecture, that uses the
notions of automaton and synchronizing word, that we will define only in Chapter 7.

13



Chapter 1. Introduction

Our work also is closely related to the theory of positive systems. Positive
systems are linear systems that leave a cone invariant [Smi95, AS03]. In par-
ticular, systems whose state variables are nonnegative are positive systems.
They appear in different contexts such as economics or biology. An important
result in the theory of positive systems is the Birkhoff Theorem [Bir57] that
uses the contraction of the Hilbert projective metric to establish the conver-
gence to a ray in the interior of the cone. The well-known Perron-Frobenius
Theorem is a particular case of this theorem. This approach has been applied
to prove the convergence of consensus systems [SSR10]. In this thesis, how-
ever, we will mainly consider sets of matrices that do not contract the Hilbert
metric. A contractive set of matrices is in fact a set of stochastic matrices from
which all sufficiently long products contract the Hilbert metric. Moreover, if
all matrices in a set contract the Hilbert metric, the set is trivially contractive
and if a given matrix A1 contracts the Hilbert metric, then {A1, A2 . . . , Am} is
contractive if and only if {A2 . . . , Am} is contractive. The results of Chapter 4
can thus be seen as a generalization of these results to sets of stochastic ma-
trices that do not contract the Hilbert metric. In Chapter 8, we have a similar
situation: if a set contains a matrix that contracts the Hilbert metric, then this
set is almost contractive.

1.4 Additional Application: Markov Chains

Until now, we have used consensus systems as our main motivation for the
study of products of stochastic matrices. We have also mentioned that some
of our results are closely related to automata theory, in particular to synchro-
nizing automata and to the Černý conjecture. In fact the study of products
of stochastic matrices is also relevant in the context of inhomogeneous Markov
chains [Str05]. Inhomogeneous Markov Chains are Markov chains in which
the transition matrix can change with time. They have a set of states and a
vector x(t) whose components xi(t) are the probabilities to be in each state i.
At each step t, there is a probability aij(t) to transition from a state i to a state
j. We thus have the following update equation for the vector of probabilities:

x>(t+ 1) = x(t)>A(t), (1.7)

where the elements of A(t) are the transition probabilities aij . The chain is
called inhomogeneous if A(t) can change with time. When the transition ma-
trices come from a finite set S, the setting becomes similar to that of consensus,

14



1.5. Stochastic Matrices and Generalizations

Equation (1.7) being the transpose of Equation (1.3). Deciding whether the set
S is contractive is equivalent to deciding whether the chain is mixing, i.e., it
forgets its initial condition while deciding whether S is almost contractive is
equivalent to deciding whether the chain can be mixing (or is mixing with
probability one in the case of random switching).

1.5 Stochastic Matrices and Generalizations

Our primary focus is on stochastic matrices, due to their applications in con-
sensus and Markov chains. However, many results that we will obtain hold
for larger classes of matrices, that we present here. First, let us recall the defi-
nition of a stochastic matrix.

Definition 1.1 (Stochastic matrix). A matrix A is called stochastic if

∀i, j, aij ≥ 0

and

A1 = 1.

As observed in [ATB86], any stochastic matrix A satisfies

max
i

(Ax)i −min
i

(Ax)i ≤ max
i
xi −min

i
xi.

Geometrically, this corresponds to the following polyhedron being invariant:

P =

{
x | 1

2
(max

i
xi −min

i
xi) ≤ 1

}
. (1.8)

Most of the results that we will develop in Part I will hold for all sets of matri-
ces that leave this polyhedron invariant. It is represented in dimension 2 and
3 in Figures 1.1 and 1.2.

Definition 1.2 (P-preserving matrix). A matrix A is call P-preserving if it leaves
P invariant, that is if

AP ⊆ P.

We will see in Section 3.2 that stochastic matrices are P-preserving but that
not all P-preserving matrices are stochastic.
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Chapter 1. Introduction

Figure 1.1: The polyhedron P (Equation 1.8) in dimension 2.

Figure 1.2: The polyhedron P in dimension 3.

Many of the results that we will develop depend only on the pattern of pos-
itive elements in the matrices and not on the values of these elements. There-
fore, these results will hold not only for stochastic matrices but for matrices
that share the same pattern of zero/nonzero elements. Stochastic matrices are
nonnegative and they have at least one positive element on each row. Matrices
that satisfy these conditions are called row allowable.
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1.6. Organization of the Thesis

Definition 1.3 (Row allowable matrix [Har02]). A matrix is called row allow-
able if it is nonnegative and it has a positive element on each row.

The relation between row allowable, stochastic and P-preserving matrices
is illustrated in Figure 1.3. Matrices that are row allowable and P-preserving
are not necessarily stochastic. An example is given by(

2 0

1 1

)
,

which is row allowable and P-preserving but not stochastic.
We will see in Part II that the question of whether a set of stochastic matri-

ces is almost contractive only depends on the pattern of nonzero elements in
the matrices of the set and not on the value of these elements. Similarly, the
SIA index of a set – that characterizes the length of the shortest SIA product
– only depends on the pattern of positive elements. The techniques that we
develop in this part could therefore be used to answer similar questions about
sets of row allowable matrices instead of sets of stochastic matrices. However,
the associated convergence result will not hold, since the convergence does
depend on the values of the elements on the matrices and not only on the
pattern of positive elements.

In Part I, we have a similar situation. The question of whether, for a set
of stochastic matrices, all infinite products converge to a rank-one matrix is
equivalent to all sufficiently long products being scrambling (see discussion
in Section 4.1) which depends only on the pattern of positive elements of the
matrices of S. If one wants to know whether all sufficiently long products
of matrices from a set of row allowable matrices S′ are scrambling, one could
construct a set of stochastic matrices that have the same pattern of positive
elements as those of S′ and use the techniques developed in Chapter 4.

1.6 Organization of the Thesis

As we have already mentioned, we address two types of problems:

• questions about all products such as ”do all left-infinite products con-
verge to a rank-one matrix?”

• and questions about the existence of a product ”is there at least one left-
infinite product that converges to a rank-one matrix?”.
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Stochastic

P-preserving

Row allowable

Figure 1.3: Relation between stochastic, P-preserving and row allowable ma-
trices.

These two types of problems will form the two parts of this thesis. In each of
these parts, we mainly ask two type of questions:

• complexity questions such as the complexity of deciding, given a set of
P-preserving matrices, if all sufficiently long products contract P ,

• bounds or finiteness questions such as a quantity ` such that all suffi-
ciently long products are SIA if and only if all products of length at least
` are SIA.

Table 1.1 summarizes our main results.
The first part deals with questions about all products of matrices taken

from a given set.

• In Chapter 3, we introduce polyhedra and we study the properties of a
particular polyhedron P that we use in the next chapters.

• In Chapter 4, we analyze the complexity of deciding whether a set of
P-preserving matrices is contractive.

• In Chapter 5, we prove that a set is contractive if and only if all products
of length≤ p∗ ,

(
n
bn/3c

)
(2n−bn/3c−1−1) have power that contracts P . In

the case of stochastic matrices, this means that a set is contractive if and
only if all products of length at most p∗ are SIA.

• In Chapter 6, we show how the same techniques can be applied to other
settings and invariant polyhedra. First, we show that our techniques can
be used to analyze primitive sets of matrices and recover known results
from the literature in this case. Second, we construct a polytope whose
face lattice does not have the Sperner property. The Sperner property –

18



1.7. List of Publications

that we define in Chapter 5 – of P plays a key role in Chapter 5 and
this example that we construct shows that not all polyhedra have the
Sperner property.

The second part deals with questions about the existence of at least one
product with a given property.

• In Chapter 7, we introduce some basic notions about automata and syn-
chronization.

• In Chapter 8, we analyze almost contractive sets. We study mainly two
quantities of almost contractive sets: the SIA index and the positive-
column index, that are defined as the length of the shortest SIA and
positive-column products. For the positive-column index, we prove an
upper bound of n

3−n
6 and we show that any improvement of this bound

would automatically improve the state of the art of the Černý conjecture.
For the SIA index, we give the same upper bound but we conjecture that
a much smaller upper bound of 2n holds. We support this conjecture
with computational experiment. We also analyze the related notions of
Sarymsakov and scrambling indices. Finally, we show that computing
and even approximating these indices is NP-hard.
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Complexity Bounds

C
on

tr
ac

ti
ve

se
ts

State of the art: Decidable but
NP-hard to decide whether a set
is contractive [BO14].
Contribution: Singly exponen-
tial algorithm that decides if a
set is contractive [CHJ15a].
Results apply to: sets of P-
preserving matrices.
See: Chapter 4.

State of the art: A set is contrac-
tive if and only if all products of
length B = 1

2 (3n − 2n+1 + 1) are
scrambling [Paz71, BO14].
Contribution: a set is con-
tactive if and only if all
products of length ≤ p∗ =(

n
bn/3c

)
(2n−bn/3c−1−1) ≈ 3

2
√
πn
B

have a power that contracts P
[CHJ16].
Results apply to: sets of P-
preserving matrices.
See: Chapter 5.

A
lm

os
tc

on
tr

ac
ti

ve
se

ts State of the art: Existence of
a positive-column product can
be decided in polynomial time
[PV12].
Contribution: NP-hard to ap-
proximate the length of the
shortest positive-column or SIA
product. This remains NP-hard
even when restricted to automa-
ton matrices or to matrices with
positive diagonals [CHJ15b].
See: Section 8.6.

Contribution: bound on the
positive-column index is the
same as the bound on the reset
threshold of synchronizing au-
tomata. Any improvement of
the bound on the reset thresh-
old of automata would trans-
late into an improvement of the
bound on positive-column in-
dex, and conversely [CHJ15b].
We conjecture that the bound
on the SIA index is linear in
n and support this conjecture
[CGHJ17].
See: Sections 8.4 and 8.5.

Table 1.1: Main results of the thesis

• P-Y Chevalier, V. V. Gusev, J. M. Hendrickx and R. M. Jungers, Sets of
Stochastic Matrices with Converging Products: Bounds and Complexity, sub-
mitted.
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Chapter 2

Matrix Classes Related to Con-
vergence

Many types of matrices have been studied in the context convergence of inho-
mogeneous products of stochastic matrices. They will be used throughout the
thesis. We present here these classes and their relation to one another.

This chapter is divided in two sections.

• In Section 2.1, we define the classes of positive-column, scrambling, Sarym-
sakov SIA matrices. We introduce basic properties of these classes and
we show that these classes are included in one another.

• In Section 2.2 we provide an upper bound on the power at which an SIA
matrix has a positive column. From this upper bound we will derive
a simple method to check whether a stochastic matrix is SIA. We also
provide a tight upper bound in the case of stochastic matrices that have
one 1 on each row and 0 everywhere else. These matrices, that we call
automaton matrices, will play a central role in Chapter 8.
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Chapter 2. Matrix Classes Related to Convergence

2.1 Definition and Properties of the Matrix Classes

We start by defining the rather intuitive notion of a positive-column matrix.

Definition 2.1 (Positive-column matrix). We call positive-column matrix a stochas-
tic matrix that has a positive column.

Positive-column matrices are called Markov matrices in [Sen81] but we will
avoid this term since it is also used to denote stochastic matrices. Positive-
column matrices have a simple interpretation in the context of consensus sys-
tems. They correspond to consensus iterations in which one agent j influences
all the others, in the sense that any agent i uses the value of agent j in the com-
putation of its new value.

Definition 2.2 (Scrambling matrix [Har02]). A stochastic matrix is called scram-
bling if for any pair of rows (i, j), there is a column k such that aik > 0 and ajk > 0.

Scrambling matrices have been studied in the context of inhomogeneous
Markov chains (see for example [Paz71] and [Sen81]) because of their contrac-
tion properties. It has been observed that a stochastic matrix A is scrambling
if and only if, for any vector, A contracts the Hilbert projective metric [Sen81,
Lemma 3.2]:

∀x, y > 0, d(Ax,Ay) < d(x, y),

where the Hilbert metric in the nonnegative orthant is defined as

d(x, y) = log

(
max(xi/yi)

min(xi/yi)

)
and can be seen as a measure of the angle between two vectors. Equivalently,
a stochastic matrix is scrambling if and only if its Birkhoff contraction coefficient
(or coefficient of ergodicity)

τ(A) = sup
x,y>0, x 6=ay

d(Ax,Ay)

d(x, y)

is strictly smaller than one. The Birkhoff contraction coefficient is a great tool
to study the convergence rate of inhomogeneous products of stochastic ma-
trices. The Birkhoff contraction coefficient of a stochastic matrix A is equal to
zero if and only if A is rank-one. It is an upper bound on the convergence rate
of sequence of powers of A. Contrary to eigenvalues, the Birkhoff contraction
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2.1. Definition and Properties of the Matrix Classes

coefficient is submultiplicative, that is, for any two stochastic matrices A and
B

τ(AB) ≤ τ(A)τ(B).

This implies that the product of two scrambling matrices is scrambling and
that any infinite product of matrices taken from a compact set of scrambling
matrices converges to a matrix that has a Birkhoff coefficient of zero, i.e., to a
rank-one matrix.

Scrambling matrices also have a consensus interpretation. If a matrix is
scrambling, then in the corresponding consensus iteration, for any pair of
agents i and j, there is an agent k that influences both agents i and j. This
agent k will help the two agents i and j to converge to the same value and
iterating a scrambling matrix will lead to consensus.

It is well known that any sufficiently long product of scrambling matrices
has a positive column [Har02, Theorem 4.6]. In the next proposition, we quan-
tify what sufficiently long means. We did not find this result in the literature.

Proposition 2.1. Any product of ` = dlog2(n)e scrambling n × n matrices has a
positive column.

Proof. Let A be an n × n scrambling matrix. For any pair of rows i1, i2 ∈
{1, . . . , n}, there are j ∈ {1, . . . , n} and a ∈ R such that Aaej ≥ ei1 + ei2 ,

where ei is the vector in which the ith element is 1 and all other elements are
0. Therefore, for any nonnegative vector v with exactly k positive elements,
there exists a vector w with no more than

⌈
k
2

⌉
positive elements such that,

Aw ≥ v.
Now letA1A2 . . . A` be any product of ` n×n scrambling matrices. There is

v1 ∈ Rn with no more than
⌈
n
2

⌉
positive elements such thatA1v1 has a positive

column. There is v2 ∈ Rn with no more than⌈⌈
n
2

⌉
2

⌉
=
⌈n

4

⌉
positive elements such that A1A2v2 has a positive column. By repeating the
same argument, we obtain that there is a vector v` with only

⌈
n
2`

⌉
= 1 positive

element and such that A1A2 . . . A` has a positive column. �

Scrambling matrices have the following properties:

• the class is closed under multiplication: the product of two scrambling
matrices is scrambling [Sen81, Corollary that follows Theorem 4.11],
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Chapter 2. Matrix Classes Related to Convergence

• for any matrix size n, there is a length ` such that the product of ` (n×n)

scrambling matrices has a positive column (Proposition 2.1).

There is another class of matrices that has these two interesting properties:
the class of Sarymsakov matrices. Furthermore, this class is larger in the sense
that it contains all scrambling matrices. To define, we will use the consequent
function defined as follows. For any S ⊆ {1, . . . , n}, the consequent function
F of an n× n matrix A is defined as

F (S) = {j : ∃i ∈ S s.t. aij > 0}.

Definition 2.3 (Sarymsakov matrix [Har02]). We call a Sarymsakov matrix a
stochastic matrix such that for any two disjoint nonempty subsets of {1, . . . , n}, S
and S′ either

F (S) ∩ F (S′) 6= ∅ (2.1)

or
|F (S) ∪ F (S′)| > |S ∪ S′| (2.2)

The consequent function can again be interpreted in terms of influence in
a consensus system. The consequent function of a set of agents S is the set
of agents that influence the value of at least one agent of S. Condition (2.1)
therefore means that there is an agent influencing at least one agent in S and
one in S′. This condition helps the values of agents in S to get closer to the
values of agents in S′. Condition (2.2) means that there are more than |S ∪ S′|
agents that influence S or S′. As we will see in Proposition 2.4, the sequence
of powers of a Sarymsakov matrix converges to a matrix that has all its rows
equal, and lead to consensus.

Scrambling matrices can also be defined using the consequent function. By
definition, a matrix is scrambling if and only if for any two singleton S and S′

F (S) ∩ F (S′) 6= ∅. (2.3)

By extension, Equation (2.3) also holds for any nonempty subsets of {1, . . . , n},
S and S′ and not only singletons. From this, we can see that scrambling ma-
trices are Sarymsakov. The converse is not true and the matrix1 0 0

0 1
2

1
2

1
3

1
3

1
3
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2.1. Definition and Properties of the Matrix Classes

is an example of a Sarymsakov non-scrambling matrix.
The product of any n − 1 Sarymsakov matrices is scrambling [Sen92, Sec-

tion 4]. Therefore, Sarymsakov matrices have the following properties:

• the class is closed under multiplication: the product of two Sarymsakov
matrices is Sarymsakov [Sen92, Section 4],

• for any matrix size n, there is a length ` such that the product of ` (n×n)

Sarymsakov matrices has a positive column.

We could wonder whether the Sarymsakov class is the largest that is closed
under multiplication and such that any sufficiently long product has a posi-
tive column. The answer is known to be negative. In [XLC+15, Section III,
Subsection B], the authors construct slightly larger classes (the union of the
Sarymsakov class and one single matrix) that have these two properties.

Proposition 2.2 (Section III, Subsection B of [XLC+15]). Let A be an n × n

stochastic matrix such that A2 is Sarymsakov and for any two disjoint nonempty
subsets S and S′ either

F (S) ∩ F (S′) 6= ∅ (2.4)

or
|F (S) ∪ F (S′)| ≥ |S ∪ S′|.1 (2.5)

Then {SSAR,n ∪ A} – where SSAR,n is the set of n × n Sarymsakov matrices – is
closed under multiplication and there exists ` such that any product of length ` of
matrices from {SSAR,n ∪ A} has a positive column. Furthermore, there exist non-
Sarymsakov matrices satisfying these conditions, so that {SSAR,n ∪ A} is strictly
larger than SSAR,n. For example, the matrix

1
2

1
2 0

0 0 1

0 0 1


is not Sarymsakov but it satisfies conditions (2.4) and (2.5) and

A2 =


1
4

1
4

1
2

0 0 1

0 0 1


is Sarymsakov.

1the inequality is not strict here, contrary to that in the definition of a Sarymsakov matrix
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Chapter 2. Matrix Classes Related to Convergence

Finally, we introduce the notion of an SIA matrix. An SIA matrix is a ma-
trix whose sequence of powers converge to a rank-one matrix. It is thus the
equivalent of a contractive or almost contractive set in the case of a single ma-
trix.

Definition 2.4 (SIA matrix [Wol63]). A matrix A is SIA – Stochastic Indecompos-
able Aperiodic – if it is stochastic, the limit

L = lim
n→∞

An

exists and all the rows of L are the same.

SIA matrices are sometimes called regular matrices [Sen81, Definition 4.3].

Proposition 2.3 (Characterization of SIA Matrices). A stochastic matrix P is SIA
if and only if there is p such that P p has a positive column.

Proof. Only if. Let P be SIA. We prove that there is p such that P p has a positive
column. The limit

lim
t→+∞

P t

exists by definition of an SIA matrix. If there is no p such that P p has a positive
column, then limt→+∞ P t has no positive column. But, at the same time, all
the rows of limt→+∞ P t are the same and the sum of the elements on each
row is equal to 1, so that limt→+∞ P t has a positive column and we have a
contradiction.

If. Let p be such that P p is positive-column. By inclusions (2.6), P p is SIA
because positive-column matrices are SIA. Hence

L , lim
t→+∞

(P p)t

exists and has all rows equal. By stochasticity of P and the fact that L has all
its rows equal,

L = LP = LP 2 = · · · = LP p−1

and therefore

lim
t→+∞

P t = L

exists and has all rows equal and P is SIA. �
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2.2. From SIA to a Positive Column

This simple characterization has several consequences. It means that only
the pattern of positive elements determines if a matrix is SIA or not. As we
discussed in Section 1.5, this means that many of the results developed in
Chapter 8 apply in fact to row allowable matrices (Definition 1.3) and not only
stochastic matrices.

The four matrix classes that we have defined are included in one another.

Proposition 2.4. A positive-column matrix is scrambling, a scrambling matrix is
Sarymsakov and a Sarymsakov matrix is SIA:

SPC ⊂ SSCR ⊂ SSAR ⊂ SSIA, (2.6)

where SPC, SSCR, SSAR and SSIA denote the sets of positive-column, scrambling,
Sarymsakov and SIA matrices.

Proof. The first inclusion follows from the definitions and the second and third
inclusions are proved in [Sen81, Section Bibliography and Discussion to §§4.3–
4.4] and [XLC+15, Section II]. These inclusions are also depicted in Figure 2.1.

�

Positive
-column

Scrambling

Sarymsakov

SIA

Figure 2.1: Relation between different classes of nonnegative matrices.

2.2 From SIA to a Positive Column

In Proposition 2.3, we have seen that a matrix is SIA if and only if there exists
a power p such that P p has a positive column. In this section we give an upper
bound on p. Indeed, we show that the n2 − 3n + 3th power of any arbitrary
SIA matrix has a positive column and present a finer bound that depends on
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Chapter 2. Matrix Classes Related to Convergence

the number of columns that are eventually positive (Theorem 2.2). In Corol-
lary 2.2, we observe that this result provides a method to check whether a
stochastic matrix is SIA. We also prove (Corollary 2.3) a stronger bound in the
case of matrices that have one 1 on each row and 0 everywhere else. We call
these matrices automaton matrices.

We will that a matrix and a graph are associated if the matrix is the adja-
cency matrix of the graph.

We will rely on the local exponents of primitive matrices. Recall that a square
matrix P is primitive if P t > 0 (entrywise) for some natural t. The smallest
such t is known as the exponent exp(P ) of P [BR91, Section 3.5]. The local
exponents are refinements of this characteristic : the kth local exponent expk(P )

(with 1 ≤ k ≤ n) of a primitive matrix P is the smallest power having at least k
positive rows [BL90]. Observe that the first local exponent of P is the positive-
column index of the transpose of P and the nth local exponent is exp(P ). We
will make use of the following theorem:

Theorem 2.1 ([BL90, Theorem 3.4]). The largest value of the kth local exponent
among primitive n× n matrices, with n ≥ 2, is equal to n2 − 3n+ k + 2.

With this theorem and the obvious local exponent in the case n = 1, we
obtain that the first local exponent is

exp(n, 1) =

{
n2 − 3n+ 3 if n ≥ 2

0 if n = 1
. (2.7)

Before stating our result, we define the notion of a column that is positive
in sufficiently large powers of the matrix.

Definition 2.5 (Eventually positive columns). Let P be a stochastic matrix. We
say that a column i is eventually positive if there is a power p such that the ith
column of P p is positive.

We can already notice that the if P p has a positive ith column (P p)i, then
the ith column of P p+1 is equal to P (P p)i and is also positive. Therefore, P t

has a positive ith column for any t ≥ p.
Our bound on the power at which an SIA matrix has a positive column

depends on the number of eventually positive columns. Essentially, if P has c
eventually positive columns, it has a c×c primitive submatrix whose exp(c, 1)th
power has a positive column. This positive column then propagates to the re-
maining rows of the matrix n− c steps (n− c is an upper bound on the length
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2.2. From SIA to a Positive Column

of the shortest path from any node to any node of the primitive submatrix).
The bound therefore grows with the number of eventually positive columns: it
is the sum of a quadratic term in c and a linear term in n− c.

When considering the graph associated to an SIA matrix, we can observe
that the number of eventually positive columns of the matrix is equal to the
number of nodes that can be reached from all nodes. When the matrix is not
SIA the number of eventually positive columns is zero.

Theorem 2.2. Let P be an n × n SIA matrix, let c be the number of eventually
positive columns of P and let

`∗ = exp(c, 1) + n− c =

{
c2 − 4c+ 3 + n if c ≥ 2

n− 1 if c = 1
,

with exp(c, 1) as defined in Equation (2.7) Then P `
∗

has a positive column.

Proof. We can assume that the first c columns are eventually positive, and let
us partition P in blocks.

P =

(
A B

C D

)
,

with A having a size of c × c and blocks B, C and D having sizes c × (n − c),
(n− c)× c and (n− c)× (n− c) respectively.

Claim: A is primitive and B = 0. Let p be such that P p has c positive
columns. If we partition the matrix P p in blocks, as we did for P , we obtain

P p =
(
E F

)
,

with E being n× c. We have that E is entrywise positive because we assumed
that the first c columns of P p are positive.

P p+1 =
(
EA+ FC EB + FD

)
.

We prove now that B = 0. Assume to the contrary that bij , the element at
position i, j in the matrix B, is positive. The jth column of EB is equal to

(EB)j =
∑
i

Eibij ,

with Ei being the ith column of E. Because E is positive, the jth column of
EB is positive, and similarly, the jth column of GB is positive. Therefore, the
(c + j)th column of P p is positive, and we have a contradiction because only
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Chapter 2. Matrix Classes Related to Convergence

the first c columns of P are eventually positive. Hence B = 0. Since B = 0,
we have that E = Ap and we can conclude that A is primitive.

Let us now compute P `
∗

= Pn−cP exp(c,1) Let us define G and H as below:

Pn−c =

(
An−c 0

G Dn−c

)
and

P exp(c,1) =

(
Aexp(c,1) 0

H Dexp(c,1)

)
The matrix Aexp(c,1) has a positive column thanks to Theorem 2.1 applied to
the transpose of A. Let us assume that the ith column is positive.

We can notice that both G and An−c have a positive element on each row.
An−c has a positive element on each row because P has a positive element on
each row and the first rows of P are

(
A 0

)
. And G has a positive element on

each row because there is a path of length n− c from each node c+ 1, . . . , n to
some node 1, . . . , c in the graph associated to P .

ThereforeGAexp(c,1) andAn−cAexp(c,1) have a positive ith column and there-
fore

P `
∗

=

(
An−cAexp(c,1) 0

GAexp(c,1) +Dn−cH D`∗

)
has a positive column. �

Example 2.1. Let us consider the matrix

P =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0


This matrix has c = 4 eventually positive columns, and we can verify that its power
c2 − 4c+ 3 + n = 9 is positive-column

P 9 =



0 1 2 1 0 0

1 1 1 2 0 0

2 3 1 1 0 0

1 3 3 1 0 0

1 2 1 0 0 0

1 1 0 1 0 0


.
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2.2. From SIA to a Positive Column

In this case, the bound of Theorem 2.2 is attained since the 8th power has no positive
column:

A8 =



1 2 1 0 0 0

0 1 2 1 0 0

1 1 1 2 0 0

2 3 1 1 0 0

1 1 0 1 0 0

0 0 1 0 0 0


.

This matrix can be partitioned in blocks as in the proof of Theorem 2.2:

P =

(
A 0

C D

)
with

A =


0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

 .

A is a primitive matrix whose power exp(c, 1) = 7 is positive-column and

Pn−c = P 2 =

(
A2 0

CA+DC D2

)
=



0 0 1 0 0 0
0 0 0 1 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


is such that A2 and CA + DC have a positive element on each row. This is why P 9

is positive-column.

Corollary 2.1. The (n2 − 3n + 3)rd power of an n × n SIA matrix has a positive
column.

Proof. This is a consequence of the previous theorem and

∀n ∈ N, k ∈ {1, . . . , n}, k2 − 4k + 3 + n ≤ n2 − 3n+ 3.

�

Corollary 2.2. Let A be a stochastic matrix. Whether A is SIA can be decided in
O(nω log(n)) operations, whereO(nω) is the complexity of computing the product of
two n× n matrices.
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Chapter 2. Matrix Classes Related to Convergence

Proof. A is SIA if and only if An
2−3n+3 has a positive column and An

2−3n+3

can be computed by performing O(log(n)) multiplications. �

Corollary 2.3. Let P be an n× n SIA automaton matrix. Then Pn−1 has a positive
column. Moreover, the value n − 1 cannot be decreased (in general): for any n ∈ N
there exists an n×n SIA automaton matrix whose n−2 power has no positive column.

Proof. SIA automaton matrices have one eventually positive column. There-
fore, Theorem 2.2 can be applied and P `

∗
= Pn−1 has a positive column. The

following matrix is an example of an SIA automaton matrix, whose (n− 2)nd
power has no positive column.

1

1

1
. . .

1 0


.

�

In Chapter 4 we will develop an algorithm to decide whether all infi-
nite products of matrices taken from a set S of P-preserving matrices (Defi-
nition 1.2) converge to a matrix that has all its rows the same. Corollary 2.2
already solves this problem in the particular case where the set contains only
one matrix and this matrix is stochastic.

32



Part I

Contractive Sets

Do all left-infinite products
converge to a rank-one matrix?





Chapter 3

Invariant Polyhedra

This chapter presents an introduction to polyhedra and their classical proper-
ties. We analyze in particular the properties of the polyhedron

P =

{
x ∈ Rn | 1

2
(max

i
xi −min

i
xi) ≤ 1

}
,

that is invariant for stochastic matrices. This polyhedron will play a key role
in the development of Chapters 4 and 5.

• In Section 3.1, we introduce classical notions and results about polyhe-
dra.

• In Section 3.2, we study a polyhedron that is invariant for any stochastic
matrix. We analyze the combinatorial structure of this polyhedron. The
results of this section are preliminary results of [CHJ14], [CHJ15a] and
[CHJ16]. The main results of these articles can be found in Chapters 4
and 5.
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Chapter 3. Invariant Polyhedra

3.1 Polyhedra and Faces

We define some notions related to polyhedra. Unless mentioned otherwise,
we will use the definitions and notations of [Sch98].

3.1.1 Polyhedra and Polytopes

We begin with the notions of polyhedron and polytope.

Definition 3.1 (Polyhedron). We call a polyhedron a subset Q of Rn that is the
intersection of a finite number of halfspaces or equivalently that can be defined by

Q = {x | Ax ≤ b}.

We will use the letterQwhen referring to any polyhedron and the letter P
for the particular polyhedron P =

{
x | 1

2 (maxi xi −mini xi) ≤ 1
}
. Note that a

polyhedron is not necessarily bounded. The term polytope denotes a set that is
the convex hull of a finite number of points:

Q = conv{x1, x2, . . . , xk} =

{
k∑
i=1

αixi | ∀i, αi > 0,
∑
i

αi = 1

}
,

and it can be proven [Sch98, Corollary 7.1c] that a set is a polytope if and only
if it is a bounded polyhedron.

3.1.2 Faces, Open Faces and Facets

The notion of face generalizes the notions of facet, edge or vertex of a polyhe-
dron to arbitrary dimensions. The polyhedron itself is also one of its faces. We
give here the classical definition. We will see in Lemma 3.2 that it is equivalent
to define faces as intersections of facets.

Definition 3.2 (Faces of a polyhedron). A non-empty subset F of a polyhedronQ
is called a face if F = Q or if it can be represented as F = Q∩

{
x | b>x = c

}
where

b ∈ Rn is non-zero, c ∈ R and

∀x ∈ Q, b>x ≤ c.

We call a proper face a face that is not equal to Q.

For example, the faces of a square are the square itself, the four corners and
the four sides.
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3.1. Polyhedra and Faces

In order to define the notion of open face, we need to define the relative
interior of a set. The concept of relative interior is a refinement of the con-
cept of interior when dealing with low dimensional sets in higher dimensional
spaces. As an example, the relative interior of the set

{α(1, 0) + (1− α)(0, 1) | α ∈ [0, 1]} (3.1)

is
{α(1, 0) + (1− α)(0, 1) | α ∈]0, 1[} ,

while the interior of (3.1) is the empty set. Formally, the relative interior ri(S)

of a set S is the interior of this set in its affine hull, with the affine hull being
the set of all affine combinations:

aff(S) =

{
k∑
i=1

αixi | k > 0, xi ∈ S, αi ∈ R,
k∑
i=1

αi = 1

}
.

In our example the affine hull of the set (3.1) would be

{α(1, 0) + (1− α)(0, 1) | α ∈ R} .

We will also use the term relative boundary for the complement of the relative
interior: S = rb(S) ∪ ri(S).

Definition 3.3 (Open face). We call an open face the relative interior of a face. In
particular, if the face is a single point, the corresponding open face is the face itself.

The points u0, u1, . . . , un are said to be affinely independent if u1 − u0, u2 −
u0, . . . , un − u0 are linearly independent. This definition does not depend on
the choice of u0.

Example 3.1. The points (0, 1), (1, 0) are affinely and linearly independent, while
the points (0, 1), (0,−1) are affinely independent but not linearly independent.

Definition 3.4 (Dimension of a face). If a face contains d+ 1 affinely independent
points, we call d the dimension of the face.

In particular a face of dimension zero is called a vertex, a face of dimension
n− 1 is called a facet.

Definition 3.5 (Facet). A face of dimension n − 1 is a facet. For a facet, there is a
unique hyperplane b>x = c such that the facet is equal to Q ∩

{
x | b>x = c

}
. We

call b>x ≤ c the facet constraint. We say that the constraint is active at a point x
when b>x = c.
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Chapter 3. Invariant Polyhedra

The next lemma shows how the facet inequalities define the polyhedron.

Lemma 3.1 (Theorem 8.1 in [Sch98]). Let Q = {x | Ax ≤ b} be a polyhedron and
let Ax ≤ b be non-redundant constraints (no row of Ax ≤ b can be removed without
changing {x | Ax ≤ b}). A subset F of Q is a facet if and only if

F = {x ∈ Q | a>i x = bi}

for a>i x = bi a row of Ax = b.

We now present a lemma that allows to represent the faces in terms of the
inequalities that define the polyhedron. This also means the faces are inter-
sections of facets, since the facets contraints are the nonredundant inequalities
that define the polyhedron.

Lemma 3.2 (Section 8.3 in [Sch98]). Let Q = {x | Ax ≤ b} be a polyhedron. A
non-empty subset F of Q is a face of Q if and only if it can be written as

F = {x ∈ Q | A′x = b′}, (3.2)

where A′x = b′ is a subset of the rows of Ax = b.

Corollary 3.1. Let Q = {x | Ax ≤ b} be a polyhedron. A non-empty subset O of Q
is an open face of Q if and only if it can be written as

O = {x | A′x = b′, A′′x < b′′},

where A′x = b′ is a subset of the rows of Ax = b and A′′x = b′′ are the remaining
rows.

Proof. Equation (3.2) can be rewritten

F = {x | Ax ≤ b, A′x = b′},

or
F = {x | A′′x ≤ b′′, A′x = b′}, (3.3)

withA′′x = b′′ the rows ofAx = b that are not inA′x = b′. With equation (3.3),
we can see that the relative interior of F is

O = ri(F ) = {x | Ax < b, A′x = b′}.

�
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3.1. Polyhedra and Faces

The combination of Lemma 3.1 and Corollary 3.1 has interesting conse-
quences. It means that two different open faces differ in at least one facet
constraint. That is, there is a facet constraint a>i x ≤ bi such that points of one
of the faces satisfy a>i x = bi and points of the other satisfy a>i x < bi.

The second consequence is that a polyhedron Q = {Ax ≤ b} decomposes
into the disjoint union of its open faces: a point x ∈ Q is in exactly one open
face. This face is given by {y | A′y = b′, A′′y < b′′} where A′, b′ is the largest
subsystem of A, b such that A′x = b′ and A′′, b′′ are the remaining rows.

3.1.3 Invariant Polyhedra

We say that a matrix A leaves a polyhedron Q invariant if

AQ ⊆ Q

and we say that the matrix A contracts the polyhedron if

AQ ⊆ int(Q),

where int(Q) denotes the interior of Q.

Example 3.2. The matrix

A =

(
1
2

1
2

1
2 − 1

2

)
(3.4)

leaves the polyhedron Q = {x | ‖x‖1 ≤ 1} invariant, while

A2 =
1

2

(
1 0

0 1

)

contracts it.

Figure 3.1: The polyhedron Q (in black) and its image by A (as defined in
Equation 3.4, in gray) and A2 (light gray).
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Chapter 3. Invariant Polyhedra

In Chapter 4 we will show that iterative contraction of the polyhedron P
leads to convergence to its characteristic cone, which is the set of directions in
which the polyhedron is infinite. In order to formally define this notion of
characteristic cone, we define a cone a set C that satisfies

∀x ∈ C, ∀a ∈ R+, ax ∈ C.

A polyhedral cone is a set that is both a cone and a polyhedron. Any polyhedron
is the sum of a polyhedral cone and a polytope (a bounded polyhedron), as
shown in the next theorem.

Theorem 3.1 (Decomposition Theorem for Polyhedra, Corollary 7.1b in [Sch98]).
A set Q is a polyhedron if and only if it can be written as

Q = S + C,

where C is a polyhedral cone and S is a polytope.

The characteristic cone of a polyhedron Q is the set S of the previous theo-
rem. It is defined as

{y | ∀x ∈ Q, x+ y ∈ Q} .

We define cone{x1, . . . , xk} as the set of conic combinations of a set {x1, . . . , xk}

cone{x1, . . . , xk} =

{
k∑
i=1

αixi | ∀i, αi ≥ 0

}
.

We end this section with a lemma that allows to check if a polyhedron is
invariant by checking a finite number of vectors. It is a simple result that is
not necessarily new but we did not find it in the literature.

Lemma 3.3. Let

Q = conv{x1, . . . , xk}+ cone{y1, . . . , yt}

be any polyhedron. A matrix A leaves Q invariant if and only if

Ax1, . . . , Axk ∈ Q (3.5)

and

Ay1, . . . , Ayt ∈ cone{y1, . . . , yt}. (3.6)
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3.1. Polyhedra and Faces

Proof. If: By definition any x ∈ Q can be written as

x =

k∑
i=1

αixi +

t∑
i=1

βiyi

for some αi ≥ 0 satisfying
∑
i αi = 1 and some βi ≥ 0. Conditions (3.5) and

(3.6) guarantee that

Ax =

k∑
i=1

αiAxi +

t∑
i=1

βiAyi ∈ Q.

Only if: Axi ∈ Q because xi ∈ Q and Q is invariant.
We prove that for any i,Ayi ∈ cone{y1, . . . , yt}. Let us take xj ∈ {x1, . . . , xk}.

We have

∀c ≥ 0, xj + cyi ∈ Q

and, by invariance of Q:

∀c ≥ 0, Axj +Acyi ∈ Q.

Hence

∀c ≥ 0,
Axj
c

+Ayi ∈
Q
c

=
conv{x1, . . . , xk}

c
+ cone{y1, . . . , yt}

and Ayi is in the closure of cone{y1, . . . , yt}which is equal to cone{y1, . . . , yt}.
�

3.1.4 Polarity

Definition 3.6 (Polar of a polyhedron). The polar of a polyhedron Q ⊂ Rn, de-
noted Q∗ is the set

Q∗ =
{
z ∈ Rn | ∀x ∈ Q, z>x ≤ 1

}
.

If a polyhedron is invariant for a matrix A, its polar Q∗, which is also a
polyhedron, is invariant for its transpose:

AQ ⊆ Q ⇔ A>Q∗ ⊆ Q∗. (3.7)

The polar can be computed using the following proposition.
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Chapter 3. Invariant Polyhedra

Proposition 3.1 (Theorem 9.1 in [Sch98]). LetQ be a polyhedron that contains the
origin:

Q = conv{0, x1, . . . , xk}+ cone{y1, . . . , yt}.

Then

Q∗ =
{
z ∈ Rn | ∀i ∈ {1, . . . , k}, z>xi ≤ 1, and ∀j ∈ {1, . . . , t}, z>yi ≤ 0

}
.

3.1.5 Centrally Symmetric Polyhedra and Seminorms

When dealing with matrix products or linear systems it is sometimes natural
to use an invariant polyhedron Q that is symmetric around the origin

−Q = Q.

Indeed, if a polyhedron Q is invariant with respect to a matrix A, then the
polyhedron Q ∩ −Q is symmetric around the origin and it is also invariant
with respect to the matrix A:

A(Q∩−Q) ⊆ Q ∩−Q.

Therefore, a matrix (or a set of matrices) that has an invariant polyhedron has
one that is symmetric around the origin. We will call centrally symmetric the
polyhedra that are symmetric around the origin.

A centrally symmetric polyhedronQ that contains the origin in its interior
can be seen as the unit ball of some seminorm ‖x‖Q that we define as the
smallest nonnegative integer c such that x ∈ cQ.

‖x‖Q = min
c∈R+

c such that x ∈ cQ

We can verify that the function ‖.‖Q satisfy the conditions that define a semi-
norm.

• ∀x ∈ Rn, a ∈ R, ‖ax‖ = |a|‖x‖. This condition holds because of the
symmetry of Q.

• ∀x, y ∈ Rn, ‖x + y‖ ≤ ‖x‖ + ‖y‖. This condition holds because of the
convexity of Q.
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3.2. Invariant Polyhedron for Stochastic Matrices

Invariance of the polyhedron corresponds to the seminorm being nonincreas-
ing and contraction of the polyhedron corresponds to the seminorm being
decreasing. The seminorm can be used as a Lyapunov function to prove con-
vergence to the characteristic cone, while the unit ball will be the level-set of
this Lyapunov function. In Chapters 4 and 5 we will deal with the polyhedron
P that is the unit ball of a seminorm.

3.2 Invariant Polyhedron for Stochastic Matrices

In this section, we study the polyhedron P =
{
x | 1

2 (maxi xi −mini xi) ≤ 1
}

.
We show that it is invariant for all stochastic matrices. We characterize its
faces and we count them. Finally, we discuss other invariant polyhedra that
are invariant for stochastic matrices.

The structure of P and its number of faces will play a key role in the next
chapters. In Chapter 4, we will see that the complexity of our algorithm to
check if a set is contractive depends on the number of faces of P , while in
Chapter 5, the number of faces of a fixed dimension will appear instrumental.

The set

P =

{
x | 1

2
(max

i
xi −min

i
xi) ≤ 1

}
(3.8)

that we have already introduced, is a polyhedron. This is because the con-
straint can be decomposed into multiple linear constraints:

P =
⋂
ij

{
x | 1

2
(xi − xj) ≤ 1

}
. (3.9)

Another way to write P is as the sum of a the unit ball of the infinity norm
B∞ = {x | ‖x‖∞ ≤ 1} and the subspace spanned by 1.

P = B∞ + cone{1,−1}. (3.10)

This equality holds because

B∞ =
{
x | max

i
xi ≤ 1, min

i
xi ≥ −1

}
.

Equation (3.10) allows to compute easily the polar of P . Indeed,

B∞ = conv({1,−1}n)

and

P = conv({1,−1}n) + cone{1,−1} (3.11)

= conv({1,−1}n\{1,−1}) + cone{1,−1}. (3.12)
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Chapter 3. Invariant Polyhedra

We can now compute the polar of P . A direct application of Proposition
3.1 on P = conv({1,−1}n) + cone{1,−1} (Equation (3.11)) gives

P∗ =
{
z | ∀v ∈ {1,−1}n, z>v ≤ 1, z>1 ≤ 0, z>(−1) ≤ 0

}
=
{
z | z>1 = 0, ‖z‖1 ≤ 1

}
.

The polar P∗ is represented in Figure 3.2. It is the intersection of the unit ball
of the norm ‖.‖1 and a hyperplane. Its vertices are the vector(

1
2 − 1

2 0 . . . 0
)

and all the vectors obtained by permutations of its elements.

Figure 3.2: Left: the unit ball of the norm ‖.‖1. Center: the unit ball of the
norm ‖.‖1 and the plane

∑
i xi = 0. Right: the polyhedron P∗

Although it can be observed directely from the definition of P , it is maybe
easier to see from the polar that stochastic matrices leave P invariant. Indeed,
let A be a stochastic matrix(

1
2 − 1

2 0 . . . 0
)
A =

1

2
(a>1 − a>2 ),

with a>i the ith row of A. Similarly, for any other vertex v of the polar of P{
z | z>1 = 0, ‖z‖1 ≤ 1

}
,

v>A =
1

2
(a>i − a>j )

for some i, j ∈ {1, . . . , n}. Since ∀k, a>k 1 = 1,

1

2
(a>i − a>j )1 = 0 (3.13)

and ∥∥∥∥1

2
(a>i − a>j )

∥∥∥∥
1

≤ 1. (3.14)
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3.2. Invariant Polyhedron for Stochastic Matrices

Hence
v>A ∈

{
z | z>1 = 0, ‖z‖1 ≤ 1

}
and the polyhedron P∗ is invariant with respect to A>. By (3.7), the stochastic
matrix A leaves P invariant.

We can observe that a matrixA leaves P invariant if and only if Conditions
(3.13) and (3.14) are satisfied. This is not only the case of stochastic matrices.
Examples of non-stochastic matrices that satisfy these conditions, and there-
fore leave P invariant, include (

−1 0

− 1
2 − 1

2

)
,

which is the opposite of a stochastic matrix,(
2 0

1 1

)
,

which is the sum of a stochastic matrix and a rank-one term of the form 1y>

and also

A =
1

2


1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

 ,

which is the convex combination of a stochastic matrix and the opposite of a
stochastic matrix. The results that we will develop in Chapters 4 and 5 hold
for all matrices that leave P invariant or equivalently all matrices that satisfy
Conditions (3.13) and (3.14).

3.2.1 Combinatorial Structure of P

Thanks to Lemma 3.1, we know that the facets of the polyhedron P are the
sets

P ∩
{
x | 1

2
(xi − xj) = 1

}
for i 6= j. The next lemma describes the faces of arbitrary dimension.

Lemma 3.4. The set F is a proper face of P if and only if it is equal to

F =

{
x ∈ P | ∀i ∈ S1, j ∈ S2,

1

2
(xi − xj) = 1

}
, (3.15)
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Chapter 3. Invariant Polyhedra

with S1 and S2 disjoints nonempty subsets of {1, . . . , n}. The dimension of F is given
by

d = n− |S1 ∪ S2|+ 1.

Proof. The set

F =

{
x ∈ P | ∀i ∈ S1, j ∈ S2,

1

2
(xi − xj) = 1

}
is the intersection of the facets

P ∩
{
x | 1

2
(xi − xj) = 1

}
for which i ∈ S1 and j ∈ S2. By Lemma 3.2, we conclude that F is a face. On
the other hand, if a set is a proper face, then it is the intersection of facets of P
and can be written as (3.15).

The elements xi with i /∈ (S1∪S2) can take any value between minj xj and
maxj xj = minj xj + 2. These, and the direction 1 correspond to the

n− |S1 ∪ S2|+ 1

dimensions of F . �

Corollary 3.2. The number of faces of P is 3n − 2n+1 + 2.

Proof. We count the number of ordered pairs of disjoints nonempty subsets
(S1, S2) of {1, . . . , n}. The number of ordered pairs of disjoints (possibly empty)
subsets (S1, S2) of {1, . . . , n} is 3n. The number of these pairs in which S1 = ∅
is 2n, as is the number of pairs in which S2 = ∅. There is 1 pair in which both
S1 and S2 are empty. The total number of proper faces is thus 3n − 2n+1 + 1,
and the number of faces (including P) is 3n − 2n+1 + 2. �

Corollary 3.3. The number of faces of dimension 1 ≤ d ≤ n− 1 of P is

fd =

(
n

d− 1

)
(2n−d+1 − 2).

There are no faces of dimension 0. There is one face of dimension n.

Proof. The number of pairs of dimension 1 ≤ d ≤ n − 1 is the number of
ordered pairs of disjoints nonempty subsets (S1, S2) of {1, . . . , n} that satisfy

|S1 ∪ S2| = n− d+ 1.
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3.2. Invariant Polyhedron for Stochastic Matrices

The number of ways to choose the elements that belong to S1 ∪ S2 is(
n

d− 1

)
(3.16)

and the number of ways to choose which of these elements belong to S1 is

(2n−d+1 − 2). (3.17)

The combination of (3.16) and (3.17) yields

fd =

(
n

d− 1

)
(2n−d+1 − 2).

There is no face of dimension 0 because for any x ∈ P , x+ 1 ∈ P . There is
one face of dimension n by definition of a face. �

Example 3.3. When n = 2, P =
{
x | 1

2 |x1 − x2| ≤ 1
}

as represented in Figure 3.3.
The faces are

• {x | 1
2 (x1 − x2) = 1}, which is both a closed and an open face (because it is

equal to its relative interior),

• {x | 1
2 (x2 − x1) = 1}, which is both a closed and an open face,

• P , for which the corresponding open face is int(P).

There are thus two faces of dimension 1, as predicted by Corollary 3.3:

f1 =

(
2

1− 1

)
(22−1+1 − 2) = 2.

There are three faces in total as predicted by the Corollary 3.2: 32 − 23 + 2 = 3.

Example 3.4. The polyhedron P3, that we define as P for n = 3 is represented in
Figure 3.4. Its faces of dimension 2 are the sets{

x ∈ P | 1

2
(xi − xj) = 1

}
,

with i 6= j. The corresponding open faces are{
x | 1

2
(xi − xj) = 1, xj < xk < xi

}
,

with i 6= j 6= k and i 6= k.
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Chapter 3. Invariant Polyhedra

Figure 3.3: The polyhedron P in dimension 2.

Figure 3.4: The polyhedron P in dimension 3.

The faces of dimension 1 are the sets{
x | 1

2
(xi − xj) = 1, xi = xk

}
and {

x | 1

2
(xi − xj) = 1, xj = xk

}
,
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3.2. Invariant Polyhedron for Stochastic Matrices

with i, j and k all different. These faces are both closed and open.
In turn, P3 has

• 6 two-dimensional faces,

• 6 one-dimensional faces,

• P3.

Corollary 3.3 gives f2 =
(

3
2−1

)
(23−2+1−2) = 6 and f1 =

(
3

1−1

)
(23−1+1−2). There

are thus 13 faces as predicted by the Corollary 3.2: 33 − 24 + 2 = 13.

From the definition of P , or maybe more clearly from Equation (3.9), we
can see that the polyhedron P is symmetric around the origin:

P = −P.

P is the unit ball of the seminorm

‖x‖P ,
1

2
(max

i
xi −min

i
xi).

3.2.2 Other Invariant Polyhedra for Stochastic Matrices

We end this section by mentioning that P is not the only polyhedron that is
invariant for stochastic matrices. In fact a stochastic matrix A satisfies

max
i

(Ax)i ≤ max
i
xi

and
min
i

(Ax)i ≥ min
i
xi.

Therefore it leaves the unit ball of the infinity norm

{x | ‖x‖∞ ≤ 1} =
{
x | max

i
xi ≤ 1, min

i
xi ≤ 1

}
.

The fact that a stochastic matrix leaves the unit ball of the infinity norm invari-
ant is another way to see that a stochastic matrix leaves P invariant, because
P = B∞+cone{1,−1}. Stochastic matrices also leave the nonnegative orthant
invariant, because the nonnegative orthant can be seen as

{x | ∀i, xi ≥ 0} = {x | min
i
xi ≥ 0}.

In the next chapters, we will work with P as an invariant polyhedron for
stochastic matrices. The reasons to use this polyhedron instead of another are
the following.
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• In applications such as consensus, we are interested in convergence to
the space span{1} which is the characteristic cone of P . We will see that
iterative contraction of P will precisely lead to the convergence to this
characteristic cone.

• P has less faces than the unit ball of the infinity norm. This number of
faces will directly influence the complexity of our algorithms and the
quality of our bounds.

• More matrices leave P invariant than B∞, so that the result we will ob-
tain will apply to a larger class of matrices.

• Our techniques do not work well with the nonnegative orthant to ana-
lyze consensus. In Chapter 4, we will see that, if, for a given set, there is
an infinite product that does not converge to consensus, then there is a
finite product P and an open proper face F of P such that

PF ⊆ F. (3.18)

This implies that the closure of F contains a point x such that Px = λx

with |λ| = 1 and that . . . PPPx never converges to consensus. The same
reasoning does not work for the nonnegative orthant. Indeed, all faces of
the nonnegative orthant contain the origin in their closure, and the ori-
gin is a consensus. The fact that a face F and a product P satisfy Equa-
tion (3.18) does not necessarily imply the existence of an infinite product
that does not converge to consensus. When different products P1 and P2

satisfy Equation (3.18), deciding whether it is possible to construct a se-
quence that starts in F and that does not converge to zero/consensus is
actually a hard problem. It is indeed equivalent to deciding whether the
joint spectral radius of a projection of the set {P1, P2} is strictly smaller
than 1, a problem that is not known to be decidable in general [Jun09].

In Chapter 6, however, we will see that our techniques applied to the
nonnegative orthant are well suited to analyze a different problem, namely
the primitivity of matrix sets.
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Chapter 4

Complexity of Deciding Con-
sensus

We define a contractive set as a set S of matrices that leave P invariant and for
which all sufficiently long products contract1 P . This definition is a general-
ization of the notion of consensus set defined in [BO14], in the sense that a set
of stochastic matrices is a contractive set if and only if it is a consensus set. We
develop an algorithm that determines whether a set is contractive. We show
that our algorithm has a complexity that is singly exponential in n the dimen-
sion of the matrices. This algorithm is an improvement both in complexity
and generality over the doubly exponential decision procedure developed for
consensus sets in [BO14].

This chapter is based on [CHJ14, CHJ15a] and is organized as follows.

• In Section 4.1, we introduce the notion of contractive set. We define the
decision problem of determining whether a set is contractive.

• In Section 4.2, we develop an algorithm that decides whether a set of
matrices is contractive.

• In Section 4.3, we discuss the complexity of this algorithm.

• In Section 4.4, we analyze the particular case of sets of two undirected
stochastic matrices. We prove that deciding if a set is contractive can be
done in polynomial time in this case.

1We recall that a matrix A contracts a polyhedron Q if AQ ∈ int(Q).
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Chapter 4. Complexity of Deciding Consensus

4.1 Contractive Sets

We study finite sets of P-preserving matrices (matrices that leave the polyhe-
dron P invariant), and we wonder whether all sufficiently long products of
matrices from a set contract P .

Assumption 4.1. All matrices of S are P-preserving:

∀A ∈ S, AP ⊆ P.

As mentioned in Chapter 3, Assumption 4.1 is weaker than requiring the
matrices to be stochastic. The assumption of stochasticity is common for linear
discrete-time consensus systems and it is made, for example, in [BO14].

Definition 4.1 (Contractive set). We say that a set S of n×nmatrices that satisfies
Assumption 4.1 is a contractive set if there exist ` ∈ R such that all products of ` or
more matrices from S contract P .

This definition is consistent with the informal definition of a contractive
set of stochastic matrices given in the introduction. Indeed, we will see in
Proposition 4.3 that, for a matrix set S that satisfies Assumption 4.1 and ∀A ∈
S, A1 = 1, all left-infinite products converge to a rank-one matrix of the form
1y> if and only if S is contractive. Additionally, Proposition 4.2 shows in the
slightly more general case of a matrix set S that only satisfies Assumption 4.1,
that all left-infinite products contract the space into the set span{1} if and only
if S is contractive.

The next proposition shows that the geometric condition of a stochastic
matrix A contracting P is equivalent to the algebraic condition of A being
scrambling. In [Paz71, Section A.4 of Chapter II], a set S of stochastic matri-
ces is said to satisfy the H2 condition if all sufficiently long products of ma-
trices from S are scrambling. The following proposition thus establishes the
equivalence between the H2 condition and contractivity, in the case of sets of
stochastic matrices.

Proposition 4.1. A stochastic matrix A contracts P if and only if it is scrambling.

Proof. For a given row i of A, let us call Si the set of columns k such that
aik > 0. Recall that A contracts P if and only if

∀i, j, ∀x ∈ ∂P, (Ax)i − (Ax)j < max
k

xk −min
k
xk.
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We can compute, for arbitrary i, j ∈ {1, . . . , n} and x ∈ ∂P :

(Ax)i − (Ax)j =
∑
k∈Si

aikxk −
∑
k∈Sj

ajkxk. (4.1)

On the one hand, if A is not scrambling, then there are rows i and j such that

Si ∩ Sj = ∅

and one can see in (4.1) that if we take xk = 1 when k ∈ Si, xk = −1 when
k ∈ Sj and xk = 0 when k /∈ (Si ∪ Sj), we obtain

(Ax)i − (Ax)j = 2 = max
k

xk −min
k
xk.

Hence A does not contract P .
On the other hand, if A is scrambling, then

(Ax)i − (Ax)j =
∑
k∈Si

aikxk −
∑
k∈Sj

ajkxk

< max
k

xk
∑
k∈Si

aik −min
k
xk
∑
k∈Sj

ajk

= max
k

xk −min
k
xk,

the strict inequality being because there is p ∈ Sj ∩Si for which not both xp =

maxk xk and xp = mink xk can hold (we recall that x ∈ ∂P , hence maxkxk 6=
mink xk). The matrix A therefore contracts P , which concludes the proof. �

Another consequence of this proposition is that a set of stochastic matrices
S is contractive if and only if it is a consensus set. A consensus set is defined
in [BO14] as a set of stochastic matrices such that the associated consensus
system 1.3 converges for any initial condition and any sequence of matrices
taken from the set. The authors of [BO14] proved that this condition is equiv-
alent to the H2 condition of [Paz71]. They proved that deciding whether a
set of stochastic matrices is a consensus set is NP-hard but decidable. The
decision procedure that they constructed to prove decidability has a doubly
exponential time complexity.

Decision problem 4.1. Given a set S of n× n matrices. Is S contractive?

In the case of sets stochastic matrices, the results of [BO14] directly apply
to Problem 4.1. Hence, we already know that the problem is decidable but
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Chapter 4. Complexity of Deciding Consensus

NP-hard in this case. In Section 4.2, we will develop a new decision algorithm
and in Section 4.3, we will prove that its time complexity is singly exponential
in n the dimension of the matrices. It will therefore be an improvement over
the decision procedure of [BO14].

A positive answer to Problem 4.1 has many consequences. If the answer
is positive, all left-infinite products send P into its characteristic cone span{1}
(a formal statement will be provided in Proposition 4.2). If additionally, all
matrices from S satisfy A1 = 1, then all left-infinite products actually have a
limit and this limit is a rank-one matrix (as we will see in Proposition 4.3).

4.1.1 Properties of Contractive Sets

This section is dedicated to the properties of contractive sets. We show the
relation between a positive answer to Problem 4.1 and convergence to a rank-
one matrix.

In Chapter 3, we defined the seminorm ‖x‖P = 1
2 (maxi xi − mini xi). We

now define its induced matrix seminorm.

Definition 4.2. The vector seminorm ‖.‖P induces the following matrix seminorm

‖A‖P = sup
‖x‖P=1

‖Ax‖P

With this definition, Assumption 4.1 is equivalent to

∀A ∈ S, ‖A‖P ≤ 1.

We also note that
‖A‖P = 0

if and only if
A = 1y>

for some y.
For a finite set S = {A1, . . . , Am}, we denote by Pσ(t) the product

Aσ(t) . . . Aσ(1)Aσ(0),

with σ : N 7→ {1, . . . ,m} : t 7→ σ(t) is an infinite sequence of indices. Let
Σ denote the set of such sequences and let Σt denote the set of sequences
limited to length t. The following proposition shows that if S is a contractive
set, then for any sequence σ, the rows of Pσ(t) become arbitrary similar as t
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4.1. Contractive Sets

increases: limt→∞ ‖Pσ(t)‖P = 0. We also prove in the same proposition that
this convergence is exponential, as we will need this fact in the proof of a later
proposition.

Despite the fact that the rows of Pσ(t) become arbitrarily close to each other,
the limit limt→∞ Pσ(t) does not always exist, and we will prove convergence
of the sequence (Pσ(t))t under stronger assumptions in Proposition 4.3.

Proposition 4.2. Let S be a set of matrices that satisfies Assumption 4.1. Let the set
S be contractive (or, equivalently, the answer to Problem 4.1 is positive). Then for any
sequence σ ∈ Σ,

lim
t→∞

‖Pσ(t)‖P = 0.

Additionally, there exist C ∈ R+ and r < 1 such that for any sequence σ:

∀t, ‖Pσ(t)‖P ≤ Crt.

Proof. Let ` be, as in Definition 4.1, such that all products of ` or more matrices
from S contract P . Let us define

r1 = max
σ∈Σ`

‖Pσ(`)‖P .

We can write a max in the definition of r1 because it is an optimization problem
over a finite set Σ`. We have that r1 < 1 because S is contractive. We have

‖Pσ(t)‖P ≤ ‖Aσ(t) . . . Aσ(t−`+1)‖P‖Pσ(t−`)‖P
≤ r1‖Pσ(t−`)‖P

≤ rbt/`c1

≤ 1

r1

(
r

1
`
1

)t
so that

lim
t→∞

‖Pσ(t)‖P = 0

and C = 1
r1

and r = r
1
`
1 yields the exponential convergence. �

Let us take, for example, the set made of a single matrix{
A =

(
2 0
3
2

1
2

)}
.
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Chapter 4. Complexity of Deciding Consensus

Since the set is a singleton, the only infinite product that can be generated is
the sequence of powers of A:

At =

(
2t 0

1− ( 1
2 )t ( 1

2 )t

)
. (4.2)

As t increases, the rows of At become arbitrarily close to each others, in the
sense that

‖At‖P =
1

2t

converges to zero. However the sequence of powers ofA (Equation (4.2)) does
not converge to a particular matrix. In the next proposition, we prove the
convergence of all left-infinite products, under the additional condition that
the matrices satisfy A1 = 1. We note that stochastic matrices satisfy A1 = 1
but that there are other matrices that satisfy A1 = 1 and Assumption 4.1. An
example is given by (

2 −1

1 0

)
.

Proposition 4.3. Let S be a set of matrices that satisfies Assumption 4.1 and such
that A1 = 1 for any A ∈ S. If the set S is contractive, then for any sequence σ ∈ Σ,
the corresponding left-infinite product exists and converges to a rank-one matrix of
the form

lim
t→∞

Pσ(t) = 1y>

for some y.

Proof. By Proposition 4.2, if the limit limt→∞ Pσ(t) exists, it can only be equal
to 1y> for some y. We now prove that the limit exists. We start by bounding
the difference between two successive iterates. Using Q , I − 11>

n and the
assumption that A1 = 1, ∀A ∈ S, we obtain

Pσ(t+1) − Pσ(t) = (Aσ(t+1) − I)Pσ(t)

= (Aσ(t+1) − I)QPσ(t).
(4.3)

We observe that for any vector x ∈ Rn,

‖x‖P ≤ ‖x‖∞

and
‖x‖P = ‖Qx‖P ≥

1

2
‖Qx‖∞.
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4.2. Algorithmic Decision of Consensus

So that by using the definition of the induced norm ‖.‖∞ and seminorm ‖.‖P ,
we obtain for any matrix B ∈ Rn×n:

‖B‖P = ‖QB‖P ≥
1

2
‖QB‖∞. (4.4)

Using (4.3), (4.4) and Proposition 4.2 we obtain, for some appropriate con-
stants C1 and C2,

‖Pσ(t+1) − Pσ(t)‖∞ ≤ ‖Aσ(t) − I‖∞‖QPσ(t)‖∞
≤ (1 + max

Ai∈S
‖Ai‖∞)2‖Pσ(t)‖P

≤ C1‖Pσ(t)‖P
≤ C2r

t

Therefore, for any q > s

‖Pσ(q) − Pσ(s)‖∞ ≤
q−1∑
t=s

‖Pσ(t+1) − Pσ(t)‖∞

≤ C2

q−1∑
t=s

rt

≤ C2r
s
∞∑
t=s

rt−s

≤ C3r
s

where C3 does not depend on s. Therefore the trajectory is a Cauchy sequence
and converges. By Proposition 4.2 it can only converge to span{1}. �

4.2 Algorithmic Decision of Consensus

We now develop a singly exponential algorithm to decide Problem 4.1. For
that we define the notion of graph of double-faces whose nodes are the pairs
of opposite proper faces of P , that we call double-faces. We then represent
the products of matrices from a set as walks on the graph and we show that
Problem 4.1 has a positive answer if and only if the graph has no cycle.

First, we present a lemma that plays a key role in the proof of the finiteness
result. It shows how all the points in a face generate similar trajectories. It is
similar to a claim in the proof of Theorem 4.1 in [LW95]; we state it here as an
independent lemma because our hypotheses are slightly different.
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Chapter 4. Complexity of Deciding Consensus

Lemma 4.1 (Lagarias and Wang [LW95]). Let S be a finite set of matrices having
a common invariant polyhedron Q. Then, for any A ∈ S and any open face F of Q,
there exists exactly one open face G (possibly int(Q)) such that

AF ⊆ G.

Proof. Since Q is equal to the disjoint union of its open faces (see Section 3.1)
and AF ⊆ Q, then AF intersects with at least one open face of Q.

We now prove by contradiction that the image AF intersects at most one
open face. Suppose that there were points x1, x2 ∈ F such that Ax1 and Ax2

were in different open faces. These open faces differ in at least one facet
constraint (Definition 3.5), with one having b>x = c and the other b>x <

c (Lemma 3.1 and Corollary 3.1). Without loss of generality, suppose that
b>Ax1 = c and b>Ax2 < c. Since F is relatively open and convex, there exists
ε > 0 such that

(1− λ)x1 + λx2 ∈ F for − ε ≤ λ ≤ 1 + ε.

In particular y = (1 + ε)x1 +−εx2 ∈ F and b>Ay > c, which implies Ay /∈ Q,
contradiction with A(Q) ⊆ Q.

�

Since P is symmetric around the origin, its proper faces form pairs that are
opposite to each other. We define the notion of double-face to represent these
pairs of opposite faces. These double-faces will be the nodes of our graph of
double-faces and dealing with double-faces instead of pairs allows to have
less nodes in the graph and to reduce the complexity of our algorithm.

Definition 4.3 (Double-face). A double-face is a set equal to F ∪ −F for some
proper face F . A double-face is called open if the face F is open, and closed otherwise.

Lemma 4.1 naturally holds for open double-faces as well: if AQ ⊆ Q, then
for any open double-face F of Q, there is an open double-face G such that
AF ⊆ G.

4.2.1 Graph Representation of Products

We present a method to represent products as walks on a graph. The graph
of double-faces is constructed from a set of matrices S and a polyhedron Q
that is symmetric around the origin and that is invariant with respect to the
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4.2. Algorithmic Decision of Consensus

matrices of S. The nodes depend only on the polyhedron Q while the edges
depend on the matrices. The nodes represent double-faces of a polyhedron
Q and the edges represent the possibility to jump from one double-face to
another using a matrix of S. We will show that this graph captures enough
information to decide Problem 4.1. We define the graph of double-faces for an
arbitrary centrally symmetric polyhedron and then we will use the graph of
double-faces of P to decide Problem 4.1.

Definition 4.4 (Graph of double-faces). Given a finite set S of matrices and Q
an invariant polyhedron that is symmetric around the origin (Q = −Q), we call the
graph of double-faces G the graph having

• one vertex for each double-face of Q, one node representing int(Q) that we call
”node 1” by convention.

• one edge from node i to node j if they correspond to double-faces Fi and Fj and
there is A ∈ S such that AFi ⊆ Fj . In particular there is one edge from node i
to node 1 if node i corresponds to a double-face Fi and there is A ∈ S such that
AFi ⊆ int(Q) and one edge going from node 1 to itself.

Example 4.1. We construct the graph of double-faces of the set{
A =

(
0 1

2

−1 − 1
2

)
, B =

(
− 1

4
3
4

− 3
4

1
4

)}
and the polyhedron

Q = {x | ‖x‖1 ≤ 1} .

The polyhedron is invariant for matrices A and B as depicted on Figure 4.1.
To make the construction easier to follow, we start with one node for each face

(instead of one for each double-face). The graph has therefore nine nodes: one for
int(Q), one for each vertex (the corners) and one for each facet (the sides of the square).

The image by A of vertex F1 =
(

1 0
)>

is
(

1
2 − 1

2

)>
, which is in the face

F2 = {x | x1 − x2 = 1, x1 + x2 < 1, −x1 − x2 < 1} .

There is therefore an edge from the node representing F1 to the node representing F2,
as depicted on the left of Figure 4.2. By doing the same for each face, we find the entire
graph for matrix A and polyhedron Q.

We then add the edges corresponding to matrix B (Figure 4.3, left). The last step
is to merge the nodes representing opposite faces and removing the edges that appear
twice. We obtain the final graph of double-faces (Figure 4.3, right).
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Chapter 4. Complexity of Deciding Consensus

(0,1) (0,1)

(1,0) (1,0)

x1 x1

x2 x2

Figure 4.1: Left: The polyhedron Q (black), AQ (light grey). The dark grey
arrows represent A(1 0)> = (0 − 1)> and A(0 1)> =

(
1
2 − 1

2

)>. Right:
the same for matrix B.

Figure 4.2: Left: the nodes of the graph with the edge from F1 to F2. The node
in the middle represents int(Q), the nodes in the corners represent the vertices
of the polyhedron and the other nodes represent the facets of the polyhedron.
The edge is the one from F1 to F2. Right: the graph with all edges for matrix
A (one edge from each node).

Theorem 4.1. Let S be a finite set of matrices satisfying Assumption 4.1. S is con-
tractive if and only if the self-loop of node 1 is the only cycle in the graph of double-
faces.

Proof. Only if If there is a cycle in the graph of double-faces other than the self-
loop, then there is an open double-face F and a product P such that PF ⊆ F

and P tF ⊆ F for any t. Therefore, the S is not contractive. Hence S is a
contractive set only if the self-loop of node 1 is the only cycle in the graph of
double-faces.
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4.3. Computational aspects

Figure 4.3: Left : the graph for matrices A and B. Right : the graph of double-
faces as defined in Definition 4.4.

If If there is no cycle other than the self-loop, then all sufficiently long walks
end in node 1, because each node has an outdegree of at least one. This means
that for any sufficiently long product P , the image of each double-face is in
int(P) and hence any sufficiently long product contracts P . �

4.3 Computational aspects

Now that we have necessary and sufficient conditions (Theorem 4.1) for Prob-
lem 4.1, we estimate the algorithmic complexity of evaluating these condi-
tions.

To construct the graph of double-faces, we need two basic operations: to
compute in which face a point is, and to find a point in a given face. In Lemma
3.4, we have described the (open) faces of P . From this description, it is com-
putationally easy (in O(n)) to determine in which open face a point x ∈ P is.
Finding a point in a face can also be done with a complexity of O(n).

We are now able to prove our complexity result.

Theorem 4.2. Problem 4.1 can be decided in O(3nmn2) operations.

Proof. Construction of the graph of double-faces: The graph hasN = 1
2 (3n−2n+1+

1) nodes. Each node has at most m outgoing edges (at most Nm in total),
corresponding to the m matrices in S.

To compute the edge starting from node i (representing face F ) and corre-
sponding to transition matrix A, we need to find the face G such that

AF ⊆ G.
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Chapter 4. Complexity of Deciding Consensus

By Lemma 4.1, we know that G is the face containing Ax where x is any point
in F . FindingG can be done inO(n2) operations : take a point x in F (inO(n)),
compute Ax (in O(n2)), and find the face in which Ax is (in O(n)). Therefore
the complexity of constructing the graph of double-faces is O(3nmn2).

Decision problems on the graph: Once the graph is constructed, Problem 4.1,
which is equivalent to the existence of cycles in the graph (see Theorem 4.1),
can be decided using a topological sorting algorithm which has a complexity
of O(|E|+ |V |) = O(3nm) with |E| and |V | being respectively the numbers of
edges and vertices [Kah62]. The complexity of checking the existence of cycles
is thus lower than the complexity of constructing the graph. �

Since [BO14, CHJ14], the problem of deciding whether a set is a consensus
set was known to be decidable in O(m3n

nω) operations, where O(nω) is the
complexity of multiplying two n×nmatrices. We have now an algorithm with
a complexity that is singly exponential in n. We note however that the space
complexity of our algorithm is very large. Indeed we need to store the graph
of double-faces, which has a number of nodes that is exponential in n. More
precisely, the number of nodes is Θ(3n) and the number of edges is Θ(3nm)

and so is the total space complexity of our method.

4.3.1 Discussion

We have obtained a singly exponential algorithm to solve the problem of
deciding whether a set is contractive. This is an improvement over the de-
cision procedure of [BO14]. Indeed, the authors of [BO14] show that their
procedure has a doubly exponential time complexity and a short analysis
shows that it has a singly exponential space complexity. Our algorithm im-
plies that the problem belongs to EXPTIME, while it was known that it belongs
to EXPSPACE. It is also known that the problem is NP-hard.

Recall the classical complexity hierarchy:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ 2-EXPTIME, 2

2with P the class of problems that can be solved in polynomial time, NP the class of problems
for which instances with positive answer have a polynomial time verifiable certificate, PSPACE
the class of problems that can be solved with polynomial space, EXPTIME the class of problems
that can be solved in singly exponential time, EXPSPACE the class of problems that can be solved
with singly exponential space and 2-EXPTIME the class of problems that can be solved in doubly
exponential time.
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Whether the problem belongs to NP, or to PSPACE are open questions, and so
are the questions of whether the problem is PSPACE-hard and EXPTIME-hard.
These considerations might seem theoretical but they have direct algorithmic
implications. For example, if the problem is EXPTIME-hard, then there is no
algorithm with a polynomial space complexity, unless PSPACE = EXPTIME
(it is usually believed that these classes are different).

4.4 Sets of two stochastic undirected matrices

In this last section, we study the complexity of Problem 4.1 in the case of undi-
rected matrices. A nonnegative matrix is called undirected [BO14] if

aij > 0⇔ aji > 0.

Undirected matrices are also sometimes called type-symmetric. In the context
of consensus systems, they correspond reciprocal communication between
agents: an agent i influences the value of an agent j if and only if agent j
influences the value of agent i. It is known that reciprocity plays an important
role in the convergence of consensus systems [HT13]. It has been proven that
Problem 4.1 is NP-hard for sets of three undirected matrices and for sets of
two stochastic matrices in general [BO14]. The authors have left open the case
of sets of two undirected matrices. We prove that, in this case, it can be solved
in polynomial time.

It is worth noticing that the product of two stochastic matrices is a stochas-
tic matrix, and that stochastic matrices satisfy the relations:

max
i

(Ax)i ≤ max
i
xi

min
i

(Ax)i ≥ min
i
xi.

Sets of stochastic matrices satisfy therefore Assumption 4.1.
The next lemma presents a simple yet crucial observation about undirected

stochastic matrices.

Lemma 4.2. Let A be an undirected stochastic matrix. Then A2 has a positive diag-
onal.

The following lemma shows the effect of a transition matrix with a positive
diagonal.
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Lemma 4.3. LetA,B andC be stochastic matrices and letB have a positive diagonal.
If ABC is not SIA, then AC is not SIA either.

Proof. The matrices A, B and C are nonnegative (because they are stochastic).
Since B has a positive diagonal, an element (AC)ij of AC can be positive only
if the element (ABC)ij at the same position inABC is positive as well. Hence,
if ABC is not SIA, then AC is not SIA either. �

Theorem 4.3. Let S = {A1, A2} be a set of two stochastic undirected matrices. The
set S is contractive if and only if A1, A2 and A1A2 are SIA.

Proof. IfA1 is not SIA, then the sequence (At1)t does not converge to a rank-one
matrix and the set S is not contractive. By the same argument, we conclude
that A2 and A1A2 are SIA if S is contractive.

Now suppose that S is not contractive. Essentially, we will prove that there
is an infinite product that is not SIA and that if the product contains an infinite
number of A1 and A2, we can remove subproducts A1A1 and A2A2 (with the
use of Lemma 4.3) in order to obtain the infinite product . . . A2A1A2A1 (or
. . . A1A2A1A2) and prove that it is not SIA.

By Theorem 4.1, there is a cycle other than the self-loop at node 1 in the
graph of double-faces of S. We take a node on the cycle, representing an open
double-face F . The cycle starting from F then represents a product Pσ(k) such
that

Pσ(k)F ⊆ F.

Therefore there is no t such that P t contracts P . By Proposition 4.1 (that es-
tablishes the equivalence between the contraction of P and the matrix being
scrambling) there is thus no t such that P t is scrambling. Since any SIA matrix
has a power that is scrambling, there is also no t such that P t is SIA. Taking
the square of the product provides a product of even length 2k having the fol-
lowing property: there is no t such that (P 2

σ(k))
t is SIA. Let us now take the

shortest sequence σ∗ of even length k∗ such that

∀ t, (Pσ∗(k∗))
t is not SIA. (4.5)

If this sequence σ∗ has a length of 2, then Pσ∗(k∗) is equal to A1A2, to A2A1, to
A2

1 or to A2
2 and the proof is done. Otherwise, the sequence σ∗ has a length of

at least 4. Suppose that σ∗ contains the subsequence i, i with i = 1 or i = 2:

∀ t, (Pσ∗(k∗))
t is not SIA.
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which is

∀ t, (Aσ∗(k∗) . . . Aσ∗(l)AiAiPσ∗(l−3))
t is not SIA.

By Lemma 4.3 we can state that

∀ t, (Aσ∗(k∗) . . . Aσ∗(l)Pσ∗(l−3))
t is not SIA

and σ∗ was not the shortest sequence of even length that satisfies Property
(4.5). We have a contradiction and we can conclude that σ∗ does not contain
the subsequences 1, 1 nor 2, 2. But then σ∗ is equal to 1, 2 or 2, 1 (would σ∗

be longer, for example σ∗ = 1, 2, 1, 2 then the sequence 1, 2 would be shorter,
would have an even length and would also satisfy Property (4.5)).

�

By Corollary 2.2, checking whether a stochastic matrix is SIA can be done
in polynomial time and Problem 4.1 can therefore be decided in polynomial
time for sets of two stochastic undirected matrices.

Corollary 4.1. For sets of two stochastic undirected matrices, Problem 4.1 can be
decided with a complexity ofO(ω(n) log(n)), whereO(ω(n)) is the complexity of the
multiplication of two n× n matrices.

4.5 Conclusion

The goal of this chapter was to investigate the complexity of deciding whether
a set is contractive (Problem 4.1). We have obtained a geometric characteriza-
tion allowing for a singly exponential algorithm to solve this problem. As
discussed in Subsection 4.3.1, this does not entirely answer the question of
the complexity of the problem. Indeed, we now know that the problem be-
longs to the complexity class EXPTIME and we knew already [BO14] that it
is NP-hard. But we do not know whether the problem is in PSPACE, nor do
we know whether it is in NP. Similarly, PSPACE-hardness and EXPTIME-
hardness are open questions.

We have also improved the state-of-the-art complexity in the particular
case of sets of two undirected matrices. We proved the existence of a polynomial-
time algorithm for this case.

Consensus systems with stochastic matrices have an invariant polyhedron,
which makes them naturally suited for the analysis that we have developed.
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We would like to mention however that this reasoning can apply for any dis-
crete time linear switched system that admits a common invariant polyhe-
dron. The singly exponential complexity would still hold in those cases. The
exact complexity may be different. Indeed, one of the building blocks of the
method is to determine in which face a point is. We can do it here in O(n)

operations because of the representation of the polyhedron given by Lemma
3.4. This compact representation is possible for this particular polyhedron but
not necessarily for all of them. In Chapter 6, we will apply these techniques
to another polyhedron (namely the nonnegative orthant). We will show that
constructing its graph of faces provides a new method to decide whether a
set of nonnegative matrices is primitive (in the sense that all sufficiently long
products are positive).
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Chapter 5

Tight Bound for Consensus

For a set of matrices that share a common nonincreasing polyhedral norm, all
infinite products converge to zero if and only if all infinite periodic products
with period smaller than a certain value converge to zero. Moreover, bounds
on that value are available [LW95].

In this chapter, we provide a stronger bound that holds for polyhedral
norms and also for all seminorms. In the latter case, the matrix products do not
necessarily converge to zero, but to a common invariant subspace. We prove
that our bound is tight for all polyhedral seminorms (and thus tight for all
norms). We study the particular case of matrices that leave P invariant and
we obtain that there is an infinite product that does not contract P if and only
if there is an infinite periodic product with period at most(

n

bn/3c

)
(2n−bn/3c−1 − 1) (5.1)

that does not contract P .
This chapter presents the main results of [CHJ16] and is organized as fol-

lows.

• In Section 5.1, we introduce and formalize the problem.

• In Section 5.2, we develop a method to compute a bound for general
centrally symmetric polyhedra (which can be seen as unit balls of semi-
norms).

• In Section 5.3, we apply the results of the previous section to P to obtain
the bound (5.2).
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5.1 Introduction

We consider sets of matrices that leave invariant a polyhedron Q that is sym-
metric around the origin: Q = −Q. As discussed in Subsection 3.1.5, this
is equivalent to assuming that the seminorm associated with the polyhedron
‖.‖Q is nonincreasing for the matrices of the set. As in Subsection 3.1.5, we
will simply call centrally symmetric the polyhedra that are symmetric around
the origin.

For any centrally symmetric polyhedron, we would like to study a quan-
tity that we call finiteness bound.

Definition 5.1 (Finiteness bound). LetQ be a centrally symmetric polyhedron and
let S = {A1, . . . , Am} be a set of matrices that leaveQ invariant and such that not all
infinite products of matrices of S contract Q. We define ` as the length of the shortest
product P such that no power of P contract Q.

For any centrally symmetric polyhedron Q, we call a finiteness bound p any
upper bound on ` that holds for all sets that leave Q invariant.

For a centrally symmetric polyhedronQ, a finiteness bound p and a set S =

{A1, . . . , Am} of matrices that leave Q invariant, the existence of an infinite
product that does not contract Q implies the existence of an infinite periodic
product with period at most p that does not contract Q.

When there is no left-infinite product of matrices from a finite set S that
does not contract Q, for any infinite product . . . Aσ(2)Aσ(1),

∀x ∈ Q, lim
t→∞

‖Aσ(t) . . . Aσ(2)Aσ(1)x‖Q = 0,

where Q is the seminorm associated to Q.1 Therefore, in the particular case
of a bounded polyhedron Q, the nonexistence of an infinite product that does
not contractQ is equivalent to the convergence to zero of all infinite products.
Hence, if p is a finiteness bound for a bounded polyhedron Q and S is a finite
set of matrices that leave Q invariant, all infinite products converge to zero if
and only if all infinite products with period at most p converge to zero.

The number ` in Definition 5.1 is equal to the length of the shortest cycle
in the graph of double-faces (Definition 4.4) corresponding to S and Q. A
finiteness bound is thus a bound on these lengths, that holds for all sets that
leave Q invariant.

1This is a consequence of the compactness of S, of the finite number of faces of Q and the
linearity of the matrix product and the formal proof of this statement is very similar to the proof
of Proposition 4.2.
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The goal of this chapter is to find the best finiteness bounds.

Question 5.1. Given a centrally symmetric polyhedron Q, what is p∗ the smallest
possible finiteness bound?

Question 5.1 has found a partial answer in [LW95, Theorem 4.1]. The au-
thors have shown that when the matrices of a finite matrix set have a common
nonincreasing polyhedral norm, there is an infinite product that does not con-
verge to zero if and only if there is an infinite periodic product with period at
most k = f

2 that does not contract Q, where f is the number of faces of the
unit ball of the norm. We will extend this result to seminorms and we will see
that smaller finiteness bounds exist.

This question has also been studied in the case of stochastic matrices. It
has been established [Paz71] that, for any set of stochastic matrices S, if there
is ` such that all products of length at least ` of matrices of S are scrambling,
then all products of length at least B = 1

2 (3n − 2n+1 + 1) are scrambling.
Subsequently, Blondel and Olshevsky [BO14] showed that a set is contractive
if and only if all products of length B = 1

2 (3n − 2n+1 + 1) are scrambling. We
will show that a set S is contractive if and only if all products of length at most

p∗ =

(
n

bn/3c

)
(2n−bn/3c−1 − 1) ≈ 3

2
√
πn

B (5.2)

are SIA.

The bound of Paz and Blondel and Olshevsky, B = 1
2 (3n − 2n+1 + 1), is

in fact equal to half the number of proper faces of P . The number of faces of
P has been computed in Corollary 3.2 and is equal to 3n − 2n+1 + 2, one of
them being the non-proper face P . In fact, we have shown in [CHJ14] that
the result of Blondel and Olshevsky could be obtained by using the invariant
polyhedron P . We then realized that this bound was not tight and in [CHJ16]
we obtained the tight bound of Equation (5.2). One motivation to find the
best finiteness bound was to obtain a better algorithm to decide if a set is con-
tractive. Indeed, a polynomial bound would have yielded a polynomial space
algorithm, which would thus have been better that the algorithm developed in
Chapter 4. This was unfortunately not the case, as the bound that we obtained
is exponential in n.
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5.2 The General Case

In this section, we answer Question 5.1 in general. We start by recalling some
definitions of poset, lattice and antichain. We follow the terminology of [Zie95].

Definition 5.2 (Poset and lattice). A partially ordered set or poset is a set P
with a binary relation � that is transitive, antisymmetric and reflexive. We also note
x ≺ y for the relation x � y and x 6= y.

A poset is called a lattice if any pair of elements has a unique infimum and a
unique supremum.

Definition 5.3 (Graded poset). A poset (P,�) is called graded if it can be equipped
with a rank function

r : P 7→ N

that is compatible with the ordering:

x � y ⇒ r(x) ≤ r(y)

and such that any two comparable elements y ≺ x either have ranks that differ by 1
or there is a element z between them y ≺ z ≺ x:

∀ x, y ∈ P, such that y ≺ x, r(x) = r(y) + 1 or ∃z, y ≺ z ≺ x.

The set of all elements of a given rank is called a rank level.

Definition 5.4 (lattice of double-faces). Given a centrally symmetric polyhedron
Q (i.e., a polyhedron Q = −Q), we call lattice of double-faces the poset (P,⊆)

where ⊆ is the inclusion relation and P is a set whose members are

• double-faces of Q (r = dimension of the face)

• Q (r = n)

• ∅ (r = dmin − 1, where dmin is the lowest dimension of faces of Q).

It can be verified that this poset is a lattice (Definition 5.2) and that it is graded; a
rank function is given between brackets.

The notion of antichain will play a key role in this chapter.

Definition 5.5 (Antichain). Let (P,�) be a poset. An antichain is a subset S ⊆ P
whose elements are not comparable:

∀x, y ∈ S, x 6� y.
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5.2. The General Case

For instance, a set of double-faces that are not included in one another form
an antichain in the lattice of double-faces.

Example 5.1. The Polyhedron P , as well as some of its double-faces, is represented
in Figure 5.1. Its lattice of double-faces and its largest antichain are represented in
Figure 5.2.

f1

f1

f3
f3

e3

e3

Figure 5.1: The polyhedronP for n = 3. The gray arrow indicates the direction
a1. The polyhedron has 6 double-faces: three that correspond to the 6 facets
and 3 that correspond to the 6 edges. The sets f1, f3 and e3 are double-faces.

∅

e1 e2 e3

f1 f2 f3

P

Figure 5.2: The lattice of double-faces of the polyhedron P for n = 3. The
elements f1, f2 and f3 represent the three pairs of opposite facets while e1,
e2 and e3 represent the three pairs of opposite edges. In dark gray, a largest
antichain in this lattice.
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Definition 5.6 (Width of a Poset). We call the widthW (P ) of a poset P the number
of elements of the largest antichain of P . We also write W (Q) for the width of the
lattice of double-faces of a given centrally symmetric polyhedron Q.

The next theorem provides a finiteness bound. It is an improvement of
[LW95, Theorem 4.1] as we extend it to seminorms and we provide a stronger
bound.

Theorem 5.1. Let S be a finite set of matrices and let Q be a polyhedron that is
symmetric around the origin and invariant for S. If there is a left-infinite product of
matrices from S that does not contract Q, there is one that is periodic with a period p
not larger than

p∗ = W (Q)

that does not contract Q.

Proof. We first observe that p is finite. Suppose there exists an infinite noncon-
tracting product . . . Aσ(2)Aσ(1) and therefore a point x0 such that

∀i, Aσ(i) . . . Aσ(1)x0 /∈ int(Q).

Since the number of faces is finite, there is an open double-face O and indices
i < j such that

Aσ(i) . . . Aσ(1)x0 ∈ O and Aσ(j) . . . Aσ(1)x0 ∈ O.

By Lemma 4.1, we have

Aσ(j) . . . Aσ(i+1)O ⊆ O.

Therefore, the infinite power of Aσ(j) . . . Aσ(i+1) is an infinite periodic non-
contracting product, proving that the theorem is true for some finite period
p = j − i smaller than the number of double-faces.

We now prove the full theorem. Let P be such that . . . PPP is an infinite
noncontracting product with the smallest period p and

P = Aσ(p) . . . Aσ(1).

Let O1 be an open double-face such that

∀t ≥ 0, (P )tO1 6⊆ int(Q)

(such a face exists due to Lemma 4.1 and the fact that . . . PPP does not con-
tract Q), let O2 be the double-face containing Aσ(1)O1 (by Lemma 4.1, there is
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exactly one such double-face), O3 containing Aσ(2)Aσ(1)O1 up to Op contain-
ing Aσ(p−1) . . . Aσ(1)O1. Let also F1 = cl(O1), . . . , Fp = cl(Op).

We now prove that {F1, . . . , Fp} in an antichain in the lattice of double-
faces. Suppose, to obtain a contradiction, that for some i, j with i > j, Fi ⊆ Fj .
Then,

Aσ(i−1) . . . Aσ(j)Fj ⊆ Fi ⊆ Fj ,

and thus
∀t ≥ 0, (Aσ(i−1) . . . Aσ(j))

tFj ⊆ Fj .

This contradicts the assumption that . . . PPP is the infinite periodic noncon-
tracting product with the smallest period. Similarly, if for some i, j with i < j,
Fi ⊆ Fj , then

∀t ≥ 0, (Aσ(i−1) . . . Aσ(1)Aσ(p) . . . Aσ(j))
tFj ⊆ Fj ,

and again we have a contradiction. Hence {F1, . . . , Fp} is an antichain in the
lattice of double-faces and P has a length smaller than or equal to W (Q) �

The bound p∗ of Theorem 5.1 cannot be decreased in general: it is tight for
any polyhedron in any dimension n, as we prove in the next theorem.

Theorem 5.2. Let Q be a polyhedron in dimension n that is centrally symmetric
around the origin and let p∗ = W (Q) as in Theorem 5.1. There is a set S of n × n
matrices that leave Q invariant and such that

• all left-infinite periodic products with periods smaller than p∗ contract Q,

• there is a left-infinite product that does not contract Q.

Proof. We construct a set of matrices such that the infinite noncontracting prod-
uct that has the smallest period has a period equal to p∗ = W (Q). Let X =

{F1, . . . , Fp∗} be the largest antichain in the lattice of double-faces and let
O1, . . . , Op∗ be the corresponding open double-faces.

By definition, each double-face Fi is the union of two opposite proper faces
Gi,−Gi and the proper face Gi is the intersection of Qwith a hyperplane

Gi = Q∩ {x : b>i x = ci}

such that Q is in one halfspace defined by the hyperplane:

Q ⊆ {x : b>i x ≤ ci}.
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We also have ci 6= 0. Indeed, if ci = 0, then Q ⊆ {x : b>i x ≤ 0} and because
Q = −Q, andQ ⊆ {x : −b>i x ≤ 0} and this impliesGi = Q∩{x : b>i x = 0} = G
andGi is not a proper face. Therefore, ci 6= 0 and we can scale bi and ci to have
∀i, ci = 1. Finally, Fi = Gi ∪ −Gi = Q∩ {x : b>i x = ±1}.

By taking any vi in the open double-face O(imod p∗)+1 and defining

Ai = vib
>
i and S = {A1, . . . , Ap∗},

we have
∀i, AiFi = Ai(Q∩ {x : b>i x = ±1})

⊆ Ai{x : b>i x = ±1}

= {Aix : b>i x = ±1}

= {vib>i x : b>i x = ±1}

= {±vi}

⊆ O(imod p∗)+1.

(5.3)

We have as well

∀i, Ai(Q\Fi) = Ai(Q∩ {x : −1 < b>i x < 1})

⊆ {vib>i x : −1 < b>i x < 1}

= {λvi : −1 < λ < 1}

⊆ {λy : −1 < λ < 1, y ∈ Q}

= int(Q).

(5.4)

By (5.3) and (5.4), for any j 6= (i mod p∗) + 1,

AjAiQ ⊆ Aj
(
int(Q) ∪O(imod p∗)+1

)
= Aj int(Q) ∪AjO(imod p∗)+1 ⊆ int(Q).

Therefore,

. . . A(h+2 mod p∗)+1A(h+1 mod p∗)+1A(hmod p∗)+1Ah

is the only infinite noncontracting product starting with Ah. For any h, this
product has a period of p∗ (because the matrices A1, . . . , Ap∗ are all different).
We conclude that all infinite periodic products with periods smaller than m =

p∗ contract Q and the theorem is proven. �
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The number of matrices of the set S that we construct in Theorem 5.2 is
equal to half the number of facets of the corresponding polyhedron. Therefore
this does not guarantee the tightness in the particular case where the number
of matrices is limited. For example, the existence of a smaller bound p in the
case of sets of two matrices remains open.

Giving an explicit value to the size of the largest antichain may prove dif-
ficult in some cases. However, since a set of double-faces of same dimension
always constitutes an antichain, the largest antichain has at least maxi fi ele-
ments, and we have the following lower bound

p∗ = W (Q) ≥ max
i
fi, (5.5)

where fi is the number of faces of dimension i. The inequality (5.5) might
not be very useful, because p∗ is in essence an upper bound. However, if the
equality holds, the exact value of p∗ can be known. This is the case when the
lattice of double-faces of Q has the Sperner property:

Definition 5.7 (Sperner Property [Eng97]). A graded poset is said to have the
Sperner property if its largest antichain is equal to its largest rank level (Defini-
tion 5.3).

In the next section, we will study the structure of the lattice of double-faces
of P . We will see that the lattice has the Sperner property and we will be able
to compute an explicit value for our bound p∗ by computing the number of
elements of its largest rank level.

5.3 The case of the Polyhedron P

We investigate the case of sets that leave polyhedron P invariant. In Theo-
rem 5.3, we prove that the lattice of double-faces of P has the Sperner prop-
erty. In Theorem 5.4 we compute the value of p∗ for P . Finally, in Theorem 5.5,
we prove that the bound p∗ is tight for sets of stochastic matrices. We end this
section by discussing the relation between these results, the results of [BO14],
and SIA matrices.

Definition 5.8 (Upper and Lower Shadow [Eng97]). Let (P,�) be a graded poset
and let R ⊆ P be such that ∃k, ∀x ∈ R, rank(x) = k. We call the upper shadow

∇(R) = {x ∈ P : ∃y ∈ R, y � x, rank(x) = k + 1} .
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Similarly, we define the lower shadow

∆(R) = {x ∈ P : ∃y ∈ R, x � y, rank(x) = k − 1} .

In Proposition 3.4 of Chapter 3, we have shown that the proper faces of P
are the sets

F =

{
x ∈ P | ∀i ∈ S1, j ∈ S2,

1

2
(xi − xj) = 1

}
, (5.6)

for S1 and S2 some disjoint nonempty subsets of {1, . . . , n}. Additionally, if d
is the dimension of the face F , then |S1 ∪ S2| = n− d+ 1. The corresponding
double-face is

F =

{
x ∈ P | ∀i ∈ S1, j ∈ S2,

1

2
|xi − xj | = 1

}
,

Therefore, the lower shadow of each single double-face F of P of dimen-
sion 2 ≤ d ≤ n− 1 contains

|∆({F})| = 2(d− 1)

elements (the double-faces obtained by adding an element to either S1 or S2).
The upper shadow of a double-face of dimension 1 ≤ d ≤ n − 2 is the set
of double-faces obtained by removing an element from either S1 or S2, while
keeping them both nonempty. In the case that both |S1| ≥ 2 and |S2| ≥ 2, we
obtain

|∇({F})| = n− d+ 1,

while in the case that |S1| = 1 or |S2| = 1 we have

|∇({F})| = n− d.

The case |S1| = 1 or |S2| = 1 corresponds to double-faces of dimension n − 1

whose upper shadow is P , the face of dimension n:

|∇({F})| = 1 = n− (n− 1).

In turn, the upper shadow of a double-face of dimension 1 ≤ d ≤ n−1 satisfies

|∇({F})| ≥ n− d.

Theorem 5.3. In any dimension n, the lattice of double-faces of P has the Sperner
property. One largest antichain is the set of double-faces of dimension d∗ = bn/3c+1.
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5.3. The case of the Polyhedron P

Proof. For any set of double-faces of P of the same dimension d ≥ 1 (that is,
any subset of a rank level, with d ≥ 1, in the lattice of double-faces), we define

E+ = {(F1, F2) : F1 ∈ R, F2 ∈ ∇({F1})}.

E+ is thus the set of pairs of double-faces in respectively R and ∇(R) that are
comparable. Since the upper shadow of each element of R has at least n − d
elements, we have

|E+| ≥ |R|(n− d).

Since the lower shadow of each element of ∇R contains exactly 2d elements,
not all of which belonging to R, we have

|E+| ≤ |∇(R)|2d.

Combining the two inequalities, we obtain |∇(R)| ≥ |R|n−d2d and

∀ 1 ≤ d ≤ n

3
, ∀R, |∇(R)| ≥ |R|. (5.7)

By a similar reasoning, we obtain |∆(R)| ≥ |R| 2(d−1)
n−d+2 and

∀d ≥ n+ 4

3
, ∀R, |∆(R)| ≥ |R|. (5.8)

Let now X be a largest antichain, let d− be the smallest dimension of an ele-
ment in Xand let R− be the intersection of the antichain with the level d−. We
have d− ≥ 1 because the only element with rank level d− = 0 is the empty
face ∅ and this element does not belong to any largest antichain. If d− ≤ n

3 ,
Equation (5.7) tells us that the antichain

(X\R−) ∪∇(R−)

has at least as many elements as X . We can repeat this process until the an-
tichain contains only faces of dimension strictly larger than n

3 . Similarly we
use (5.8) to obtain an antichain with at least as many elements of rank strictly
smaller than n+4

3 . Since
n

3
< d <

n+ 4

3

has a unique integer solution d∗ = bn/3c+ 1, the final antichain contains only
faces of dimension d∗. �
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5.3.1 A New Finiteness Bound for Contractive Sets

By Theorem 5.3, the largest antichain in the lattice of double-faces is the set of
all double-faces of dimension d∗ = bn/3c+1. From Equation (5.6), one can see
that the number of faces of dimension d of P is equal to the number of pairs
of disjoint nonempty subsets S1, S2 such that

|S1 ∪ S2| = n− d+ 1.

Therefore, the number of faces of dimension 1 ≤ d ≤ n− 1 of P is

fd =

(
n

d− 1

)
(2n−d+1 − 2).

The number of double-faces of dimension d is then(
n

d− 1

)
(2n−d − 1),

and the width of the lattice of double-faces of P , which is equal to the number
of double-faces of dimension bn/3c+ 1, is

p∗ =

(
n

bn/3c

)
(2n−bn/3c−1 − 1). (5.9)

Combining this value of p∗ with Theorem 5.1 and [CHJ15a, Proposition
1.a] yields the next theorem.

Theorem 5.4. A finiteness bound for P is given by

p∗ =

(
n

bn/3c

)
(2n−bn/3c−1 − 1) = O

(
3n√
n

)
.

A finiteness result similar to Theorem 5.4 was known [BO14] with B =
1
2 (3n−2n+1 + 1) instead of p∗. This value of B is in fact the number of double-
faces ofP . Indeed, Corollary 3.2 indicates thatP has 3n−2n+1+2 faces, so that
the number of proper faces is 3n− 2n+1 + 1 and the number of double-faces is
B. The new bound p∗, on the other hand, is the size of the largest antichain in
the lattice of double-faces. It is approximately equal to 3

2
√
πn
B, as illustrated

in Figure 5.3.
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Figure 5.3: In blue: ratio between our bound p∗ and the previous bound B.
This ratio is below one (red) and close to 3

2
√
πn

(green).

5.3.2 Stochastic Matrices

In this subsection, we prove next that Theorem 5.4 is tight for stochastic ma-
trices. This is not a consequence of Theorem 5.2. Indeed, Theorem 5.2 applied
to the polyhedron P guarantees that for any dimension n, there is a set of ma-
trices such that Theorem 5.1 is tight for P . However, the matrices in this set
are not necessarily stochastic. We construct here a set of stochastic matrices
for which Theorem 5.4 is tight.

This set contains p∗ matrices. Therefore, Theorem 5.5 proves the tightness
of p∗ in general but not in the particular case where the number of matrices in
the set is limited.

Theorem 5.2 is also not a consequence of this theorem since it applies to all
centrally symmetric polyhedra and not only P .

Theorem 5.5. For any n ≥ 2, there is a set of n× n stochastic matrices such that:

• There is a product of length p∗ =
(

n
bn/3c

)
(2n−bn/3c−1 − 1) whose powers do

not converge to a rank-one matrix;

• For any product P of length ≤ p∗ − 1, the sequence of powers converges to a
rank-one matrix.
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Proof. We will construct stochastic matrices {A1, . . . , Ap∗} that have the two
properties:

∀i, AiFi ⊆ O(imod p∗)+1 (5.10)

∀i, Ai(P\(Fi ∪ −Fi)) ⊆ int(P). (5.11)

Then the same argument as in the proof of Theorem 5.2 will allow allow
us to conclude. Recall that each face F of P can be written as

F =

{
x ∈ P | ∀i ∈ S1, j ∈ S2,

1

2
(xi − xj) = 1

}
Or alternatively as

F = {x ∈ ∂P : ∀i ∈ S1, xi = max
j
xj , ∀i ∈ S2, xi = min

j
xj} (5.12)

for certain disjoint nonempty sets S1, S2 ⊂ {1, . . . , n}.
Let Fi, Fj be two faces satisfying Fj = F(i mod p∗)+1, let S1i be the set S1 of

Equation 5.12 for the face Fi and let S1j , S2i and S2j be defined similarly to S1i.
We will construct a matrix Ai such that any element of Aix in position ∈ S1j is
equal to the average of the elements of x in positions in S1i. This ensures that
when x ∈ Fi, any element ofAix in position ∈ S1j is equal to maxk xk (because
it is equal to the average of some elements of x that are equal to maxk xk).
Similarly,Ai will be constructed such that any element ofAix in position ∈ S2j

is equal to the average of the elements of x in positions in S2i. Finally, Ai will
be such that any element of Aix in position ∈ ({1, . . . , n}\(S1j ∪ S2j)) is equal
to the average of the elements of x in positions in {1, . . . , n}\(S1i ∪ S2i).

We now construct this matrix in the particular case where the elements of
S1i and S1j are the first elements of {1, . . . , n} and the elements S2i and S2j are
the last elements of {1, . . . , n}. Let Fi be a face such that S1i = {1, . . . , ai} and
S2i = {n−ci+1, . . . , n} for some ai and ci and similarly let Fj = F(i mod p∗)+1

be such that S1j = {1, . . . , aj} and S2j = {n − cj + 1, . . . , n} for some aj and
cj . Let bi = n− ai − ci and bj = n− aj − cj . One matrix satisfying properties
(5.10) and (5.11) is

Ai =

+aj×ai 0 0

+bj×ai +bj×bi +bj×ci
0 0 +cj×ci


where + represents a positive element chosen such that the sum of the ele-
ments on each row sum to one. Let us see why property (5.10) is satisfied. Let
x ∈ Fi, we have that the first aj elements of Aix are averages of the first ai
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elements of x and therefore they are equal to maxk xk. Similarly, the last cj el-
ements ofAix are weighted averages of the last ci elements of x and therefore,
they are equal to mink xk. The remaining elements are weighted averages
of all elements of x and therefore they are strictly smaller than maxk xk and
strictly larger than mink xk. These three facts imply Aix ∈ Oj and since it is
the case for any x ∈ Fi, property (5.10) is satisfied. Property (5.11) is proved
in a similar manner.

Without the assumption on the specific form of the faces Fi and Fj , the
matrixAi is the same up to some permutations of the rows and of the columns.

�

5.3.3 Relation with SIA Matrices

Theorem 5.4 establishes that

p∗ =

(
n

bn/3c

)
(2n−bn/3c−1 − 1)

is a finiteness bound for P . Therefore, for a set of stochastic matrices, all left-
infinite products converge to a rank-one matrix if and only if all periodic left-
infinite products, with period smaller than or equal to p∗, converge to a rank-one
matrix. This is in fact equivalent to the condition that all products of length
smaller than or equal to p∗ are SIA2. In the case of stochastic matrices, Theo-
rem 5.4 thus becomes.

Theorem 5.6. Let S be a finite set of stochastic matrices. Any left-infinite product of
matrices from S converges to a rank-one matrix if and only if any product of length
smaller than or equal to p∗ (as defined in Equation (5.2)) is SIA.

5.4 Conclusion

We have studied sets of matrices that admit a nonincreasing polyhedral semi-
norm, and we wondered whether all infinite products of these matrices map
the state space onto points whose seminorm is equal to zero (the consensus
problem is a particular case of this setting). We have improved the avail-
able finiteness bound by leveraging the combinatorial structure of (an ab-
straction of) the dynamical system described by these matrices. We have

2We recall that a matrix is SIA if and only if it is stochastic and the sequence of its powers
converge to a rank-one matrix.
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shown that the largest antichain in the lattice of double-faces provides a tight
finiteness bound. In the particular case of the polyhedron P , we were able
to compute the size of the largest antichain to obtain a finiteness bound of
p∗ = W (P) =

(
n
bn/3c

)
(2n−bn/3c−1 − 1), which is an improvement of about

3
2
√
πn

over the previously known bound.
A question that we have left open is the influence of the number of matrices

of the set on the finiteness bound. The examples that we constructed to prove
the tightness of our bounds contain many matrices. It is not clear what the best
finiteness bound would be, for example, for sets containing only two matrices.
Tackling this question could be done by analyzing the structure of the graph
of double-faces. Indeed, a finiteness bound is a bound on the length of the
shortest cycle in this graph, and long cycles might be much harder to construct
with only two matrices.
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Chapter 6

Application to Other Polyhe-
dra

We apply techniques developed in Chapters 4 and 5 to other polyhedra.
In Section 6.1, we use the nonnegative orthant Rn+ = {x ∈ Rn | ∀i, xi ≥ 0},

to study sets of nonnegative matrices all sufficiently long products of which
are positive. We call these sets all-products-primitive matrix sets.

• We recover a result by Cohen and Sellers [CS82] stating that if a set is
all-products-primitive, then all products of length 2n − 2 are positive.

• We show that the face lattice of Rn+ has the Sperner property, from which
we deduce that a set is all-products-primitive iff all products of length(
n
n/2

)
are primitive.

• We show that deciding all-products-primitivity can be done with a singly
exponential time-complexity.

• We show that deciding all-products-primitivity is NP-hard.

In Section 6.2, we construct a centrally symmetric polytope whose lattice of
double-faces does not have the Sperner property, showing that not all lattice
of double-faces have this property. This polytope is the simplest example that
we were able to construct. Its construction uses old ideas from Danzer and
Eckhoff [Eck06].

In the previous chapter, we have seen (Theorem 5.1) that p∗ = W (Q) is a
tight finiteness bound. In general W (Q) may be hard to compute but, in the
particular case of the polyhedron P , W (Q) is equal to the largest rank level of
the lattice of double-faces of P . The new example that we constuct shows that
p∗ is not always equal to the largest rank level of the lattice of double-faces.
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6.1 Primitivity of Matrix Sets

We consider the problem of determining whether all products of a set of non-
negative matrices are positive.

Definition 6.1 (All-Products-Primitivity of a Matrix Set). We say that a set of
nonnegative matrices is all-products-primitive if there is a length ` such that all prod-
ucts of length ` are positive.

All-products-primitivity is a generalization of the primitivity of a single
matrix – i.e., the existence of a power of that matrix that is positive – in the
sense that a set that contains a single matrix is all-products-primitive if and
only if this matrix is primitive. All-products-primitivity is sometimes called
primitivity [CS82] but we call it here all-products-primitive to avoid any con-
fusion with other notions of primitivity, such as the existence of a positive
product [BJO15].

Conditions for all-products-primitivity has been known for a long time,
and these conditions can be verified algorithmically.

Theorem 6.1 (Exponent of primitive sets [CS82]). A set of nonnegative matrices
S is all-products-primitive if and only if all products of length 2n−2 are positive. The
length 2n − 2 cannot be decreased.

The analysis of the polyhedron Rn+ provides an alternative proof for the
”only if” part of this result. Nonnegative matrices leave the nonnegative or-
thant Rn+ invariant. Additionally, a nonnegative matrix is positive if and only
if it contracts Rn+\{0}:

ARn+\{0} ∈ int(Rn+).

The open faces of the polyhedron Rn+ are the sets that can be written as

F = {x | ∀i ∈ S, xi > 0 and ∀i /∈ S, xi = 0} (6.1)

for S some subset of {1, . . . , n}. The number of open faces is thus 2n (including
int(Rn+)).

If the set is all-products-positive, then the image of Rn+\{0} by sufficiently
long products of matrices from S is int(Rn+). By Lemma 4.1, the image of each
open face of Rn+\{0} is in another open face of Rn+\{0} and we can construct
the graph of faces of Rn+\{0}1. This graph has 2n − 1 nodes and does not

1In this case it will be a graph of faces and not a graph of double-faces as in Chapter 4 because
the polyhedron is not centrally symmetric. The idea is exactly the same
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6.1. Primitivity of Matrix Sets

contain any cycle other than the loop from int(Rn+) to itself. Therefore, the
longest possible path from a node to int(Rn+) has a length of 2n − 2. This
means that for any product P of length 2n − 2 and any vector x ∈ Rn+\{0},
Px ∈ int(Rn+) and therefore P is positive, which concludes our alternative
proof of Theorem 6.1.

The face lattice of Rn+ is isomorphic to the Boolean lattice, which is the poset
of all subsets of an n-element set, ordered by inclusion. This isomorphism can
be seen from Equation (6.1), where there is one face F for each subset S of
{1, . . . , n} and a (closed) face F1 = {x | ∀i ∈ S1, xi ≥ 0 and ∀i /∈ S1, xi = 0} is
included in a closed face F2 = {x | ∀i ∈ S2, xi ≥ 0 and ∀i /∈ S2, xi = 0} if and
only if S1 ⊆ S2. In fact, the boolean lattice was the very first poset for which
the Sperner property has been established [Spe28].

Theorem 6.2 (Sperner property of the Boolean lattice [Spe28]). Let n be a pos-
itive integer and F be a family of subsets of {1, . . . , n} such that no member of F is
included in another member of F . Then

• F ≤
(

n
bn/2c

)
.

• Equality holds iff F is the set of subsets containing exactly bn/2c elements.

Thanks to this theorem, we know that the largest antichain of the face lat-
tice of Rn+ contains

(
n
bn/2c

)
elements, from which we obtain.

Theorem 6.3. A set of nonnegative matrices S is all-products-primitive if and only
if all products of length ≤

(
n
n/2

)
are primitive. The length

(
n
n/2

)
cannot be decreased.

Proof. Only if: If a product (of any length) is not primitive, then its powers are
not positive and the set is not all-products-primitive.
If: If the set is not all-products-primitive, there is a cycle in the graph of faces.
This cycle corresponds to a product of matrices from S that is not primitive. If
this cycles contains two nodes that correspond to faces that are included in one
another, it is possible to construct a shorter cycle (as was done in Chapter 4). In
turn, there is a cycle that contains only nodes corresponding to faces that are
not included in one another. These faces form an antichain in the face lattice
of Rn+, and this antichain has a size≤

(
n
n/2

)
. Finally, the cycle of length≤

(
n
n/2

)
corresponds to a nonprimitive product of length ≤

(
n
n/2

)
. �

By constructing the graph of faces of Rn+ for a given set S and by check-
ing whether it contains cycles, the all-products-primitivity can be decided in
singly exponential time.
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The graph of faces of Rn+ also provides a way to decide whether a set is
all-products-primitive.

Theorem 6.4. Given a set S of nonnegative matrices, deciding whether S is all-
products-primitive can be decided algorithmically with a singly exponential time com-
plexity.

Proof. This can be done by constructing the graph of faces of Rn+ for a given
set S and by checking whether it contains cycles. The number of nodes of this
graph is singly exponential in the size of the matrices and checking whether
it contains a cycle is linear in the number of edges (which is at most quadratic
in the number of nodes). �

This decision procedure has an exponential space complexity, that comes
from the storage of the graph of faces.

We conclude this section by proving that deciding all-products-complexity
is NP-hard.

Theorem 6.5. Given a finite set S of nonnegative matrices, deciding whether S is
all-products-primitive is NP-hard.

Proof. The reduction is from the Consensus-Set problem2 in the particular case
that all matrices share a common row, that has a 1 on the diagonal and 0
everywhere else on this row. In the reduction for the NP-hardness proof of
Consensus-Set [BO14], it can be seen that all the constructed matrices have
this common row and thus deciding Consensus-Set in this restricted case is
also NP-hard.

We can assume, without loss of generality, that the common row is the
first one. Let thus S be a set of stochastic matrices with a first row equal to(

1 0 . . . 0
)

and let S′ be a set in which the first rows of the matrices of S

have been replaced by
(

1 1 . . . 1
)

.
Claim: S is a consensus set if and only if S′ is all-products-primitive.
If: Suppose that S is a consensus set. Then there is ` such that all products of
length ` of matrices from S have a positive column [BO14, Corollary 2.10].
This positive column is the first column. Indeed, no other column can be
positive in products of matrices that their first rows equal to

(
1 0 . . . 0

)
.

Therefore, all products of length ` of matrices from S′ also have a positive
first column, and all products of length `+ 1 of matrices from S′ are positive,

2We recall that consensus sets are contractive sets in the case of stochastic matrices.
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because the product of a nonnegative matrix that has a positive first column
by a nonnegative matrix that has a positive first row is positive.
Only if: Suppose that S′ is all-products-primitive. Then there is ` such that all
products of length ` of matrices from S′ have a positive first column (because
they are positive). We show that for a given product P ′ , A′σ(t) . . . A

′
σ(2)A

′
σ(1)

of matrices from S′ that has positive first column, the same product on the
matrices of S: P , Aσ(t) . . . Aσ(2)Aσ(1) also has a positive first column.

By definition of the matrix product and using the nonnegativity of the ma-
trices, we have that a positive element P ′i1 implies the existence of a sequence
jt, jt−1, jt−2 . . . j0 with jt = i and j0 = 1 such that

∀1 ≤ k ≤ t, (A′σ(k))jkjk−1
> 0.

We want to show that there exists such a sequence that does not use any
element that is positive in A′σ(k) but not in Aσ(k). These elements are the ele-
ments (A′σ(k))jkjk−1

with jk = 1 and jk−1 6= 1. If k∗ is the largest k such that
jk = 1, then we can take

jk∗−1 = jk∗−2 = · · · = j0 = 1

and we have a sequence of positive elements (A′σ(k))jkjk−1
that does not use

any element that is positive inA′σ(k) but not inAσ(k). Hence Pi1 is also positive
and we can conclude that P also has a positive column.

In turn, every product of length ` of matrices from S has a positive first
column and S is a consensus set. �

6.2 A Face Lattice without the Sperner Property

We construct a polytope that is centrally symmetric around the origin and for
which the lattice of double-faces does not have the Sperner property. Before
presenting the example, we need some definitions.

Definition 6.2 (Simplicial and simple polytopes). An n-dimensional polytope
is simplicial if its facets contain exactly n vertices. An n-dimensional polytope is
simple if its vertices are adjacent to exactly n edges.

An octahedron is an example of a simplicial polytope because each of its
faces is a triangle. A cube is an example of a simple polytope.

Definition 6.3 (F-vector). The f-vector of a polytope of dimension n is the n-
dimensional vector whose ith element is equal to the number of faces of dimension
i− 1.
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For example, the f-vector of a cube is equal to
(

8 12 6
)

. We give here
an example of a centrally symmetric polytope of dimension 4 whose face lat-
tice does not have the Sperner property. We have represented the equivalent
construction in dimension 3 in Figures 6.1, 6.2, 6.3 and 6.4. However, our ex-
ample in dimension 3 has the Sperner property and we have to construct it in
dimension 4 to not have the Sperner property.

Example 6.1. We use the connected sum # presented in [Zie95, Eck06]. The first
step (illustrated in dimension 3 in Figure 6.1) is to cut off a vertex from a simple poly-
tope P ′ (we will use a hypercube). The second step (Figure 6.2) is to apply a suitable
projective transformation T to the rest of P ′. The third and last step (Figure 6.4) is
to glue it on a facet of a simplicial polytope P (we will use a hyperoctahedron). The
transformation T can be chosen such that the result P#P ′ is a convex polytope whose
faces are those of P except the facet on which the transformed sliced P ′ was glued, and
those of P ′ except the cut off vertex. In particular, all open faces of P ′, except the
vertex that has been cut off, remain present (albeit modified) and do not intersect with
P . Similarly, all faces of P , except the face on which the modified P ′ has been glued,
remain present and do not intersect with the modified P ′. In turn, the f-vector of
P#P ′ is equal to

f + f ′ −
(

1 0 . . . 0 1
)

=
(
f0 + f ′0 − 1 f1 + f ′1 . . . fn−1 + f ′n−1 − 1

)
,

where f is the f-vector of P and f ′ that of P ′.
We use this construction twice to glue two 4-dimensional hypercubes

C = {x ∈ R4 : ‖x‖∞ ≤ 1}

(that will be the P ′ of the connected sum described above) on opposite faces of a hype-
roctahedron

O = {x ∈ R4 : ‖x‖1 ≤ 1}

(that will correspond to P above). The hypercubes have an f-vector of(
16 32 24 8

)
,

while the hyperoctahedra have an f-vector of(
8 24 32 16

)
.
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The connected sum is a convex polytope with an f-vector equal to

2f + f ′ −
(

2 0 0 2
)

=2
(

16 32 24 8
)

+
(

8 24 32 16
)
−
(

2 0 0 2
)

=
(

38 88 80 30
)
.

The largest rank level has thus a size of 88 (and it is the level of the faces of dimension
1). To construct a large antichain in the face lattice, we can take the 64 faces of dimen-
sion 1 from the hypercubes and the 32 faces of dimension 2 of the hyperoctahedron.
This set of faces is an antichain in the face lattice because:

• The faces of dimension 2 of O cannot be subsets of the faces of dimension 1 of
the transformed hypercube, because of the dimensions.

• The faces of dimension 1 of the transformed sliced hypercubes are not subsets of
O and can therefore not be subsets of the faces of dimension 2 of O. These faces
of dimension 1 cannot be subsets of O because

– Each face of dimension 1 of the hypercubes contains two vertices.

– At least one of them corresponds to an original vertex of the hypercube
(i.e., it is not a vertex created by the cut).

– After transformation, this vertex does not belong to O. Hence, the face of
dimension 1 cannot be a subset of O.

• The faces of dimension 2 of O are different and therefore cannot be included in
one another.

• Similarly, the faces of the sliced hypercube cannot be included in one another.

We conclude that the set that we constructed is an antichain in the face lattice. We
obtain an antichain of 96 > 88 elements, which proves that the polytope does not
have the Sperner property. The constructed polytope can be chosen to be centrally
symmetric. To illustrate, Figures 6.1, 6.2, 6.3 and 6.4 present the same construction
in dimension 3. The difference is that the antichain that is obtained is not large enough
and the polytope is Sperner.

6.2.1 Existence of a Suitable Projective Transformation

This subsection deals with the technical details of the transformation that
makes Example 1 possible. We prove that we indeed obtain a convex poly-
tope with the structure that we claimed. We start by recalling some basics on
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Figure 6.1: sliced cube. In green a
set of faces making up an antichain
in the face lattice and with none of
these faces being entirely in the new
face C ∩ {x1 + x2 + x3 ≤ 2}.

Figure 6.2: A transformation of the
sliced cube, preserving its combina-
torial structure.

Figure 6.3: Octahedron. The set of
green faces is an antichain in the
face lattice.

Figure 6.4: Resulting polytope. The
set of green faces is an antichain in
the face lattice.

projective transformations, a class of transformations that preserve collinear-
ity [Grü03, Page 4].

Definition 6.4 (Projective transformation [Grü03]). A projective transforma-
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6.2. A Face Lattice without the Sperner Property

tion is a transformation of the form

T (x) =
Ax+ b

c>x+ δ
,

with A ∈ Rn×n, b, c ∈ Rn, δ ∈ R and at least one of c and δ being different from
zero.

Definition 6.5 (Nonsingular projective transformation [Grü03]). A projective
transformation T is called nonsingular if(

A b

c> δ

)
is invertible.

Definition 6.6 (Permissible projective transformation [Grü03]). A projective
transformation T is called permissible for a set K if

{x | c>x+ δ = 0} ∩K = ∅.

Theorem 6.6 (Theorem 3.1.4 in [Grü03]). Any permissible projective transforma-
tion of a polytope is a polytope.

Definition 6.7 (Combinatorial equivalence [Grü03]). Two polytopes are said com-
binatorially equivalent if their face lattices are the same.

Theorem 6.7 (Theorem 3.2.3 in [Grü03]). LetQ be a polytope. If T is a nonsingular
projective transformation, permissible for Q, then Q and T (Q) are combinatorially
equivalent.

We now present formally the 4-dimensional construction. The hyperocta-
hedron O can be described by the equations

∀b ∈ {−1, 1}4, b>x ≤ 1.

The hypercubes C can be described by the equations

∀i ∈ {1, 2, 3, 4}, |xi| ≤ 1, (6.2)

while the sliced hypercube S is described by the equations{
∀i ∈ {1, 2, 3, 4}, |xi| ≤ 1

1>x ≤ 3.
(6.3)
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We apply to the sliced cube the projective transformation

T (x) =
(I + 2

3 11>)x− 3.1
3.1>x− 10

(6.4)

and we want to prove that

R , T (S) ∪ O ∪ −T (S)

is a polytope and that its f-vector is

2f + f ′ −
(

2 0 0 2
)

=
(

38 88 80 30
)
,

where f and f ′ are the f-vectors of the hypercube C and of the hyperoctahe-
dron O respectively.

Lemma 6.1. Let T be the projective transformation defined in (6.4) and S the 4-
dimensional sliced hypercube defined in (6.3). T (S) and −T (S) are polytopes.

Proof. We prove that transformation T is permissible (Definition 6.6) for S:

∀x ∈ S, 3.1>x− 10 6= 0,

because x ∈ S satisfies
1>x ≤ 3.

By Theorem 6.6, the permissibility of the transformation implies that T (C) and
−T (C) are polytopes. �

Lemma 6.2. Let T be the projective transformation defined in (6.4) and S the 4-
dimensional sliced hypercube defined in (6.3). The set T (S) is a full-dimensional
polytope with the same combinatorial structure as S.

Proof. We have already proved in Lemma 6.1 that T is permissible for S. We
prove the nonsingularity of T and Theorem 6.7 allows us to conclude. The
transformation T is singular if the 5× 5 matrix(

I + 2
3 11> −3.1

3.1> −10

)
is full rank. The block (−10) has obviously a rank of 1 and the Schur comple-
ment

I +
2

3
11> − 9

10
11> = I − 7

30
11>

is diagonally dominant and therefore positive definite. In turn, the matrix is
full rank. �
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Lemma 6.3 (Vertices and facets of the 4-dimensional transformed sliced hy-
percube). The vertices of T (S) are (

1 0 0 0
)

1

6

(
4 1 1 1

)
1

5

(
2 2 1 1

)
1

24

(
8 8 8 5

)
10

33

(
1 1 1 1

)
(6.5)

and the points obtained by permuting elements of these vectors. Its facet inequalities
are (every 1 ≤ i ≤ 4 generates different facet inequalities):

(1− ei)>x ≤ 1(
8.1 + ei

10

)>
x ≤ 1

1>x ≥ 1.

(6.6)

Proof. The vertices of the 4-dimensional sliced hypercube S are the vertices of
the hypercube C except the vertex

(
1 1 1 1

)
and adding the four vertices

created by the additional constraint 1>x ≤ 3. The vertices of T (S) are thus
obtained by computing the projective image of these vertices.

T
((

0 1 1 1
))

=
(

1 0 0 0
)

T
((
−1 1 1 1

))
=

1

6

(
4 1 1 1

)
T
((
−1 −1 1 1

))
=

1

5

(
2 2 1 1

)
T
((
−1 −1 −1 1

))
=

1

24

(
8 8 8 5

)
T
((
−1 −1 −1 −1

))
=

10

33

(
1 1 1 1

)
.

(6.7)

The facet inequalities of S are the facet inequalities of the hypercube C and the
facet inequality created by the cut 1>x ≤ 3. It can be verified that

ei>x ≤ 1⇔ (1− ei)>T (x) ≤ 1

−1 ≤ ei>x⇔
(

8.1 + ei

10

)>
T (x) ≤ 1

1>x ≤ 3⇔ 1>T (x) ≥ 1.
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�

Lemma 6.4. The set R = T (S) ∪ O ∪ −T (S) is defined by the facet constraints of
T (S),O and−T (S) except the facets by with these polytopes are glued together. That
is,R is the set of points satisfying

(1− ei)>x ≤ 1 (6.8)(
8.1 + ei

10

)>
x ≤ 1 (6.9)

−(1− ei)>x ≤ 1 (6.10)

−
(

8.1 + ei

10

)>
x ≤ 1 (6.11)

∀ b ∈ {−1, 1}4\ {1,−1} , b>x ≤ 1. (6.12)

Proof. Let x be a point that satisfies (6.8) – (6.12). At least one of the following
conditions is satisfied.

• If 1>x ≥ 1, then x ∈ T (S) because (6.8), (6.9) and 1>x ≥ 1 are the facet
constraints of T (S), as we have seen in Equation (6.6).

• If 1>x ≤ 1 and−1>x ≤ 1, then x ∈ O because these contraints and (6.12)
are all the facet constraints of O.

• If−1>x ≤ 1, then x ∈ −T (S) because (6.10), (6.11) and−1>x ≤ 1 are the
facet constraints of −T (S).

In turn, x ∈ (T (S) ∪ O ∪ −T (S)) = R.
On the other hand, the vertices of O: ±ei satisfy (6.8) – (6.12) and by con-

vexity of O, all points of O satisfy these constraints. Similarly, the vertices of
T (S) and −T (S) (given in (6.7)) satisfy (6.8) – (6.12) as well and therefore all
points of T (S) and −T (S) satisfy these constraints. In turn, all points of R
satisfy (6.8) – (6.12). �

We have now proven thatR is a polytope (it is a polyhedron by Lemma 6.4
and it is also clearly bounded). It thus has the f-vector claimed in Example 6.1
because the facets are as claimed and the lower dimensional faces are inter-
sections of facets.

Corollary 6.1. The setR = T (S) ∪ O ∪ −T (S) is a polytope. Its f-vector is(
38 88 80 30

)
.
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We have thus constructed the polytopeR as claimed in Example 6.1. It has
an antichain of 96 elements (see Example 6.1) and a largest rank level of 88.
We thus have an example of a centrally symmetric polytope whose face lattice
does not have the Sperner property.
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Part II

Almost Contractive Sets

Is there one left-infinite product that converges to a
rank-one matrix?





Chapter 7

Synchronizing Automata

In this short chapter, we present an introduction to automata and synchro-
nization. Automata are simple models of computation involving a set of states
and a set of possible actions that define transitions between the states. Syn-
chronization is a sequence of actions that bring the automaton into a given
state, independently of the initial state. An important question is the number
of steps that are needed to achieve synchronization. The Černý conjecture as-
serts that if an automaton with n states has a synchronizing sequence, then it
has one of length at most (n − 1)2. This conjecture has been open for more
than 50 years and is still an active research topic [Szy18, GJT15, Vol08].

Automata can be represented by matrix sets and synchronization by prod-
ucts that have a positive column. In the next chapter, we will use results from
automata theory in our study of almost contractive sets. The results of this
chapter are all known results from the literature.

• In Section 7.1, we introduce automata.

• In Section 7.2, we present the Černý conjecture.

• In Section 7.3, we present an algorithm that decides whether an automa-
ton is synchronizing.

• In Section 7.4, we present some negative complexity result regarding the
computation of the reset threshold of automata.
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Chapter 7. Synchronizing Automata

7.1 Automata and Synchronization

In this section, we define automata and some of their representations.

Definition 7.1 (Automaton). A deterministic finite automaton (DFA) or simply
automaton is a tupleA = 〈Q,Σ, δ〉, whereQ is a set of states, Σ is an input alphabet
and δ : Q × Σ → Q is a transition function defining an action of the letters in Σ on
Q.

Givin a state and a letter, the automaton will be in a new state, given by the
transition function. Given an initial state and a sequence of input letters, called
a word, the automaton will be in a certain state, given by the composition of
the transition function. An automaton is often defined with an initial state
and a set of ACCEPT states. A word is said to be accepted if starting from the
initial state and applying the word sends the automaton to one of the ACCEPT
states. The set of words that an automaton A accepts is called the language
recognized by A. An automaton without initial and ACCEPT states, as defined
in Definition 7.1 is sometimes called a semi-automaton. In this thesis, however,
we will use definitions and notations of [Vol08] and we will call it simply an
automaton.

An automaton can be represented by a graph, called the state diagram, in
which the nodes represent the set of states, the edges represent the transition
function and the label of the edges are the different actions.

Example 7.1. An automaton is represented in Figure 7.1. If the automaton is in state
1 and the letter a is applied, the automaton will be in state 2. If the automaton is in
state 1 and the word aab is applied, it will be in state 3.

It is also common to represent an automaton by a set of matrices, in which
the set of rows represents the set of states and the matrices represent the dif-
ferent letters or actions. The matrices will have one 1 in each row, and the
matrix will have a 1 in position i, j if the corresponding action sends the state
i to the state j:

i× a→ j.

The state of the automaton is then represented as a row vector v> with a 1 in
the column corresponding to the state and 0 everywhere else. The new state
after applying action a is then computed with the product v>A, where A is
the matrix representing action a.
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1 2

34

a,b

b

b

b

a

aa

Figure 7.1: A simple automaton with four states and two letters.

Example 7.2. The automaton of Example 7.1 can be represented by the set of matricesA =


0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , B =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


 .

The state 1 is represented by (
1 0 0 0

)
and the transition when letter a is applied by(

1 0 0 0
)
A =

(
0 1 0 0

)
.

The word aab will correspond to the product

AAB =


0 0 1 0

0 0 1 0

0 0 0 1

1 0 0 0


and in this representation as well, we can see that the word aab sends state 1 onto
state 3, because the element in position 1, 3 in AAB is equal to 1, and thus(

1 0 0 0
)
AAB =

(
0 0 1 0

)
.

In this thesis, we call automaton matrices the matrices that can possibly ap-
pear in this representation.

Definition 7.2 (Automaton matrix). A matrix is called automaton matrix if it
has exactly one 1 on each row and 0 everywhere else.
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It is easy to verify that automaton matrices are stochastic and the product
of two automaton matrices is an automaton matrix.

7.2 Reset Threshold and Černý Conjecture

This section is an introduction to synchronization and the Černý conjecture.
An automaton is synchronizing if there is a sequence of actions that sends all
states on the same state. Such a sequence is called a synchronizing word. To a
synchronizing word corresponds a product of the matrices that has a positive
column, and to the state on which all states are sent corresponds the column
that is positive. For a synchronizing automaton, the reset threshold is defined
as the length of the shortest synchronizing word.

Conjecture 7.1 (Černý conjecture [Čer64]). Let A be a synchronizing automaton
with n states. A has a reset threshold of at most (n− 1)2.

The best known bound on the length of the reset threshold is 114n3

685 +O(n2)

[Szy18] which is a slight improvement over the following theorem, due to Pin
and Frankl.

Theorem 7.1 (Bound on the Reset Threshold [Pin83, Fra82]). Let A be a syn-
chronizing automaton with n states. A has a synchronizing word of length at most
n3−n

6 .

It is known that, if the Černý conjecture is true, then it is tight for all n.
Indeed, for any n there is an synchronizing automaton whose reset threshold
is (n− 1)2. We now describe these automata.

Definition 7.3 (Černý family of automata [Čer64]). The Černý family of au-
tomata is defined as

Cn =

A =


0 1

0 1
. . .

1

 , B =


1

. . .
1

1


 ,

where the omitted elements are zeros. In particular, C4 is the automaton of Exam-
ple 7.1 and Figure 7.1.

The Černý family of automata will provide a lower bound on the Černý
function, that we define now.
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Definition 7.4 (Černý function). The Černý functionC(n) is defined as the largest
reset threshold among all automata with n states.

The Černý family is the only known infinite series of automata with a reset
threshold of (n− 1)2.

Theorem 7.2 (Lower Bound on C(n) [Čer64]). The Černý automaton Cn defined
in Definition 7.3 has a reset threshold of (n− 1)2.

Combining Theorems 7.2 and 7.1 yields

(n− 1)2 ≤ C(n) ≤ n3 − n
6

,

while Theorem 7.2 allows to state the Černý conjecture as

C(n) = (n− 1)2.

7.3 Deciding Synchronization

We have seen that synchronization is the existence of a word that brings all
states to a common state. In fact, a necessary and sufficient condition for syn-
chronization is that for any pair of states, there is a word that brings the two
states of the pair to a common state. This was established in Černý’s original
article [Čer64, Theorem 2]. Eppstein [Epp90, Theorem 4] has proposed a poly-
nomial time algorithm to decide synchronization that is based on this result.
It uses a structure that we call the graph of pairs.

Definition 7.5 (Graph of pairs). For a given automaton S, we call the graph of
pairs F(S) the graph defined as follows.

• One node for each unordered pair of states with repetition (n(n+1)
2 nodes),

• an edge from pair i1, i2 to pair j1, j2 if there is a matrix Ak ∈M such that

(Ak)i1j1 , (Ak)i2j2 > 0 (or (Ak)i1j2 , (Ak)i2j1 > 0), (7.1)

where i1, i2, j1, j2 are not necessarily different.

The graph of pairs is usually defined with one edge from pair i1, i2 to pair
j1, j2 for each matrix Ak ∈ M that satisfies (7.1) and called the automaton of
pairs. We define it here as a graph without multiple edges. Removing these
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multiple edges does not change the reachability condition that we will define
in Theorem 7.3. However, these multiple edges would increase the complexity
of the decision procedure described in Section 8.6.1 of Chapter 8 and this is
why we define the graph of pairs without these multiple edges.

Example 7.3. The graph of pairs of the automaton of Figure 7.2 is represented on
Figure 7.3.

1

2

3

Figure 7.2: A simple automaton with three states and two letters (black and
grey edges).

1

2

3 23

12

13

Figure 7.3: Graph of pairs for automaton of Figure 7.2.

The synchronization of an automaton is equivalent to a simple reachability
property in its graph of pairs.

Theorem 7.3 (Criteria for synchronization [Epp90, Theorem 4]). The automaton
S is synchronizing if and only if, in its graph of pairs (as defined above), from each
node representing a pair, there is a path to a node representing a single state.

The graph of pairs has n(n+1)
2 nodes, where n is the number of states.

Checking the criteria of Theorem 7.3 with a breadth-first search algorithm al-
lows to verify whether an automaton is synchronizing with a complexity of
O(n2m) where m the number of letters.

104



7.4. Negative Complexity Results

7.4 Negative Complexity Results

We present negative complexity results regarding the computation and ap-
proximation of the reset threshold of an automaton. The first states that com-
puting the reset threshold is an NP-hard problem.

Theorem 7.4 (Eppstein [Epp90, Theorem 8]). The problem of deciding whether a
given automaton has a reset threshold smaller than or equal to ` is NP-hard.

In fact, stronger hardness results have been obtained. Even approximating
the reset threshold is an NP-hard problem. For the problem of minimizing a
function f(x), a ρ-approximation algorithm is an algorithm that computes a
solution x such that for any instance of the problem

OPT ≤ f(x) ≤ ρOPT,

where OPT is the optimal solution. The following result shows that, un-
less P=NP, there is no n1−ε-approximation algorithm that computes the reset
threshold. Equivalently, unless P=NP, there is no algorithm that for any syn-
chronizing automaton A with n states finds a synchronization word of length
smaller than or equal to n1−ε times the reset threshold of A.

Theorem 7.5 ([GS15, Theorem 5.1]). For every ε > 0, it is NP-hard to approximate
the reset threshold of automata of size n× n within a multiplicative factor n1−ε.

Before Theorem 7.5, a reduction from the SET-COVER problem to the com-
putation of the reset threshold was obtained by Gerbush and Heeringa in
[GH11]. We will generalize it in the next chapter to prove the hardness of
approximating the length of the shortest SIA product of a set.

Definition 7.6 (SET-COVER problem). Given a set of elements U = {1, 2, . . . , n}
and a collection F of subsets of U whose union is equal to U , i.e., U = ∪T∈FT . The
SET-COVER problem is to compute a sub-collection F ′ ⊆ F of the smallest possible
size, whose union still equals to U .

Theorem 7.6 ([DS14, Corollary 1.5]). For every 0 < α < 1, it is NP-hard to
approximate SET-COVER to within (1− α) log2(n).

Unless P=NP, this result is tight in the sense that there is a polynomial time
log2(n)-approximation algorithm for the SET-COVER problem.

We can see that the approximation ratio of Theorem 7.6 is smaller than that
of Theorem 7.5, so that the reduction from the SET-COVER problems yields a
weaker result than Theorem 7.5.
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7.5 Conclusion

We have presented classical results from automata theory that we will use
in the next chapter. We will see that these results generalize easily to sets
of stochastic matrices. This will allow us to answer some questions such as
bounding the length of the smallest SIA product of a set of stochastic matrices
or deciding whether a set of stochastic matrices is SIA.
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Chapter 8

Almost Contractive Sets of Ma-
trices

We study the shortest SIA1 products of sets of matrices. We observe that the
shortest SIA product of a set of matrices is usually very short and we provide
a first upper bound on the length of the shortest SIA product (if one exists) of
any set of stochastic matrices.

When particularized to automata, the problem becomes that of finding pe-
riodic synchronizing words, and we develop the consequences of our results
in relation with the celebrated Černý conjecture in automata theory.

We also study the related notions of positive-column, Sarymsakov, and
scrambling matrices.

This chapter presents the results of [CGHJ17] and [CHJ15b] and is orga-
nized as follows.

• In Section 8.1, we recall the definition of almost contractive sets and
we motivate the study of shortest SIA and positive-column products of
these sets.

• In Section 8.2, we define several indices: to a set of stochastic matrices S,
we associate a quantity called the SIA index of S that is equal to the length
of the shortest SIA product of matrices from S. We define similar indices
characterizing the shortest positive-column, Sarymsakov, or scrambling
product of a set. We also define quantities equal to the largest SIA index,
largest positive-column index etc. among all sets of almost contractive
sets.

1We recall that a matrix A is SIA if it is stochastic and limt→∞ At exists and is a rank-one
matrix.
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• Section 8.3 contains the main theoretical contributions of this chapter.
We study the relation between the indices. We also show that, for any
dimension n the largest SIA index among sets of n × n matrices can al-
ways be obtained with a set of automaton matrices. We prove the same
result for the positive-column index, which also establishes a link with
the Černý conjecture, because the positive-column index of a set of au-
tomaton matrices is equal to the reset threshold of this set.

• In Section 8.4, we give lower and upper bounds on the largest positive-
column index.

• Section 8.5 is devoted to the properties of the SIA index. Lower and
upper bounds on the largest SIA index are provided, and we present an
experiment that computes the largest SIA index for small values of n.

• In Section 8.6 we discuss the procedure to decide whether a given set
of matrices is almost contractive and the hardness of computing and
approximating the SIA index and the other indices.
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8.1 Introduction

In this chapter, we study almost contractive sets of matrices. We recall that a
stochastic matrix is SIA if the limit

lim
t→+∞

P t

exists and all of its rows are equal, i.e., the limit is a rank-one matrix.

Definition 8.1 (Almost contractive set). We say that a set of stochastic matrices S
is almost contractive if there is a product of matrices from S with repetitions allowed
that is an SIA matrix.

Almost contractive sets are the sets that have a left-infinite product that
converge to a matrix with all its rows equal, as indicated en the following
proposition.

Proposition 8.1. A set S = {A1, . . . , Am} of stochastic matrices is almost contrac-
tive if and only if there is a infinite sequence of indices σ ∈ Σ such that

lim
t→∞

Aσ(t) . . . Aσ(1)Aσ(0) = 1y>

for some y ∈ Rn satisfying y>1 = 1.

Proof. The ”only if” part is evident, as repeating infinitely the SIA product
yields the desired infinite product (and the condition that y>1 = 1 simply
follows from the stochasticity of the matrices in the product).
If: since the limit limt→∞Aσ(t) . . . Aσ(1)Aσ(0) = 1y> has a positive column,
there is a finite t such that P , Aσ(t) . . . Aσ(1)Aσ(0) has a positive column and
this product P is SIA (by Proposition 2.3). �

For an almost contractive set S, we denote by sia(S), sar(S), scr(S) and
pc(S) the lengths of the shortest SIA, Sarymsakov (Definition 2.3), scrambling
and positive-column products of matrices from S2, and we call these quanti-
ties the SIA index, the Sarymsakov index, the scrambling index and the positive-
column index of the set S. The positive-column index has been studied exten-
sively in the context of automata theory [Vol08]. Indeed, for sets of automaton
matrices, the positive-column index is equal to the reset threshold of the au-
tomaton represented by this set. The scrambling index has been studied in the
case of a single matrix [AK09].

2We will see that these products always exist.
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These indices are similar and related to the classical and well studied no-
tion of exponent – the length of the shortest product that is entrywise positive,
if one exists (see [BR91, Section 3.5] for a survey of the single matrix case,
and [GGJ18, PV12] for more recent work on matrix sets).

In the context of a system whose switching sequence can be controlled,
an SIA product corresponds to a switching sequence that can be repeated to
make the system converge to a rank-one matrix. Thus, shorter SIA products
correspond to simpler controllers. Furthermore, the length of the SIA product
has an influence on the converging rate. Indeed, if P = A` . . . A2A1 is an
SIA product, the sequence . . . A` . . . A2A1A` . . . A2A1 converges to a rank-one
matrix at an average rate of λ1/`

2 , where λ2 is the second largest eigenvalue of
P .

Finally, the study of these indices brings new insights to synchronizing
automata and the Černý conjecture [Čer64] that we presented in the previous
chapter and that states that for any set of automaton n × n matrices S either
there is a product of length at most (n − 1)2 of matrices from S having a pos-
itive column or there is no such product at all. The conjecture has been open
for half a century and the best bound obtained so far is cubic in n [Vol08]. As
we will soon see, a good upper bound on the SIA index of n × n matrices
would improve the state of the art on the Černý conjecture. In particular, any
subquadratic bound would bring a breakthrough. Additionally, we will see
that the Černý conjecture can be generalized to sets of stochastic matrices, in
the sense that it holds for sets of stochastic matrices if and only if it holds in
its classical formulation, for automata.

8.2 Indices and Bounds

In the present section we associate a natural combinatorial parameter with
each of the classes of SIA, Sarymsakov, scrambling and positive-column ma-
trices. We study the relation between these indices and we provide bounds on
these indices that depend only on the size of the matrices.

Definition 8.2 (X index). Let X be a class of matrices. The X index of a set of
matrices S is the smallest ` such that there is a product of length ` of matrices from S

belonging to X .

If we say that set belongs to a class X if there is a product of the set that
belongs toX , then theX index can be seen as the length of the shortest witness
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proving that a set does belong to the class X . If no product of S belongs
to X , we will agree that the X index is undefined. In this section, we will
focus on SIA, Sarymsakov, scrambling and positive-column indices of almost
contractive sets and we will denote the corresponding index of a set S by
sia(S), sar(S), scr(S), pc(S). We note that our terminology is in agreement
with the case of a single matrix, where the scrambling index has received a lot
of attention [AK09]. We would also like to remark the positive-column index
has been extensively studied for sets of automaton matrices, since it is equal
to the reset threshold of the corresponding automaton.

An almost contractive set has well-defined Sarymsakov, scrambling and
positive-column indices, as shown in the next proposition.

Proposition 8.2. For any set of stochastic matrices S the four statements are equiv-
alent.

(i) There exists an SIA product of matrices from S

(ii) there exists a Sarymsakov product of matrices from S

(iii) there exists a scrambling product of matrices from S

(iv) there exists a positive-column product of matrices from S.

Proof. By Proposition 2.3, for any SIA product P , there is a power p such that
P p has a positive column. Hence (i) ⇒ (iv). Additionally, the inclusions of
Proposition 2.4

SPC ⊂ SSCR ⊂ SSAR ⊂ SSIA.

imply
(iv)⇒ (iii)⇒ (ii)⇒ (i).

�

An almost contractive set is therefore a set of stochastic matrices that has
an SIA product, a Sarymsakov, a scrambling and a positive-column product.

One of the basic questions arising in regard with these indices is how large
the index of a set of n × n stochastic matrices can be? Such questions have
received a lot of attention for the exponent [BR91, Section 3.5] that can be seen
as the X index, where X is the class of positive matrices. Likewise, the reset
threshold of automata – that can be seen as the positive-column index in the
case of automaton matrices – has been studied extensively [Vol08].
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We will study the quantities sia(n), sar(n), scr(n) and pc(n), that we de-
fine as the largest SIA, Sarymsakov, scrambling and positive-column indices
among all sets of n × n stochastic matrices. We also study siaA(n) that we
define as the largest SIA index among all sets of n× n automaton matrices.

8.3 Relation between Indices

In this section, we study the relation the quantities sia(n), sar(n), scr(n), pc(n),
as well as siaA(n) and C(n). We recall that C(n) is defined as the largest reset
threshold among all automaton with n states, or equivalently, as the largest
positive-column index among sets of automaton matrices. We show that

pc(n) = C(n), (8.1)

and
sia(n) = siaA(n) (8.2)

meaning that the largest SIA and positive-column indices can be reached by
sets of automaton matrices. We then establish the following relations between
the indices.

sia(n) ≤ sar(n) = scr(n) = pc(n) ≤ (n− 1) sia(n).

We start by showing that, in the case of automaton matrices, the notions of
Sarymsakov, scrambling and positive-column coincide.

Proposition 8.3. Let P be an automaton matrix. The three properties are equivalent:

(i) P is Sarymsakov

(ii) P is scrambling

(iii) P is positive-column.

Proof. The inclusions SPC ⊂ SSCR ⊂ SSAR ⊂ SSIA of Proposition 2.4 imply (iii)
⇒ (ii) and (ii)⇒ (i), so that (i)⇒ (iii) remains to be proved. Let P be Sarym-
sakov. Recall that a stochastic matrix is Sarymsakov if for any two disjoint
nonempty subsets S and S′ the consequent function F satisfies either

F (S) ∩ F (S′) 6= ∅ (8.3)

or
|F (S) ∪ F (S′)| > |S ∪ S′|. (8.4)
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Let i, j ∈ {1, . . . , n}. Condition (8.4) cannot be satisfied for sets S = {i} and
S′ = {j} because

|FP ({i}) ∪ FP ({j})| > |{i} ∪ {j}| = 2

would imply

|FP ({i})| > 1 or |FP ({j})| > 1,

which means that row i or row j has more than one positive element, which
is impossible by the definition of an automaton matrix. Therefore, Condition
(8.3) is satisfied for any pair of singletons S = {i}, S′ = {j}, meaning that
for any rows i, j, the positive element in row i is in the same column as the
positive element in row j, so that the matrix P is in fact positive-column. �

Corollary 8.1. For any set of automaton matrices S,

sar(S) = scr(S) = pc(S).

In order to prove Equation (8.1), the equality between pc(n) and the largest
reset threshold of n states automata, we define an associated automaton to any
set of stochastic matrices, a construction that has been developped in [BJO15]
for the study of primitive matrix sets.

Definition 8.3 (Pattern domination). Let A and B be nonnegative matrices. We
write A � B and say that matrix A dominates matrix B if

∃a ∈ R such that aA ≥ B,

where ≥ is an elementwise inequality. This corresponds to the matrix A having a
positive element at each position at which the matrix B has a positive element.

Definition 8.4 (Automaton associated with a set). Let S = {A1, . . . , Am} be a
set of stochastic matrices. We call the automaton associated with the set S, the
automaton S′ containing all automaton matrices that are dominated by some matrix
of S, that is

S′ , {A′ | A′ ∈ SAUTO and ∃A ∈ S s. t. A � A′ },

with SAUTO the set of automaton matrices.
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Note that the associated automaton can contain a very large number of
matrices but we will only use it in proofs and we will not construct it explicitly
in any algorithm.

Example 8.1. The automaton associated to set

S =

A1 =


0 1 0 0

0 0.8 0.2 0

0 0 1 0

0 0 0 1

 , A2 =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0




is

S′ =

A
′
1 =


0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

 , A′2 = A2, A
′
3 =


0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1




We now define a way to represent products or words on a graph. This
construction is again inspired by a similar construction in [BJO15].

Definition 8.5 (Graph associated with a word). Given a set S = {A1, . . . , Am}
of stochastic matrices and a word w = w` . . . w1 on the alphabet {1, . . . ,m}, we call
graph associated with the word w the graph whose adjacency matrix is

0 Aw`

. . . . . .
. . . Aw2

. . . Aw1

0


.

Example 8.2. For the set S of Example 8.1, the graph associated with the word 11221
is depicted in Figure 8.1.

In Lemma 8.1, we will look for an in-tree in the graph associated with a
word because the in-tree corresponds to a synchronizing word of the associ-
ated automaton.

Definition 8.6 (In-tree and spanning in-tree). We call an in-tree a directed graph
in which, for a vertex r called the root and any other vertex v, there is exactly one
directed path from r to v. For a digraph G, we call a spanning in-tree an in-tree that
has the same set of nodes as G and whose set of edges is a subset of that of G.
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Figure 8.1: graph associated with the word 11221 for S defined in Example
8.1. The edges corresponding to matrix A1 are in black, those corresponding
to matrix A2 are in grey.

The next lemma relates positive-column products of a set S of stochas-
tic matrices and synchronizing products of its associated automaton S. This
lemma means in particular that a set S is almost contractive if and only if its as-
sociated automaton is synchronizing and additionally that they have column-
positive products of the same lengths.

Lemma 8.1. Let S = {A1, . . . , Am} be a set of stochastic matrices, and let S′ =

{A′1, . . . , A′m′} be the associated automaton of S, as defined in Definition 8.4. A word
w = w` . . . w1 over the alphabet {1, . . . ,m} is positive-column for S if and only if
there is a word w′ = w′` . . . w

′
1 over the alphabet {1, . . . ,m′} that is synchronizing

for S′ and such that
∀i ∈ {1, . . . , `}, Awi � A′w′i .

Proof. If: The productAw = Aw`
. . . Aw1 dominatesA′w′ = A′w′`

. . . A′w′1
because

eachAwi dominatesA′w′i and domination is preserved under multiplication. In
particular, if A′w′ has a positive column, the same column is positive in Aw.

Only if: We call the node (i, j) with i ∈ {1, . . . , n}, j ∈ {0, . . . , `} the node
corresponding to the ith row of the (` − j)th block-row of the matrix of Defi-
nition 8.5. This numbering is represented in Figure 8.1. Suppose that Aw has
a positive kth column. Therefore, in the graph G(w) associated with the word
w, from each node (i, `), there exists a path to node (k, 0). The graph of these
paths has a spanning in-tree rooted in k (an example is given in Figure 8.2).
In G(w), for each node, there is at most one outgoing edge that belongs to the
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spanning in-tree. Therefore, some edges of G(w) can be removed such that the
graph still has the same spanning in-tree and each node has exactly one outgo-
ing edge. We perform the corresponding operations on the matrices that form
the product Aw`

. . . Aw1
, that is, we set to zero positive elements that do not

correspond to edges of the spanning in-tree and such that on each row of each
matrix, exactly one element remains positive. Then, we set to 1 all remaining
positive elements. We obtain a new product A′w′` . . . A

′
w′1

for which

• the kth column is positive

• ∀i, Awi
� A′w′i

• ∀i, A′w′i is an automaton matrix by construction,

from which we conclude that eachA′w′i belongs to S′ the automaton associated
with the set S and that w′ is synchronizing for S′. �

Example 8.3. The graph associated with the word 11221 is represented in Figure
8.2. The in-tree is in black. We see that removing the dashed edges allows keeping the
in-tree and having exactly one outgoing edge from each node. Without these dashed
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Figure 8.2: Graph associated with the word 11221. In black: the in-tree. With-
out the dashed edges, the graph is that of the word 11223 of automaton S′.

edges, the graph becomes that associated with the word 11223 of automaton M =

{A′1, A′2, A′3}.

The next two results highlight the importance of sets of automaton ma-
trices in the study of sia(n) and pc(n), the largest SIA and positive-column
indices.
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Theorem 8.1. For any dimension n ∈ N, the largest positive-column index among
all sets of n × n stochastic matrices is equal to the largest positive-column index
among all sets of n× n automaton matrices:

pc(n) = C(n).

Proof. Since the set of sets of automaton matrices is a subset of the set of sets
of stochastic matrices and since C(n) and pc(n) can be seen as optimization
problems on these sets, we have that pc(n) ≥ C(n).

Now, let S be a set of n × n stochastic matrices with pc(S) = pc(n) (such
a set exists by definition of pc(n)). By Lemma 8.1, its associated automaton S′

satisfies
pc(S′) = pc(S) = pc(n).

Moreover, we have, by definition of C(n),

pc(S′) ≤ C(n).

Hence
pc(n) = pc(S′) ≤ C(n)

and
pc(n) = C(n).

�

Theorem 8.2. For any dimension n ∈ N, the largest SIA index among all sets of
n × n stochastic matrices is equal to the largest SIA index among all sets of n × n
automaton matrices:

sia(n) = siaA(n).

Proof. The proof is similar to that of Theorem 8.1. We have that sia(n) ≥
siaA(n) because automaton matrices are stochastic.

Now, let S be a set of n × n stochastic matrices with sia(S) = sia(n) (such
a set exists by definition of sia(n)). By Lemma 8.1, its associated automaton S′

is synchronizing and therefore also almost contractive. We observe that any
SIA product of S′ has a length larger than or equal to sia(S). Indeed, since the
matrices of S dominate those of S′, we have that if P = A′1 . . . A

′
` is an SIA

product of length ` of matrices from S′, then replacing each A′i by a matrix Ai
of S satisfying Ai � A′i yields an SIA product of length ` of matrices from S.
Hence,

siaA(n) ≥ sia(S′) ≥ sia(S) = sia(n)
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and the proof is complete. �

We will now prove the main result of this section. First, observe that for
every almost contractive set S, we have the following inequalities as a direct
consequence of Proposition 2.4:

sia(S) ≤ sar(S) ≤ scr(S) ≤ pc(S). (8.5)

Theorem 8.3. Let sia(n), sar(n), scr(n), pc(n) be the largest values of the cor-
responding indices among all almost contractive sets of n × n matrices. For any
dimension n ∈ N, we have

sia(n) ≤ sar(n) = scr(n) = pc(n) ≤ (n− 1) sia(n). (8.6)

Proof. First, notice that we have the following inequalities as a direct conse-
quence of (8.5):

sia(n) ≤ sar(n) ≤ scr(n) ≤ pc(n).

It remains to prove that pc(n) ≤ sar(n) and pc(n) ≤ (n − 1) sia(n). We first
prove pc(n) ≤ sar(n). Let sarA(n) be the largest Sarymsakov index among all
n× n sets of automaton matrices.

pc(n) = C(n) (8.7)

= sarA(n) (8.8)

≤ sar(n). (8.9)

The first equality (8.7) is Theorem 8.1. The second (8.8) is a consequence of
the fact that an automaton matrix is Sarymsakov if and only if it is positive-
column (see Proposition 8.3). Inequality (8.9) holds because automaton matri-
ces form by definition a subset of stochastic matrices.

We now prove pc(n) ≤ (n− 1) sia(n). We have

pc(n) = C(n) (8.10)

≤ (n− 1) siaA(n) (8.11)

= (n− 1) sia(n). (8.12)

The first equality (8.10) is Theorem 8.1, the second (8.11) is due to Corol-
lary 2.3, that states that the n − 1st power of an SIA automaton matrix has
a positive column and the third (8.12) is Theorem 8.2. �
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8.4 Bounds on the Positive-Column Index

In this short section, we discuss bounds on pc(n). Theorem 8.1 that establishes
the equality

pc(n) = C(n)

allows us to use known results from automata theory and to apply them to
pc(n). The best known upper bound on the reset threshold of automata of
size n is n3−n

6 (Theorem 7.1) and it translates immediately to a bound on pc(n).
Furthermore, any new bound on C(n), would provide a new bound on pc(n).

This applies to lower bounds on C(n) as well since these C(n) = pc(n)

are equal. In particular, (n − 1)2 is the best known lower on C(n) and this
translates to (n− 1)2 ≤ pc(n).

Finally, Theorem 8.1 also means that any new bound on pc(n) would pro-
vide a new bound on C(n).

Theorem 8.4. Let S be an almost contractive set. The positive-column index of S is
at most n

3−n
6 and at most (n− 1)2 if Conjecture 7.1 holds.

Proof. This a consequence of Corollary 8.1, Conjecture 7.1 and Theorem 7.1.
�

8.5 Bounds on the SIA index

In the previous section, we have given lower and upper bounds on pc(n). In
Theorem 8.3, we have seen that sar(n) = scr(n) = pc(n) so these bounds also
apply to sar(n) and scr(n).

We now study the SIA index and in particular sia(n), the largest SIA index
among all sets of n× n stochastic matrices. To the best of our knowledge, the
SIA index is a new notion. The study of sia(n) has potential consequences
for the Černý conjecture. Indeed, we have seen in Theorem 8.3 that C(n) ≤
sia(n)(n − 1) and a good upper bound on sia(n) could therefore improve the
state of the art of the conjecture.

We provide general upper and lower bounds on sia(n) that depend only
on n. We conjecture that sia(n) is bounded by 2n and we describe the results
of our computational experiments to estimate sia(n) for small values of n.
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8.5.1 Upper bounds

Thanks to Theorems 8.3 and 8.1, any upper bound on C(n) translates into a
bound on sia(n). In particular, Theorem 7.1 provides the upper bound

sia(n) ≤ n3 − n
6

.

In fact, we believe that sia(n) is much smaller and we propose the following
conjecture.

Conjecture 8.1. The SIA index of a set of n × n stochastic matrices is bounded by
2n.

In the next subsections we will support this conjecture by providing re-
sults of computational experiments and analysis of sets that are extremal for
the Černý conjecture. We believe that Conjecture 8.1 offers a new angle on the
Černý conjecture and can bring new insights. First, sia(n)(n − 1) is an upper
bound on C(n) (Theorem 8.3) and therefore, if Conjecture 8.1 is true, then any
synchronizing automaton of size n has a reset threshold at most 2n(n − 1),
which is a significant improvement of the state of the art. Second, the SIA
index tends to be surprisingly small for automata with large reset thresholds
highlighting the structural properties of these particular cases: Rystsov’s au-
tomata [Rys97, p. 279], Černý automata [Vol08], and other slowly synchroniz-
ing automata [AVG13] have small SIA-indices.

8.5.2 Numerical results

We now present the results of our computational experiments that support
our Conjecture 8.1. Since the bound on SIA index for automaton matrices is
equal to the bound on the SIA index for stochastic matrices (Proposition 8.2),
we only investigate automaton matrices. We have computed on a computer
cluster the SIA index of all automata made of two matrices up to n = 7, and
up to n = 9 for initially connected automata, a notion that we will define soon.
The results are summarized in Table 8.1. We have done the same for all triplets
of automaton matrices up to n = 5 (Table 8.1), and we obtain exactly the same
maximum SIA-indices.

The maximum SIA index grows approximately like 2n, as shown in Figure
8.3. We were not able to find a pattern in the sequence 0, 1, 3, 5, 8, 10, 13, 15, 16

of largest SIA indices nor could we relate it to a well-known integer sequence.
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n maximum SIA index,
two matrices, all au-
tomata

maximum SIA index,
two matrices, IC au-
tomata.

maximum SIA index,
three matrices, IC au-
tomata

1 0 0 0
2 1 1 1
3 3 3 3
4 5 5 5
5 8 8 8
6 10 10
7 13 13
8 15
9 16

Table 8.1: Exhaustive tests for pairs and triplets of automaton matrices. The
first column is the size of the matrices, the second column is the maximum
SIA index of two-matrices automata, the third column is the maximum SIA
index of two-matrices initially connected automata (see Definition 8.8), and
the fourth column is the maximum SIA index of three-matrices automata.

Examples of sets of 8 × 8 and 9 × 9 matrices that have an SIA index of 15

and 16 are depicted on Figure 8.4.
Our methodology is the following. For the exhaustive tests, we have enu-

merated all sets of automaton matrices and for each set we have computed its
SIA index. In order to compute the SIA index, we have enumerated all matrix
products corresponding to Lyndon words (Definition 8.7 below) of increas-
ing length, until an SIA product is found. Proposition 8.4 guarantees that the
correct SIA index is computed.

To compute the SIA index of a set, it is not necessary to compute all prod-
ucts up to a given length. We observe that for any stochastic matrices (or
products of matrices) A1 and A2:

A1A2 is SIA ⇔ A2A1 is SIA (8.13)

and that
∀p ≥ 2, Ap1 is SIA ⇔ A1 is SIA . (8.14)

For a set S = {A1, A2, . . . , Ak}, we can define an arbitrary ordering A1 ≺
A2 ≺ . . . ≺ Ak. Clearly, the products of matrices from S are in one-to-one
correspondence with words – the sequences of the symbolsA1, A2, . . . , Ak. The
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Figure 8.3: Maximum SIA index for pairs of matrices (blue) and the curve
y = 2n (red).

lexicographic order on the words is: P ≺ Q if either Q = PU for some word U ;
or P = UAiV and Q = UAjW for Ai ≺ Aj and some words U, V,W .

Definition 8.7 (Lyndon word [Lyn54]). A cyclic shift of a word P is a word of the
form V U if P = UV . A non-empty word P is Lyndon if it is strictly smaller in the
lexicographic order than all of its cyclic shifts.

Proposition 8.4. Let S be an almost contractive set of matrices such that sia(S) = `.
There is a Lyndon word of length ` such that the corresponding product of matrices
from S is SIA.

Proof. Properties (8.13) and (8.14) guarantee that there is always a shortest
SIA product P that is aperiodic and that is not larger than any of its cyclic
permutation. We can then invoke the classical result about the Lyndon words
stating that an aperiodic word that is not larger than any of its cyclic shifts is
actually Lyndon [Lot97, Proposition 5.1.2]. �

We have noticed in our tests that all extremal examples are initially con-
nected (in fact, even strongly connected).
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(a) Pair of 8 × 8 matrices that has an SIA index of
15. This is the only such pair up to relabelling of
the nodes.

(b) Pair of 9 × 9 matrices that has an SIA index of
16. There are 12 different (up to relabelling of the
nodes) sets that have an SIA index of 16.

Figure 8.4: Examples of matrix sets that have extremal SIA index. The matrices
are represented by their graphs, the blue edges represent the positive elements
of one matrix and the red edges the other matrix.

Definition 8.8 (Initially connected). A set of automaton matrices {P1, . . . , Pm} is
called initially connected or IC if in the graph associated with the matrix P1 + · · ·+
Pm there exists a node q such that there is a path from q to any node of the graph. In
particular, if the graph associated to P1 + · · · + Pm is strongly connected, the set is
initially connected.

Therefore, we have decided to analyze larger values of n restricted to the
case of initially connected automaton matrices. This has allowed us to perform
the tests up to n = 9 instead of n = 7.
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8.5.3 Lower bounds

Corollary 2.3 implies that automaton matrices with a large reset threshold
have a large SIA index as well. Therefore, we focused on automata that are
known to be tight for the Černý conjecture. The results are summarized in Ta-
ble 8.2. A list of automata that are known to be tight for the Černý conjecture
can be found in [Vol08].

Automaton SIA index
Černý family (with n ≥ 3) n

3 states (3 different automata) 3
4 states (3 automata) 5
5 states 7
6 states (Kari automaton) 9

Table 8.2: SIA-indices of automata that are known to be tight for the Černý
conjecture.

In the next proposition, we establish a lower bound on sia(n). We do so
by proving that the Černý family of automata (see Definition 7.3) has an SIA
index of n. Recall that

Cn =

A =


0 1

0 1
. . .

1

 , B =


1

. . .

1

1


 . (8.15)

We will see that its shortest SIA product is equal to ABn−1. For small values
of n, the values computed in Table 8.1 provide slightly better lower bounds.

Proposition 8.5. The Černý set Cn of matrices of dimension n has an SIA index of
sia(Cn) = n.

Proof. Observe first that (ABn−1)n−2A (with A and B as in Equation 8.15) has
a positive column because the corresponding word (abn−1)n−2a is synchro-
nizing [Čer64]. Thus (ABn−1)n−1 also has a positive column and ABn−1 is
SIA. Thus, sia(Cn) ≤ n.

Furthermore, sia(Cn) ≥ pc(Cn)
n−1 (Corollary 2.3) and pc(Cn) = (n−1)2 (i.e., the
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reset threshold of the Černý automaton is (n−1)2, see e.g. [Gus13]). Therefore,
sia(Cn) ≥ (n− 1).

It remains to show now that the case sia(Cn) = (n − 1) is impossible. As-
sume to the contrary that P is an SIA product of length n − 1. Therefore,
Pn−1 has a positive column (by Corollary 2.3). By [Gus13, Proposition 4] ev-
ery positive-column product of Cn has at least of n2 − 3n+ 2 occurrences of A
and n− 1 occurrences of B, thus, P has exactly one occurrence of A and n− 2

occurrences ofB. Applying Proposition 8.4 we further conclude that the word
An−2B corresponds to an SIA product as well, which is not the case.

�

Now we will analyze a set of matrices derived from the Wielandt series of
matrices that have the largest possible exponent among n× n matrices [BR91,
Chapter 3.5]. Matrix sets of this kind often appear in the study of combinato-
rial characteristics of matrix sets, e.g. generalizations of the exponents [SS03]
or in the study of positive-column indices [AVG13]. We define the Wielandt
set of automaton matrices as

Wn =


A =



1

1
. . .

1

0 1


, B =



1

1
. . .

1

1 0




,

where the omitted elements are zeros.

Proposition 8.6. The Wielandt set of matricesWn has an SIA index of sia(Wn) =

n− 1.

Proof. Recall that the shortest positive-column product ofWn has length n −
3n+3 [AVG13, Theorem 2]. Since (n−1) sia(Wn) cannot be strictly smaller than
n− 3n+ 3 by Corollary 2.3, we immediately conclude that sia(Wn) ≥ (n− 1).
This bound is tight, since ABn−2 is the desired SIA product. �

8.6 Complexity Results

In the present section we address algorithmic problems related to almost con-
tractive sets and the SIA index.
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8.6.1 Deciding whether a Set is Almost Contractive

Proposition 8.2 states that for a set S, the existences of a positive-column prod-
uct, of a scrambling product, of a Sarymsakov product, and of an SIA product
are equivalent. An algorithm to decide whether a set is almost contractive has
been described in [PV12, Section 5]. Essentially, the decision procedure to de-
termine whether a set S has a positive-column product amounts to applying
Theorem 7.3 to the associated automaton of S. The graph of pairs of S′ can be
computed directly from S, without actually computing S′ that can contain a
very large number of matrices. The total complexity isO(mn4) [PV12, Section
5].

8.6.2 Complexity of Approximating the Indices

In this section we prove some negative complexity results related to the ap-
proximation of the indices sia(S), sar(S), scr(S) and pc(S) for a given set of
stochastic matrices S. The first result is a direct generalization of Theorem 7.5.

Theorem 8.5. For every ε > 0, it is NP-hard to approximate the Sarymsakov, scram-
bling and positive-column indices of sets of n× n stochastic matrices within a multi-
plicative factor n1−ε.

Proof. For a set of automaton matrices S, sar(S) = scr(S) = pc(S) (Corol-
lary 8.1). Therefore, the problems of approximating sar(S), scr(S) and pc(S)

within a multiplicative factor n1−ε are NP-hard when restricted to sets of au-
tomaton matrices (Theorem 7.5) and hence NP-hard in general. �

Next, we prove an inapproximability result for the SIA index (Theorem 8.6).
This result also holds in the case where the matrices have a positive diagonal.
Matrices with positive diagonal elements often appear in consensus applica-
tions, where a positive diagonal element represents the weight of the own
value of an agent in the computation of its new value. Restricting a problem
can make it easier and many problems become easier for sets of stochastic
matrices with positive diagonals. For example a set S is almost contractive if
and only if its graph G(S), defined as the union of the graphs G(Ak) of which
Ak are the adjacency matrices, has a spanning in-tree. Constructing this graph
G(Ak) is easier than constructing the graph of pairs and thus deciding whether
a set is almost contractive is easier in the case of matrices with positive di-
agonal. Almost contractive sets of matrices with a positive diagonal have a
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positive-column index smaller than or equal to n − 1 (and a positive-column
product is given by the spanning in-tree).

Theorem 8.6 also holds for the Sarymsakov index, the scrambling index
and the positive-column index. This is new in the case of matrices with a pos-
itive diagonal. In the general case, however, Theorem 8.5 is stronger because
it shows the inapproximability with larger ratios.

The reduction that we use is an adaptation of the reduction in [GH11] from
COVER-SET to computing the reset threshold of an automaton. Here, we will
reduce the COVER-SET problem to the problem of computing the SIA index
of sets of stochastic matrices with a particular pattern. This pattern is the
following: 

1

x x
...

. . .

x x

 , (8.16)

where the elements that are not indicated are 0 and x denotes an element that
can be either positive or zero (at least one in each row will be positive because
the matrices are stochastic). This pattern is preserved under multiplication.
To prove the inapproximability of the SIA index, we will need the fact that
a matrix with this pattern is SIA if and only if it is positive-column. It is a
consequence of the following lemma.

Lemma 8.2. Let S be a set of stochastic matrices with a zero pattern as described in
Equation (8.16) and let P = Aw1

. . . Aw`
be a product of matrices from S. Then P

has a positive (i, 1) element if and only if one of the matrices Awk
has a positive (i, 1)

element:
Pi1 > 0⇔ ∃k, (Awk

)i1 > 0.

Proof. If: Let Awk
be the smallest k such that (Awk

)i1 > 0. Then, by definition
of k:

∀j < k, (Awj
)i1 = 0

and thus
∀j < k, (Awj

)ii > 0 (8.17)

because stochastic matrices have at least one positive element in each row. We
also have

∀j > k, (Awj
)11 > 0,

which, combined with (Awk
)i1 > 0 and (8.17) gives Pi1 > 0.
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Only if: Suppose Pi1 > 0 and let us assume, to obtain a contradiction, that
@k, (Awk

)i1 > 0, that is ∀k, (Awk
)i1 = 0. We have then

(Awk
)ij =

{
1 if i = j;

0 otherwise

and

(Awk
Awh

)i1 =
∑
j

(Awk
)ij(Awh

)j1 = (Awh
)i1 = 0.

Iterating this reasoning conclude the ”only if” part of this lemma. �

Corollary 8.2. Let P be a stochastic matrix with a pattern as in Equation 8.16. The
following assertions are equivalent

(i) P is SIA

(ii) P is Sarymsakov

(iii) P is scrambling

(iv) P is positive-column.

Proof. The implications (iv) ⇒ (iii) ⇒ (ii) ⇒ (i) are consequences of SPC ⊂
SSCR ⊂ SSAR ⊂ SSIA (Proposition 2.4). If P is SIA then there is p such that
P p has a positive column (Proposition 2.3). This positive (first) column is also
positive in P by Lemma 8.2. �

Theorem 8.6. For every α > 0, it is NP-hard to approximate the SIA, Sarymsakov,
scrambling or positive-column index of sets of matrices of size n × n within a factor
(1 − α) log(n). This remains true if the problem is restricted to automaton matrices
or to matrices with positive diagonal.

Proof. We will make two reductions from the COVER-SET problem (Defini-
tion 7.6).

• In the first reduction, we construct a set S of automaton matrices from
a COVER-SET instance and we prove that sia(S) is equal to the size of
the smallest cover of U. This first reduction will prove the NP-hardness
of approximating the SIA index within a factor (1− α) log(n) in general
and when the problem is restricted to automaton matrices.
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• In the second reduction, we construct a set S′ of matrices with a positive
diagonal and we prove that sia(S′) is equal to the size of the smallest
cover of U. This will prove the NP-hardness of approximating the SIA
index within a factor (1 − α) log(n) when the problem is restricted to
matrices with a positive diagonal.

The hardness of approximating the other indices follows from Corollary 8.2
(matrices of both S and S′ satisfy the hypotheses of this corollary).

We start from a SET-COVER instance U = {1, . . . , n} and F a collection of
subsets of U . For every set T ∈ F we construct an (n+ 1)× (n+ 1) matrix AT :

(AT )11 = 1

(AT )i1 = 1 when (i− 1) ∈ T

(AT )ii = 1 when (i− 1) /∈ T

and the other elements are 0. Clearly, each AT is an automaton matrix (and
it is therefore also stochastic). Let S = {AT | T ∈ F}. By Corollary 8.2 a
product of matrices from S is SIA if and only if it has a positive (first) column.
By Lemma 8.2 a product P = AT1

. . . AT`
of matrices from S has a positive

column if and only if
U =

⋃
i=1,...,`

Ti.

Therefore, sia(S) is equal to the size of the smallest cover of U and the first
reduction is complete.

The second reduction is the same with the set S′ = {A′T | T ∈ F}, where
each A′T is a stochastic matrix with a positive diagonal, defined as:

(A′T )11 = 1

(A′T )i1 = 0.5 and (A′T )ii = 0.5 when (i− 1) ∈ T

(A′T )ii = 1 when (i− 1) /∈ T.

�

8.7 Conclusion

Summary of the Results

In this chapter we studied almost contractive sets of stochastic matrices. We
have defined different indices corresponding to the classes of matrices that
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are often used in the analysis of the convergence of products of stochastic
matrices. We have clarified the relation between these indices.

We have studied sia(n), sar(n), scr(n) and pc(n), the largest values that
these indices can take among all sets of n × n stochastic matrices. We have
shown that three of these quantities are equal and we therefore focused on the
remaining quantities sia(n) and pc(n).

We have shown that pc(n) is in fact equal to the well studied quantity
C(n), the largest reset threshold among all n states automata. This allows to
conclude that

(n− 1)2 ≤ pc(n) ≤ n3 − n
6

.

We have obtained similar results for sia(n), as we have proved that

sia(n) = siaA(n),

where siaA(n) is the largest SIA index among all sets of automaton matrices.
This has led to the following bounds:

n ≤ sia(n) ≤ n3 − n
6

and we have conjectured that

sia(n) ≤ 2n.

To support this conjecture, we have computed the SIA-index of

• all 2 letters automata up to 7 states (or said differently all sets of two
automaton matrices),

• all 2 letters initially connected automata up to 9 states,

• all 3 letters initially connected automata up to 5 states,

• all automata that are known to be tight for the Černý conjecture.

Finally, we have studied the complexity of deciding whether a set of stochas-
tic matrix has an SIA, Sarymsakov, scrambling or positive-column index smaller
than or equal to a given `.

Remaining Challenges

Several problems remain open. First, there are significant gaps between the
lower and upper bounds on sia(n) and pc(n). Closing the gap between the
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upper and the lower bound on pc(n) seems to be a very hard problem since it
is equivalent to solving the Černý conjecture, that has been open for more than
fifty years. Proving Conjecture 8.1 also seems very hard for the same reason.
However, we do not know whether the relation between Conjecture 8.1 and
the Černý conjecture goes both ways. Indeed, we have shown that a proof of
our conjecture would greatly improve the state of the art on the Černý conjec-
ture. But we do not know if a counterexample to our conjecture would help
building a counterexample to the Černý conjecture.

Another open problem is to find the best approximation ratio achievable
by polynomial-time algorithms computing the SIA index of a given matrix
set. Since our contribution is based on synchronizing automata theory, the
methods used in [GS15] can potentially be used to establish the exact ratio.

We have proved that for each matrix size n, there is an almost contrac-
tive set of automaton matrices that has the largest possible SIA index among
stochastic matrices of size n× n. We wonder whether representing the largest
SIA index as the solution of an optimization problem on the space of stochastic
matrix sets can lead to another proof of this result.

Indeed, finding the set of stochastic matrices that has the largest SIA in-
dex is an optimization problem. Optimization problems often have their op-
timal solution on the vertices of the admissible set3 and automaton matrices
are the vertices of the polytope of stochastic matrices4. A formulation of this
optimization problem could potentially unify and generalize similar results
appearing in [GGJ18, BJO15].

The main obstacle to this is the characterization of the admissible set of
this optimization problem. The admissible set would be the set of almost con-
tractive sets, whose vertices are not simply the set of almost contractive sets
of automaton matrices. Indeed, the set

0 0.5 0.5

0 0 1

1 0 0




provides an example of almost contractive set that is not a convex combination
of almost contractive sets of automaton matrices.

3for example, when the admissible set and the objective function are convex
4Any stochastic matrix is equal to a convex combination of automaton matrices, and no au-

tomaton matrix is a convex combination of other automaton matrices.
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Conclusion

We have studied contractive sets in Part I. We have developed in Chapter 4
an algorithm to decide whether a set is contractive. To obtain this algorithm,
we have elaborated innovative techniques using invariant polyhedra. In par-
ticular, we have analyzed the polyhedron P that is invariant for P-preserving
matrices, a class that contains all stochastic matrices. We concluded this chap-
ter by answering an open question mentioned in [BO14]: the complexity of
deciding whether a set of two undirected matrices is contractive.

In Chapter 5, we have developed further our analysis of invariant polyhe-
dra and we have obtained a tight finiteness bound. This bound characterizes
the length of products that should be analyzed in order to determine conver-
gence of all infinite products.

In Chapter 6, we have explored the generality of the approach developed
in Chapters 4 and 5. We have seen in the first section of this chapter that this
approach is very general and can be applied to a different setting and polyhe-
dron, namely to the study of primitive sets of matrices. In the second section,
we have shown that not all symmetric polytopes (and thus not all symmetric
polyhedra) have a lattice of double-faces that has the Sperner property. Thus,
the results of Chapters 4 and 5 are still applicable to any polyhedron but the
computation of the finiteness bound will be more difficult in some cases.

A remaining open question is the existence of other applications in which
these developments could be useful. Indeed, our theory is on the one hand
very general (i.e., it applies to all systems that have an invariant polyhedron)
but on the other hand, we have only been able to exhibit two relevant appli-
cations.

In Chapter 4, we have left open the exact complexity of deciding whether
a set is contractive. We have proven the existence of a decision algorithm with
singly exponential time complexity and singly exponential space complexity,
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while earlier work has proved NP-hardness of the problem [BO14]. We still
do not know whether the problem is in PSPACE and whether there exists an
algorithm that has a polynomial space complexity.

In Chapter 5, the tight finiteness bound that we obtained depends on the
dimension of the matrices but does not depend on the number of matrices
in the set. It would be interesting to analyze whether finer bounds can be
obtained when they depend on the number of matrices. A good starting point
would be to analyze the case of sets of two matrices.

In Part II, we considered almost contractive sets. We studied the shortest
SIA, Sarymsakov, scrambling and positive-column products of almost con-
tractive sets. We defined indices that characterize the lengths of these shortest
products and we defined for each matrix size n quantities sia(n), sar(n), scr(n)

and pc(n) that are the largest indices among all sets of n× n stochastic matri-
ces. We have shown that sar(n) = scr(n) = pc(n), reducing our study to two
remaining relevant quantities sia(n) and pc(n). We obtained lower and upper
bounds on them by establishing a link with automata theory and the Černý
conjecture. We indeed showed that the largest SIA and positive-column in-
dices sia(n) and pc(n) can be obtained with sets of automaton matrices. We
have shown that the automata that are known to have a large reset threshold
(i.e., the automata that are tight for the Černý conjecture) have in fact a small
SIA index. This has led us to conjecture that the SIA index is always small and
in particular, that sia(S) ≤ 2n. We have then supported this conjecture with
an computer search for the largest SIA index among almost contractive sets.

This conjecture, and the link with automata theory has also possible con-
sequences for the Černý conjecture. Indeed, a proof of our conjecture would
yield an upper bound of 2n(n − 1) on the reset threshold of automata, which
would be much better that the best known bound of n

3−n
6 .

Contractive set can be recognized using a polynomial-time algorithm de-
scribed in [PV12]. We have proven, however, that the indices are hard to com-
pute. That is, the existence of a SIA product can be decided in polynomial time
but the existence of an SIA of length ≤ ` for a given ` is an NP-hard problem.
Furthermore, even approximating the indices is NP-hard.

An important remaining challenge from Chapter 8 is of course our con-
jecture on the SIA index. There is a large gap between the best lower bound
n and the best upper bound n3−n

6 that we were able to obtain on sia(n) the
largest SIA index among all sets of n× n matrices.

Another open question was mentioned in the conclusion of this chapter.
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We have seen that the largest SIA, Sarymsakov, scrambling or positive-column
index among all sets of n×nmatrices can always be obtained with a set of au-
tomaton matrix and we wonder whether there is a general principle unifying
these results. As already suggested, a formulation of the indices as solution of
optimization problems might provide this unifying principle.

We would like to conclude by observing that many questions are still open.
We have only asked two questions on products of stochastic matrices: the con-
vergence of all infinite products and the convergence of one infinite product.
However, many other questions can be asked about switching systems with
stochastic transition matrices, such as the convergence in the case of state-
dependent switching (where the transition matrix depends on the state of the
system) or in the case of constrained switching (where only a set of sequences
of transition matrices are possible).
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[VCBJ+95] T. Vicsek, Cziroók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel
type of phase transition in a system of self-deriven particles. Phys-
ical Review Letters, 75:1226, 1995.

[Vol08] Mikhail V Volkov. Synchronizing automata and the Černỳ con-
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