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Abstract

Credit Valuation Adjustment (CVA) pricing models need to be both flexible and

tractable. The survival probability has to be known in closed form (for calibration

purposes), the model should be able to fit any valid Credit Default Swap (CDS) curve,

should lead to large volatilities (in line with CDS options) and finally should be able

to feature significant Wrong-Way Risk (WWR) impact. The Cox-Ingersoll-Ross model

(CIR) combined with independent positive jumps and deterministic shift (JCIR++) is

a very good candidate : the variance (and thus covariance with exposure, i.e. WWR)

can be increased with the jumps, whereas the calibration constraint is achieved via the

shift. In practice however, there is a strong limit on the model parameters that can

be chosen, and thus on the resulting WWR impact. This is because only non-negative

shifts are allowed for consistency reasons, whereas the upwards jumps of the JCIR++

need to be compensated by a downward shift. To limit this problem, we consider the
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two-side jump model recently introduced by Mendoza-Arriaga & Linetsky, built by

time-changing CIR intensities. In a multivariate setup like CVA, time-changing the

intensity partly kills the potential correlation with the exposure process and destroys

WWR impact. Moreover, it can introduce a forward looking effect that can lead to

arbitrage opportunities. In this paper, we use the time-changed CIR process in a

way that the above issues are avoided. We show that the resulting process allows to

introduce a large WWR effect compared to the JCIR++ model. The computation cost

of the resulting Monte Carlo framework is reduced by using an adaptive control variate

procedure.

Keywords: default intensity, time-changed diffusion, subordinator, credit value adjustment

(CVA), wrong-way risk (WWR).

1 Introduction

Since the 2008 crisis, regulators suggest financial institutions to pay specific attention to

Counterparty Credit Risk (CCR) when valuing Over the Counter (OTC) deals. In this

context, CCR refers to the possibility that the counterparty of the transaction can default

before the maturity of the contract. The CCR can be accounted for either by setting up

a strong collateralisation agreement, or by charging a Credit Value Adjustment (CVA) to

absorb the corresponding expected losses. One of the main challenge when pricing such

adjustments is to account for the potential dependency of the exposure with counterparty’s

credit quality, a phenomenon commonly referred to as wrong-way risk (WWR).

In that respect, a popular framework fitting in the class of reduced-form models is to

consider the default intensity to be governed by the CIR++ [3] or the JCIR++ [5] process.

In essence, the intensity is modeled as a CIR or a jump diffusion CIR (JCIR) dynamics

shifted in a deterministic way so as to fit a given CDS term structure. However, this model

suffers from an important restriction: the resulting intensity process (including the shift)

needs to be positive. Because for tractability reasons the jumps in the JCIR++ model are
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upwards only, increasing the jump activity (e.g. to increase the implied spread volatility)

under the constraint of keeping the survival probability curve unchanged introduces a shift

function that tends to be more and more negative. Because negative shifts should be ruled

out for consistency reasons, this puts limits on the CIR or JCIR parameters that can be

chosen. This will further limit the WWR impact in CVA applications. One way to limit the

appearance of shift functions with negative values would be to allow for both upwards and

downwards jumps, without affecting the tractability of the model.

In this paper, we consider the approach of Mendoza-Arriaga and Linetsky [11] to model

the default intensity as a time-changed CIR in a CVA context. This poses several problems

that need to be addressed. First, the time-change process will destroy the potential correla-

tion between the intensity and the exposure increments. As a consequence, this would lead

to a weak WWR impact. Second, the time-change approach may also introduce arbitrage

opportunities via a forward looking effect. Eventually, even if some techniques exist to deal

with WWR in a semi-analytical way (see e.g. [6] and [14]), one generally has to rely on

Monte Carlo simulations. Standard Monte Carlo methods are known to be computationally

intensive. In addition, because of the stochastic clock, the time-change model is very time

consuming due to the fact that the simulation is done in a random grid.

Our contribution in this paper is multiple. First, we propose a way to use the time-

changed model of Mendoza-Arriaga and Linetsky in the context of CVA avoiding both the

correlation destruction and the appearance of arbitrage opportunities. This is achieved

by reconstructing the exposure process in a “synchronous” way with the intensity, while

preserving the original exposure’s dynamics. Second, we show via numerical experiments

that the corresponding model is indeed able to generate larger WWR CVA figures compared

to JCIR++ without facing the inconsistency issue resulting from a negative shift. Eventually,

we propose a variance reduction technique based on the adaptive control variate to reduce

the computational cost.

The paper is organized as follows. In Section 2, we recall the theory of some reduced-
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form intensity models in the literature of credit risk such as diffusions intensity models and

their extensions. In the third section, we introduce the subordinated model combined with

a reconstruction of the exposure process avoiding possible arbitrage opportunities resulting

from the time-change. The fourth section reviews the basic concepts of CVA computation

in the reduced-form setup for the diffusion models and the new subordinated model. In

Section 5, we present the numerical experiments including the comparison of the diffusion

models and the time-change model in term of WWR effects and the control variate technique.

The last section contains some concluding remarks and perspectives.

2 Diffusion default intensity Models

Before defining the subordinated model, we recall the definitions of some existing models in

the credit risk modelling literature using the intensity approach. In this study, we consider

the well known square-root diffusion default intensity models and their extended shifted

version SSRD [3] and SSRJD [5].

2.1 The Diffusion intensity Market Model

We consider a fixed time horizon T > 0 and a probability space (Ω,FT ,F,Q) where F =

(Ft)0≤t≤T is the filtration generated by the vector W = (WB ,WV ,W⊥). In this setup, Q

represents the risk-neutral probability measure and the components of W are risk drivers. In

particular, WB governs the dynamics of the risk-free rate r, hence that of the bank account

numéraire:

dBt = rtBtdt, B0 = 1.

Under Q, all prices of tradable assets divided by B are F-martingales between two cash-flow

dates. The second Brownian motion WV drives the dynamics of the portfolio price process

dVt = b(Vt)dt+ σ(Vt)dW
V
t , V0 > 0. (1)
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We assume the coefficients b, σ to be regular enough to guarantee that a unique strong

solution to this SDE exists. Finally, we model the default time τ of our counterparty as

a random time. It is defined as a first passage time of an increasing stochastic process

Λt :=
∫ t

0
λsds, (λs)s≥0 ≥ 0, above a unit-mean exponential random barrier E :

τ := inf {t ≥ 0 : Λt ≥ E} . (2)

In this setup, the default intensity λ is driven by a Brownian motion correlated to WV ,

Wλ := ρWV +
√

1− ρ2W⊥, W⊥ ⊥ WV , ρ ∈ [−1, 1], but the threshold E is independent

from F. In such a reduced form setup, the complete filtration G = (Gt)0≤t≤T is obtained by

progressively enlarging F with D = (Dt)0≤t≤T , the natural filtration of the default indicator

Dt = 1{τ≤t}: Gt = Ft∨Dt where Dt := σ(Du, 0 ≤ u ≤ t). Hence, τ is a D- and a G-stopping

time, but not a F-stopping time. Generally speaking however, τ and V are related one to

another (via WV ). And from the Doob-Meyer decomposition of D, its G-intensity is given

by λGt = (1 − Dt)λt [10]. Under F, the intensity is simply λ. Since the random time τ is

constructed through a Cox process, H-Hypothesis which state that every F-local martingale

is also a G-local martingale holds between the filtrations F and G, F ⊂ G (from[2], and [10]

Proposition 5.9.1.1 and Remark 7.5.1.2).

The time-t survival probability to survive up to time T implied by the model is given by

P (t, T ) := Q (τ > T |Gt) = 1{τ>t}
E[ST |Ft]

St
= 1{τ>t}

Gt(T )

Gt(t)
(3)

whereGt(T ) := Q(τ > T |Ft) is known as the risk-neutral survival probability in the filtration

F and the survival process St := Gt(t) = Q(τ > t|Ft) is the Azéma supermartingale (see [8]

for more details). Usually G0(T ) is parametrized as PM(0, T ) = e−
∫ T
0
h(s)ds, where h > 0

is the hazard rate curve prevailing at time 0. We use the symbol E to denote expectation

under Q.

To avoid arbitrage opportunities, one needs to calibrate the model curve to the market curve,

i.e. make sure that P (0, t) = G0(t) = PM(0, t) for all t > 0.
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Observe that in the above setup, the survival process takes the simple form St = e−Λt .

The Azéma supermartingale associated to this type of models has a special Doob-Meyer

decomposition: it is decreasing, meaning that the martingale part vanishes. Other types of

default models exist for which the martingale part is non-zero, see e.g. [9].

2.2 The CIR++ and JCIR++ intensity models

A convenient way to define the intensity process λ is to set λt = k(Xt) where k is a given

positive function continuous on (0,∞) and X follows a Cox-Ingersoll-Ross (CIR) SDE

dXt = κ(β −Xt)dt+ η
√
XtdW

λ
t , X0 = x > 0. (4)

By doing so, the intensity process becomes (a function of) a mean-reverting square-root

process X with speed of mean reversion κ, long-term mean β and volatility η, usually

chosen to satisfy the Feller constraint 2κβ > η2.

In order to describe the appearance of positive jumps in the default intensity process,

we consider the jump-diffusion CIR model (JCIR) defined as

dXt = κ(β −Xt)dt+ η
√
XtdW

λ
t + dJt, X0 = x (5)

where

Jt :=

Nt∑
i=1

Yi, t ≥ 0, (6)

Nt is a Poisson process with intensity ω > 0 and Y1, Y2, . . . a sequence of identically dis-

tributed exponential random variables with mean 1/α, α > 0, independent of the Poisson

Process Nt and W.

A common choice is to consider k(x) = x, in which case the intensity is driven by CIR or

JCIR dynamics respectively defined in equations (4) and (5). Adding non-negative jumps

independent from Wλ in the SDE (4) increases the volatility of the intensity process. These

two choices belong to the class of Affine models: the time-t survival probability curve takes

the simple form

PCIR(t, T ) = 1{τ>t}A(t, T )e−B(t,T )Xt (7)
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and

P JCIR(t, T ) = 1{τ>t}Ā(t, T )e−B̄(t,T )Xt (8)

for some deterministic functions A,B, Ā and B̄ (see [4] for more details). Shifting the process

X in a time-dependent way does not affect the above relationship as long as the shift is

deterministic but provides full flexibility in terms of calibration capabilities. Therefore, one

typically consider λt = Xt+ψ(t) where X is a CIR or JCIR process and ψ is chosen such that

the model and market survival probability curves coincide at inception: P (0, t) = PM(0, t).

The corresponding models are know as CIR++ and JCIR++, depending on whether X

features jumps or not. The main advantage of adding the shift is that we can fit exactly any

term structure of hazard rates and derive analytical formulas both for bonds and European

options. In particular, the CIR++ and JCIR++ models remain affine, we just need to

replace A by Ae−
∫ t
0
ψ(s)ds in the CIR model and similarly for Ā in the JCIR model. And

the shift ψ, at any time t, is given by (for both the CIR and JCIR model)

ψ(t) = − d

dt
ln
PM(0, t)

P (0, t)
.

The weakness of this approach is that we can guarantee the positivity of intensities only

through restrictions on model parameters such that ψ ≥ 0. Indeed, X can take values

arbitrarily close to zero, so that the condition λ ≥ 0 Q-a.s. is equivalent to saying ψ ≥ 0.

However in general, ψ has to correct the function P so as it sticks, thanks to the shift,

to the target function PM(0, .). Given a set of model parameters for X, nothing prevents

ψ to become negative, in general. But should it take negative values, the resulting model

fails to be a Cox-type, and the H-hypothesis does not hold anymore. This problem is of

high importance in practice. Indeed, the CIR model has low volatility to fit CDS curves,

and increasing the volatility just breaks the Feller condition. It is possible to increase the

volatility without breaking the Feller constraint using JCIR. However, the affine form of the

JCIR model requires the jumps to be independent from the diffusion part, so that positivity

allows for upwards jumps only. This of course tends to increase the mean of λ, and hence
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to decrease P JCIR (the shift can go quickly negative leading to negative intensities which

is inconsistent to the Cox model). Reciprocally, fitting a given target curve PM(0, .) with

non-negative shift only puts constraints on the jump sizes/rates, hence on the attainable

volatility.

However, one cannot increase the activity of J without bounds. By doing so indeed, the

calibration constraint P (0, t) = PM(0, t) drives the implied shift function ψ downwards. As

ψ cannot take negative values, there is a strong limit on the jump rates and/or sizes that

one can use while preserving the consistency of the model.

In the next section, we propose an alternative model that is less subjected to suffer from

the above problems.

3 Time-change intensity Model

As explained earlier, the fact that JCIR jumps rapidly pushes ψ downwards results from the

fact that the jumps are positive only. This would not be the case if the jumps could go in

both directions. Yet, it is not enough just to use symmetric jumps in JCIR++: this would

break the positiveness of X if J is independent from Wλ.

One possibility consists in modeling λ as a time-changed version of a standard intensity

process like X. On that respect, we define the time-changed CIR (TC-CIR) model by

subordinating the CIR process Xt in (4) with a jump-process

θt := t+ J ′t
1 (9)

where J ′ is a compound Poisson process independent of W defined as in (6) but with a

Poisson process N ′t instead of Nt. That is, we define a new process Xθ by Xθ
t = Xθt where

θ is the stochastic clock defined above. If the stochastic clock features jumps, the resulting

time-changed process would still be positive, and would feature jumps in both directions.

1It is possible that θ is a subordinator with drift a > 0 (i.e.: θt = at+ J ′t) but we focus here on the case

a = 1.
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This would provide a mean to increase the volatility of λ avoiding the implied shift of the

time-change model to become negative too quickly as the jumps activity increases. As Xθ

is no longer affine, we need to apply the procedure developed by Mendoza-Arriaga and

Linetsky [11] to get a closed formula for the survival probability. This approach is a time-

changed CIR default intensity by mean of subordination in the sense of Bochner [11]. Based

on a Cox model, it is analytically tractable by means of eigenfunction expansions of relevant

semigroups, yielding closed-form pricing of defaultable zero coupon bonds.

3.1 The time-changed Market Model

Consider the corresponding time-changed probability space (Ω,FθT ,Fθ,Q) with Fθt = Fθt

and Fθ = (Fθt)t≥0. To introduce the time change defaultable market, we consider the default

time as defined in (2) in order to determine the corresponding intensity of the time-change

model. Let’s define the corresponding indicator process of D by Dθ
t := 1{τ≤θt}, t ≥ 0. To

introduce the time-change filtration, we need first to define an inverse subordinator process

(Lt := inf{s ≥ 0 : θs > t}, t ≥ 0). Let L = (Lt)t≥0 be its completed natural filtration

and H = (Ht)t≥0 the enlarged filtration with Ht = Gt ∨ Lt. We then define our time-

changed filtration Hθ = (Hθt )t≥0 by Hθt = Hθt . Hence, the time-changed bivariate process

(Xθ
t , D

θ
t )t≥0 is Hθ-adapted and càdlàg and is an Hθ-semimartingale (see [11] for details).

In this setup, from the Doob-Meyer decomposition of Dθ, our time-changed intensity is

(see Theorem 3.3 (iii) in [11]) given by λH
θ

t = (1−Dθ
t )λθt ,

λθt = kθ(Xθ
t ) with kθ(x) = k(x) +

∫
(0,∞)

(
1−A(0, s)e−B(0,s)x

)
ν(ds)

where we set k(x) = x (as in the CIR intensity model), ν(ds) = ωαe−αsds and A,B are the

same as in (7). Hence, if kθ is a function from R+ to R+ and X is an intensity process, λθ

defines a new intensity process and can be used to define a new default time using the Cox

framework used above:

τθ := inf

{
t ≥ 0 :

∫ t

0

λθsds ≥ E
}
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and we have that {τθ ≤ t} ≡ {τ ≤ θt} Q - a.s., with

Dθ
t = 1{τθ≤t}.

In this setup, the new time-t survival probability to survive up to time T is

P θ(t, T ) := Q
(
τθ > T |Hθt

)
= 1{τθ>t}

E[SθT |Fθt ]

Sθt
= 1{τθ>t}

Gθt (T )

Gθt (t)
(10)

where Sθt = Q(τθ > t | Fθt ) = e−
∫ t
0
λθsds is the Azéma supermartingale and Gθt (T ) = Q(τθ >

T | Fθt ) the risk-neutral survival probability in the time-change model.

In a multivariate setup in general and in the specific case of CVA application in particular,

the time-change approach presents a problem. Indeed, λθ is an intensity, which typically

can be correlated with other processes (e.g. V and B). If we correlate these Brownian

motions, two problems arise. First, because of the time change, the correlation between the

intensity λθ and (V,B) is partially destroyed. Indeed, Vt and Bt depend on WV and WB on

[0, t] whereas the intensity λθ depends on Wλ on [0, θt] with θt ≥ t. This methodology thus

impacts negatively the dependence between the processes λ and (B, V ) as the intensity or

the size of jumps of θ increases. Another problem, probably even more important, is related

to arbitrage opportunities. The knowledge of λθ at t contains information on Wλ up to θt.

If ρ 6= 0, this introduces a forward looking effect on V . It is therefore important to work

with a model in which all processes remain synchronized, but without changing the law of

B and V as originally specified. To do this, it is enough to rebuild new Brownian motions

(W̃V , W̃B) so that the increments of (B, V ) remain synchronized with those of λθ.

Lemma 3.1.1. Let W be a Brownian motion and ti be the time of the ith jump of the

Poisson process N ′t. Then the process

W̃t :=

N ′t−1∑
i=0

∫ t−i+1∧t

ti∧t
dWθs + (Wθt −Wθt

N′t
) (11)

is an Fθ-Brownian motion and behaves exactly as W sampled on the time grid.

Proof. W̃t is a continuous Fθ-local martingale with W̃0 = 0 and for every t ≥ 0, 〈W̃ 〉t = t.

By the Lévy’s characterization theorem, the process (W̃t)t≥0 is an Fθ-Brownian motion.
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The dynamics of V can thus be equivalently described in terms W̃V setting W = WV

on Fθ as:

dṼt = b(Ṽt)dt+ σ(Ṽt)dW̃
V , Ṽ0 = V0. (12)

Applying the same procedure of Lemma 3.1.1 on WB , the corresponding copy of WB on the

time changed grid is W̃B which will govern the new dynamics of the risk-free rate r̃ leading

to that of the bank account numéraire given by

dB̃ = r̃tB̃dt, B̃0 = 1.

Remark. It is worth stressing the fact that keeping WV as the driver of the exposure process

V (instead of W̃V ) does not completely destroy the WWR effect resulting from the correlation

ρ between WV ,Wλ. The reason is that even if the instantaneous correlation between the

infinitesimal increments of λθ and V are mutually independent as from the first jump of θ,

the correlation between λθt and Vt is non-zero for any t > 0 whenever ρ 6= 0. This is because

these processes depend on the integrals of increments of Brownian motions on some time

intervals. Between two jumps of the clock in particular, the Brownian increments driving

the change in the intensity process λθ can be independent from the Brownian increments

driving the exposure V on a same time period, but the increments of the first Brownian

motion on a given time interval can be dependent on the second Brownian motion on another

interval. This explains that two processes λθ and V can be dependent on each other even if

the instantaneous correlation of their increments vanishes because of the time-change. By

contrast, the correlation between λθt and Vt is lower than that of λθt and Ṽt: by synchronizing

the changes of the Brownian motion driving V with the one driving λθ, one maximizes the

attainable correlation. For instance, let W,B be two Brownian motions with instantaneous

correlation ρ, i.e. d〈W,B〉t = ρdt and define Bδ as Bδt = Bt+δ where δ > 0. The correlation

between the increments of W and B on the interval [s, t] is ρ whereas that between W and

Bδ is ρ(t− (s+ δ))+/(t− s) whose absolute value is no greater than |ρ|.

Theorem 3.1.2. Discounted payoffs driven by Ṽ and B̃ are Hθ-martingales under Q.
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Proof. We know that the discounted payoffs driven by V and B are (Q,F)-martingales,

hence they are (Q,G)-martingales due to the H-Hypothesis. By construction, Ṽ and B̃ have

the same Fθ dynamics as V and B under F (see Lemma 3.1.1). Hence, the discounted

payoffs driven by Ṽ and B̃ are (Q,Fθ)-martingales. Because τθ is modelled with a Cox

process, immersion holds and they remains martingales when progressively enlarging Fθ

with τθ. This shows that they are (Q,Gθ)-martingales, hence (Q,Hθ)-martingales (since

Lθt = t).

As explained earlier, time-changing the intensity can introduce a forward-looking effect

and thus arbitrage opportunities. Indeed, prices of non-dividend paying asset discounted at

the risk-free rate would not be a martingale under Q in the natural filtration generated by

(WV ,Wλθ ) when ρ 6= 0. This is formalized in the next lemma proven in the Appendix.

Lemma 3.1.3. Suppose that V is a martingale with respect to FWV

, the natural filtration

of WV . It is also a martingale with respect to FWV ∨FWλ

. We note Wλθ the time-changed

version of Wλ. For instance suppose that for some s ∈ [0, t], we have s < θs < t. Then, X

may not be a FWV ∨ FWλθ

-martingale.

3.2 The time-changed CIR++ intensity model

To define the shifted time-change CIR (TC-CIR++) model, we need to have a closed form

of the survival probability of the TC-CIR model. For that, we only need to compute the

Laplace transform of our time-change process θ in order to apply the idea devised in [11].

Laplace transform of a Lévy subordinator: Our time-change jump-process θ is a

Lévy subordinator and its Laplace transform can be found easily using the Lévy-Khintchine

formula [1]. For any u ∈ R, the Laplace transform of θ reads

E[e−uθt ] = E[e−u(t+Jt)] = e−utE[e−uJt ] .
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From the exponential formula, a Lévy-Khintchine formula representation of the compound

Poisson process yields

E[e−uJt ] = e−tϕ(u)

where ϕ is the Lévy exponent given by

ϕ(u) =

∫
R‘{0}

(1− e−us)ωαe−αsds1{s>0} =

∫
(0,∞)

ωα(1− e−us)e−αsds.

It comes that

E[e−uθt ] = e−tφ(u) , φ(u) = u

(
u+ α+ ω

u+ α

)
.

Knowing φ, the time-changed survival probability takes the closed form

P θ(t, T ) = 1{τθ>t}

∞∑
n=1

e−φ(λn)(T−t)fn(0)ϕn(Xθ
t )

where λn, fn and ϕn are given in [11].

The TC-CIR++ model is obtained by defining the time-changed intensity process as

λθt = kθ(Xθ
t ) + ψθ(t) and finding ψθ such that P θ(0, T ) = Gθ0(T ) = PM(0, T ). Hence

ψθ(t) = − d

dt
ln
PM(0, t)

P θ(0, t)
.

4 CVA in a reduced form setup

The reduced form approach relies on a change of filtrations. In this section, we derive the

CVA formulas in both cases where the default intensity is given by the square-root diffusions

or the time-change model.

CVA attempts to measure the expected loss due to missing the remaining payments of

the OTC portfolio. Its mathematical expression is given in a risk-neutral pricing framework

based on a no-arbitrage setup. Let R be the recovery rate of the counterparty and the

exposure processes V and Ṽ respectively given by (1) and (12). For the mathematical proof

of the following CVA expressions, we refer to [10].
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4.1 CVA formula in the diffusion model

From the H-Hypothesis, payoffs driven by V and B are G-martingale. In addition, since

V/B is Q-integrable and F-predictable, assuming τ > 0 and deterministic recovery rate R,

the time-t CVA expression reads

CVAt = 1{τ>t}BtE
[
(1−R)

V +
τ

Bτ
1{τ≤T}

∣∣∣∣Gt] = −1{τ>t}
Bt
St

E

[
(1−R)

∫ T

t

V +
u

Bu
dSu

∣∣∣∣Ft
]
.

(13)

Discretizing the integral with a numerical scheme, the Monte-Carlo estimation of time-0

CVA becomes

ĈVA0 := −(1−R)
1

m

m∑
i=1

n∑
k=1

V
+,(i)
tk

B
(i)
tk

∆S
(i)
tk
, n =

T

δ
(14)

where ∆S
(i)
tk

= S
(i)
tk
− S(i)

tk−1
. The right-hand side results from Monte Carlo approximation,

by taking the sample mean of m time-integrals discretized in n intervals of length δ.

In the specific case where τ is independent from the discounted exposure (i.e. ρ = 0),

the independent CVA formula is given by

CVA⊥0 = −(1−R)

∫ T

0

E
[
V +
u

Bu

]
dG0(u). (15)

In other words, CVA only depends separately on the expected discounted exposure E
[
V +
u

Bu

]
and the prevailing mrisk-neutral survival probability curve G0(.). We refer to [6] for more

details.

Generally speaking however the later expression does not hold, and CVA depends on

the joint dynamics of the exposure and credit worthiness. We cannot get to such a simpler

formula as in (15) and we have to take in account the dependency between credit and

exposure. Wrong way risk (WWR) is the additional risk related to this dependency.
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4.2 CVA formula in the time-change model

As Ṽ /B̃ is Q-integrable and Fθ-predictable, assuming τθ > 0 and using Theorem 3.1.2, in a

similar ways as before, but using (Ṽ , B̃) instead of (V,B) (having the same dynamics under

Fθ as (V,B) under F), but using the intensity of τθ with Azéma supermartingale Sθ, we

have

CVAt = 1{τθ>t}B̃tE

[
(1−R)

Ṽ +
τ

B̃τ
1{τθ≤T}

∣∣∣∣Hθt
]

= 1{τθ>t}B̃tE

[
(1−R)

Ṽ +
τ

B̃τ
1{τθ≤T}

∣∣∣∣(τθ ≤ t) ∨ Fθt
]

= −1{τθ>t}
B̃t
Sθt

E

[
(1−R)

∫ T

t

Ṽ +
u

B̃u
dSθu

∣∣∣∣Fθt
]
.

(16)

Therefore, the time-0 CVA in the time-changed model can be approximated using m paths

of Monte Carlo simulations as

ĈVA0 := −(1−R)
1

m

m∑
i=1

n∑
k=1

Ṽ
+,(i)
tk

B̃tk
∆S

θ,(i)
tk

, n =
T

δ
. (17)

In the specific case where τθ is independent from the discounted exposure, we obtain the

independent CVA formula in the time-changed model

CVA⊥0 = −(1−R)

∫ T

0

E

[
Ṽ +
u

B̃u

]
dGθ0(u) . (18)

Observe that by construction of ψ and ψθ, G0(t) = Gθ0(t) = PM(0, t). Hence, CVA⊥0 agrees

in either models under the calibration constraint. This means

CVA⊥0 = −(1−R)

∫ T

0

E
[
V +
u

Bu

]
dPM(0, u) = −(1−R)

∫ T

0

E

[
Ṽ +
u

B̃u

]
dPM(0, u). (19)

5 Numerical experiments

In this section, we start by defining the simulation procedure of the bivariate process (Xθ, Ṽ ).

The CVA is computed using standard Monte Carlo simulation and the performance of the

shifted time-changed model in term of WWR is compared to the CIR++ and JCIR++
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stochastic intensity models. For the sake of simplicity, the recovery rate R and the interest

rate r are assumed to be constant and set to zero (i.e. R = 0 and B = B̃ = 1) to put the

focus and the treatment of the credit-exposure dependency.

5.1 Simulation procedure of (Xθ, Ṽ )

Let’s denote by T = {0, δ, 2δ, . . . , T} the time-t grid and T θ = {0, θδ, θ2δ, . . . , θT } the grid

at time θt. To refine the grid T θ, we define grids T θi , i = 1, . . . , n, as

T θi :=

ni−1⋃
j=1

{
θti−1

+ j
∆θti
ni

}
, ni =

⌈
∆θti
δ

⌉
, T θfine := T θ

⋃{
n⋃
i=1

T θi

}

The simulation grid T θfine contains T θ and is completed in such a way that (after sorting),

the step between two consecutive points is no greater than the chosen time step δ to keep

control on the discretization error independently of the jump sizes of θ.

To simulate Xθ, we simulate the CIR process X in (4) on T θfine using Diop’s scheme [7]:

X̄(i+1)δ = X̄iδ + κ(β − X̄+
iδ)δ + η

√
X̄+
iδ(W

λ
(i+1)δ −W

λ
iδ), X̄0 = X0, i = 0, . . . , n− 1.

Xθ is obtained by extracting in T θfine the corresponding values of X on the grid T θ.

To obtain Ṽ , we simulate WV on T θfine, extract its corresponding values on T θ and use

respectively (11) and (12).

5.2 Numerical results

In this section, we compare the performances of the three models studied above in terms

of WWR impact for a simple forward-type Gaussian exposure and Brownian swap bridge

exposure. We fix the CIR parameters (κ, β, η, x) as in [6] and search for the jump parameters

(ω, α) of JCIR (affecting directly the intensity) and of TC-CIR (affecting the stochastic

clocks and only indirectly the jumps in the intensity) such that ψ ≥ 0 and the WWR

impact is maximum.
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5.2.1 Brownian exposure

We set the coefficients of the exposure dynamics in eq. (1) to b(Vt) ≡ 0, σ(Vt) ≡ σ and

V0 = 0 which leads to

dVt = σdWV
t .

This example illustrates a 3 years forward contract or total return swap, which does not

pay dividends. In Figure 1 we plot the CVA in function of the correlation ρ for the tree

considered models. We notice that due the the shift constraint, the JCIR model has slightly

more WWR impact than the CIR model (because of the jumps) while the TC-CIR model

has a larger WWR impact.
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(a) CIR (0.02, 0.161, 0.08, 0.03), JCIR (0.07, 0.08),

TC-CIR (0.6, 0.512)
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TC-CIR (0.4, 0.49)

Figure 1: CVA figures, 3Y Gaussian exposure, σ = 8%. Hazard rate is h(t) = 5%.

5.2.2 Brownian bridge (with drift) exposure

The drifted Brownian bridge is obtained by choosing in (1) b(Vt) ≡ γ(T−t)− Vt
T−t , σ(Vt) ≡ σ

and V0 = 0, so that

dVt =

[
γ(T − t)− Vt

T − t

]
dt+ σdWV

t

where γ stands for the future expected moneyness of an interest rate swap implied by the

forward curve and σ controls the exposure volatility. We get similar results in term of WWR
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impact as in the previous example.
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(a) CIR (0.02, 0.161, 0.08, 0.03), JCIR (0.07, 0.08),
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Figure 2: CVA figures, 3Y Swap exposure, (σ, γ) = (8%, 0.1%). Hazard rate is h(t) = 5%.

5.3 Adaptive control variate Monte Carlo estimator

The standard Monte Carlo method applied to the TC-CIR++ model is time consuming.

The reason is that the time-step needs to be kept relatively small (to limit the discretization

errors) whereas the simulation horizon is governed by θT which can be much larger than

T . In order to reduce the computational cost, we propose to adopt a variance reduction

technique called adaptive control variate. In this section, we briefly recall the idea of control

variate, describe its adaptive implementation and then transpose it to our CVA application.

Our purpose is to find an estimator of E[Y ] from m i.i.d. observations of Y . The unbiased

sample-mean estimator of E[Y ] is Ŷ := 1
m

∑m
k=1 Yk. The idea of control variate consists of

finding an alternative unbiased estimator Ỹ with lower variance compared to Ŷ by using a

control variate Z with known expectation. Consider a generic pair (Y,Z) of random variables

with i.i.d copies (Yk, Zk), k ∈ {1, 2, . . . ,m} and define

Y µk := Yk − µΞk , Ξk := Zk − E[Z] . (20)

The sample-mean estimator of Y µk is an alternative unbiased estimator of E[Y ], and is given
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by

Ŷ µ =
1

m

m∑
k=1

Y µk =
1

m

m∑
k=1

(Yk − µΞk) .

Its variance is equal to that of Ŷ for µ = 0 but is minimum for µ = µ∗ where

µ∗ :=
Cov(Y,Ξ)

Var(Ξ)
=

E[Y Ξ]

E[Ξ2]
.

Because Var(Ŷ µ
∗
) = (1 − Corr2(Y,Ξ))Var(Ŷ ), this approach is interesting when choosing

the control variate Ξ highly correlated with Y .

In practice however, the optimal constant µ∗ needs to be itself estimated. The adaptive

control variate uses a different value for µ for every index k ∈ {1, 2, . . . ,m} :

Vk :=
1

k

k∑
i=1

Ξ2
i , Ck :=

1

k

k∑
i=1

YiΞi and µk :=
Ck
Vk

,

where µ0 := 0 and µk−1 is the best estimator of µ∗ at step k (see [12] for more details).

Eventually, the adaptive control variate estimator of E[Y ] is given by

Ỹ µ :=
1

m

m∑
k=1

Y
µk−1

k = Ŷ − 1

m

m∑
k=1

µk−1Zk +
E[Z]

m

m∑
k=1

µk−1 .

In our CVA application, we are interested in estimating CVA0 which is nothing but

E[Y ] with Y = −
∫ T

0
V +
u dSu in the CIR and JCIR models (13) or Y = −

∫ T
0
Ṽ +
u dS

θ
u in the

TC-CIR model (16). We take as control variable Z = −
∫ T

0
V +
u dS

⊥
u or Z = −

∫ T
0
Ṽ +
u dS

θ,⊥
u ,

respectively, where S⊥ (resp. Sθ,⊥) is the survival process S (resp. Sθ) associated to the

intensity λ (resp. λθ) simulated usingW⊥ instead ofWλ.2 In light of the above development,

this choice is appealing because Z is correlated with Y (via the exposure process as well

as the W⊥ component of the survival process) whereas the expectation of Z is known in

closed form and corresponds to CVA⊥0 given in (19). In the adaptive procedure, the m

pairs (Yk, Zk) are given by integrals (Y,Z) over the corresponding scenario. They are i.i.d.

copies of Y and Z (up to discretization error resulting from the integral computation and

2Alternatively, if the trajectories of V and S are stored, it is enough to shuffle those of V (or S), so as

to combine, in the CVA computation, the i-th exposure’s sample path with the π(i) 6= i survival process’

sample path.
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simulation scheme). Eventually, our adaptive CVA estimator for the CIR and JCIR models

reads

C̃VA0 = ĈVA0 −
1

m

m∑
k=1

n∑
j=1

µk−1V
+,(k)
tj ∆S

⊥,(k)
tj +

CVA⊥0
m

m∑
k=1

µk−1 (21)

with ĈVA0 given in (14) and (17), respectively. The TC-CIR estimator takes a similar form

provided that one replaces (V, S) by (Ṽ , Sθ,⊥).

In figure 3, we compare the confidence interval at level 95% of the CVA computation

resulting from standard Monte Carlo (MC) and adaptive control variate (CV). We apply

this technique for the three considered models (CIR, JCIR and TC-CIR) by using the same

set of parameters in figure 1 (a) with a Gaussian exposure. Similar results are detailed in

the Appendix when using the same Gaussian exposure profile but with the parameters of

figure 1 (b).
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Figure 3: Control variate CVA figures, 3Y Gaussian exposure, σ = 8%. h(t) = 5%.
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We observe clearly that the variance reduction technique adopted allows to reduce signif-

icantly the computational of the standard Monte Carlo as a solution to CVA computation

in presence of WWR. Since Y and and the chosen control Z are more correlated as |ρ|

decreases, we observe that the variance is reduced again when |ρ| is decreasing and the

convergence of the adaptive estimator is faster in this case.

6 Conclusion

Among the reduced-form intensity models, affine models like CIR++ process received much

attention. The latter consists of a time-homogeneous mean-reverting square-root diffusion

shifted in a deterministic way so as to fit a given probability term-structure. In order to

increase the attainable volatilities, one can add jumps to the CIR++ dynamics. If the jumps

are independent and positive, one obtains the so-called JCIR++ model, which remains affine.

The problem however is that the model-implied survival probability curve decreases when

increasing the activity of the jumps because they are one-sided. The calibration of the model

curve to the market curve being achieved via the shift function, the latter decreases when

increasing jumps’ activity. Consequently, in order to avoid facing “negative intensities”, one

is limited in the activity of the jumps that can be used. For instance, this specificity limits

the attainable values for value-at-risk on CDS, CDS options or wrong-way risk CVA.

An alternative intensity model that allows for two-side jumps is the time-changed idea of

Mendoza-Arriaga & Linetsky. Because jumps can be both positive and negative, the model-

implied survival probability curve is expected to decrease less rapidly when increasing the

jumps activity compared to the JCIR++. Hence, the problem of facing negative shift func-

tion (i.e. “negative intensities”) is expected to be less severe, so that larger “volatility‘s

effect” could be generated. This motivates the use of the above model for CVA purposes.

Yet, using the time-changed intensity approach in a multivariate framework requires spe-

cific precautions. Without specific adjustments indeed, the time-change technique partly
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destroys the potential correlation between intensity and exposure which impacts negatively

the attainable WWR effect. More importantly, it features forward-looking effects that can

generate arbitrage opportunities. In this paper, we have shown how the time-changed model

can be used in a consistent and efficient way by reconstructing the exposure dynamics in

a “synchronous” way such that the above problems can be avoided. The computational

issue inherent to the time-changed technique is tackled by proposing a variance reduction

technique based on adaptive control variate. Eventually, numerical simulations show that

under calibration constraint to a given term structure, the time-change model can give larger

WWR effects compared to the CIR++ and JCIR++ models.

Analyzing the model’s ability to generate higher CDS spread’s volatility is another impor-

tant question from both risk-management and pricing perspectives, which is left for future

work.
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8 Appendix

In this section, we give the proof of Corollary 3.1.3 and the variance reduction figures using

the parameter set of figure 1 (b).
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Proof. Let Vt = Vs e
−σ22 (t−s)+σ(WV

t −W
V
s ). Clearly, because V is adapted to FWV

,

E
[
Vt | FW

V

s ∨ FW
λ

s

]
= E

[
Vt | FW

V

s

]
= Vs e

−σ22 (t−s)E
[
eσ(WV

t −W
V
s )
]

= Vs

However, the increments of WV after θs > s are independent both from FWV

s and from

FWλ

θs
:= FWλθ

s . Hence,

E
[
Vt | FW

V

s ∨ FW
λθ

s

]
= Vs e

−σ22 (t−s)E
[
eσ(WV

t −W
V
s )|FW

λ

θs

]
= Vs e

−σ22 (t−s)e
σ2

2 (t−θs)E
[
eσ(WV

θs
−WV

s )|FW
λ

θs

]
= Vs e

−σ22 (θs−s)E
[
eσ(WV

θs
−WV

s )|FW
λ

θs

]
Assuming in the sequel that ρ 6= 0,

E
[
e
σ
ρ [(Wλ

θs
−Wλ

s )−
√

1−ρ2(W⊥θs−W
⊥
s )]|FW

λ

θs

]
= e

σ
ρ (Wλ

θs
−Wλ

s )E
[
e
−σ
√

1−ρ2
ρ (W⊥θs−W

⊥
s )|FW

λ

θs

]
Observe that W⊥θs −W

⊥
s is not independent from FWλ

θs
as this information set gives us the

value of Wλ
θs
−Wλ

s :

Wλ
θs −W

λ
s = ρ

(
WV
θs −W

V
s

)
+
√

1− ρ2
(
W⊥θs −W

⊥
s

)
The computation of the above conditional expectation amounts to evaluate the moment

generating function (MGF) ϕ

(
−σ
√

1−ρ2
ρ

)
associated to the Normal variable W⊥θs −W

⊥
s for

which one knows the value of its weighted sum with another independent variable. More

explicitly, we are looking for the MGF of X =
√

1− ρ2
√
θs − sZ1 such that X + Y =

Wλ
θs
−Wλ

s with Y = ρ
√
θs − sZ2, Z1, Z2 iid standard Normal. It can be shown (see eg [13])

that, given X+ω2Z2 = c, X = ω1Z1 ∼ N (µ̃, σ̃) with σ̃2 =
(
ω−2

1 + ω−2
2

)−1
and µ̃ = cσ̃2/ω2

2 .

Using the values of ω1, ω2 and c = Wλ
θs
−Wλ

s ,

ϕ (t) = e(1−ρ2)(Wλ
θs
−Wλ

s )t+ρ2(1−ρ2)(θs−s) t
2

2
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Eventually,

E
[
Vt | FW

V

s ∨ FW
λθ

s

]
= Vs e

−σ22 (θs−s)e
σ
ρ (Wλ

θs
−Wλ

s )e
(1−ρ2)(Wλ

θs
−Wλ

s )

(
−σ
√

1−ρ2
ρ

)

× e
ρ2(1−ρ2)(θs−s)

(
−σ
√

1−ρ2
ρ
√

2

)2

= Vs e
σ
ρ

[
1−(1−ρ2)

3
2

]
(Wλ

θs
−Wλ

s )+σ2

2 [(1−ρ2)2−1](θs−s)

6= Vs .
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Figure 4: Control variate CVA figures, 3Y Gaussian exposure, σ = 8%. h(t) = 5%.
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