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The gastrointestinal tract is the natural habitat for a huge community of microorganisms, comprising
bacteria, viruses, fungi and yeast. This microbial ecosystem codevelops with the host throughout life and
is subject to a complex interplay that depends on multiple factors including host genetics, nutrition, life-
style, stress, diseases and antibiotics use. The gut microbiota, that refers to intestinal bacteria, has pro-
found influence on the host immune system, metabolism and nervous system. Indeed, intestinal bacteria
supply the host with essential nutrients such as vitamins, metabolize bile acids and undigested com-
pounds, defend against pathogen invasion, participate to the development of the intestinal architecture
and the intestinal immune system and play an important role in the maintenance of the gut barrier
function. More recently, the gut microbiota has been shown to influence brain functions, such as myelin
synthesis, the blood-brain barrier permeability and neuroinflammatory responses but also mood and
behavior. The cross-talk between microbes and the host implicates a vast array of signaling pathways
that involve many different classes of molecules like metabolites produced by the bacteria from dietary
or endogenous sources of carbohydrates and proteins (i.e. short-chain fatty acids (SCFAs), indole), neu-
rotransmitters and inflammatory cytokines. This review will focus on the involvement of the gut
microbiota in the pathophysiological aspects of alcohol dependence related to the gut barrier function,
liver damage and psychological disturbances. We will also discuss the possibility to create new and
realistic humanized animal models of alcohol dependence by the use of fecal transplantation.

© 2018 Elsevier Inc. All rights reserved.
Introduction

The gastrointestinal tract is the natural habitat for a huge
community of microorganisms, comprising bacteria, viruses, fungi,
and yeast. This microbial ecosystem co-develops with the host
throughout life and is subject to a complex interplay that depends
on multiple factors, including host genetics, nutrition, life-style,
stress, diseases, and antibiotics use (Nicholson et al., 2012). The
gut microbiota, which refers to intestinal bacteria, has profound
influence on the host immune system, metabolism, and nervous
system (Fung, Olson, & Hsiao, 2017; Nicholson et al., 2012). Indeed,
intestinal bacteria supply the host with essential nutrients such as
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vitamins, metabolize bile acids and undigested compounds, defend
against pathogen invasion, participate in the development of the
intestinal architecture and the intestinal immune system, and play
an important role in the maintenance of the gut barrier function.
More recently, the gut microbiota has been shown to influence
brain functions, such as myelin synthesis (Hoban et al., 2016),
blood-brain barrier permeability (Braniste et al., 2014), and neu-
roinflammatory responses; the gut microbiota has also been shown
to influence mood and behavior (Cryan & Dinan, 2012). The cross-
talk between the microbes and the host implicates a vast array of
signaling pathways that involve many different classes of mole-
cules, such as metabolites produced by the bacteria from dietary or
endogenous sources of carbohydrates and proteins (i.e., short-chain
fatty acids [SCFAs], indole), neurotransmitters, and inflammatory
cytokines (Cryan& Dinan, 2012; Nicholson et al., 2012). This review
will focus on the involvement of the gut microbiota in the
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pathophysiological aspects of alcohol dependence related to the gut
barrier function, liver damage, and psychological disturbances.
Currently, studies that focused on the alteration of the gut micro-
biota in alcohol-related diseases and their implications for the body
arose from two, still distinct fields of research: one developed by
hepatologists, which questions the influence of the microbiota on
the liver, and another one developed by specialists in alcohol
addiction and neuroscience, which questions how the microbiota
might influence drinking behavior. In this review, we described the
data obtained from these two fields, because all studies are relevant
to the entire domain and we also believe that the distinction be-
tween these two fields is probably artificial, as the addiction overall
could be considered as the result of a gut-liver-brain alteration.
Finally, in this review, we will also discuss the possibility to create
new and realistic humanized animal models of alcohol dependence
by the use of fecal transplantation.

Effect of alcohol on the gut barrier function

The intestinal mucosal surface is constantly in contact with a
vast, diverse, and dynamic microbial community. The intestinal
cells must sense and respond appropriately to this enormous mi-
crobial load. The gut barrier is a complex system that insures two
major defense functions that are physical and immunological:
minimizing direct contact between microorganisms and the
epithelial cells, and confining penetrant bacteria to intestinal sites,
thereby limiting their contact with other host tissues (Hooper,
Littman, & Macpherson, 2012). This anatomical containment of
intestinal microorganisms is essential to limit inflammation and
maintain normal systemic immune cells homeostasis. The intesti-
nal barrier is composed of several components that are described
hereafter. First, there is the epithelial barrier where the enterocytes
are adhered to their adjacent cells due to an apical junctional
complex, composed of tight junctions (occludin, zonula occludens,
and claudins), adherens junctions, and desmosomes. These ele-
ments constitute a physical barrier that regulates the paracellular
pathways and prevents bacterial translocation (Turner, 2009).
Second, there is the mucus that forms a protective layer that also
limits the penetration of bacteria into host tissues (Johansson et al.,
2008). The main constituents of the mucus are the glycoprotein
mucins (such as MUC2) produced by the goblet cells. Third, there
are the antimicrobial peptides that kill or inactivate microorgan-
isms andmaintain homeostasis. These natural antibiotics (a- and b-
defensins, cathelicidins, lysozyme, angiogenin, phospholipase A2,
and C-lectin, such as Reg3g) are secreted by enterocytes and Paneth
cells located at the base of small intestinal crypts and released in
the mucus layer (Gallo & Hooper, 2012). Finally, the gut-associated
lymphoid tissue (GALT), which contains more than 80% of immu-
noglobulin (Ig)-secreting cells of the entire body (van der Heijden,
Stok, & Bianchi, 1987), is also an important component of the gut
barrier. Microorganisms that penetrate the intestinal epithelium
are phagocytosed and eliminated by macrophages of the lamina
propria or engulfed by dendritic cells and carried to the mesenteric
lymph nodes. IgA antibodies specific for intestinal bacteria are
produced by plasma cells (B lymphocytes), translocate across the
epithelium, and bind to luminal bacteria to prevent microbial
translocation across the epithelial barrier. Homeostasis in the gut
mucosa is also maintained by other lymphocyte types belonging to
the GALT, such as TH1 cells that produce interferon (IFN)-g,
TH17 cells that produce IL-17 and IL-22, and Foxp3þ regulatory T
cells (Hooper et al., 2012).

In addition, the gut wall contains an autonomous neural
network called the enteric nervous system (ENS), composed of
1 � 108 neurons (Powell, Walker, & Talley, 2017). The ENS controls
gut motility and fluid movement and regulates endocrine function.
Please cite this article in press as: Leclercq, S., et al., The gut microbiota
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It also directly communicates withmucosal immune cells of the gut
barrier, and is in extensive communicationwith the central nervous
system (CNS) via the vagus nerve and the spinal nerves (Powell
et al., 2017).

Experimental and clinical studies have demonstrated that
alcohol exposure alters the gut barrier function, resulting in
increased intestinal permeability and translocation of luminal an-
tigens, mainly bacterial endotoxins such as lipopolysaccharides
(LPS), into the portal circulation. The latter can reach the liver
where they activate hepatocytes and Kupffer cells, which eventu-
ally results in liver damage (Wheeler, 2003). Indeed, patients with
alcohol-use disorder (AUD) showed hyperpermeability of the gut
mucosa to various molecules such as lactulose/mannitol
(Keshavarzian et al., 1999), polyethylene glycol (Parlesak, Sch€afer,
Schütz, Bode, & Bode, 2000), and 51Cr-EDTA (Bjarnason, Peters, &
Wise, 1984; Leclercq et al., 2012). The mechanisms that could
explain the leaky gut in AUD patients are still incompletely un-
derstood, but likely implicate the different components of the gut
barrier function described above. For instance, in vitro, ethanol and
its main metabolite acetaldehyde disrupt the epithelial tight junc-
tions and adherence junctions integrity (Elamin et al., 2012; Wang
et al., 2014). Alcohol-induced tight junction proteins disassembly
has been confirmed in animal studies, and potential mechanisms
are described in another review (Zhou & Zhong, 2017). A growing
body of evidence has also revealed a deleterious effect of ethanol on
mucus and antimicrobial peptide production, as demonstrated by
decreased levels of Reg3g (Yan et al., 2011) in duodenal biopsies of
patients with alcohol dependence. Intestinal levels of Reg3g were
also lower in mice continuously fed with ethanol, and were asso-
ciated with enhanced bacterial translocation and progression of
liver disease (Yan et al., 2011). By contrast, overexpression of Reg3g
in intestinal epithelial cells restricts bacterial colonization of
mucosal surfaces, reduces bacterial translocation, and protects
mice from alcohol-induced steatohepatitis (Wang et al., 2016). The
production of mucins was elevated in alcohol-fed rats (Grewal &
Mahmood, 2009), and the small intestinal mucus layer of AUD
patients was found to be thicker, but more permeable, compared to
healthy subjects (Hartmann et al., 2013). Knockdown of MUC2
resulted in a reduced thickness of the mucus layer, increased
antimicrobial activity, lower bacterial translocation, and reduction
in liver injury (Hartmann et al., 2013). Ethanol exposure also altered
the homeostasis of the intestinal immune system by increasing the
levels of IFNg, IL-17, and IgA in a mouse model (L�opez, 2017) and by
increasing TNFa levels (Chen, Starkel, Turner, Ho, & Schnabl, 2015)
in the duodenal biopsies of patients with AUD.

Effect of alcohol on the gut microbiota

The interest of studying the gut microbiota in alcoholism is
driven by five main observations. First, it has been demonstrated in
many experimental models that TLR4 is a key receptor in the
development of alcoholic liver disease (ALD) (Uesugi, Froh, Arteel,
Bradford, & Thurman, 2001; Uesugi et al., 2002). The activation of
TLR4 and its signaling pathways requires the binding of LPS coming
from the cell wall of Gram-negative bacteria residing in the gut.
This also requires a breach in the gut barrier to allow the trans-
location of LPS into the portal vein. Other gut-derived bacterial
toxins, such as lipoteichoic acid, flagellin, and bacterial hypo-
methylated (CpG) DNA, have also been implicated in the develop-
ment of ALD, as mentioned in another review describing the gut-
liver axis in AUD (Szabo & Petrasek, 2017). Second, the gut bar-
rier, which is altered in AUD patients, is regulated by specific bac-
teria, including Lactobacillus (Chen et al., 2016), Bifidobacterium
(Ewaschuk et al., 2008; Khailova et al., 2009; Mennigen et al.,
2009), or Akkermansia (Everard et al., 2013; Grander et al., 2018).
: A new target in the management of alcohol dependence?, Alcohol
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These probiotics (Lactobacillus, Bifidobacterium) or candidate pro-
biotic (Akkermansia) have indeed been shown to enhance intestinal
integrity by multiple mechanisms, such as maintaining tight
junction protein expression, improving intestinal villus/crypt his-
tology, changing mucus thickness, normalizing intestinal cytokines
levels, and balancing intestinal immunity. Third, nutrition has a
profound influence on gut microbiota composition (Ley,
Turnbaugh, Klein, & Gordon, 2006; Sonnenburg et al., 2010), and
a large proportion of patients with alcohol dependence are
malnourished (Stickel, Hoehn, Schuppan, & Seitz, 2003). Ethanol is
not simply a psychotropic substance, but it is also a source of cal-
ories (7 kcal/g), which represents more than 40% of the total caloric
intake in alcoholic patients (de Timary et al., 2012). Furthermore,
dietary interventions using probiotics or prebiotics that modulate
the gutmicrobiota in animalmodels as well as in AUD patients have
been shown to improve gut permeability, inflammation, or liver
enzymes. Fourth, the absence of the gut microbiota (in germ-free
mice) has been associated with a modulation of the intestinal and
hepatic expression of ethanol-metabolizing enzymes, such as
alcohol dehydrogenase (ADH), catalase, and cytochrome P450
(Chen, Miyamoto, et al., 2015). Finally, beyond the importance of
the gut microbiome-liver axis in alcoholism (Hartmann, Seebauer,
& Schnabl, 2015), a growing body of evidence has revealed that
the gut microbiota is also an important modulator of brain func-
tions, mood, and behavior (Cryan & Dinan, 2012). In addition to the
gastrointestinal symptoms and liver damage, alcohol-dependent
patients also suffer from severe psychological symptoms,
including depression and anxiety, as well as altered cognitive
functions. Altogether, these findings establish a rationale for
studying the gut microbiota and its complex interactions with
distant peripheral (liver) and central (brain) organs in alcohol
dependence.

Several studies have investigated the microbial composition by
culture techniques or by analysis of the 16S rRNA gene and found
changes in many bacterial taxa, as already reviewed elsewhere
(Leclercq, de Timary, Delzenne, & Starkel, 2017). Interestingly, two
independent studies (Leclercq et al., 2014; Mutlu et al., 2012) have
found that dysbiosis occurred only in some alcohol-dependent
patients, and correlated neither with the degree of liver disease
nor with the length of abstinence (Mutlu et al., 2012), but was
strongly correlated with intestinal permeability (Leclercq et al.,
2014). Indeed, it was shown that only alcohol-dependent patients
with a leaky gut had alteration of the gut microbiota composition
and activity. Bifidobacterium and Faecalibacterium prausnitzii (a
bacterium known for its anti-inflammatory properties; Sokol et al.,
2008) were strongly and negatively correlated with intestinal
permeability, supporting the idea that certain bacteria actually
reinforce the gut barrier. Furthermore, metabolomics analysis
revealed that patients with a leaky gut had a high intestinal level of
phenol and a low level of indole compounds. These metabolites
produced by the bacteria from protein fermentation have been
shown, in vitro, to have a detrimental and beneficial effect on the
gut barrier function, respectively (Bansal, Alaniz, Wood, &
Jayaraman, 2010; McCall et al., 2009). One study (Leclercq et al.,
2014) strongly suggests an important dialog between the mi-
crobes, the microbial metabolites, and the gut barrier function. The
same authors also reported that patients with a leaky gut and al-
terations of the gut microbiota had a more severe form of alcohol
dependence, characterized by higher scores of depression, anxiety,
and alcohol craving, which are important psychological symptoms
predicting the risk of relapse, suggesting gut-brain interactions in
this population.

While most of the clinical studies investigating the role of gut
microbiota in disease conditions are mostly descriptive (i.e., the
abundances of specific bacterial taxa are shown to be higher or
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lower in the disease group compared to healthy controls), very few
studies have investigated the causal link between intestinal mi-
crobes and the disease phenotype. Fecal material transplantation,
from a human donor to recipient mice, is a new experimental tool
to actually prove a cause-effect relationship. This technique has
already been used in several pathological conditions such as
obesity (Ridaura et al., 2013), intestinal bowel disease (De Palma
et al., 2017), and depression (Kelly et al., 2016; Zheng et al., 2016).
With regard to alcoholism, a hallmark study conducted by Llopis
et al. (Llopis et al., 2016) has shown that a dysbiotic microbiota
contributes to the individual susceptibility to alcohol-induced liver
damage. Indeed, germ-freemice transplanted with fecal microbiota
from patients with severe alcoholic hepatitis exhibited increased
intestinal permeability (with change in MUC2 and Reg3g expres-
sion), increased bacterial translocation, and increased intestinal
and liver inflammation, compared to germ-free mice transplanted
with the microbiota of AUD patients without liver lesions, despite
similar amounts of alcohol intake. Differences in the composition of
the gut microbiota between these two groups of recipient mice
were observed, including a higher abundance of the genera Fae-
calibacterium and Akkermansia in recipient mice with no liver
damage. The profile of bile acids was also different with, for
instance, a higher abundance in mice with no liver damage of
ursodeoxycholic acid, a secondary bile acid produced by intestinal
bacteria that display hepatoprotective properties. The changes in
bile acids were associated with changes in the intestinal and he-
patic expression of ADH, which in addition to ethanol metabolism
is also involved in bile acids metabolism (Langhi, Pedraz-Cuesta,
Haro, Marrero, & Rodriguez, 2013). Interestingly, the authors
showed that alcohol-induced liver lesions in mice transferred with
the microbiota of an alcoholic hepatitis donor could partly be
reversed by a subsequent transplant of a fecal sample from a pa-
tient without alcoholic hepatitis. While these data prove the causal
role of gut microbiota in individual susceptibility to alcoholic liver
disease, questions remainwhether the disease phenotype is driven
by specific bacteria or by specific bacterial metabolites, or most
probably by a conjunction of both.

Effects of the gut microbiota on the brain and behavior in
AUD

Although the importance of the changes in the gut microbiota in
AUD has largely been demonstrated, direct evidence for a role of
the gut microbiota in the brain and behavioral aspects of AUD are
currently scarce. Several pathways, however, might explain such an
influence. First, alterations of the gut barrier function, leakage of
bacterial products through the leaky gut, and development of an
inflammation at the gut but also at the liver level may all contribute
to the development of a peripheral inflammation that may also
trigger the development of a brain inflammation (de Timary,
Starkel, Delzenne, & Leclercq, 2017). A peripheral inflammation as
manifested by increased circulating pro-inflammatory cytokines or
activated peripheral immune cells will indeed pass the blood-brain
barrier and induce an inflammation at the level of the microglia or
the astrocytes (de Timary, Starkel, Delzenne, & Leclercq, 2017). To
correctly elucidate the nature of this cytokine or cell-mediated gut-
liver-brain axis, it would in particular be important to better un-
derstand the nature of the inflammatory reactions that occur at
both the gut and liver levels and that are likely different, the liver
possibly constituting a relay for an inflammation arising from the
gut bacterial products. We might more precisely imagine that the
brain would react differently to specific inflammatory reactions
occurring either at the gut or the liver level, and that would ‘send’
their signals to the brain through the blood circulation. The influ-
ence of the peripheral inflammation on the brain may also pass
: A new target in the management of alcohol dependence?, Alcohol
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through the vagus nerve (Leclercq et al., 2017). Finally, it has also
recently been shown that some bacterial products at the gut level,
arising from the metabolism of gut substrates by specific bacteria,
might also strongly modulate the brain inflammation, as recently
demonstrated for tryptophan metabolites (Rothhammer et al.,
2016). Hence, the existence of a gut-brain or even a gut-liver-
brain inflammatory axis is clear. This is also confirmed by animal
and human postmortem studies, which have both confirmed the
existence of a brain inflammation in AUD (Robinson et al., 2014).
Furthermore, several animal studies have shown that inducing a
brain inflammation may influence behavior, and in particular
induce alcohol-seeking behavior (Blednov et al., 2011; Robinson
et al., 2014). Inflammation therefore appears at the most impor-
tant pathway for explaining how the gut microbiota influences
brain activity, but several other pathways may also be proposed for
this gut-brain axis. The gut microbiota exerts, for instance, a strong
influence on the secretion of several gut-derived peptides, such as
ghrelin, GLP1, or PYY (Delzenne, Neyrinck, Backhed, & Cani, 2011),
that may also be related to alcohol behavior (Leggio et al., 2012,
2014), possibly through the regulation of energy balance of appe-
tite, as these dimensions have recently been shown to be affected in
AUD (de Timary et al., 2012) and exert an influence on alcohol-
seeking behavior. Finally, the gut microbiota also produces,
through the metabolism of intestinal products, a great number of
substances that may have a direct influence on brain functioning
and hence on behavior, independently of the effect on
inflammation.

In summary, there exist a great number of pathways by which
the gut microbiota may exert an effect on the brain, some of them
involving a relay by the liver. Questions remain, however, regarding
the type of behaviors they might induce and that participate in the
behavioral manifestations of AUD. Currently, changes in gut
permeability and gut microbiota have been related to depression,
anxiety, and craving (Leclercq et al., 2014), which are cardinal
manifestations of AUD, participating in the negative reinforcement
of the drinking behavior. Furthermore, abnormal gut microbiota is
related to depression that is considered to trigger a tendency to
drink in this AUD population (Petit et al., 2017) and may hence
increase the severity of the disorder. However, other behavioral
aspects are also profoundly affected in AUD, such as, for instance,
social interactions. The possibility that the gut microbiota might
influence social contacts is supported by observations of a relation
between the gut and social behavior, for instance, in autism-
spectrum-disorder, both in animals (Hsiao et al., 2013) and in
humans (Adams, Johansen, Powell, Quig, & Rubin, 2011; De Angelis
et al., 2013). This would clearly deserve to be tested in AUD, where
social interactions are largely affected (Maurage, de Timary, Tecco,
Lechantre, & Samson, 2015; Maurage et al., 2016; Uekermann,
Channon, Winkel, Schlebusch, & Daum, 2007).

Probiotics and prebiotics to modulate the gut microbiota

Probiotics are live microorganisms which, when ingested in
adequate amounts, confer a health benefit on the host (Food and
Agriculture Organization of the United Nations, & World Health
Organization, 2006). A decrease in Bifidobacterium and Lactoba-
cillus has been shown in animals exposed to alcohol as well as in
patients with alcohol dependence. Consequently, restoration of the
beneficial bacteria via oral supplementation could improve alcohol-
related disorders. Indeed, in ethanol-fed rats, Lactobacillus GG
supplementation reduced endotoxemia and alcohol-induced liver
injury (Nanji, Khettry, & Sadrzadeh, 1994). Other experimental
studies using probiotics in rodents exposed to ethanol have been
described in another review (Zhou & Zhong, 2017). In humans, a 5-
day supplementation with probiotics Bifidobacterium bifidum and
Please cite this article in press as: Leclercq, S., et al., The gut microbiota
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Lactobacillus plantarum 8PA3 during alcohol detoxification had a
greater effect on the reduction of liver enzymes than abstinence
alone (Kirpich et al., 2008), and a 4-week administration of Lacto-
bacillus casei Shirota to alcoholic cirrhosis patients improved the
neutrophil phagocytic capacity (Stadlbauer et al., 2008). Addition-
ally, in patients with alcoholic cirrhosis, administration of VSL#3 (a
mixture of 8 different strains of bacteria) significantly reduced the
levels of plasma cytokines TNFa, IL-6, and IL-10 (Loguercio et al.,
2005). These data suggest a beneficial effect of probiotics on the
gut-liver axis in alcohol-dependent patients. But what about the
gut-brain axis? Several clinical trials have demonstrated the
beneficial effects of probiotics on psychological symptoms
(Akkasheh et al., 2016; Messaoudi et al., 2011; Steenbergen, Sellaro,
van Hemert, Bosch, & Colzato, 2015) and brain activity (Tillisch
et al., 2013). To our knowledge, no study has assessed the poten-
tial benefit of probiotics on brain alterations and psychological
symptoms in patients with alcohol dependence.

Whereas probiotics use livemicroorganisms, prebiotics are non-
viable substrates (dietary fibers) that serve as nutrients for bene-
ficial microorganisms harbored by the host. They are therefore
expected to stimulate the growth of a broad range of members of
the gut microbial community (Bindels, Delzenne, Cani, & Walter,
2015), including Faecalibacterium prausnitzii. The most recent
definition of a prebiotic indicates that it is a substrate selectively
utilized by hostmicroorganisms conferring a health benefit (Gibson
et al., 2017). Dietary prebiotics that have most extensively been
documented to confer health benefits in humans are the non-
digestible oligosaccharides fructans and galactans. Those are pref-
erentially metabolized by bifidobacteria and are mostly found in
fruits and vegetables (Roberfroid & Delzenne, 1998). Prebiotics
exert their health effects through the production of beneficial
metabolites such as short-chain fatty acids (acetate, propionate,
and butyrate) with antimicrobial activity, through lowering of the
intestinal pH to inhibit pathogen growth, or through reinforcing the
colonic defense barrier and exhibiting anti-inflammatory proper-
ties (Hamer et al., 2008). Studies exploring the effect of prebiotics
on alcohol-related disorders are somewhat limited. In rats, oat
supplementation reduced gut leakiness and ameliorated alcohol-
induced liver damage (Keshavarzian et al., 2001; Tang, Forsyth,
Banan, Fields, & Keshavarzian, 2009). In mice, treatment with
fructo-oligosaccharide partially restored the level of Reg3g,
reduced bacterial overgrowth, and lessened alcoholic steatohepa-
titis (Yan et al., 2011). Regarding the gut-brain axis, consumption of
prebiotics in rats has been associated with neurochemical changes,
including increased hippocampal expression of brain-derived
neurotrophic factor and glutamate receptor (Savignac et al.,
2013), which are involved in the regulation of numerous behav-
iors such as anxiety, depression, cognitive performance deficits,
and addiction (Li & Wolf, 2015).

Conclusion

Recent research suggests that the gut microbiota may affect
brain functions and behaviors. Alcohol dependence, together with
other substance-use disorders as well as eating disorders, is asso-
ciated with altered neurobiological pathways in specific brain areas
involved in reward processing (Temko et al., 2017). While preclin-
ical work carried out in germ-free mice has demonstrated the
bacterial influence on specific genes in the striatum (Diaz Heijtz
et al., 2011), the amygdala (Stilling et al., 2015), the hippocampus
(Neufeld, Kang, Bienenstock, & Foster, 2011), and prefrontal cortex
(Hoban et al., 2016), little is known about the influence of intestinal
bacteria on the neurobiological processes in humans with
substance-use disorders, as highlighted by a recent systematic re-
view (Stadlbauer et al., 2008).
: A new target in the management of alcohol dependence?, Alcohol
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Accumulating data show that severe dysbiosis occurs in some
but not all AUD patients (Leclercq et al., 2014; Llopis et al., 2016;
Mutlu et al., 2012), and is not linked to the history of alcohol
abuse or the amount of alcohol consumed. One may hypothesize
that initial microbial differences are present before the develop-
ment of alcohol dependence and that the combination of host ge-
netics, commensal microbes, and bioactive metabolites together
with alcohol exposure may condition the disease severity and
susceptibility to develop liver disease.

The capacity to transfer certain host metabolic features related
to alcoholism via gut microbiota transplantation highlights the
power of the humanized models, which is particularly relevant in
alcoholism where non-transplanted animal models poorly mimic
the whole spectrum of the disease, especially in terms of liver
inflammation and psychological dependence. Furthermore, mod-
ulation of the gut microbiota by the use of probiotics or prebiotics
represents a promising and safe therapeutic approach in the
management of alcohol dependence. Prospective, randomized,
placebo-controlled clinical trials are definitely needed to evaluate
the effects of probiotics and/or prebiotics on alcohol dependence,
and more particularly on different behavioral aspects of addiction,
such as depression, anxiety, stress response, impaired cognition,
impulsivity, and drug-seeking behavior.
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