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Abstract Nowadays, very few humanoid robots manage to

travel in our daily environments. This is mainly due to their

limited locomotion capabilities, far from the human ones.

Recently, we developed a bio-inspired torque-based controller

recruiting virtual muscles driven by reflexes and a central

pattern generator. Straight walking experiments were ob-

tained in a 3D simulation environment, resulting in the emer-

gence of human-like and robust gait patterns, with speed

modulation capabilities. In this paper, we extend this model,

in order to control the steering direction and curvature. Based

on human turning strategies, new control pathways are intro-

duced and optimized to reach the sharpest possible turns. In

sum, tele-operated motions can be achieved through the con-

trol of two scalar inputs (i.e. forward speed and heading).

This is particularly relevant for steering the robot on-line,

and navigating in cluttered environments. Finally, the biped

demonstrated significant robustness during blind walking ex-

periments.
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1 Introduction

Nowadays, there is an increasing interest in bringing mo-

bile robots in our everyday life. However, their mobility,

usually different from ours, restricts them to move in ded-

icated environments. In contrast, humanoid robots are po-

tentially adapted to move in environments designed for hu-

mans, since their body is very similar to the human one

(Schaal, 2007). Moreover, their morphology offers the pos-

sibility to manipulate tools fitting human dexterity. There-

fore, these tools do not require to be adapted to the robot

needs, favoring potential co-operative work with humans (Fitz-

patrick et al, 2016).

However, navigation in the unpredictable human world

remains an important issue, as emphasized during the recent

DARPA Robotics Challenge (Johnson et al, 2016). In par-

ticular, robot’s locomotion skills are far from reaching the

level of the human ones, therefore usually restricting them

to move in controlled environments, such as laboratories.

Most popular biped locomotion algorithms recruit the zero-

moment point (ZMP) as an indicator of gait feasibility, in

order to guarantee dynamic stability at every moment dur-

ing locomotion (Vukobratovic and Borovac, 2004). Many

successful walking experiments were conducted using this

indicator, for instance with ASIMO (Chestnutt et al, 2005)

or with the HRP-2 platform (Kaneko et al, 2002).

Interestingly, these methods can offer a mathematical

framework for postural control and steering, for example

through appropriate footstep planner strategies recruiting in-

verse kinematics or dynamics (Faraji et al, 2014). However,

common drawbacks associated with most ZMP-based bipedal

controllers include energy inefficiency, unnatural gait (low
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2 Nicolas Van der Noot et al.

waist position, continuous knee bending, feet kept parallel to

the ground, etc.), poor resistance to modeling errors or ex-

ternal perturbations and slow walking speeds (Sardain and

Bessonnet, 2004; Kurazume et al, 2005; Dallali, 2011).

In contrast, the limit cycle concept relaxes constraints in-

herent to the ZMP criterion, by focusing on global stability

during walking, instead of local stability at every moment

of the gait (Hobbelen and Wisse, 2007). Successful imple-

mentations of this concept include the (quasi-)passive walk-

ers, resulting in efficient human-like gaits (McGeer, 1990;

Collins and Ruina, 2005; Hobbelen et al, 2008). However,

gait modulation is usually very limited, due to the lack of

control parameters.

Bio-inspired controllers are emerging as a promising way

to implement adaptive limit-cycle walking, by designing con-

trol strategies based on concepts identified in humans. In

particular, the neuromuscular model developed in (Geyer

and Herr, 2010) - and further extended in (Song and Geyer,

2015) - can generate robust human-like walking through the

recruitment of muscles controlled by reflexes. Experimental

validations of this approach include the control of a powered

ankle-foot prosthesis (Eilenberg et al, 2010) and the loco-

motion of a humanoid robot in 2D, i.e. when assistance was

provided to the lateral balance (Van der Noot et al, 2015a).

In contrast to inverse kinematics/dynamics approaches,

the gait modulation and steering of these bio-inspired ap-

proaches remain challenging, due to the lack of straightfor-

ward mathematical framework. In (Desai and Geyer, 2013),

the reflex rules of (Geyer and Herr, 2010) were extended to

control the swing leg placement. Another avenue to modu-

late the gait is through the introduction of a central pattern

generator (CPG). CPGs are neural circuits capable of pro-

ducing rhythmic patterns of neural activity without receiv-

ing rhythmic inputs. They display valuable features among

which the possibility to modulate locomotion with simple

low-dimensional control signals (Ijspeert, 2008).

While locomotor CPGs were identified in many verte-

brates, their involvement in human locomotion is still a mat-

ter open to debate (Minassian et al, 2017). In particular,

human-like gaits can be achieved using computational mod-

els, both with and without CPG. Successful CPG implemen-

tations include the robust bipedal walking experiments of

(Aoi and Tsuchiya, 2005) by means of nonlinear oscillators,

the adaptation of a biped locomotion on uneven terrains us-

ing CPG modulation (Taga, 1994), and the development of

a neuromuscular model recruiting a CPG as central element,

in order to investigate the effects of a spinal cord injury on

locomotor abilities (Paul et al, 2005).

In (Van der Noot et al, 2015b), we designed a 2D loco-

motion algorithm, combining a CPG and reflexes in a neu-

romuscular torque-based controller. This is coherent with

Kuo’s framework, suggesting to combine feedback (i.e. re-

flexes) and feed-forward (i.e. CPG) pathways in the control

of a periodic task (Kuo, 2002). We recently incremented

this latest controller in (Van der Noot et al, 2018), in or-

der to provide lateral balance, and thus to walk in 3D envi-

ronments. After a single off-line optimization process, our

controller could generate energy-efficient and human-like

straight-walking gaits (both regarding kinematics and dy-

namics). Using a simulated COMAN platform (a 95 cm tall

humanoid robot) as embodiment, the forward speed could

be continuously commanded from 0.4 to 0.9m/s. This range

is close to the healthy human one, once scaled to the robot

size. This speed modulation was achieved by changing high-

level parameters, as linear or quadratic functions of the tar-

get speed.

The present contribution builds on top of this bio-inspired

controller, by extending the 3D straight-walking gaits to achieve

control of the turning direction. More precisely, the CPG

and reflex rules developed in (Van der Noot et al, 2018) are

adapted to control both the forward speed and the path cur-

vature (direction and curvature). This is particularly relevant

in tele-operation scenarios where the robot has to move in a

cluttered environment. Similarly to the existing speed con-

troller, the turning modulation is achieved by controlling a

scalar input (i.e. the heading reference), together with the

adaptation of high-level parameters, as linear or quadratic

functions of the speed reference.

This paper is divided as follows. Section 2 summarizes

the neuromuscular controller developed in (Van der Noot

et al, 2018), achieving straight walking and forward speed

modulation. That section also reports the simulation envi-

ronment and the COMAN platform embodying our controller.

The straight walking controller is later incremented in Sec-

tion 3, in order to achieve the control of the steering di-

rection. This additional steering control is further studied

in Section 4, with focus on adaptation to different walking

speeds. Then, Section 5 analyses different features of the re-

sulting steering motion, among which the achievable walk-

ing curvature, the biped robustness and some tele-operated

scenarios. Finally, Section 6 concludes the paper.

2 Straight walking controller

Here, biped locomotion control is achieved using virtual mus-

cles commanded by the combined action of reflexes and a

central pattern generator (CPG). Using this approach, 3D

straight walking with forward speed modulation can be achieved,

as reported in (Van der Noot et al, 2018). The main princi-

ples governing this approach are outlined in this section.

2.1 Neuromuscular model

The walking controller generates torque references at the

joint level by recruiting (virtual) muscles. The full muscular
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Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 3

(a) Sagittal muscles (arm and stance leg) (b) Sagittal muscles (torso and swing leg)

CE

PE BE

SE

lmtu

lce

Am

(c) Hill muscle model

(d) Lateral muscles (arm, torso and leg) (e) Transverse muscles (arm, torso and leg)

Sagittal leg Torso

1 SOL 14 BTR

2 TA 15 BTL

3 GAS 16 BET

4 VAS 17 BFL

5 HAM 18 BRR

6 GLU 19 BRL

7 HFL

Arms

Lateral leg 20 SET

8 HAB 21 SFL

9 HAD 22 SAB

10 EVE 23 SAD

11 INV 24 SER

25 SIR

Transverse leg 26 EET

12 HER 27 EFL

13 HIR

Fig. 1 To actuate the biped’s 23 joints, the controller recruits 27 different Hill muscle models (panel (c)) acting in different planes. These muscles

are commanded by a combination of reflex signals and the CPG central unit. Muscles acting in the sagittal plane are displayed in panels (a) and

(b), the ones acting in the lateral plane are displayed in panel (d), and finally, the ones acting in the transverse plane are depicted in panel (e). In

particular, turning is mainly controlled by the HAB and HAD muscles in the lateral plane (panel (d)) and by the HER and HIR muscles in the

transverse plane (panel (e)). The full muscle names are provided in (Van der Noot et al, 2018).

configuration is presented in Fig. 1 for the COMAN robot

(Tsagarakis et al, 2013), which served as embodiment in our

experiments (see Section 2.3). Each muscle is modeled as a

set of equations based on a Hill muscle model (Hill, 1938),

as depicted in Fig. 1c.

More precisely, each muscle tendon unit (MTU) con-

sists of two main elements: a contractile element (CE) and

a series elastic one (SE), capturing the tendon compliance.

Two additional elements only engage when the muscle state

is outside its normal range of operation: the parallel elas-

tic (PE) and the buffer elastic (BE) elements. The MTU

length lmtu can be retrieved from geometric relationships,

while the length of CE (lce) is obtained as the time-integral

of its velocity vce. In turn, vce depends on lmtu from force-

length and -velocity relationships, and on the muscle activa-

tion Am, detailed later. Then, the length lse of SE (computed

as lmtu − lce) provides a direct computation of the muscle

force. This force is later multiplied by a lever arm to gener-

ate a torque contribution at the joint level. Finally, the dif-

ferent torque contributions are summed and sent to the robot

joint torque low-level controller. More information is pro-

vided in (Geyer and Herr, 2010) and (Van der Noot et al,

2018).

The muscle activations Am are related to neural inputs Sm

called stimulations, through the following excitation-contraction

coupling first-order equation: τm dAm/dt = Sm−Am, where
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4 Nicolas Van der Noot et al.

τm is a time constant of 10ms. Actuating the muscles, and

so controlling the whole biped locomotion, thus amounts to

compute appropriate stimulations Sm.

2.2 Reflexes and central pattern generator

The neural stimulations Sm are computed as a combination

of reflex mechanisms (feedback) and signals produced by

a central pattern generator (CPG, feed-forward) (Rossignol

et al, 2006). The combination of these two types of signals

mainly follows a proximo-distal gradient. In other words,

muscles close to the hips are mainly controlled by CPG sig-

nals, while the ones close to the feet (and so more impacted

by external perturbations, like ground contact) are mainly

driven by reflexes (Dzeladini et al, 2014; Daley et al, 2007).

All these reflexes and CPG inputs computations are fully

detailed in (Van der Noot et al, 2018) and depicted in Fig. 1.

For instance, in the stance phase, the soleus muscle (SOL) is

stimulated with the following positive force feedback reflex:

GSOL F̃SOL, where GSOL is a fixed parameter and F̃SOL is the

SOL muscle force normalized by its maximal force. Most of

the reflexes - similar to the one here as example - are adapted

from (Geyer and Herr, 2010).

For straight walking, the CPG was designed as a twelve-

neurons network of Matsuoka oscillators (Matsuoka, 1985,

1987). These are bio-inspired artificial oscillators, captur-

ing the mutual inhibition between half-centers located in

the spinal cord. Each neuron Ni obeys the state equations

provided in (1), where xi is the firing rate, vi is the self-

inhibition modulated by an adaptation constant β j, ηk are the

mutual inhibition factors (captured by the function [•]+ =

max(0,•)) and ui is the external input. Finally, τ is the time

constant for the rate of discharge of xi, while the one of the

self-inhibition vi is related to τ through the adimensional pa-

rameter γ j.

ẋi =
1

τ
(−xi−β j vi−∑ηk [xl ]

++ui)

v̇i =
1

γ j τ
(−vi +[xi]

+)
(1)

In Eq. (1), the index i corresponds to the neuron index,

while the gains β j, ηk, and the neurons xl are specified in

Fig. 3. Finally, γ j takes the same index as β j.

Furthermore, this CPG network was divided into two

main parts. The first one, in charge of providing the main

frequency and phasing during the gait, is composed of four

neurons, i.e. the ”rhythm generator” neurons (RG). They

are denoted with a number (from 1 to 4), and depicted in

Fig. 2a. The second layer relies on the RG neurons to gener-

ate signals shaping the patterns of muscle stimulations. The

corresponding neurons are denoted with a letter (from A to

H) and are called ”pattern formations” neurons (PF). They

are displayed in Fig. 2b. This two-layer structure is consis-

tent with the two-level CPG biological structure proposed

by (McCrea and Rybak, 2008) and validated during fictive

locomotion experiments with decerebrated cats.

N1
a

a

b

u1

u3

u2

u4

a

b b

N2

N3 N4

f f

g g

(a) RG neurons

N1 N2

N3 N4

a-e

uA-H uA-H

a-e a-e

NA-H

f-l

g-m g-m

f-l

NA-H

(b) PF neurons

N1 N2

N3 N4

N N

n

o

n

o

(c) TR neurons

Fig. 2 The CPG network is built by assembling three types of com-

ponents: (a) the rhythm generator (RG) layer (four fully connected

Matsuoka neurons), (b) a pair of pattern formation Matsuoka neurons

(PF) driven by the RG neurons and (c) a pair of non-Matsuoka neurons

controlling turning (TR), also driven by the RG neurons. The vertical

symmetry corresponds to the left/right legs symmetry.

The full CPG network, for straight walking, is pictured

in Fig. 3. The corresponding time-evolution of the neurons

firing rates are displayed in Fig. 4. To generate the CPG

contribution to a particular muscle stimulation Sm, differ-

ent CPG outputs yi were computed. They mainly consisted

in extracting the positive firing rate of a PF neuron x j (i.e.

yi = [x j]
+). Then, the CPG contribution to a particular stim-

ulation was computed as Sm = ∑ki yi, where ki are gains.

Again, all details about these computational steps are pro-

vided in (Van der Noot et al, 2018). In sum, Fig. 1 displays

all CPG contributions to the actuation of the different mus-

cles.

As detailed in (Van der Noot et al, 2018), nine key con-

trol parameters were identified to modulate the biped for-

ward speed. More precisely, these parameters were adapted

as linear or quadratic function of a scalar input: the speed

reference vre f , providing forward speed modulation in the

range of [0.4;0.9]m/s.

2.3 Experimental embodiment

As embodiment for our experiments, we used the COmpli-

ant huMANoid (COMAN) robotic platform, in the Robotran

simulation environment. COMAN is a 23 degrees of free-

dom (DOFs) full-body humanoid robot developed at the Ital-

ian Institute of Technology (IIT) (Dallali et al, 2013; Tsagarakis

et al, 2013). This 95 cm tall robot, weighting 31 kg, features

both series elastic actuators (SEA) (Tsagarakis et al, 2009)

(mainly for sagittal joints) and traditional, stiff actuators (for

the other joints). Regarding the robot sensors, each joint fea-

tures position encoders and custom-made torque sensors. On

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 5

N1
a

a

b

a

u1

u3

uA

u2

u4

uB

a

b b

a a

N2

N3 N4

NA NB

N N

f nf
g g

n

o o

c

uC uD

c c

NC ND

d

uE uF

d d

NE NF

f

g

h

i

j
k k

j

i

h

f

g

NG
e

e

uG uH

e

NH

l l
m m

Fig. 3 The full CPG network is composed of the three components de-

tailed in Fig. 2: (a) ”rhythm generator” neurons (RG, shaded, N1−4),

(b) ”pattern formation” ones (PF, NA−H ) and (c) ”turning” ones (TR,

hatched, Nλ ,ξ ). TR neurons obey Eq. (2), while the rest of the network

is composed of Matsuoka oscillators, obeying Eq. (1). Inter-neuron ex-

citations are indicated with an empty circle, while plain circles capture

inhibitions. All neurons but Nλ and Nξ were already used for straight

walking, see (Van der Noot et al, 2018).

top of that, an inertial measurement unit (IMU) is attached

to the robot waist, while custom-made 6 axis force/torque

sensors are placed below the ankle joints.

The simulation suite used to model COMAN is called

Robotran (Samin and Fisette, 2003; Docquier et al, 2013).

It is a symbolic environment for multi-body systems devel-

oped within the Université catholique de Louvain. To further

minimize the gap between simulation and reality, a partic-

ular attention was paid to capture proper actuator dynam-

ics and external forces from the environment, in particular

with the ground contact model (GCM). Moreover, only sen-

sory signals available on the real robot were used. On top of

that, a uniform noise with a maximal amplitude of 0.4Nm

was added to the torque measurement, to reproduce the one

measured with the real platform. The motor equations, cou-

pled to this noise, generate actual joint torques being dif-

ferent from their references, as would happen with the real

robot. The integration was performed using a Runge-Kutta

integration scheme with a 250 µs time step. COMAN, in its

simulation environment, is visible in Fig. 1. More informa-

tion about the robot and its simulator is provided in (Zobova

et al, 2017; Van der Noot et al, 2018).

0 20 40 60 80 100

gait cycle (%)

0

0.5
xξ

0

0.5
xλ

0

0.5
xH

0

0.5
xG

0

0.5
xF

0

0.5
xE

0

0.5
xD

0

0.5
xC

0

0.5
xB

0

0.5
xA

0

0.5
x4

0

0.5
x3

0

0.5
x2

0

0.5
x1

Fig. 4 Time-evolution of the 14 neurons firing rates of Fig. 3 over one

gait cycle (0% and 100% correspond to consecutive right foot strikes,

the dashed line corresponds to the left foot strike in-between). These

signals are obtained during one typical gait cycle of the locomotion

resulting from the controller used in all the results of this paper (called

reference controller), with a speed reference of 0.65 m/s.

3 Extension to curved motion

The controller outlined in Section 2 and fully detailed in

(Van der Noot et al, 2018) achieved straight walking in a 3D

environment. In particular, forward speed modulation was

achieved by adapting the speed reference vre f , i.e. the main

input of this bio-inspired controller. Building on top of this

former contribution, this section introduces new features in

order to achieve the control of the steering direction (curva-

ture).

3.1 Lateral hip control

In (Courtine et al, 2006), ten healthy male adults walked

along straight and curved paths while kinematics and elec-

tromyographic (EMG) data were recorded. A critical ob-

servation was that walking along curved paths did not re-

quire a dramatic re-organization of the basic EMG patterns

required for walking straight-ahead. Inspired by this obser-

vation, the mechanisms governing the stimulation computa-

tions for straight walking described in Section 2 were mostly

kept intact for curved motion. For most of them, changes in
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6 Nicolas Van der Noot et al.

steady-state profile would thus be the result of the interplay

between reflexes, CPG signals and the environment.

In this contribution, the turning motion is controlled by a

scalar reference: the heading reference hre f , bounded in the

[−1;1] interval during on-line control (with −1 correspond-

ing to maximal left curvature, 0 to straight motion and 1 to

maximal right curvature). This value is used at each strike

to compute two turning control signals. At each right strike,

the left turning command is updated as ΓL = [hre f ]
− (with

[•]− =−min(•,0)). Similarly, the right turning command is

updated as ΓR = [hre f ]
+ at each left strike.

The curved motion mainly emerges from the foot trans-

verse orientation control (detailed in Section 3.2). However,

the body center of mass (COM) must also be controlled in

the lateral plane, as mentioned in (Patla et al, 1999). In that

contribution, two mechanisms were identified to laterally

move the COM towards the new travel direction (i.e. towards

the center of the curve): foot placement and hip strategy.

Foot placement impacts the distance between the COM

and the center of pressure (COP), and so alters the COM

acceleration magnitude and direction (Winter, 1995). There-

fore, when turning indications are provided in advance, lat-

eral COM control during turning is initiated by placing the

inner foot (i.e. the foot inner to the curved motion) closer

to the outer one (i.e. the other foot), thus accelerating the

lateral COM towards the center of curve (Patla et al, 1999).

In (Van der Noot et al, 2018), foot placement was mainly

controlled during the supporting phase (i.e. stance phase ex-

cluding the last double support phase) of the contralateral

leg, through the hip abductors (HAB) and adductors (HAD)

muscles, in the lateral plane (see Fig. 1d). More precisely, a

hip lateral reference angle ϕh,l,re f was computed, based on

a feedback controller constraining the lateral COM position

around its reference Λ ∗
re f ,h. This is detailed in Appendix 7.1.

During straight walking, Λ ∗
re f ,h was set to a fixed value

Λre f ,h. Steering motions require to augment this reference

as Λ ∗
re f ,h,{R,L} =Λre f ,h,{R,L} (1+∆Λ Γ{R,L}), where R,L stand

for right or left leg and ∆Λ is a scaling parameter. This moves

the lateral COM position reference of the inner foot away

from the outer foot during curved motion. As a consequence,

the inner foot will come closer to the outer foot (see (Van der

Noot et al, 2018) for more details about lateral control).

The other lateral COM strategy relies on controlling the

body pendulum in the stance phase. This is achieved through

the so-called hip strategy using muscle actuation at the hip

and torso (Horak and Nashner, 1986). In fact, the body is

controlled as a double pendulum with the lower limbs and

the upper body moving in opposite directions, so that the

COM moves towards the center of the curve (Patla et al,

1999).

In (Van der Noot et al, 2018), the lateral hip muscles re-

ceived a first burst provided by neurons NE (right leg) and

NF (left leg), acting at the beginning of the corresponding

leg supporting phase. Then, a feedback controller was acti-

vated on the torso lateral lean angle to track a reference Ψ ∗
re f .

This is detailed in Appendix 7.1.

The hip strategy is mainly active during the outer leg

stance phase, after completion of the foot placement strategy

(Patla et al, 1999). In order to anticipate a possible change

in steering direction with foot placement before activating

the hip strategy, the values of the turning commands Γ{R,L}
computed during the former gait cycle are used. More pre-

cisely, Γ−1
R is equal to the value of ΓR at the penultimate left

strike, Γ−1
L is equal to the value of ΓL at the penultimate right

strike.

First, the neuron NE excitation (i.e. uE ) is augmented by

a contribution equal to νl Γ−1
R , while uF is augmented by

νl Γ−1
L (νl is a scaling parameter). This increases the CPG

burst during curved motion and brings the torso closer to the

hip, thus moving the COM towards the center of the curve.

In order to achieve a similar effect for the feedback con-

troller on the torso lateral lean angle, its reference is set as

Ψ ∗
re f ,{R,L} =Ψre f (1+∆Ψ Γ−1

{L,R}), where ∆Ψ is a scaling pa-

rameter.

3.2 Transverse hip control

The hip transverse joints control the foot orientation motion,

and thus impact the biped change in heading. In (Courtine

and Schieppati, 2003), six healthy male adults walked along

straight and curved paths. When walking along a curved

path, the body turning mainly occurred during the stance

phase of the outer foot. It also appeared that the inner foot

rotation occurred mostly during the inner limb swing phase.

In (Van der Noot et al, 2018), the transverse hip muscles

(i.e. hip external (HER) and internal (HIR) rotator muscle

groups, see Fig. 1) were controlled to maintain the corre-

sponding joint in its homing position, as depicted in Fig. 1e.

To do so, these two antagonist muscles received stimulations

proportional to the output of a feedback controller on the hip

transverse reference angle ϕh,t,re f (set to zero for straight

walking). This is detailed in Appendix 7.1.

To generalize this for curved motion, the ϕh,t,re f refer-

ence angle must be adapted to produce leg transverse mo-

tion coherent with the observations of (Courtine and Schiep-

pati, 2003). Therefore, the turning motion is expected to

start approximately at the swing phase initiation of the inner

foot, while the legs realignment (i.e. feet realigned with the

waist in the transverse plane) is expected at the beginning

of the swing phase of the outer foot. To keep things simple,

the two legs transverse rotations are commanded simultane-

ously (i.e. turning and realignment of both legs happen at

the same time).

Phase locking is thus crucial to synchronize legs rotation

during the gait cycle. This mechanism is provided by the RG

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 7

neurons. N1 and N2 start firing respectively after the right

and the left feet strikes. N3 and N4 fire during the rest of

the gait, i.e. before the next strike happens (mainly during

left swing phase for N3 and right swing phase for N4). This

behavior can be observed in Fig. 4.

To achieve the requested synchronization, two new neu-

rons are introduced: the ”turning” neurons (TR), depicted

in Fig. 2c. Nλ is expected to control left turning, while Nξ

is in charge of right turning. Taking inspiration from the

Matsuoka rules detailed in Eq. (1), the ηk [xl ]
+ terms are re-

cruited (introducing two gains ηn and ηo) to generate both

excitation and inhibition of the TR neurons. Nλ is excited

by N3 to start leg rotation during the left leg swing motion,

while Nξ is excited by N4, for symmetrical reasons. The legs

realignment is achieved with inhibition connections, trig-

gered during the outer leg swing phase. This is done with

neuron N4 for Nλ and N3 for Nξ . Their time derivative rules

are thus the following:

ẋλ =
1

τ
(ηo [x3]

+−ηn [x4]
+ [xλ ]

+
1/0

)

ẋξ =
1

τ
(ηo [x4]

+−ηn [x3]
+ [xξ ]

+
1/0

)

(2)

The [•]+
1/0

function returns 1 if its argument is positive,

0 otherwise. Its purpose is to prevent the corresponding neu-

ron firing rate to become negative. The CPG network is in-

cremented by these two (non-Matsuoka) TR neurons in Fig. 3.

The firing rates evolution of Nλ and Nξ are also displayed in

Fig. 4.

Using these two new neurons, the hip transverse refer-

ence ϕh,t,re f is computed as follows:

ϕh,t,re f ,R =−Γ−1
R ky,in [xξ ]

+−Γ−1
L ky,out [xλ ]

+

ϕh,t,re f ,L = Γ−1
L ky,in [xλ ]

++Γ−1
R ky,out [xξ ]

+
(3)

ky,in and ky,out are respectively scaling factors for the in-

ner and outer legs. Similarly to the hip strategy (see Sec-

tion 3.1), Γ−1
{R,L} is used instead of Γ{R,L}, in order to engage

heading modulation after the foot placement strategy.

3.3 Steering parameters optimization

Seven key turning parameters were introduced in Sections 3.1

and 3.2, namely ky,in, ky,out , ∆Λ , ∆Ψ , ηn, ηo and νl . While it

is possible to manually tune them to achieve robust curved

motion, another solution is to rely on an optimizer to find

these parameters, while maximizing a desired fitness func-

tion.

In (Van der Noot et al, 2018), a set of optimized parame-

ters achieving straight walking (called reference controller)

was used in order to produce most results. Starting from this

reference controller, a particle swarm optimization (PSO) al-

gorithm (Kennedy and Eberhart, 1995) is run on the seven

key turning parameters. The purpose is to achieve turning

motion with the shortest steering radii (i.e. sharpest turns)

without falling.

Therefore, the following scenario is used. The biped must

walk during 90s with a fixed speed reference vre f (see (Van der

Noot et al, 2018)) and a changing heading reference hre f .

During the [10;25]s time interval, hre f is set to 0.3, during

the [30;45]s time interval to −0.6, during the [50;65]s time

interval to 0.9 and during the [70;85]s time interval to−1.2.

The rest of the time, hre f is set to zero. Using this, the walker

faces increasing heading references, in both directions. We

arbitrarily chose to restrict the range of hre f to [−1;1] dur-

ing on-line control, and to [−1.2;1.2] during optimizations,

so that the walker is optimized in tougher conditions, thus

increasing its robustness for extreme heading references.

The resulting fitness function to be maximized is the

cumulative increments in the heading angle (i.e. absolute

walker direction angle measured in the transverse plane) dur-

ing the time periods when hre f is non zero.

4 Steering parameters evolution with speed

Seven key turning parameters were identified in Section 3.

This section studies how these parameters adapt with for-

ward speed, providing a single controller with optimal turn-

ing control for the whole range of speed commands.

4.1 Polynomial approximations

The evolution of the seven key turning parameters is per-

formed as follows. For the whole range of speed references

vre f (i.e. from 0.4m/s to 0.9m/s, with a discretization of

0.05m/s), ten optimizations are performed for each target

speed, according to the method introduced in Section 3.3.

The corresponding results are reported in Fig. 5.

Intuitively, the evolution of these parameters can be ap-

proximated with polynomial functions. To select the appro-

priate orders capturing parameters evolution without over-

fitting, a model goodness-of-fit analysis using the sum of

squared values of the prediction errors is used (Smith and

Rose, 1995). In fact, for each polynomial order, the corre-

sponding p-value is computed to measure the likeliness that

the selected order is appropriate to represent the parameter

evolution. More information is provided in (Van der Noot

et al, 2018).

Table 1 reports the p-values corresponding to polyno-

mial approximations of orders 0, 1 and 2 of the data pro-

vided in Fig. 5, based on the least square errors. Similarly

to (Van der Noot et al, 2018), the first order with a p-value

larger than 0.1 is selected (grey cells). This is a less strong
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8 Nicolas Van der Noot et al.
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Fig. 5 Ten optimizations are performed for each target speed (from 0.4 m/s to 0.9 m/s with an interval of 0.05 m/s).The actual speed of each

solution is measured (during straight walking), along with the optimized value of the seven key turning parameters. For each target speed, we gather

the ten optimization final results, reporting their mean and standard deviations. For graph legibility, the error bars represent half of the standard

deviations. Dashed lines correspond to the polynomial approximations whose order is reported in Table 1, using the minimum mean square error

method.

analysis than rejecting the opposite null hypothesis, but is

considered to be sufficient to design the control rules.

Table 1 Polynomial approximations: p-values

order 0 order 1 order 2 selected

kkky,in 0.108 0.342 0.268 1

kkky,out 0 0 0.163 2

∆∆∆Λ 0 0.001 0.001 1

∆∆∆Ψ 0 0.028 0.528 2

ηηηn 0.729 0.645 0.691 0

ηηηo 0 0.487 0.54 1

ννν l 0.001 0.001 0.044 2

It appears from the results of Table 1 that two parame-

ters (∆Λ and νl) did not reach the threshold of 0.1. For these

two parameters, the order with the largest p-value was se-

lected, i.e. 1 for ∆Λ and 2 for νl . The ky,in p-value for order

0 barely exceeds the critical threshold of 0.1, while order 1 is

much larger (i.e. close to 0.35). Therefore, we arbitrarily de-

cided to select order 1 for this parameter. Regarding the ηn

parameter, a polynomial approximation of order 0 was se-

lected (i.e. constant value), thus reducing to six the number

of key turning parameters evolving with speed. The polyno-

mial approximations using the selected orders are depicted

with dashed lines in Fig. 5.

4.2 Parameters analysis

The scaling parameters ky,in and ky,out are directly related to

the curvature radius. Indeed, they control the legs transverse

rotations, and so the turning. The inner foot parameter (ky,in)

increases with forward speed, favoring sharp turns for the

highest speeds. The range of values obtained for the outer

foot parameter (ky,out ) is larger than the one obtained for the

inner foot (ky,in). Therefore, ky,out appears to be more speed

dependent than ky,in. Here, the sharpest turns are obtained at

speed extrema. Globally, the highest speed are expected to

produce the largest curvatures. Indeed, despite their lower

ky,out when compared to the slowest speeds, they also benefit

from the largest ky,in parameters. In contrast, speeds in the

middle of the range are expected to generate the most gentle

turns.

Directly related to these parameters, the CPG excitation

and inhibition weights ηn and ηo also affect the legs trans-

verse rotations. Only the excitation parameter (η0) appears

to evolve with speed, producing larger commands for faster

speeds. This increases the speed of the hip motion, as well as

the plateau reached at the end of this initial motion, thus in-

creasing the heading change. The constant ηn value is much

larger than ηo, resulting in a quick realignment of the feet

with the waist during the outer leg swing motion.

In the lateral plane, the inner foot initiates turning by

coming closer to the outer one. This foot position strategy is
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Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 9

amplified with a bigger ∆Λ . Therefore, the linear increase of

this parameter with forward speed indicates that the walker

takes advantage of the inertia effects to induce bigger accel-

erations towards the center of the curve, when walking at

high speeds.

Finally, the lateral hip strategy is controlled by the re-

maining parameters νl (CPG excitation) and ∆Ψ (reflex).

Similarly to ky,out , the highest values are reached at the bound-

aries of the speed range (especially at high speeds). Increas-

ing the hip strategy effects appears therefore to be correlated

with sharper turns.

4.3 Parameters co-optimization

The controller design can now be further extended to co-

optimize all key turning parameters in a single optimization,

therefore recruiting the optimal turning parameters for the

whole speed range, and not for a single speed. The seven

key parameters studied in Section 4.1 are replaced by poly-

nomial approximations, whose order is selected according

to Fig. 5 and Table 1. Because ηn is actually of order 0, the

corresponding parameter is left as a constant.

The corresponding rules are reported in Appendix 7.2.

They involve sixteen parameters to optimize, whose bounds

are indicated in Table 2. A last optimization was then per-

formed with the reference controller from (Van der Noot

et al, 2018), in order to optimize these turning parameters.

The resulting controller, combining forward speed and turn-

ing modulation, keeps the name reference controller. This

controller is available inside a simulation code, provided as

supplementary downloadable material (Online Resource 1).

5 Results

The results presented in this section were obtained using the

reference controller, introduced in Section 4.3. The evolu-

tion of the walking curvature with heading reference is first

studied before characterizing the gait main features. Finally,

some tele-operated steering scenarios are presented.

5.1 Curvature radius control

The biped can achieve sharper turns when increasing its head-

ing reference hre f . However, this also depends on its walking

speed (and so, on vre f ). This effect was first studied with the

reference controller receiving three representative speed ref-

erences: the middle of the speed range (i.e. vre f = 0.65m/s)

and two speeds close to the speed extrema (0.45m/s and

0.85m/s). To quantify it, the following experiment was per-

formed. For each of the speed references, the biped received

a heading reference ranging between 0 (i.e. straight walking)

and 1 (i.e. maximal right steering command). The steady-

state behavior thus corresponded to a motion being close to

a circle (except for hre f = 0): both speed and heading ref-

erences were stationary and non-zero. The resulting curva-

ture was measured as the inverse of the radius of the circle

described by COMAN in steady-state, after a full rotation.

Corresponding results are presented in Fig. 6. Because of

the left/right symmetry, left steering is not reported.
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Fig. 6 For each representative speed references (i.e. vre f set to

0.45m/s, 0.65m/s or 0.85m/s), COMAN received right heading ref-

erences hre f (from 0 to 1 with a discretization of 0.1). The walking cur-

vature was measured from the circle described by the robot, over ten

trials. The corresponding mean and standard deviations are reported.

For left heading references (i.e. hre f < 0), similar results were obtained

(due to the symmetry of the configuration).

As expected, the curvature increased (sharper turns) with

increasing hre f commands. Moreover, a linear relationship

was observed between the heading reference hre f and the

resulting curvature. This was mainly due to the transverse

hip joints control, tracking position references proportional

to hre f . The curvature also depended on the speed reference

vre f . For large heading references, larger curvatures were

obtained for faster speeds. However, this trend was not clear

at lower speeds. Therefore, the experiment of Fig. 6 was

extended to the whole range of speed references (i.e. from

0.4m/s to 0.9m/s). Corresponding results are depicted in

Fig. 7.

It appears that the curvatures ranged between 0 (i.e. straight

walking, obtained with hre f = 0) and 0.79 for these com-

mands. As mentioned in Section 4.2, the sharpest turns were

obtained for the fastest speeds (followed by the slowest ones

for small hre f commands), while the speeds around 0.55m/s

provided the most gentle curves. This is mainly due to the

large high-level parameters ky,in and ky,out which were ob-

tained during the optimization process for the speed extrema

(see Section 4.2).

Importantly, collisions between legs were frequently ob-

served for heading references hre f larger or equal to 0.5.

These collisions could also be sometimes detected for lower

hre f values, especially for speed references close to the ex-
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Fig. 7 Similarly to Fig. 6, the walking curvature was measured when

COMAN received right heading references. This is presented here for

the whole spectrum of speed references, i.e. from 0.4m/s to 0.9m/s,

with a discretization of 0.05 m/s. The color map represents the result-

ing walking curvature (in m−1, averaged over ten runs).

trema. In fact, this problem was already observed in (Van der

Noot et al, 2018) for straight walking at speed extrema. This

issue is further discussed in Section 6.4.

5.2 Gait main features evolution with turning reference

The following gait features were studied: speed, stride length,

stride period and swing ratio. Their evolution with hre f (pos-

itive for right turns) is reported in Fig. 8 for the same three

representative speed references used in Section 5.1 (i.e.

0.45m/s, 0.65m/s and 0.85m/s).

Regarding speed evolution, Fig. 8a shows that the speed

remained quite constant and close to its reference when this

reference vre f was set to 0.65m/s. In contrast, the other vre f

values resulted in speeds converging towards the middle of

the speed range. Both in (Courtine et al, 2006) and (Courtine

and Schieppati, 2003), human subjects tended to steadily de-

crease their speed when facing an increasing curvature. Dur-

ing these two experiments, the mean velocity of the subject

was around 68%BH/s, where BH stands for body height.

Considering that COMAN height would be close to 1.06m

if it had a head, this corresponds to a speed of 0.72m/s,

so in between 0.65m/s and 0.85m/s. Therefore, our results

reporting a speed decrease are consistent with human obser-

vations.

When comparing the stride length (Fig. 8b) and the stride

period (Fig. 8c), it clearly appears that the change in speed

was mainly correlated with the stride length evolution. Dur-

ing curved trajectories, the stride lengths of the inner and

outer limbs were expected to differ, in contrast to straight

walking. Indeed, the external leg covered a longer path be-

cause its foot moved along a circular trajectory whose ra-

dius was larger than the one of the inner foot (Courtine and

Schieppati, 2003). This is consistent with the results of Fig. 8b

where the inner (right) stride length became significantly

lower than the outer (left) one, as the turning reference in-

creased. In (Courtine et al, 2006), it was observed that the

stride length modification during turning (compared to straight

walking) mainly affected the inner limb. In Fig. 8b, this

trend is not observed: both the inner and outer legs stride

lengths were affected. This is potentially related to the trans-

verse hip control rules being recruited (see Section 3.2).

The stride period evolution with turning reference in Fig. 8c

is not significant. A small increase was observed for the

highest heading references when vre f was set to 0.45m/s or

0.65m/s, while the highest speed reference (0.85m/s) oscil-

lated around its mean value with higher standard deviations.

Similarly, (Courtine et al, 2006) observed that human gait

cycle duration was hardly affected by the curvature of the

path. Only the tighter curves caused a modest increase in

cycle duration.

Results of Fig. 8c could not be decomposed between

right and left contributions because the averaged stride pe-

riod had to be the same for both legs. However, the portion

of time when each leg was in swing phase (over the whole

gait cycle) was leg-dependent, as presented in Fig. 8d.

In (Courtine et al, 2006), both legs exhibited similar stance

durations during straight-walking but showed opposite mod-

ulation of stance duration during curved motion. A similar

behavior can be seen in Fig. 8d, especially, for vre f set to

0.45m/s or 0.65m/s. However, (Courtine et al, 2006) also

observed that the swing duration of the inner leg signif-

icantly decreased with curvature, while changes in stance

duration of the outer limb were less pronounced. Only the

speed reference of 0.85m/s (with hre f smaller than 0.7) showed

a lower swing ratio for the inner limb, compared to the outer

one. The swing ratio evolution in Fig. 8c being relatively

small, this result is less significant, but still indicates some

discrepancy compared to human walking.

5.3 Robustness when turning

In order to compare the robustness of the controller during

straight and curved walking, the following experiment was

performed. COMAN received random pushes on the torso

when walking at different speeds. First, these pushes were

applied during straight walking with a magnitude selected

between 0N and 25N, during 0.2s in the transverse plane.

These pushes were applied with a time interval randomly se-

lected between 5 and 6s. Each push orientation in the trans-

verse plane was randomly selected in the ]− π;π] interval

(i.e. all possible directions with an equal probability). The

torque noise presented in Section 2.3 was active. The robot

was blind, i.e. it had no other feedback than the reflexes driv-

ing its neural controller.

Robustness was quantified by measuring the time the

robot could walk without falling, when facing these pushes.
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Fig. 8 The evolution of some gait features with the heading reference hre f is studied, while the reference controller receives three distinct speed

references vre f : 0.45m/s (triangles), 0.65m/s (circles) and 0.85m/s (squares), same legend in the four panels. Panel (a) presents the actual walker

speed. In panel (b), the average stride length (solid) is decomposed between right (dashed) and left (dotted) leg contributions. Panel (c) shows the

evolution of the stride period. Finally, the ratio of time during which each leg is in swing phase is presented in panel (d). For each measurement,

ten simulation runs were performed. Their mean and standard deviations are displayed. For graph legibility, panel (b) only depicts the standard

deviation of the average stride length (standard deviations of each leg are similar to this average value). These results are presented during right

steering experiments, but are similar for left turns, due to the symmetry of the configuration.

The time count started during steady-state walking, when

the external pushes started, and was limited to an upper bound

of 50s. The results are reported in Fig. 9a.

Globally, faster speeds could resist to larger pushes. The

only exception was the maximal speed reference (vre f =

0.9m/s), which was less stable. Indeed, less robust gaits

were usually obtained for the extrema of the optimized speed

range.

The same experiment was performed during turning mo-

tion, when receiving right heading references hre f ranging

between 0 and 1, through steps of 0.1. This was tested for the

following set of push amplitudes: 0N (Fig. 9b), 5N (Fig. 9c),

10N (Fig. 9d), 15N (Fig. 9e) and 20N (Fig. 9f).

Globally, the walker robustness was not significantly de-

teriorated with increasing turning references, with one no-

table exception: the highest speeds vre f with the highest head-

ing references hre f , usually causing a quick fall of the walker.

In particular, this was also observed without external pushes

(i.e. only with torque noise reading), as depicted in Fig. 9b.

However, this corresponds to very small steering radii, up

to 1.26m (i.e. corresponding to curvatures up to 0.79, see

Fig. 7). This smallest radius is about twice the size of the

robot leg, and thus represents a very sharp turn for COMAN.

Interestingly, for speed references up to 0.65m/s, the

walker barely never fell when receiving pushes up to 5N,

even for extreme hre f commands. For higher push ampli-

tudes, a slight decrease in robustness was observed with higher

hre f . However, this usually corresponds to push amplitudes

also causing falls in straight walking gaits (see Figs. 9e and

9f).

5.4 Tele-operated steering

Using the reference controller, it is possible for a human

tele-operator to achieve on-line control of both speed and

steering (direction and curvature). In particular, this can be

done using a single joystick, e.g. with one axis controlling
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12 Nicolas Van der Noot et al.

(a) straight walking, forces: 0−25N (b) right steering, force: 0N (c) right steering, force: 5N

(d) right steering, force: 10N (e) right steering, force: 15N (f) right steering, force: 20N

Fig. 9 For the whole spectrum of speed references, pushes were applied to the torso of COMAN, as described in Section 5.3. The color map

represents the time the robot could walk before falling (in [s], averaged over ten runs and limited to 50s). In panel (a), different push amplitudes

were selected during straight walking. In the other panels, a single push amplitude was selected (0N (b), 5N (c), 10N (d), 15N (e) or 20N (f))

while the biped received increasing right heading references hre f . These graphs are similar for left steering, due to the left/right symmetry.

vre f in the [0.4;0.9]m/s range and the other axis control-

ling hre f in the [−1;1] range. This allows an intuitive con-

trol and modulation of the robot gait, which can be used

to freely navigate in a cluttered environment. Snapshots of

such a modulation are visible in Fig. 10.

Fig. 10 Receiving a speed reference vre f of 0.65 m/s, the robot walks

with an initial heading reference hre f of 0 (straight walking) before

changing this command to −1 (maximum left steering).

A longer walk experiment is visible in the Online Re-

source 2 (video provided as supplemental material). During

that experiment, COMAN received speed and heading refer-

ences whose evolution with time is depicted in Fig. 11. The

trajectory of COMAN during this last experiment is visible

in Fig. 12, where its footprints are depicted together with the

evolution of its COM and center of pressure (COP). Steering

was performed in both directions, and with different curva-

tures.

Finally, this deliberate steering can also be used to avoid

stepping into holes, as presented in the Online Resource 3

(video provided as supplemental material). In that last ex-

periment, different commands were sent to the walker before

stepping into different holes. According to the command re-

ceived, the biped either fell or succeeded to avoid the hole.

In (Van der Noot et al, 2015b), we presented a similar exper-

iment for a 2D scenario (i.e. with the biped waist artificially

constrained to stay in the sagittal plane) where the modula-

tion of vre f resulted in a successful crossing of a hole.
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Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 13

6 Discussion

In this contribution, we presented a 3D walking controller

that can generate human-like walking gaits and can modu-

late its walking speed and heading direction. By embracing

the concept of the limit cycle, it relaxes constraints inher-

ent to more traditional walker controllers, therefore achiev-

ing faster, more energetically efficient and more human-like

(e.g. straight knee walking) gaits. However, the walker still

features on-line adaptation capabilities. On top of its for-

ward speed modulation, the biped is capable of controlling

its steering direction and curvature. The resulting walking

controller is therefore capable of fully navigating in a clut-

tered environment (with a nearly-flat ground), by avoiding

obstacles.

6.1 Gait modulation

The whole controller, combining CPG and reflexes, can be

obtained by two successive optimizations. In the first one,

straight walking control is obtained as described in (Van der

Noot et al, 2018), while the second optimization provides

turning capabilities. These two optimizations are performed

on the whole speed range (i.e. from 0.4 to 0.9m/s), there-

fore co-optimizing all the parameters, in order to increase

the performances (energy efficiency, robustness, speed mod-

ulation, turning control) for any achievable speed.

Speed and curved motions can then be controlled by

modulating the speed reference vre f and the heading refer-

ence hre f inputs, thus providing high-level inputs for on-line

control. In sum, we managed to combine the benefits of limit

cycle walkers with the capacity to steer the robot velocity

and direction.

This control framework is coherent with the observa-

tions of (Arechavaleta et al, 2008). In their experiments, hu-

man subjects were allowed to choose their natural walking

speed and trajectory to reach several target points with dif-

ferent orientations. They observed that human locomotion

obeys a nonholonomic system with linear and angular ve-

locity as inputs.

In the literature, similar skills were usually achieved us-

ing inverse kinematics/dynamics methods relying on optimization-

based controllers, like whole-body control. Therefore, these

approaches can treat turning in the context of a global opti-

mization problem. For instance, (Faraji et al, 2014) used a

model predictive control to plan optimal future footsteps,

given desired sagittal and steering velocities. These foot-

steps were later mapped to desired accelerations, in turn

converted to joint torques through an appropriate whole-

body optimization layer. Similarly, (Deits and Tedrake, 2014)

developed an optimization-based method for planning foot-

step placements, while handling obstacles avoidance and kine-

matic reachability.

In sum, these methods offered a mathematical frame-

work to incorporate steering commands in a whole optimiza-

tion process. However, as emphasized in the introduction,

they have their own flaws like energy inefficiency, unnat-

ural gait and slow walking speeds. Our previous contribu-

tion (Van der Noot et al, 2018) showed that bio-inspired ap-

proaches can solve these problems. By incrementing it with

steering capabilities, our framework thus offers to handily

tele-operate the biped with few commands, while exhibiting

human-like gait features.
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Fig. 11 Temporal evolution of the commands used during the walk ex-

periment recorded in the animation (Online Resource 2) and depicted

in Fig. 12. More precisely, the speed reference vre f and the heading ref-

erence hre f control respectively the biped forward speed and its curved

motion.
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Fig. 12 Footprints of COMAN on a planar ground, when walking

while being tele-operated by a human. This corresponds to the exper-

iment recorded in the animation (Online Resource 2), with the com-

mands depicted in Fig. 11. The evolution of the center of mass pro-

jected on the ground (COM) and of the center of pressure (COP) are

also depicted.

6.2 Walker robustness

Humanoid robots are currently far from reaching the impres-

sive robustness of real humans during locomotion. This is
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14 Nicolas Van der Noot et al.

one of the main reasons preventing them from being used

outside controlled environments like laboratories. In the blind

walking experiments of Section 5.3, our robot could nat-

urally resist to pushes, both for straight walking and dur-

ing curved motion. Interestingly, this was achieved without

changing a single parameter of the controller. This is poten-

tially related to the viscoelastic muscle properties, inducing

gait adaptations to perturbed environments. However, the ef-

fects of these viscoelastic properties regarding the walking

robustness remains to be quantified.

Importantly, additional strategies should probably be im-

plemented to sustain stronger pushes. For instance, (Here-

mans et al, 2016) developed a neural controller progressively

learning appropriate muscular stimulations to reject distur-

bances. Because this approach also relies on a musculo-skeletal

model, it is compatible with the controller presented in this

paper.

Robustness can also be improved by using a more bio-

inspired embodiment. For instance, the rigid foot used here

is very different from the flexible human one. In (Colasanto

et al, 2015), we showed that replacing the robot rigid foot

by a model of a human prosthesis led to more robust gaits.

Indeed, in contrast to many approaches requiring to keep the

feet flat on the ground, this constraint is not inherent to our

bio-inspired approach.

6.3 Human steering strategies

While the recruitment of CPGs in locomotion control is widely

accepted for many vertebrates, its involvement in human lo-

comotion is still open to debate (Minassian et al, 2017). For

instance, the work of (Geyer and Herr, 2010), further ex-

tended in (Song and Geyer, 2015), generated human-like

gaits with speed modulation and steady turning motions, al-

though they implemented only reflex pathways (i.e. without

CPG).

Here, speed and heading modulations were achieved by

controlling two reference inputs (vre f and hre f ), resulting in

linear or quadratic adaptations of fifteen key control parame-

ters. The modulation of this small set of parameters resulted

in drastic gait modulations. Indeed, the speed could be mod-

ulated in the [0.4;0.9]m/s range, as a result of both step

length and frequency adaption; while the footstep landing

positions and heading modulation could steer the walker in

a 3D environment to follow a given path or to avoid obsta-

cles.

Among this set of fifteen key control parameters, only

four act on reflexes (the others being CPG-related). There-

fore, while the recruitment of CPG networks during human

locomotion remains a matter open to debate, our work showed

that they play a significant role in reducing the complexity

of gait modulation.

Regarding transverse hip joint angle, its motion was con-

trolled to track a reference position reproducing observa-

tions of real human walking (Courtine et al, 2006; Cour-

tine and Schieppati, 2003). Rather than a direct angle con-

trol, the controller could possibly be adapted by mixing the

CPG turning outputs with new reflex signals. For instance,

the contractile length lce of the HER and HIR muscles could

be recruited to provide an indirect biological measurement

of the hip transverse motion, similarly to the reflex driving

the TA muscle (inspired from (Geyer and Herr, 2010)).

Other possible human strategies could drive the refine-

ment of the proposed controller. For example, humans also

move the hip internal rotation during straight walking. This

moves the swing leg forward and thus increases the step

length (Stokes et al, 1989). This observation could be used to

achieve similar leg transverse motion during straight walk-

ing. During turning motions, the transverse hip control rules

could also be adapted to mainly affect the stride length of

the inner limb, as mentioned in Section 5.2.

6.4 Perspectives

The controller developed in this contribution can be used in

various domains, like robotics, neuroscience (investigating

human locomotion), and 3D animation, in order to gener-

ate physically plausible gaits with speed and turning control

(Wang et al, 2012; Geijtenbeek et al, 2013).

Currently, the biped can be steered by a human operator

to navigate in a cluttered environment, while avoiding obsta-

cles like holes (see Section 5.4). Additional controllers could

be developed to automatically command the robot. For in-

stance, a higher-level layer could be in charge of finding the

(vre f ,hre f ) commands to reach desired footstep locations.

The controller robustness can also be improved for sharp

turns, by developing new stabilization strategies. The reach-

able curvatures could be extended, but this is less relevant.

Indeed, the controller is already capable of reaching steering

radii which are approximately twice the size of the walker

leg length. Below this limit, curved motion becomes unnat-

ural and could possibly be replaced by side-stepping strate-

gies.

As pointed in Section 5.1, the hip lateral position could

sometimes bring the swing leg too close to the stance one,

possibly causing collisions between both. In our experiments,

this could mainly happen for extreme speed, high heading

references, or during perturbed walking. A first solution would

be to adapt the optimization fitness (see Section 3.3) by re-

warding solutions without collision. However, this issue is

more related to the optimization of the straight walking, as

discussed in (Van der Noot et al, 2018). As pointed in that

contribution, a future perspective would be to increment the

lateral hip control during swing phase to avoid collisions.
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Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 15

Importantly, this might also change as a function of the walker

embodiment being used.

Last but not least, the controller developed here could be

tested with a real robotic device. Indeed, all the experiments

in this contribution were performed using a faithful simula-

tion model of the COMAN platform (including its actuator

dynamics and noisy torque sensing). Despite the huge gap

between human walking capabilities and humanoid robot

ones, this contribution illustrates that bio-inspiration can help

to progressively bridge this gap.

7 Appendices

7.1 Appendix 1 - Stimulations for curved motion

The stimulations computation rules from (Van der Noot et al,

2018) affected by the curved motion updates (see Section 3)

are summarized here. More details (e.g. time delays) are

provided in that former contribution. Variables presented in

Section 3 are not detailed here.

The hip lateral joints are controlled by the HAB and

HAD muscles. First, the HAB muscles receive stimulations

coming from the CPG. These stimulations are mainly pro-

portional to [xE ]
+ (excited by uE ) for the right leg and to

[xF ]
+ (excited by uF ) for the left leg.

During the leg supporting phase, the following proportional-

derivative (PD) control is applied: ∆Ψ ,{R,L}=(kp,Ψ (δ Ψ ∗
re f ,{R,L}

−Ψt)− kd,Ψ Ψ̇t) F̃gd,{R,L}, where kp,Ψ and kd,Ψ are parame-

ters to optimize, Ψt is the torso lateral lean angle and Ψ̇t is

its derivative. δ equals 1 for the right leg and −1 for the left

one. Finally, F̃gd,{R,L} is the vertical force below the corre-

sponding foot, normalized to the walker weight. Then, HAB

and HAD muscles are mainly commanded by a stimulation

equal to [∆Ψ ,{R,L}]
+ or [∆Ψ ,{R,L}]

−.

During the contralateral leg supporting phase, a hip lat-

eral reference angle ϕh,l,re f ,{R,L} is computed as −kp,Λ ,h

(−δ Λ ∗
re f ,h,{R,L}−∆com,{L,R})+kd,Λ ,h ∆̇com,{L,R}, where kp,Λ ,h

and kd,Λ ,h are control parameters to optimize, ∆com,L is the

COM lateral position, relative to the left foot and ∆̇com,L its

derivative (similar for ∆com,R and ∆̇com,R relative to the right

foot). The resulting local angle reference ϕh,l,re f ,{R,L} is later

maintained by using a similar PD control rule as described

above (i.e. for the supporting phase), with similar stimula-

tions sent to HAB and HAD.

The hip transverse joints are controlled with the follow-

ing PD computation: ∆trans,{R,L} = 500(ϕh,t,re f ,{R,L}

−ϕh,t,{R,L})− 20 ϕ̇h,t,{R,L}), where ϕh,t,{R,L} is the hip joint

transverse position and ϕ̇h,t,{R,L} is its derivative. Stimula-

tion equal to [∆trans,{R,L}]
+ or [∆trans,{R,L}]

− are then sent to

the HER and HIR muscles.

7.2 Appendix 2 - Optimization parameters

The parameters to be optimized in the controller, and their

ranges are reported Table 2: the transverse (t) and lateral

(l) leg parameters, as well as the CPG-related parameters.

The speed dependent parameters are computed as follows:

ky,in = Ky,in+Ly,in v∗; ky,out = Ky,out +Ly,out v∗+My,out v2
∗; ∆Λ = K∆ ,Λ +

L∆ ,Λ v∗; ∆Ψ = K∆ ,Ψ + L∆ ,Ψ v∗ + M∆ ,Ψ v2
∗; ηo = Kη ,o + Lη ,o v∗; νl =

Kν ,l + Lν ,l v∗+Mν ,l v2
∗, where v∗ = vre f − 0.65 and vre f is the

target forward speed. The parameters optimized for the ref-

erence controller are provided in the simulation code exten-

sion (Online Resource 1).

Table 2 Optimization parameters and their bounds

min max min max

leg (t) leg (l)

Ky,in 0.1 0.4 K∆ ,Λ 0.2 1

Ky,out 0.1 0.5 K∆ ,Ψ 0 0.3

Ly,in 0 0.4 L∆ ,Λ 0 2

Ly,out -0.6 0.2 L∆ ,Ψ -0.2 0.6

My,out 0 6 M∆ ,Ψ 0 4

CPG (η) CPG (ν)

ηn 1.6 3.2 Kν ,l 0.05 0.35

Kη ,o 0.4 1.4 Lν ,l -0.15 0.15

Lη ,o 0 2 Mν ,l 0 4

References

Aoi S, Tsuchiya K (2005) Locomotion Control of a Biped

Robot Using Nonlinear Oscillators. Autonomous Robots

19(3):219–232, DOI 10.1007/s10514-005-4051-1

Arechavaleta G, Laumond JP, Hicheur H, Berthoz A (2008)

An Optimality Principle Governing Human Walking.

IEEE Transactions on Robotics 24(1):5–14, DOI 10.

1109/TRO.2008.915449

Chestnutt J, Lau M, Cheung G, Kuffner J, Hodgins J,

Kanade T (2005) Footstep Planning for the Honda

ASIMO Humanoid. In: Proceedings of the 2005 IEEE

International Conference on Robotics and Automation,

IEEE, pp 629–634, DOI 10.1109/ROBOT.2005.1570188

Colasanto L, Van der Noot N, Ijspeert AJ (2015) Bio-

inspired walking for humanoid robots using feet with

human-like compliance and neuromuscular control. In:

2015 IEEE-RAS 15th International Conference on Hu-

manoid Robots (Humanoids), pp 26–32, DOI 10.1109/

HUMANOIDS.2015.7363518

Collins S, Ruina A (2005) A Bipedal Walking Robot with

Efficient and Human-Like Gait. In: Proceedings of the

2005 IEEE International Conference on Robotics and Au-

tomation, IEEE, pp 1983–1988, DOI 10.1109/ROBOT.

2005.1570404

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



16 Nicolas Van der Noot et al.

Courtine G, Schieppati M (2003) Human walking along a

curved path. I. Body trajectory, segment orientation and

the effect of vision. The European Journal of Neuro-

science 18(1):177–190

Courtine G, Papaxanthis C, Schieppati M (2006) Coordi-

nated modulation of locomotor muscle synergies con-

structs straight-ahead and curvilinear walking in hu-

mans. Experimental brain research 170(3):320–35, DOI

10.1007/s00221-005-0215-7

Daley MA, Felix G, Biewener AA (2007) Running stabil-

ity is enhanced by a proximo-distal gradient in joint neu-

romechanical control. The Journal of experimental biol-

ogy 210(Pt 3):383–394, DOI 10.1242/jeb.02668

Dallali H (2011) Modelling and dynamic stabilization of a

compliant humanoid robot, CoMan. PhD thesis, Univer-

sity of Manchester

Dallali H, Mosadeghzad M, Medrano-Cerda Ga, Docquier

N, Kormushev P, Tsagarakis N, Li Z, Caldwell D (2013)

Development of a dynamic simulator for a compliant hu-

manoid robot based on a symbolic multibody approach.

In: 2013 IEEE International Conference on Mechatronics,

ICM 2013, IEEE, pp 598–603, DOI 10.1109/ICMECH.

2013.6519110

Deits R, Tedrake R (2014) Footstep planning on un-

even terrain with mixed-integer convex optimization. In:

2014 IEEE-RAS International Conference on Humanoid

Robots, pp 279–286, DOI 10.1109/HUMANOIDS.2014.

7041373

Desai R, Geyer H (2013) Muscle-reflex control of robust

swing leg placement. In: 2013 IEEE International Confer-

ence on Robotics and Automation, IEEE, pp 2169–2174,

DOI 10.1109/ICRA.2013.6630868

Docquier N, Poncelet A, Fisette P (2013) ROBOTRAN:

a powerful symbolic generator of multibody mod-

els. Mechanical Sciences 4(1):199–219, DOI 10.5194/

ms-4-199-2013

Dzeladini F, van den Kieboom J, Ijspeert A (2014) The con-

tribution of a central pattern generator in a reflex-based

neuromuscular model. Frontiers in Human Neuroscience

8(June):1–18, DOI 10.3389/fnhum.2014.00371

Eilenberg MF, Geyer H, Herr H (2010) Control of a powered

ankle-foot prosthesis based on a neuromuscular model.

IEEE transactions on neural systems and rehabilitation

engineering : a publication of the IEEE Engineering in

Medicine and Biology Society 18(2):164–173, DOI 10.

1109/TNSRE.2009.2039620

Faraji S, Pouya S, Ijspeert A (2014) Robust and Agile 3d

Biped Walking With Steering Capability Using a Foot-

step Predictive Approach. Robotics: Science and Systems

Foundation, DOI 10.15607/RSS.2014.X.028

Fitzpatrick P, Harada K, Kemp CC, Matsumoto Y, Yokoi K,

Yoshida E (2016) Humanoids. In: Siciliano B, Khatib O

(eds) Springer Handbook of Robotics, Springer Interna-

tional Publishing, pp 1789–1818

Geijtenbeek T, van de Panne M, van der Stappen AF (2013)

Flexible Muscle-based Locomotion for Bipedal Crea-

tures. ACM Trans Graph 32(6):206:1–206:11, DOI 10.

1145/2508363.2508399

Geyer H, Herr H (2010) A muscle-reflex model that en-

codes principles of legged mechanics produces human

walking dynamics and muscle activities. IEEE transac-

tions on neural systems and rehabilitation engineering : a

publication of the IEEE Engineering in Medicine and Bi-

ology Society 18(3):263–73, DOI 10.1109/TNSRE.2010.

2047592

Heremans F, Van der Noot N, Ijspeert AJ, Ronsse R (2016)

Bio-inspired balance controller for a humanoid robot. In:

2016 6th IEEE International Conference on Biomedical

Robotics and Biomechatronics (BioRob), pp 441–448,

DOI 10.1109/BIOROB.2016.7523667

Hill AV (1938) The Heat of Shortening and the Dynamic

Constants of Muscle. Proceedings of the Royal Society

B: Biological Sciences 126(843):136–195, DOI 10.1098/

rspb.1938.0050

Hobbelen D, Boer Td, Wisse M (2008) System overview of

bipedal robots Flame and TUlip: Tailor-made for Limit

Cycle Walking. In: 2008 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pp 2486–2491,

DOI 10.1109/IROS.2008.4650728

Hobbelen DGE, Wisse M (2007) Humanoid Robots,

Human-like Machines - Chapter 14: Limit Cycle Walk-

ing DOI 10.5772/4808

Horak FB, Nashner LM (1986) Central programming

of postural movements: adaptation to altered support-

surface configurations. Journal of Neurophysiology

55(6):1369–1381

Ijspeert AJ (2008) Central pattern generators for locomotion

control in animals and robots: A review. Neural Networks

21(4):642–653, DOI 10.1016/j.neunet.2008.03.014

Johnson M, Shrewsbury B, Bertrand S, Calvert D, Wu T,

Duran D, Stephen D, Mertins N, Carff J, Rifenburgh W,

Smith J, Schmidt-Wetekam C, Faconti D, Graber-Tilton

A, Eyssette N, Meier T, Kalkov I, Craig T, Payton N,

McCrory S, Wiedebach G, Layton B, Neuhaus P, Pratt J

(2016) Team IHMC’s Lessons Learned from the DARPA

Robotics Challenge: Finding Data in the Rubble. Journal

of Field Robotics DOI 10.1002/rob.21674

Kaneko K, Kanehiro F, Kajita S, Yokoyama K, Akachi K,

Kawasaki T, Ota S, Isozumi T (2002) Design of proto-

type humanoid robotics platform for HRP. In: IEEE/RSJ

International Conference on Intelligent Robots and Sys-

tem, IEEE, vol 3, pp 2431–2436, DOI 10.1109/IRDS.

2002.1041632

Kennedy J, Eberhart R (1995) Particle swarm optimization.

In: Proceedings of ICNN’95 - International Conference

on Neural Networks, IEEE, vol 4, pp 1942–1948, DOI

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



Neuromuscular Model Achieving Speed Control and Steering with a 3D Bipedal Walker 17

10.1109/ICNN.1995.488968

Kuo AD (2002) The relative roles of feedforward and feed-

back in the control of rhythmic movements. Motor Con-

trol 6(2):129–145

Kurazume R, Tanaka S, Yamashita M, Hasegawa T, Yoneda

K (2005) Straight legged walking of a biped robot. In:

2005 IEEE/RSJ International Conference on Intelligent

Robots and Systems, IEEE, pp 337–343, DOI 10.1109/

IROS.2005.1545447

Matsuoka K (1985) Sustained oscillations generated by mu-

tually inhibiting neurons with adaptation. Biological cy-

bernetics 52(6):367–376, DOI 10.1007/BF00449593

Matsuoka K (1987) Mechanisms of frequency and pattern

control in the neural rhythm generators. Biological Cy-

bernetics 56(5-6):345–353, DOI 10.1007/BF00319514

McCrea DA, Rybak IA (2008) Organization of mam-

malian locomotor rhythm and pattern generation.

Brain Research Reviews 57(1):134–146, DOI 10.1016/j.

brainresrev.2007.08.006

McGeer T (1990) Passive Dynamic Walking. The Interna-

tional Journal of Robotics Research 9(2):62–82, DOI

10.1177/027836499000900206

Minassian K, Hofstoetter US, Dzeladini F, Guertin PA,

Ijspeert A (2017) The Human Central Pattern Generator

for Locomotion: Does It Exist and Contribute to Walking?

The Neuroscientist DOI 10.1177/1073858417699790

Patla AE, Adkin A, Ballard T (1999) Online steering: co-

ordination and control of body center of mass, head

and body reorientation. Experimental Brain Research

129(4):629–634, DOI 10.1007/s002210050932

Paul C, Bellotti M, Jezernik S, Curt A (2005) Development

of a human neuro-musculo-skeletal model for investiga-

tion of spinal cord injury. Biol Cybern 93(3):153–170,

DOI DOI10.1007/s00422-005-0559-x

Rossignol S, Dubuc R, Gossard JP (2006) Dynamic senso-

rimotor interactions in locomotion. Physiological reviews

86(1):89–154, DOI 10.1152/physrev.00028.2005

Samin JC, Fisette P (2003) Symbolic Modeling of Multi-

body Systems. No. 112 in Solid Mechanics and Its Appli-

cations, Springer

Sardain P, Bessonnet G (2004) Zero Moment Point - Mea-

surements From a Human Walker Wearing Robot Feet

as Shoes. IEEE Transactions on Systems, Man, and Cy-

bernetics - Part A: Systems and Humans 34(5):638–648,

DOI 10.1109/TSMCA.2004.832833

Schaal S (2007) The New Robotics-towards human-

centered machines. HFSP journal 1(2):115–26, DOI 10.

2976/1.2748612

Smith EP, Rose KA (1995) Model goodness-of-fit anal-

ysis using regression and related techniques. Ecologi-

cal Modelling 77(1):49–64, DOI 10.1016/0304-3800(93)

E0074-D

Song S, Geyer H (2015) A neural circuitry that emphasizes

spinal feedback generates diverse behaviours of human

locomotion. The Journal of physiology DOI 10.1113/

JP270228

Stokes VP, Andersson C, Forssberg H (1989) Rotational and

translational movement features of the pelvis and thorax

during adult human locomotion. Journal of Biomechanics

22(1):43–50

Taga G (1994) Emergence of bipedal locomotion through

entrainment among the neuro-musculo-skeletal system

and the environment. Physica D: Nonlinear Phenomena

75(1-3):190–208, DOI 10.1016/0167-2789(94)90283-6

Tsagarakis N, Laffranchi M, Vanderborght B, Caldwell D

(2009) A compact soft actuator unit for small scale hu-

man friendly robots. In: 2009 IEEE International Confer-

ence on Robotics and Automation, pp 4356–4362, DOI

10.1109/ROBOT.2009.5152496

Tsagarakis NG, Morfey S, Medrano Cerda G, Li Z, Cald-

well DG (2013) COMpliant huMANoid COMAN: Opti-

mal joint stiffness tuning for modal frequency control. In:

Proceedings - IEEE International Conference on Robotics

and Automation, pp 673–678, DOI 10.1109/ICRA.2013.

6630645

Van der Noot N, Colasanto L, Barrea A, van den Kieboom J,

Ronsse R, Ijspeert AJ (2015a) Experimental validation of

a bio-inspired controller for dynamic walking with a hu-

manoid robot. In: 2015 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pp 393–

400, DOI 10.1109/IROS.2015.7353403

Van der Noot N, Ijspeert AJ, Ronsse R (2015b) Biped gait

controller for large speed variations, combining reflexes

and a central pattern generator in a neuromuscular model.

In: 2015 IEEE International Conference on Robotics and

Automation (ICRA), Seattle, WA, pp 6267–6274, DOI

10.1109/ICRA.2015.7140079

Van der Noot N, Ijspeert AJ, Ronsse R (2018) Bio-inspired

controller achieving forward speed modulation with a 3d

bipedal walker. The International Journal of Robotics Re-

search 37(1):168–196, DOI 10.1177/0278364917743320

Vukobratovic M, Borovac B (2004) Zero-Moment Point

- Thirty five years of its life. International Journal

of Humanoid Robotics 01(01):157–173, DOI 10.1142/

S0219843604000083

Wang JM, Hamner SR, Delp SL, Koltun V (2012) Optimiz-

ing locomotion controllers using biologically-based actu-

ators and objectives. ACM Trans Graph p 25

Winter DA (1995) Anatomy, biomechanics and control of

balance during standing and walking. Waterloo, Canada:

Waterloo Biomechanics

Zobova AA, Habra T, Van der Noot N, Dallali H,

Tsagarakis NG, Fisette P, Ronsse R (2017) Multi-

physics modelling of a compliant humanoid robot. Multi-

body System Dynamics 39(1-2):95–114, DOI 10.1007/

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



18 Nicolas Van der Noot et al.

s11044-016-9545-4
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65


