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Abstract 
The reciprocity between form and force diagrams in 2D graphic statics makes it possible to manipulate 
the form diagram while directly evaluating the redistribution of the forces within the force diagram. 
Conversely, after modifying the force diagram, the consequent transformation of the form diagram can 
be assessed at once. In the case of vector-based 3D graphic statics, the reciprocity between the 
diagrams is generally not achieved. This paper describes a series of transformations that can be 
applied to a vector-based 3D force diagram while allowing the corresponding 3D form diagram to 
adjust accordingly. Two categories of manipulations of the force diagram are described: global 
transformations that affect simultaneously all the elements of the diagram and local transformations, 
which permit the manipulation of individual elements of the diagram while keeping the others 
unaffected. Thanks to these transformations, the adjustment of the magnitude and the direction of the 
forces in vector-based 3D force diagrams can be used as an active operation in the structural design 
process. 

Keywords: vector-based 3D graphic statics, 3D force diagram, global transformations, local transformations, parallel 
transformations, projective transformations, constraint-driven transformations 

1. Introduction 
One of the most peculiar features of 2D graphic statics is the geometric reciprocity between form and 
force diagrams. This property has been investigated in depth by Maxwell [12], who discussed the case 
of reciprocal diagrams in which corresponding edges are perpendicular to each other. This has been 
followed by the findings of Cremona [6], who defined a geometric procedure to generate reciprocal 
diagrams with corresponding parallel edges. Thanks to the reciprocity of the diagrams, on the one 
hand, it is possible to manipulate the form diagram and evaluate directly the consequences on the 
distribution of the forces in the force diagram. On the other hand, the magnitude and the direction of 
the forces can be modified in the force diagram while assessing the resulting transformation of the 
form diagram. As outlined by Huerta [9], the transformation of the diagrams has been used as a 
fundamental operation for structural design since the introduction of 2D graphic statics.  

In relation to 3D graphic statics, global parallel and projective transformations that preserve the static 
equilibrium of a given form diagram have been extensively reviewed by Fivet [8]. With respect to 
polyhedral-based 3D graphic statics, a method has been described by Akbarzadeh et al. [1] to build the 
reciprocal force diagram of a given form diagram; recursive subdivision operations of the force 
diagram that preserve its reciprocity to the form diagram have been also investigated by the same 
authors. This approach has been recently extended by Lee et al. [11] with the definition of a series of 
additional transformations that are applicable to the polyhedral-based force diagram. As shown by 
Jasienski et al. [10], contrary to the polyhedral-based approach, the reciprocity between the diagrams 
is generally not achieved in vector-based 3D graphic statics. 
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The aim of this paper is to explore a series of transformations that can be applied to the vector-based 
3D force diagram of a spatial network in equilibrium (such as a pin-jointed framework or a strut-and-
tie model within a continuum of material) while adjusting the 3D form diagram accordingly. These 
transformations ensure the parallelism between corresponding edges in the form and force diagrams 
and keep their topology unchanged. Two categories of manipulations are described: global and local 
transformations. The possibility of manipulating the force diagram by means of geometric 
transformations is particularly relevant within the structural design process. Thanks to this 
opportunity, the designer is able to control directly the distribution of the forces within a given 
structure and steer its load-bearing behaviour towards a desired one. In this way, the adjustment of the 
magnitude and the direction of the forces in a vector-based 3D force diagram can be used as an active 
operation in the structural design process. This promotes an approach to design based on the control of 
the forces, which is complementary to the one focused on the form. 

2. Vector-based 3D Graphic Statics 
In vector-based 3D graphic statics, the force diagram of a spatial network in equilibrium is built out of 
vectors. As pointed out by Maxwell [12], this approach allows for the construction of a force diagram 
for any given form diagram in equilibrium and it never becomes geometrically impossible as long as 
the problem is mechanically possible. As in the case of 2D graphic statics, the 3D force diagram is the 
assembly of the closed force polygons representing the equilibrium of the forces acting on the nodes 
of the form diagram; as such, to each edge of the form diagram corresponds a pair of parallel and 
opposite force vectors in the force diagram. These two vectors are usually overlapped in a single edge. 
If all the pairs of vectors are overlapped, the resulting form and force diagrams are reciprocal. As 
proved by Whitney [22], this is possible only if the underlying graph of the form diagram is planar. 
Spatial structures with planar graphs are for example, meshes composed of bars in space (Mitchell et 
al. [15]) and specific 3D configurations, including among others, some classical tensegrity structures 
(Micheletti [14]) and the dependent octahedron (Crapo [5]). Their vector-based 3D reciprocal force 
diagrams have been denominated in literature Cremona Reciprocals (Crapo [5]). However, since 3D 
form and force diagrams are usually not planar, edge-to-edge reciprocity between the 3D diagrams is 
generally not possible (Jasienski et al [10]). Various approaches to extend the concept of reciprocity to 
form and force diagrams with underlying non-planar graphs have been proposed for both 2D and 3D 
cases. Among these, the method of Bow [3] of adding an extra node at the intersection of bars in 2D 
pin-jointed frameworks, the proposal of Crapo and Whiteley [4] of reciprocals as infinite frameworks 
and the approach of Micheletti [14] for the reciprocal diagrams of some 3D self-stressed networks.  

In order to construct the 3D force diagram F* of a given 3D form diagram F in equilibrium with an 
underlying planar topological diagram T, for each vertex Vi of T, the connected edges ei can be listed 
following a defined reading order cycle (Bow [3]). If external forces are present, these are connected 
to one node in the topological diagram and regarded as edges (Jasienski et al. [10]). The distribution of 
the inner forces in the structure is then assessed node-by-node and the nodal 3D force polygons are 
created; the lists of edges are used to order the vectors in these force polygons. If the structure is 
externally loaded, a closed force polygon of the external forces, representing the external global 
equilibrium (D’Acunto et al. [7]), is also generated. Following this approach, a reciprocal 3D force 
diagram F* can be eventually assembled out of the individual nodal 3D force polygons of F.  

In case the underlying topological diagram T of the given 3D form diagram F is not planar (Figure 1), 
a possible strategy is here proposed to modify T and make it planar (TP), without altering the overall 
static equilibrium of the structure. The vertices Vi of T are first repositioned in order to minimize the 
amount of intersecting edges. Starting with the first intersection, one of the intersecting edges (est) is 
replaced by two new edges (es and et) that are respectively connected to the vertices Vs and Vt of est 
and to the node of the external forces (Figure 1). Concurrently, in the 3D form diagram F, the edge fst 
corresponding to est is substituted by a pair of equal and opposite external forces (fs and ft), each force 
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being aligned to fst and applied to one of its nodes (Ps and Pt). The procedure is repeated for every 
other intersection in T, until a planar graph TP is obtained. The inner forces are then evaluated and the 
force vectors are arranged in the nodal 3D force polygons following a defined reading order cycle on 
the vertices of TP. The force polygons are eventually assembled into one unique 3D force diagram F*, 
where the external forces generate themselves a closed force polygon. For each pair of newly 
introduced external forces (fs and ft), a pair of non-overlapping vectors (fs

* and ft
*) is found in F*. This 

configuration of the 3D force diagram is comparable to the double-layer one described by Jasienski et 
al. [10], but it results generally into a more compact force diagram. 
 

 

Figure 1: Topological diagram T, 3D form diagram F and 3D force diagram F* (red-tension, blue-compression, 
green-external forces) 

The proposed diagrams are in general not reciprocal because of the presence of non-overlapping pairs 
of vectors in F*. Nevertheless, important dual properties between the initial F and F* are still preserved 
making them interdependent from each other. In particular, to each node of the initial F corresponds a 
3D closed polygon in F*. Conversely, despite the presence of non-overlapping pairs of vectors, if F* is 
regarded as a structure in its own right (Fd), its nodal force polygons can be assembled to generate Fd*, 
which is equivalent to the initial F, deprived of its external forces. As shown for 2D (Mitchell et al. 
[15]), in F* the vectors corresponding to the external forces of the initial F are first removed and a 
series of new external forces are then introduced to put Fd in static equilibrium.  

3. Global Transformations of the 3D Force Diagram 
Following the classification introduced by Fivet [8], a series of global transformations of the 3D force 
diagram F* is here presented that allow the modification of the inner forces in a given spatial network. 
These transformations can be applied to the force diagrams of spatial networks in equilibrium, no 
matter their static or kinematic determinacy (Pellegrino and Calladine [18]). Moreover, these 
transformations are valid for both cases of self-stressed and externally loaded structures. As it is 
shown in the following, it is possible to use these transformations regardless of the presence of non-
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overlapping pairs of vectors in F*, without losing its interdependency to the 3D form diagram F as 
explained in the previous section. 

3.1. Global Parallel Transformations 

Global parallel transformations in space are also known as affine transformations. Apart from 
Euclidean transformations (rotation, translation, reflection), affine transformations include, among 
others, spatial uniform scaling, non-uniform scaling and shear.  

Affine transformations are characterized by three peculiar properties (Pottman et al. [20]): straight 
lines (planes) are transformed into straight lines (planes); parallel lines (planes) are mapped into 
parallel lines (planes); the ratio of the lengths of two line segments on parallel lines is invariant 
throughout the transformation. Based on the first property, an affine transformation converts F* into a 
new vector-based diagram F*'; the same applies to F, which is transformed into F'. Thanks to the 
second property, corresponding edges in F* and F stay parallel to each other, if the same affine 
transformation is applied to both. The third property, which is particularly relevant in the case F* has 
non-overlapping pairs of vectors, ensures that these vectors stay parallel and have the same length 
after the transformation. As a result, any kind of affine transformation can be applied to a given 3D 
force diagram F* while the corresponding 3D form diagram F undergoes the same transformation. In 
the following, it is exemplified the application of a series of global parallel transformations on the 3D 
force diagram F* (Figure 2.a) of a spatial network in equilibrium with given external forces. Each 
transformation is also represented analytically in matrix form, considering the transformation applied 
to a generic point in space P (x, y, z, 1) described using homogeneous coordinates (Figure 2). 

A spatial uniform scaling (Figure 2.b) can be defined by setting a scale factor s3 as a real number and 
an origin point O, which is unaffected during the transformation. The origin point can be chosen 
independently for F* and F. As a special case among affine transformations, angles are preserved in a 
uniform scaling, so that lines stay parallel to themselves. Fixed a Cartesian coordinate system (x, y, z), 
the scale factor s3 is equally applied to each coordinate axis. When a 3D force diagram F* undergoes a 
uniform scaling, the magnitudes of all the forces within the structure, included the external forces, are 
modified proportionally to s3. It is immediate that a given 3D force diagram F* relates to infinite 3D 
form diagrams F that are scaled uniformly in space with chosen scale factors and origin points. As it is 
well known in 2D graphic statics (Huerta [9]), thanks to this property it is always possible to scale 
uniformly F to meet specific metric constraints (e.g. a given span), without modifying the forces in F*. 

To define a non-uniform scaling in space, three scale factors (s1, s2, s3) as real numbers are fixed so 
that at least one of them is different from the others. An origin point O, which is unaffected by the 
transformation, is also set. After fixing a Cartesian coordinate system (x, y, z), each scale factor is 
applied to one of the coordinate axes. In case one of the scale factors (s1) is different from 1 and the 
other two are equal to 1, a scaling (or stretching) along one coordinate axis occurs (Figure 2.c). All the 
elements that lie on the plane Ωs1, which contains O and is perpendicular to the coordinate axis along 
which the scaling is applied, are unaffected by the transformation. If one or more forces in F* are 
parallel to Ωs1, a stretching of F* in the direction perpendicular to Ωs1 keeps the magnitudes and 
directions of those forces unchanged, but not the position of their lines of action. If the forces are 
perpendicular to Ωs1, only their magnitudes change proportional to the scale factor s1 and their lines of 
action are unaffected in both position and direction.  

A shear transformation in space is defined by two shear factors (sV1, sV2) applied along two different 
coordinate axes and an origin plane ΩsV parallel to those two coordinate axes. In Figure 2.d a shear 
transformation is applied to F* (respectively F) along the x-axis only, with a shear factor sV1 and the 
xz-plane as origin plane ΩsV. Every node Pi of F* (respectively F) is shifted parallel to ΩsV, with a 
translation vector vi = δi sV1 x (where δi is the signed distance between Pi and ΩsV). The forces in F* that 
are parallel to ΩsV keep their magnitudes and directions unchanged during the transformation. 
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Figure 2: Global parallel transformations of a 3D force diagram (a. initial configuration; b. spatial uniform 
scaling; c. non-uniform scaling; d. shear transformation). 

3.2. Semi-global Parallel Transformations 

Under specific geometric or static conditions, it is possible to define transformations that only affect a 
subset of the 3D force diagram F* while leaving the rest unchanged. In the following, two semi-global 
transformations are discussed in which the vectors of F* are kept parallel to themselves. 

In the case the 3D form diagram F of a given kinematic indeterminate structure has a symmetry plane 
Σ (Figure 3), it is possible to invert concurrently the loading state (tension-compression) of all those 
forces fij

* of F* that correspond in F to edges fij perpendicular to Σ. All the other forces, external ones 
included, stay constant. In Figure 3, F*' is defined by inverting the loading state of the forces f01

*/f10
*, 

f23
*/f32

*, f4
*, f5

*, f6
*, f7

*, f89
*/ f98

* of F*. F is then modified accordingly into F'. 
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Figure 3: Inversion of the loading state in a 3D force diagram 

In a statically indeterminate structure, to every degree of static indeterminacy one infinity of inner 
forces distribution in static equilibrium can be found. As shown for 2D cases by Mitchell et al. [15] 
and by McRobie et al. [13], also in the 3D force diagram F* of a statically indeterminate spatial 
network, degrees of freedom can be found that allow modifying a subset of the geometry of F* while 
keeping the direction of all the forces fij

* unchanged (consistent offsets). These degrees of freedom can 
be used to transform F* parametrically. Figure 4 shows an application of this principle to the 3D force 
diagram F* of an externally loaded network with one internal degree of static indeterminacy. As the 
underlying topological diagram T of F is not planar, two non-overlapping pairs of vectors are present 
in F*. The external forces are kept constant and therefore the nodes P0

*, P1
*, P2

* and P3
* of F* are fixed. 

The relative position x of the node Px
* along the line of action of f05

*/f50
* is regarded as a parameter. 

Given the position of Px
*', being the directions of all the forces in F*' known, the positions of the 

remaining nodes of F*' are unequivocally determined. In fact, these nodes can be found as the 
intersection of the lines of action of two forces or as the intersection of the line of action of one force 
and the plane passing through two forces. By varying x parametrically, the solution space of the inner 
forces distribution in the structure can be systematically explored while F stays constant. 

 

Figure 4: Transformation of the 3D force diagram of a network with one degree of static indeterminacy 
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3.3. Global Projective Transformations 

Projective transformations are a generalization of affine transformations and map straight lines into 
straight lines, without maintaining lengths, angles, parallelism or ratio of lengths (Pottman et al. [20]). 
It is because these last two properties are not preserved that projective transformations can be applied 
only if a given 3D force diagram F* has an underlining planar topological diagram T. In fact, if F* has 
non-overlapping pairs of vectors, these should stay parallel and keep the same magnitude after the 
transformation, which would not be the case under a projective transformation. When possible, a 
projective transformation can be applied to F* using the geometric construction introduced by Fivet 
[8]. As explained in Section 2, the modified 3D form diagram F' can be built by assembling the force 
polygons of F*' regarded itself as a structure. Because of the aforementioned restriction on the 
planarity of T and the shortcomings described by Fivet [8] on the control of the external forces and 
support locations, the use of global projective transformations in the structural design process has very 
limited applications. 

4. Local Transformations of the 3D Force Diagram 
Contrary to global transformation, which affect simultaneously all the elements of the 3D force 
diagram F*, local transformations allow for the manipulation of individual elements of the diagram 
while keeping the others unaffected. Thanks to these transformations, it is therefore possible to adjust 
the magnitude and direction of specific forces in F* and assess the corresponding transformation of F. 

4.1. Transformations of Kinematically Determinate Force Diagrams 

In the particular case that a given 3D form diagram F has a 3D force diagram F* that is itself a 
kinematically determinate network, any kind of transformation can be applied to F* that modifies the 
position of its nodes without modifying its topology (Figure 5). Specifically, each node of F* can be 
moved independently from the other nodes in any direction in space using a translation vector t. 
Moreover, any edge or face of F* can be individually moved or scaled at will, by operating at the same 
time on its corresponding nodes. If external forces are applied to the structure, these can be modified 
directly by operating on the polygon of the external forces in F*. After F* has been transformed into 
F*', F' can be assembled as discussed in Section 2. 

 

Figure 5: Local transformation of a kinematically determinate 3D force diagram 
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4.2. Transformations using the Combinatorial Equilibrium Modelling 

Combinatorial Equilibrium Modelling (CEM) is an approach to structural design that is based on 3D 
graphic statics and graph theory (Ohlbrock et al. [17]). Given a spatial network in equilibrium, an 
initial 3D form diagram F and a force diagram F* can be defined. If the members of the structure can 
be organized into trail members tij and deviation members dij (Ohlbrock et al. [17]), the required 
member lengths λij of the trail members and force magnitudes μij of the deviation members can be 
derived from the initial F and F* respectively. Based on this setup, F* can be then modified by 
changing directly the loading state (tension-compression) of tij

* and dij
* other than the values μij of dij

* 
(Figure 6). Thanks to the CEM approach, it is possible to control individually the magnitudes and 
directions of the external loads applied to the structure. However, in order to meet specific constraints 
such as the location of the supports in F, an optimization process is generally required (Ohlbrock et al. 
[16]). In the example in Figure 6, the magnitudes of the forces d01

* and d23
* have been halved and the 

ones of d56
*, d7

* and d8
* have been doubled. 

 

Figure 6: Local transformation of a 3D force diagram using CEM 

4.3. Geometric Constraints and Numerical Methods 

Numerical methods can be effectively used for the solution of specific structural problems, especially 
in the case of form finding. Significant examples of numerical approaches adopted in this field are the 
force density method (Schek [21]) and dynamic relaxation (Barnes [2]). The employment of numerical 
methods is particularly relevant for the solution of constraint-driven non-linear problems that cannot 
be solved otherwise using only direct geometric constructions. In comparison to the latter, numerical 
methods are based on iterative numerical approximations; as such, contrary to the transformations 
described in the previous sections, they normally require computational tools to be performed. 

The transformation here exemplified is executed within the digital CAD environment McNeel Rhino, 
using the plug-in Kangaroo2 by Piker [19]. The solver within the plugin is built around a specific 
implementation of dynamic relaxation, which is defined by its author as projection-based dynamic 
relaxation. This involves projecting points onto constraints and iterating to equilibrium in a pseudo-
dynamic fashion with damping. Based on this, a series of geometric constraints are defined to secure 
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the interdependence between F* and F. Specifically, corresponding edges in the two diagrams (fij and 
fij

*) are kept parallel to each other, while the vectors of the non-overlapping pairs of F* are kept 
parallel and equal in magnitude. The time used by the solver to converge to an appropriate solution 
depends on the number of degrees of freedom of the nodes of the diagrams. To speed up the process, 
convenient nodes of F* and F can be constrained and used as anchor points. In Figure 7, the 
transformation of the 3D force diagram F* of an initial kinematically indeterminate network in 
equilibrium is shown, while the 3D form diagram F is modified accordingly. In particular, the node 
P0

* of F* is shifted using a translation vector t in order to increase the magnitudes of the forces 
connected to P0

*. 

 

Figure 7: Local transformation of a 3D force diagram using numerical methods 

5. Conclusions and Future Work 
This paper has described a series of transformations that can be applied to the vector-based 3D force 
diagram of a given spatial network in equilibrium, such as a pin-jointed framework or a strut-and-tie 
model within a continuum of material. Among the transformations that affect simultaneously all the 
elements of the force diagram, global parallel, semi-global parallel and global projective 
transformations have been taken into consideration. In relation to the transformations that modify 
individual elements of the diagram while keeping the others unaffected, three different approaches 
have been presented: the direct manipulation of kinematically determinate force diagrams, 
transformations using the Combinatorial Equilibrium Modelling (CEM) and constraint-driven 
transformations through numerical simulation.  

As in the case of polyhedral-based 3D force diagrams (Akbarzadeh et al. [1] and Lee et al. [11]), the 
use of these transformations of vector-based 3D force diagrams opens up the possibility for an 
approach to the structural design driven by the control on the forces. The manipulation of the forces 
within a spatial network, both in the case of global and local transformations, allows for a quick and 
interactive exploration of possible equilibrium solutions during the design process. Moreover, it 
facilitates the generation of creative spatial structural configurations at an early design stage.  

Further developments of the research will investigate the applicability of these transformations to 
actual structural design and analysis problems. In these cases, specific structural and boundary 
constraints will be taken into account and the opportunity to complement the transformations with 
suitable optimization processes will be evaluated. Moreover, further transformations of vector-based 
3D force diagrams will be explored, including their hierarchical manipulation based on combination 
and subdivision of their force polygons. 
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