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Abstract

In this paper, a topology optimization based numerical method is proposed to investigate the mi-
cromechanical plastic behavior of dual-phase (DP) steels. Representative volume elements (RVEs)
are constructed using the topology optimization based artificial microstructures. Micromechanical
behavior under various loading conditions are predicted for the RVEs to investigate the plasticity,
strain localization and strengthening mechanism affected by the microstructural characteristics of
DP steels. Plastic strain patterns including shear band are found during the deformation. Due to
the twisting movement of martensite grains, the direction of the strain localization bands in the
shear loading case is 0◦ or 90◦ to the loading direction, while it is 45◦ in the tensile and compres-
sive cases. Moreover, the effective flow behavior of the material under shear loading is lower than
those found in tensile and compressive cases. The influence of various microstructural features,
such as, martensite fraction, distribution of each phase, on the effective flow properties and the
local strain partitioning has also been identified. Both of the effective flow properties and strain
localization exhibit the tendency to be strengthened with the increase of martensite phase fraction.
Furthermore, the RVE with more uniform martensite distribution leads to the decrease of effective
flow properties and strain localization. Longer martensite-ferrite interface results from the cluster-
ing of martensite, which increases the strain localization effect during the plastic deformation.

Keywords: Dual-phase steel, Plasticity, Representative volume element, Artificial
microstructure, Topology optimization

1. Introduction

Dual-phase (DP) steel contains hard martensite islands embedded into a soft ferrite matrix.
Due to this specific inhomogeneous microstructure, DP steel possesses excellent mechanical prop-
erties, e.g. relatively high ultimate tensile strength (UTS), low yield to tensile strength ratio and
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good balance between strength and formability [1–6]. Hence, DP steel becomes a promising can-
didate material to manufacture the car bodies in automotive industry.

Especially, the formability issues of DP steel depend on the processing methods, which are
controlled either by plastic strain localization or by fracture. Moreover, the mechanical properties
of martensite and ferrite phases, and the microstructural features, e.g., grain size, martensite frac-
tion, distribution and morphology of the dispersed martensite islands [7–9] determine the plasticity
and fracture behaviors of DP steel. To predict the plasticity and fracture behaviors of DP steels,
numerical models of representative volume element (RVE) have been established based on their
real microstructures [10–14]. Sun et al. [11] investigated driving mechanisms of fracture for differ-
ent grades of DP steel using microstructure based modeling approach and found that the fracture is
affected by material softening and plastic strain localization. Uthaisangsuk et al. [12, 13] success-
fully applied the Gurson-Tvergaard-Needleman (GTN) fracture model using an extended finite
element method (XFEM) to predict the ductile failure and micro-cracks nucleation and propaga-
tion using real microstructure based RVEs during sheet metal forming of DP steels. Afterwards,
stretch-forming tests under different stress states were performed on 2D RVE models to predict
the fracture behavior of DP steels [14]. It was reported that, the vicinity of the interface between
ferrite and martensite phases are the most critical sites for the appearance of strain localization and
ductile fracture.

Besides, highly heterogeneous microstructures are obtained during welding, forging or heat
treatment processes with DP steels. They exhibit specific localized microstructures; i.e., mi-
crostructure at one material point is different from another. Thus, it requires a large quantity
of experimental measurements to build RVEs based on the real microstructures. However, it is
relatively easier to use an artificial microstructure generated based on local phase fraction and
chemical compositions to predict the flow behavior at various material points. The corresponding
local phase fractions and chemical compositions can be computed from the phase transformation
model incorporating appropriate diffusion mechanisms. Therefore, this approach particularly re-
quires the development of an artificial dual-phase microstructure with similar statistical properties
to replace the real one [15–22].

In recent years, geometry primitives (e.g., spheres, polygons or polyhedra) were used to gener-
ate the artificial microstructure of DP steel based on statistical descriptions. Nygårds et al. [15, 16]
proposed 2D and 3D artificial microstructures of DP steels based on periodic Voronoı̈ tessellation,
with limited number of grains to predict the effective properties via simulation of uniaxial tension.
Since the existing methods contain a lack of reasonable phase assignment procedure, the distri-
bution of martensite phase was determined in a random grain growth manner. This resulted in an
imprecise computation of the effective properties of DP steels. Especially, close to the yield point,
the plastic behavior was not properly captured in comparison with the experimental results. In
the work of Abid et al. [18], an optimization and filtering algorithm were introduced to construct
tailored RVEs using Voronoı̈ tessellation. By prescribing a Dirichlet condition (displacement-
controlled tensile condition), the effect of ferrite and martensite grain size on the overall plastic
behavior of DP steel was investigated. The used Voronoı̈ tessellation was generated with pseudo-
randomly distributed seeds, which underestimates the variability of the grain size, while overesti-
mates the number of neighboring gains [18]. Furthermore, since no periodicity exists in that RVE,
it is not able to generate RVE models with less than 100 µm side length.
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Recently, de Geus et al. [20, 21] have investigated the plasticity and damage behaviors of DP
steels using 2D and 3D microstructures. By comparing the macroscopic and microscopic mechan-
ical responses of these two cases [20], they found that the macroscopic response of 2D models is
varied more significantly than the 3D models, with the increasing volume fraction of martensite.
The results of 3D models microscopically exhibited less extreme strain partitioning between dif-
ferent phases, compared with 2D models. Due to the constraint of the sub-surface microstructure,
the hard phase in 3D models deformed more while the soft phase deformed less. Therefore, a
harder macroscopic response was observed in the 3D models. Therefore, the simulation using 3D
models is relatively closer to the exact solution, while 2D models are faster and provide sufficiently
accurate predictions in micromechanical modeling.

Despite the above mentioned works, periodic Voronoı̈ tessellation and an automatic phase col-
oring algorithm were developed by Fillafer et al. [17] to generate 3D microstructures with reliable
phase assignment. Plastic strain partitioning and micro-damage initiation of DP steels were inves-
tigated using artificial microstructures generated with different martensite phase fractions. This
work also considered the martensite contiguity and a “soft” optimization criteria to construct the
DP microstructures with predefined controlling parameters. The influence of martensite phase
fraction, grain size and dislocation density at phase interface on strain distribution and damage
initiation were studied using the investigated artificial microstructures. However, the randomness
of the generating seeds of Voronoı̈ tessellation was neglected and no more detail of the “soft” cri-
teria was given. Additionally, micromechanical modeling of DP steel under the loading conditions
other than uniaxial tensile case were not considered.

In the present study, a dislocation density based approach [23] is applied to compute the flow
behaviors of ferrite and martensite phases. Then, numerical tests are performed with 2D RVEs
constructed using artificial microstructures, under various loading conditions (i.e., uniaxial ten-
sion, compression and shear loading). Meanwhile, the influence of various microstructural fea-
tures on the effective plastic behavior is studied using a topology optimization based artificial mi-
crostructure generator. The equivalent stress-strain distributions that result from different loading
conditions provide better understanding of local deformation process at microscopic level.

2. Artificial microstructure generation

A topology optimization based artificial microstructure generator was proposed in our previ-
ous study [4]. Using this novel method, artificial RVEs were developed with an enhanced phase
assignment algorithm combined with a modified Voronoı̈ tessellation. The modified Voronoı̈ tes-
sellation was periodically generated from Halton (quasi-random) sequence [24] which statistically
exhibits lower discrepancy and thus it provides adequate grain morphology. For this method,
two controlling parameters were obtained from the statistical microstructure description of DP
steels [17]. By defining objective and constraint functions of these two controlling parameters,
the proposed phase assignment algorithm based on the density-based methods in topology op-
timization [25–27], was applied to achieve an appropriate phase distribution. The artificial DP
microstructure generation is governed by a mathematical approach. Although this approach does
not have the capability to describe the real physicochemical procedure of martensite nucleation
and growth, it enables to appropriately represent the microstructures of heterogeneous materials
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(materials may consist of two or more phases). The generated microstructure is suitable for flow
stress homogenization. Then, the effective plastic behavior was computed using an asymptotic
expansion homogenization (AEH) scheme [28]. This section will focus on the brief overview of
the artificial microstructure generator.
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Figure 1: Construction process of the modified Voronoı̈ tessellation: (a) seeds selected from Halton sequence; (b)
tessellation generated using Voronoı̈ algorithm and a periodic set of seeds; (c) the final modified Voronoı̈ tessellation.

Throughout the application of Halton sequence, the distribution of the sampling points that
are considered as the Voronoı̈ seeds, is more uniform than that of pseudo-random sequence. The
modified Voronoı̈ tessellation constructed using Halton sequence, effectively avoids the appear-
ance of grains with extreme size and bad aspect ratio within the tessellation. Moreover, due to the
favorable numerical properties in the context of computational homogenization, these seeds are
repeated three times in each direction to ensure the periodicity of the obtained Voronoı̈ tessella-
tion. With these periodically distributed seeds selected from Halton sequence, a square periodic
tessellation is constructed using Voronoı̈ algorithm. Fig. 1 illustrates the construction process of
the modified Voronoı̈ tessellation. A set of 15 generating seeds, whose abscissas and ordinates
are selected from Halton sequence, is located in the domain of {(x, y) ∈ [25, 50]} (Fig. 1a). By
performing the periodicity treatment for these seeds, a Voronoı̈ tessellation (with the total of 135
polygons) is generated (Fig. 1b). Then, the center region in the obtained tessellation (the square
with blue background color in Fig. 1b) is extracted as the modified Voronoı̈ tessellation, as shown
in Fig. 1c.

In addition to the modified Voronoı̈ tessellation, an automated process is used to assign the
selected cells to represent different phases. Within this automated process, the modified Voronoı̈
tessellation is considered as a fixed grid (Fig. 2a), as similar to the method in material topology
optimization. In each modified Voronoı̈ cell, a material density function is proposed to determine
its phase property: martensite cells with density ρ = 1, (red layer in Fig. 2b), while ferrite cells
with density ρ = 0 (blue layer in Fig. 2b). By defining constraints and an objective function, this
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process is deduced to a 0-1 discrete value optimization problem, also known as “black-and-white”
design [25]. Therefore, the material interpolation algorithms in topology optimization is referred
to achieve an artificial microstructure with proper phase distribution, as shown in Fig. 2c.

Martensite layer: ρ=1

Ferrite layer: ρ=0

(a) (b) (c)

Figure 2: Enhanced phase assignment process: (a) modified Voronoı̈ tessellation, (b) phase assignment and (c) final
DP microstructure.

In order to perform the phase assignment procedure, two design parameters proposed by Fil-
lafer et al. [17], are implemented in this study to confine the solution space. These two parameters
are the martensite phase fraction (PM) and the neighboring coefficient of martensite grains (CM).
Thus, this method considers both the martensite phase fraction and the correlation between differ-
ent martensite islands. The expressions of these two parameters are given by:

PM =
AM

AT
, CM =

2LMM

2LMM + LFM
(1)

where, AM and AT denote martensite phase and total areas; LMM and LFM are length of specific
martensite-martensite and martensite-ferrite grain boundaries, respectively. It is also identified that
the value of PM can vary between 0 and 1, but for a given martensite phase fraction, CM cannot
satisfy the range between 0 and 1. In other words, these two design parameters are not mutually
independent.

According to the algorithm related to density-based topology optimization method, the design
parameters are rewritten in a matrix form, in which a distributed and discrete value problem is
formulated. To solve this problem, the most commonly used approach in topology optimization
is to replace the integer by continuous variables. And then, a penalty factor is introduced to
derive the martensite density distribution as same as the so-called “black-and-white” solution [25].
Therefore, a structural optimization problem is obtained by defining the target input parameters
Ptarget

M and Ctarget
M , which are identified based on the statistical descriptions of a given DP steel. A

heuristic updating scheme [25] is then introduced to solve the optimization problem.
Following the aforementioned process, artificial DP microstructures are constructed with good

convergence. That is, if the design parameters and the Voronoı̈ tessellation are fixed, the generator
will find only one unique optimal solution. Using the modified Voronoı̈ tessellation and the prede-
fined sets of design parameters, two example artificial microstructures are constructed as shown in
Fig. 2c. In this artificial microstructure, the target design parameters are set as, Ptarget

M = 0.22 and
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Ctarget
M = 0.30. A fast and stable convergence is achieved with 9 iterations, the resulted microstruc-

ture has PM = 0.22 and CM = 0.29. As discussed previously, due to the mutual independence
of these two parameters (PM and CM), there exists a slight dissimilarity between the target and
result parameters. Furthermore, a proper orthogonal decomposition (POD) approach [4] has been
developed to identify the optimal controlling parameters. Some other recent works [29, 30] also
considered the POD approach to identify mechanical parameters for metallic materials using nano-
indentation. The POD approach provides the additional advantage of the relatively high efficiency,
thus it has also been applied in this study.

3. Numerical implementation

3.1. Flow behaviors of ferrite and martensite phases
In the work of Jafari et al. [31], the stress-strain behavior of ferrite phase has been predicted

using a dislocation based theory [23] and a crystal plasticity model [32], respectively. Their com-
parison between these two approaches clearly indicates that there is no obvious difference between
predicted results using both methods [31]. Therefore, to perform the finite element (FE) analysis of
the DP steel, the stress-strain relation of each constituent phase is computed using the dislocation
based theory, in which material parameters are calculated using the local chemical composition. It
was reported that the flow behavior of martensite phase is mainly affected by the carbon content
and the back stress [33]. Nevertheless, the formulation of flow behavior using the dislocation based
theory without taking into account for the back stress, has been widely used in the studies [34, 35].
The same dislocation based theory is considered in this study to describe the flow behaviors of
the ferrite and martensite phases. Moreover, the FE model does not consider the crystal plasticity
behavior and the effect of different crystal orientations in the stress-strain calculation. Concerning
the dislocation based method, the stress-strain relation is expressed as [34, 35]:

σ = σ0 + ∆σ + αMµ
√

b

√
1 − exp(−Mkrεp)

krL
(2)

where α is a constant (α = 0.33), M is Taylor factor (M = 3), µ is the shear modulus (µ = 80
GPa), b is Burger’s vector, L is the average dislocation free path, and kr is the dislocation recovery
rate.

Table 1: Chemical composition of the DP980 steel (in wt%).

C Si Mn Ni P Cu Cr Mo

0.09 0.31 1.67 0.01 0.008 0.01 0.21 0.01

The first term σ0 in Eq. (2) is the Peierls stress caused by dislocation movement. It can be
calculated using:

σ0 = 77 + 750%P + 60%Si + 80%Cu + 45%Ni + 60%Cr + 80%Mn + 11%Mo + 5000NS S (3)
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Figure 3: Flow behaviors of ferrite and martensite phases obtained from the DP980 steel.

where, NS S denotes the carbon content (in wt.%) in DP steel. The second term ∆σ in Eq. (2) is
the additional strengthening due to the precipitation and carbon in solid solution. For the ferrite
phase, it can be calculated as:

∆σ = 5000CF
S S (4)

For the martensite phase:
∆σ = 3065CM

S S − 161 (5)

where, CF
S S and CM

S S denote the carbon content (in wt.%) in ferrite and martensite, respectively.

Table 2: Material constants of the DP980 steel.

Phase L(m) kr CS S (wt%)

Ferrite 5.0 × 10−6 2 0.004
Martensite 3.8 × 10−8 41 0.206

The reference material parameters used in this study are obtained from a DP980 steel. Chem-
ical composition and material constants of constituent phases obtained from energy dispersive
X-ray (EDX) spectroscopy analysis, which are listed in Tables 1 and 2, respectively. The obtained
flow behavior of each phase is depicted in Fig. 3. The martensite phase exhibits a limited hard-
ening behavior because of the absence of the back stress in the description of the flow behavior.
The elastoplastic stress-strain relation with isotropic hardening is considered for both ferrite and
martensite phases.

3.2. Micromechanical modeling
According to de Geus et al. [19, 20], the dissimilarities of simulation results between 2D and

3D microstructures were not significant. Moreover, when the 2D microstructures are extended into
3D ones, the computational time significantly increases during the microstructure generation and
FE calculation. Therefore, 2D microstructures are used in this study. The FE models of the 2D
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artificial RVEs, generated using the combination of the modified Voronoı̈ tessellation and enhanced
phase assignment algorithm, are constructed within ABAQUS/Standard software [36]. The effect
of RVE and mesh sizes has already been investigated in a recent study by Ramazani et al. [35].
The acceptable size of RVE for a DP steel is considered with minimum of 24 µm edge length and
it contains at least 19 martensite islands. By prescribing periodic boundary condition, this RVE
size is sufficiently large to represent all microstructural features while it also remains small enough
to be considered as statistically homogeneous during the computation of effective flow properties.
Likewise, we include 2D RVE models with the size of 25 µm × 25 µm.

Figure 4: Meshed FE model with 0.25 µm element size and 25 µm edge length of the artificial RVE example shown
in Fig. 2a.

In addition, element length between 0.1 and 2 µm was further used to discretize the 2D RVE
model. No deviation in the results is found for elements finer that 0.25 µm. Numerical simu-
lation of 2D microstructure with planar assumption was compared with the actual 3D one [20],
it indicated that the dimensionality effect on macroscopic and microscopic response was quite
limited. Therefore, linear elements with 0.25 µm size and plane strain assumption are applied
to the micromechanical model. Fig. 4 shows the meshed FE model (with the mesh size of 0.25
µm) of the artificial RVE example given in Fig. 2c. Using this mesh size, strain partition along
the martensite-ferrite interface is effectively captured, which reach a good agreement with former
studies [18, 35].

3.3. Periodic boundary conditions of various loading scenarios
Appropriate boundary conditions can guarantee both displacement and traction continuity on

the two opposite sides of the micromechanical model which are essential to achieve accurate re-
sults. Compared with conventional Dirichlet (displacement) and Neumann (constant traction) con-
ditions, periodic boundary condition provides more accurate prediction of the effective mechanical
properties [37]. Therefore, periodic boundary condition is chosen for the micromechanical mod-
eling of various loading scenarios, which include uniaxial tension, compression and shear loading
conditions.
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Figure 5: Schematic illustration of (a) original and deformed RVE models with the periodic boundary conditions of
(b) tension in x direction, (c) tension in y direction, and (d) shear.

Concerning periodic boundary condition, the displacement field of the periodic RVE is pre-
scribed as in the following equation [37]:

ui = ε̄i jφ j + u∗i (6)

where, ε̄i j is the macroscopic average strain of the RVE model, φ j is the node coordinate of the
RVE model, and u∗ is a periodic function which comes from one RVE to another nearby. Hence,
respective displacement for the two opposite boundaries is given by:

uk+
i = ε̄i jφ

k+
j + u∗i (7)

uk−
i = ε̄i jφ

k−
j + u∗i (8)

where, k = x, y in 2D case, and k+, k− represent the opposite boundaries perpendicular to the
k-direction.

Combining Eqs. (7) and (8), the difference in displacement between these two opposite bound-
aries of RVE models is obtained as:

uk+
i − uk−

i = ε̄i j∆φ
k
j (9)

where, ∆φk
j is a constant for any parallelepiped RVE model. The schematic illustration of periodic

boundary conditions under different loading scenarios is illustrated in Fig. 5. Fig. 5a shows the
original RVE model with two pairs of parallel boundaries, (X−, X+) and (Y−,Y+). After that,
different loading conditions are defined using the displacement constraints. The displacement
constraints are prescribed on these two pairs of RVE boundaries, and they are computed according
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to Eq. (9). The detailed formulation for each loading condition is given by:

Tension in x direction: uX+
x − uX−

x = ε̄xx∆φ
X
x (10)

Tension in y direction: uY+
y − uY−

y = ε̄yy∆φ
Y
y (11)

Shear: uY+
x − uY−

x = ε̄xy∆φ
Y
x , uX+

y − uX−
y = ε̄xy∆φ

X
y (12)

Fig. 5b, c and d show the deformed RVE models with periodic boundary conditions of tension
in x and y directions and shear loading cases. Additionally, the periodic boundary condition of
compression in each direction can also be expressed using Eqs. (10) and (11), in which the corre-
sponding average strain components are negative. In Section 4.1, numerical tests are performed
with different periodic boundary conditions.

3.4. Homogenization scheme
Asymptotic expansion homogenization (AEH) [28] is employed to compute the effective flow

properties of DP steels based on the RVE modeling. Therefore, the effective stress and strain
components at the macroscopic level are calculated using the volume average of the microscopic
components using the following equations:

σ̄i j =
1

VRVE

∫
VRVE

σi jdV (13)

ε̄i j =
1

VRVE

∫
VRVE

εi jdV (14)

where, σ̄i j and ε̄i j are the macroscopic homogenized components of stress and strain , σi j and εi j

are the stress and strain components obtained from RVE modeling.

4. Results and discussion

The investigated artificial RVE is generated according to the statistical description of mi-
crostructural features of DP980 steel. Using the POD approach [4], the target controlling pa-
rameters for this DP steel are identified as PM = 0.55 and CM = 0.50. The RVE and corresponding
FE model are shown in Fig. 6a and b, respectively. Further investigations are performed based on
the obtained micromechanical model combined with the flow behaviors of constituent phases.

4.1. Numerical tests under different loading conditions
4.1.1. Uniaxial tension test

A uniaxial tension test with the loading in x direction, which prescribes a macroscopic de-
formation of 10% in x-direction, is performed using the FE model given in Fig. 6b. Therefore,
according to Eq. (10), constraints are utilized to impose the corresponding periodic boundary con-
ditions for the micromechanical model.

Fig. 7a and b show the von Mises stress and equivalent plastic strain distributions at the macro-
scopic plastic strain level of 8.08%, respectively. Significantly high local stresses are noticed
within the martensite islands, while relatively low local stresses appear within the ferrite matrix.
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(a) (b)

Figure 6: (a) RVE and (b) FE models generated with the target controlling parameters: Ptarget
M = 0.55 and Ctarget

M = 0.50
for DP980 steel. (Red and blue cells represent martensite and ferrite grains, respectively.)
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(a) (b)

Figure 7: Distribution of: (a) von Mises stress (MPa) and (b) equivalent plastic strain obtained for the artificial RVE
at the macroscopic plastic strain level of 8.08% for the uniaxial tension test. (Shear bands are in red ellipses.)

Moreover, the average stress in ferrite phase is much lower than that in the martensite phase. Since
no material fracture or damage model is introduced, the formation of shear bands are clearly ob-
served in the ferritic matrix along martensite islands (Fig. 7b). These shear bands and localized
plastic strain distributions are caused by the specific heterogeneous microstructure of the DP steel.
In the uniaxial tension case, the direction of these shear bands is around 45◦ to the tensile loading
direction (i.e., x direction).

4.1.2. Uniaxial compression test
A uniaxial compression test is performed with the macroscopic plastic strain of -10% in x-

direction for the same RVE model with the boundary condition described in Eq. (10). Corre-
sponding distributions of von Mises stress and equivalent plastic strain at the macroscopic plastic
strain level of -8.01% are shown in Fig. 8a and b, respectively. Similar to that of the tensile loading
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case, high stresses and shear bands are found in the martensite islands and ferrite matrix, respec-
tively. The direction of these shear bands is also around ±45◦ to the compressive loading direction.
Therefore, if a ductile damage model is adopted, as plastic strain localization accumulating, voids
and microcracks are expected to nucleate along the martensite-ferrite interfaces.

(a) (b)
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+0.372

Figure 8: Distribution of: (a) von Mises stress and (b) equivalent plastic strain in artificial RVE at macroscopic plastic
strain level of -8.01% for the uniaxial compression test. (Shear bands are in red ellipses.)

4.1.3. Shear test
Shear periodic boundary conditions are prescribed with the macroscopic shear deformation of

10% for the RVE model using Eq. (12). Consequently, the related distributions of von Mises stress
and equivalent plastic strain at macroscopic strain level of 8.05% are obtained as shown in Fig. 9a
and b, respectively.

(a) (b)

(Avg: 75%)
S, Mises
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Figure 9: Distribution of: (a) von Mises stress and (b) equivalent plastic strain in the artificial RVE at the macroscopic
plastic strain level of 8.05% obtained for the shear loading condition. (Shear bands are in red ellipses.)
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In comparison with the uniaxial tensile and compression tests, the shear test also shows the
maximum stress within the martensite islands. Similarly, the average stress in martensite phase
is relatively higher than that in the ferrite phase. However, the von Mises stress distributions in
martensite and ferrite phases vary more significantly for the shear test than that of other two cases
(uniaxial tensile and compressive tests). Furthermore, strain localization zones are formed within
the ferrite matrix near martensite grains. However, their directions are either horizontal or vertical
in the local coordinate system (Fig. 9b), and they differ with those two previous cases. Moreover,
the plastic strain peak that appeared in this case is 0.959, which is the highest among all three
cases for approximately same macroscopic plastic strain. The main reason for the increased plas-
tic strain during the shear loading is that, the martensite grains accommodate a relative twisting
movement within the ferrite matrix due to the mismatch in the flow behaviors of individual phases
[38]. Thus, the twisting movement leads to the phenomenon of the neighboring ferrite grains to
be stretched to a larger value than that occurs during a uniaxial loading condition. Therefore, the
strain localization zones caused by the shear periodic boundary conditions are oriented in horizon-
tal or vertical directions. And, the accumulation of the plastic strain in the ferrite matrix forms in
a more concentrated ways. Additional investigation needs to be implemented using experimental
approaches to support this conclusion.
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Figure 10: Homogenized plastic stress-strain behaviors of RVE model with various loading conditions.

To further investigate the effective plastic behaviors of DP steel under different loading sce-
narios, homogenized plastic stress-strain relations are computed using the AEH scheme. The
homogenized plastic stress-strain curves of uniaxial tension, compression and shear are depicted
in Fig. 10. In comparison, the curves of tension and compression tests are almost overlapped, and
they differ from the curve obtained for the shear test. That is, as the plastic flow accumulating,
significantly large deformation of ferrite phase is caused by the twisting movement of martensite
grains during the shear test. Due to the non-existence of the twisting movement in tension and
compression tests, the homogenized stress-strain responses are similar in both cases.

During the deformation of each constituent phase, a large strain localization is presented and
accumulated within the ferrite phase before macroscopic fracture emerges. Generally, the macro-
scopic fracture initiation in the ferrite matrix shows a dependency on the stress state, while the
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stress triaxiality η is used as a representation of the stress state to describe the threshold of ductile
fracture in metals. The stress triaxiality is defined as the ratio between the hydrostatic stress σm

and von Mises equivalent stress σv:

η =
σm

σv
=

1
3

(σI + σII + σIII)√
1
2

[(σI − σII)2 + (σII − σIII)2 + (σI − σIII)2]

(15)

where, σI-III are the principal stresses. The macroscopic triaxiality η̄ is used to describe the stress
state for a RVE model under a given loading condition that can be expressed as:

η̄ =
σ̄m

σ̄v
(16)

where σ̄m and σ̄v denote the macroscopic hydrostatic and von Mises stresses, respectively. To
compute σ̄m and σ̄v, the macroscopic stress tensor of the RVE model is initially calculated using
Eq. (13) and the stress tensor of each finite element, which is extracted from the FE computation
at a given loading increment. The macroscopic triaxialities of different loading conditions are
obtained using Eq. (16), and indicated in Fig. 11. Based on the theoretical calculations [39], the
macroscopic triaxialities are expected to be 1/3, -1/3 and 0 for uniaxial tension, uniaxial compres-
sion and shear loading conditions, respectively. However, the homogenized macroscopic triaxi-
alities η̄ obtained from the simulation, are 0.338, -0.321 and 0.024 for these loading conditions.
The difference between the computed and analytical triaxialities is not significant, and it is mainly
resulting from the computation of the macroscopic stress tensor in a homogenized manner.

In the work of de Geus et al. [40, 41], it was reported that, the soft matrix dominates the
macroscopic fracture initiation at low stress triaxiality, while the hard inclusion takes over with
the increase of triaxiality. Moreover, different macroscopic triaxialities, especially high values of
applied triaxiality, lead to different macroscopic plastic behaviors but similar shear bands around
fracture initiation sites [40]. Therefore, the relation between stress triaxialities and local strain
distribution should be analyzed to study the fracture initiation for all loading scenarios. Distribu-
tions of equivalent plastic strain and stress triaxiality at the same macroscopic plastic strain level
of those three loading cases are also depicted in Fig. 11.

From these contours of equivalent plastic strain in Fig. 11a-c, it could be seen that, strain lo-
calization occurs non-uniformly and differently in the microstructures with regard to the applied
stress states. For uniaxial tension (η̄ = 0.338) and compression (η̄ = −0.321), similar formation of
shear bands (±45◦ to loading directions) appear in the vicinity of interfaces between martensite and
ferrite phases. In these two loading scenarios, high triaxialities with positive and negative values
are located in the martensite islands (Fig. 11d and e), while relatively low triaxialities appear in the
ferrite matrix. Ductile fracture initiation is prone to take place within the ferrite matrix nearby the
martensite-ferrite interface as plastic flow accumulating, which agrees with results concluded by
de Geus et al. [40]. In the case of shear loading (η̄ = 0.024), shear band formation becomes preva-
lent mechanism, especially at the areas with sharp and narrow intersecting corners between the two
phases. The triaxiality within the RVE model under shear condition is distributed more uniformly
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Figure 11: Distribution of equivalent plastic strain (a-c) and stress triaxiality (d-f) obtained for the artificial RVE at
the macroscopic plastic strain level of 7.08% under the loading conditions of, uniaxial tension: (a) and (d), uniaxial
compression: (b) and (e), and shear: (c) and (f).

than the other two cases. And, the triaxiality of both martensite and ferrite element is approxi-
mately equal to 0, whose absolute value is lower comparing with uniaxial tension and uniaxial
compression loading. Meanwhile, higher equivalent plastic strain appears along the martensite-
ferrite interface under shear loading condition. Hence, stress states of pure or quasi-pure shear
loading condition indicates that the fracture initiation could occur at an early stage of deformation
process than that of uniaxial tension and compression.

4.2. Influence of microstructural features on microscopic and macroscopic plastic behaviors
In this section, numerical tension tests with periodic boundary conditions are performed to un-

derstand the effect of martensite phase fraction and its distribution, on the microscopic and macro-
scopic plasticity behaviors. Simulation of the RVE models are performed until the macroscopic
strain reaches 10% in x direction.

4.2.1. Effect of martensite phase fraction
Due to the difference in mechanical properties of the constituent phases in DP steels, the phase

fraction of martensite affects the effective properties of DP steel [35]. Thus, the effect on the
microscopic strain distribution during the deformation caused by various martensite phase fraction
is investigated using the artificial RVEs.
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(a) PM =0.40 (b) PM =0.45

(c) PM =0.50 (d) PM =0.60

Figure 12: RVEs generated with CM = 0.50, and by varying the parameter PM as (a) PM = 0.40, (b) PM = 0.45, (c)
PM = 0.55 and (d) PM = 0.60. (Red and blue cells represent martensite and ferrite grains, respectively.)
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Figure 13: Homogenized plastic stress-strain relations of RVEs generated with CM = 0.50 and with various values of
PM .

RVEs of 5 artificial DP microstructures with 900 grains are constructed with CM = 0.50,
and having PM in the range of [0.40, 0.60], as shown in Figs. 6a and 12. By applying the periodic
boundary condition of uniaxial tension for these RVE models, the effective macroscopic properties
are calculated using Eqs. (13) and (14), as shown in Fig. 13. It is identified that the effective flow
properties are improved with the increase of the target controlling parameter PM, and it is also in

16



agreement with the conclusions of another recent study [35].
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Figure 14: Influence of parameter PM on the microscopic plasticity behavior: equivalent plastic strain distribution of
RVEs generated with CM = 0.50 and PM equal to (a) 0.40, (b) 0.50 and (c) 0.60, at the macroscopic strain level of
8.08%. (The region with maximum values of plastic strain are located using red ellipses.)

Fig. 14 illustrates the equivalent plastic strain distributions of RVEs generated with PM equal to
0.40, 0.50 and 0.60 at the macroscopic strain level of 8.08%. This result indicates that the appear-
ance of shear bands mainly occurs within the ferrite matrix. However, the maximum microscopic
plastic strain in these RVEs are different: in the cases of PM equal to 0.40, 0.50 and 0.60, the max-
imum values are 0.306, 0.358 and 0.491, respectively. This result emphasizes that, the increase of
martensite fraction leads to the increase in strain localization. Moreover, as the martensite fraction
increases from 0.40 to 0.50, the plastic strain peak within the ferrite phase is increased only by
0.052. After that, when the martensite fraction comes to 0.60, this peak is increased by 0.133. It
confirms that, the plastic strain peak exhibits a nonlinear evolution with the controlling parameter
PM.

4.2.2. Effect of martensite phase distribution
To investigate the influence of martensite phase distribution on the macroscopic and micro-

scopic properties of DP steel, the parameter CM is used to control the aggregation of martensite
grains. Four artificial microstructures are generated, with PM = 0.55 and with CM equals to 0.43,
0.48, 0.50 and 0.55, as shown in Figs. 6a and 15.

Fig. 16 shows the homogenized plastic stress-strain curves of these RVEs, in which the same
uniaxial tensile boundary conditions are applied. Due to the same martensite phase fraction used
to generate these RVEs, small differences are noticed between the effective flow stress curves. The
martensite phase distribution in the first two (Figs. 15a and b) is less clustered than in the case
of the third one (Fig. 15c). From this comparison, it is evident that the RVE with smaller CM

underestimates the plastic behavior of DP steel (Fig. 16). The main reason is that, the interface
length between ferrite and martensite in the RVE with smaller CM is longer than the one with
larger CM. Since the existing heterogeneity at grain level tends to cause the strain localization, and
the microstructure with longer martensite-ferrite interface boundary is likely to require less energy
to perform the same amount of plastic deformation.
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(a) CM =0.43 (b) CM =0.48 (c) CM =0.55

Figure 15: RVEs generated with PM = 0.55 and various values of CM . (Red and blue cells represent martensite and
ferrite grains, respectively.
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Figure 16: Homogenized plastic stress-strain relations of RVEs generated with PM = 0.55 and various values of CM .

Moreover, the influence of parameter CM on the microscopic plasticity behavior is investigated
based on the equivalent plastic strain distribution at the macroscopic strain level of 8.08%, as
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Figure 17: Influence of parameter CM on the microscopic plasticity behavior: equivalent plastic strain distribution of
RVEs generated with PM = 0.55 and CM equal to (a) 0.43, (b) 0.48 and (c) 0.55 at the macroscopic strain level of
8.08%. (The region with maximum values of plastic strain are located using red ellipses.)

shown in Fig. 17. The comparison clearly indicates that the localized microscopic strain rises
with the increase of the parameter CM. The highest maximum plastic strain value (red ellipses in
Fig. 17) is found in the case with largest CM among the tested four cases. It occurs mainly due
to the presence of large martensite clusters within the RVE with CM = 0.55 (Fig. 15c), and it
affects the formation of shear bands which accommodate large strains along the martensite-ferrite
interfaces.

5. Conclusions and prespectives

Plastic behavior of DP steels was investigated using topology optimization based artificial
microstructures. Numerical simulations were performed using RVEs which contain artificial mi-
crostructures, with periodic boundary conditions, to study the influence of different loading sce-
narios and microstructural features on the overall and microscopic plastic behaviors.

Periodic boundary conditions corresponding to uniaxial tension, compression and shear tests,
were deduced to deform the micromechanical models. During the deformation, shear bands were
observed along the interface between different phases in each case. During the tensile and com-
pressive tests, the path of shear bands is around 45◦ to the loading direction. Nevertheless, due to
the presence of deformation induced twisting movement of martensite grains, which is caused by
the shear loading, the direction of strain localization is 0◦ or 90◦ to the coordinate system. The ef-
fective plastic stress-strain response of each loading case, was also derived with the AEH scheme.
Since relatively larger deformation occurs within ferrite phase, the stress-strain response during
the shear loading is lower than that of the other two cases.

Moreover, two controlling parameters, which are used to generate various artificial RVEs, are
adopted to investigate the influence of martensite phase fraction and distribution on the macro-
scopic and microscopic plastic behaviors. In the parametric analysis of two controlling parame-
ters, it is found that, the increase of martensite fraction results to the strengthening of the effective
flow properties and strain localization of DP steel. Since longer martensite-ferrite interface exists
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in artificial RVE with smaller CM, it requires less energy to perform the same overall plastic strain.
Therefore, the prediction from the artificial RVE with smaller CM underestimates the effective flow
properties. Conversely, the strain localization rises with the clustering of martensite phase, which
corresponds to the decrease of the martensite-ferrite interface length, and controlled by assigning
larger CM for the RVE models.

Since the grain size effect has not been considered in the dislocation based theory of the present
work, the grain size effect on the macroscopic and microscopic plastic behaviors was not dis-
cussed. To investigate the grain size effect, the micromechanical modeling should be extended
with strain- or stress- gradient plasticity [42]. Strain-gradient plasticity takes into account the
hardening caused by geometrically necessary dislocations (GNDs) in the computation of flow be-
havior. While, stress-gradient plasticity is based on the mechanism of dislocation pile-ups at the
grain boundaries [43]. Both methods could be used to capture the grain size effect. Furthermore,
the key difficulty during the extension of artificial microstructures in 3D case is that, the computa-
tion time dramatically rises as the dimension increases. Hence, further investigations are required
to overcome these challenges.
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