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ABSTRACT :

This paper introduces an effective strategy to enhance the visibilit
of hazy images, especially those obtained in night-time condition
Compared to day-time, in night-time scenes, the lighting generall
arises from multiple artificial sources and therefore may be consi
ered intrinsically as being non-uniform. As a result, conventional _Lietal.[ICCV 2015]
global atmospheric light (airlight) estimation strategies become
irrelevant. In this work, we propose a simple yet effective patch
based atmospheric light estimation. To circumvent the problem oSl
selecting an appropriate patch size, we propose to estimate thj
atmospheric light on several patch sizes, and to define the loc
alrl_lght_as the average of those estimates. An extens_lve experlmentlglj . 1. Night-time hazy images are challenging and recent singlagie
validation den_10nstrat_es that the proposed stra_te_gy is able to recov hazing technique< [L8][ T19] suffer from important liatibns when
the scene radiance without unwanted color-shifting, and proves thapplied to such images. In some extreme conditions, retmy¢e color-
our approach is competitive compared to recent techniques in ternappearance is also challenging for solutions that estimatee airlight
of restored image quality. locally [20] or dedicated night-time dehazing algorithni&I]

Berman et al. [CVPR 2016] Our result

Index Terms— night-time dehazing, local airlight estimation

hazy ' for night-time hazy scenes. Night-time hazy scenes commonly

involve artificial light sources, which tend to introduce additionally
glowing artifacts. To address this issue, several dedicated night-
) I INTRODUCTION _ time dehazing method5[22], [R3[,[21]. [24]. 125]. [26] have bee
Atmospheric phenomena such as haze or fog seriously degragigroduced recently. Pei and Lée [22] adopt a color transfer strategy
the visibility of many outdoor scenes. In such bad visibility con-jn aqdition to dark channel prior to estimate haze thickness and
ditions, different outdoor imaging and computer vision algorithmsair“ght [5], [27]. In Zhang et al.[[23], the non-uniform incident
perform poorly. To tackle this problem, many dehazing techniquegjjumination is first estimated for color correction purpose. Li et
have been introduced in the last decade. The earlier technlqu%_m] propose to extend the optical model to incorporate the

employ additional information such as known scene depth Map [1ltmospheric point spread function for modeling the glowing effect.
or multiple images[[2]. More recently, single image-based dehazing

techniques have been proposéd [3], [4] [3] [6]] [7] [€]!,[9] In this paper, we introduce a simple but effective approach to
[10], [17], [12], [13], [14], [1E], [16]. They generally consid the  estimate locally the atmospheric light. While the popular dark-
inversion of the simplified Koschmieder’s optical modell[17], and channel strategy [27] computes a constant atmospheric light over
build on different priors to estimate its two unknowns, namelythe entire image, our strategy is able to deal with non-uniform
the transmission map and the airlight, assumed to be constarlumination generated by the multiple light-sources present in
Tan [4] computes the airlight from the brightest pixel in the scenepight-time scenes. Inspired by our previous workl [24], we estimate
and estimates the transmission by maximizing a contrast functiorihe atmospheric light locally by computing it on a grid of patches.
Based on a refined image formation model, the method of Faital [3]o circumvent the tricky question of selecting an appropriate patch
regularizes the transmission and haze color estimation by searchisige, we compute two different estimates of the local atmospheric
for a solution in which the resulting shading and transmissiorlight, respectively associated to a large and a small patch size.
functions are locally statistically uncorrelated. The seminal method’he use of a large patch helps in improving the global contrast,
of He et al. [[5] introduces the dark channel prior that appeared tby accounting for a large scene neighborhood. A smaller patch
be a simple but effective strategy to estimate the transmission bas@devents accounting from too many light sources when estimating
on the observation that in natural scenes the radiance of at leatfte atmospheric light in a given location. Our optimal atmospheric
one color component is very small. Meng et &l.1[18] introduced antensity is simply estimated as the mean over those two patch sizes.
regularization method to refine the transmission estimated based &iinally, the dehazed images are yielded using a rough transmission
the dark channel prior, while Zhu et &l ]19] assume that the deptimap estimated based on the dark channel pfibr [5] and inverting
can be estimated from pixel saturation and intensity. the optical model. A comprehensive qualitative and quantitative

These dehazing techniques, by assuming constant airlight, are es+aluation is provided, both for day-time and night-time hazy
sentially targeted towards day-time hazy scenes. As can be observecenes. It demonstrates the efficacy of our approach both in terms
in figure [, those approaches suffer from important limitationsof computational efficiency and quality of the outputs.



Il. HAZE REMOVAL WITH LOCAL ATMOSPHERIC scenes, the dark channel prior assumes that, in non-sky re-
LIGHT ESTIMATION gions, the radiance/(xz) has a small value for at least one

This section presents briefly the optical model and the mairf0lor channel, in at least one pixel of each patch. Based on

physical parameters that need to be estimated to restore hafje Koschmieder' optical model [17] it has been observed that

images in the presence of non-uniform (artificial) lightning. Next,the transmission map is correlated with dark channel estimate

we review how the dark-channel prior is used to estimate the’DC( z) = mingeq()(Mineer,g5(Z°(y)/Ax”)). As a conse-
transmission map, and finally we introduce our proposed locafluénce, the transmission map(z) can be estimated from the
estimation of the airlight. Koschmieder’s model, by computing:

) T(x)=1—  min ( min 7/ A > (2)
II-A. Optical Model of Hazy Scenes yEQ(x) \cErig;b

Haze is an atmospheric phenomena characterized by smawhereZ® denotes one of the color channels of the hazy image
droplets nuclei. As a consequence, in hazy conditions, the light tha while A is the atmospheric light/airlight constanti{ =
is passing through the medium is scattered, deviated and attenuatédo. A%, A2%]), and Q(z) represents a local patch centered on
The image formation process is expressed mathematically by tH&e pixelz location.
the Koschmieder's model [17]. Based on this model, the recorded Daik Channel aimospheric  Almospherts nfonslty  Our opfimol afmospheric
light intensity Z of each pixel coordinate is composed from two Input Images intensity estimate estimate: Eq 3. intensity estimate: Eq 4.

main additive components - thdirect attenuationD(z) and the
airlight A(z) :

I(z) = D(z) + A(z) = J(z) T'(z) + Aeo [1 -
The direct attenuationcorresponds to the fraction of the reflected
light that reaches the observer due to the absorbing and scatteri
The airlight term is the principal source of the color shifting.
In this equation,J (z) represents the scene radiance of a clea

medium (haze-free image); (z) is the transmissionalong the
cone of vision, andA. is the atmospheric intensity (airlight).
The transmission maf (x) is directly related to the depth of the E

scene. For homogeneous medium, it is mathematically defined as
T (z) = =% =) where 3 represents the medium attenuation Fig. 3. Rough dehazing of night-time scenesDesigned originally for

coefficient (due to the scattering), ad(k) is the physical distance day-time dehazing, the well-known dark chanriell [27] shomgadrtant

from the camera to the considered surface. limitations for such scenes because it estimates unifoaiythe entire

image) the atmospheric intensity. Estimating the atmasplensity using

Multi-Scale Fusion with Derived Inputs a large patch in E@B improves the visibility. However, eoypig our

optimal atmospheric intensity (Ed.4), the color and detafiat are close
to the light sources are better recovered.

Input1

Input image Q Ancuti et al.

II-C. Local Atmospheric Intensity Estimation

A critical assumption that hinders the recovery of natural colors
NO transmission ! in night-time hazy images is the one that considers the atmospheric

intensity (airlight) A, to be constant. Early dehazing methods
Input image A sty Estimated fransmission ourresul assumed that the atmospheric intensity can be estimated by the

color vector of the pixel with highest intensityl [4]. This approach
was motivated by the white appearance of haze in day-time scenes.
However, this estimate may fail when the scene contains white
objects (which are wrongly identified as hazy pixels). To avoid
Fig. 2 Overview. C d with [24](sh i the & ) uti such miss-identification, the transmission information has been
. <. Overview. Comparea wi shown In the top row), our solution : H . : _ H
(shown in the bottom row) is more robust and straightforwtrde imple- CQnSIdeer in[27] to r_esmCt the selgctlon of haze opaque plxel_s to
mented. First, since we do not employ multi-scale fusionguaiLaplacian ~ distant pixels. In practice, these regions are mathematically defined
pyramid decomposition, the computation complexity isiigmtly reduced.  as having the brightest dark channel, i.e. as the ones that maximize
Another advantage of our approach is that we solve only oheeoptical [ (z) = mingco(z) (Mincer,g,5 Z°(y)), wherer, g, b symbolize
model Eq[L (in[[24] this is required for every derived inpuBnally, our w6 R G B color channels. This strategy is quite effective for day-
optimal atmospheric intensity estimate allows to computaasmission time écénes but reveals important limitations in night-time ones
map using EGI2. i : , but rev important limitati in night-time
(see Fig.[B). In general, night-time scenes are characterized by
multiple artificial and spatially non-uniform illumination sources,
o o ] so that searching for a global and constant atmospheric intensity
II-B. Transmission estimation based on dark channel prior becomes inappropriate. Moreover, the fact that night-time scenes
To estimate the transmission map, we adopt the well-knowrare generally subject to colored lighting makes the search for a
dark channel prior introduced by He et dl. [27]. For day-time'white’ airlight especially irrelevant.



Hazy images He et al. Meng et al. Cai et al. Ancuti et al. Berman et al. Our results Ground truth

Fig. 4. Comparative results. The first row shows the hazy images and the last row shows the groutid The other rows from left to
right show the results of He et al[5], Meng et &l [18], Fattal]11], Cet al. [I5], Ancuti et al. [24], Berman et al[[20] and our results.

To address this problem, we build on our recent work [24] anddue to haze.

estimate the atmospheric intensitif, . (z) as a function ofz. Next to compute our optimal local atmospheric intensity estimate
Mathematically, the local atmospheric intensit§, . (x) is defined  we simply calculate the mean over all the local atmospheric values
as: using different size patches 6f:
Ao (x) = max [ min (Ic(z))} = max [Iyn(2)] (3) AL pprimoo(T) = (Z A9, o0 (2))/Na 4
yev(z) [z€Q(y) yevw () i

where W (z) is a spatial neighborhood around the pixel coordinatevhere Ag ., counts for different local atmospheric intensity es-
z. In practice, the patcﬁj is chosen to be twice as b|g than the timates, andNq is the number of the estimates. We observed
patch(). In addition, when the paramet8r(z) is chosen to cover experimentally that only two estimates, described previously, are
the entire image, this method behaves as a g|0ba| estimator. generally sufficient in practice. One mlght however consider more
Selecting an appropriate size fét is however not straight- granularity in patch sizes, especially in scenarios with multiple
forward. A large neighborhood willl be influenced by multiple heterogeneous light sources.
light sources, making the estimation and compensation of the Compared with[[24], our solution is more robust and straight-
airlight inaccurate, which results in similar color shiftings than forward to implement. Because we do not employ multi-scale
the ones encountered with global airlight estimation. In contrastfusion using a Laplacian pyramid decomposition, the computation
a too small neighborhood prevents effective exploitation of thecomplexity is significantly reduced. Another advantage of our
dark channel prior, which fundamentally relies on a the observatio@PProach is that it solves the optical model only once (thereby
of a representative distribution of pixel intensities to estimate thé?roviding the transmission as a side product), while this model
transmission and remove the corresponding haze. To circumveR€€dS to be solved for every input in [24] (leaving the transmission
this problem, we propose to compute two different estimates ofmbiguous). Moreover, by a closer inspection it can be observed
the local A () from Eq[3. The first one is computed with a that our solution provides results with less color shifting for the
relatively large patch size (e.g. 15% of the image size). It primarilynight time hazy scenes.
aims at improving the image contrast by reducing the haze, with a
risk of color shifting. The second one is computed using a smaller lll. RESULTS AND DISCUSSION
patch size (e.g. 5% of the image size). It aims at preventing wrong We first tested our approach for several day-time hazy images.
estimation of thed.(x), but might underestimate the attenuation We use four hazy images with ground truth that are used in the



He et al. Meng et al Fattal Cal et al. Ancuti et al. Berman et al. Our results
SSIM cIEDE2000 | SSIM cIEDE2000 | SSIM clEDE2000 | SSIM clepe2000 | SSIM clepE2000 | SSIM clepe2000 | SSIM CIEDE2000
Set 1 0.752 | 15.656 | 0.706 | 13.441 | 0.744 | 13.062 | 0.672 | 13.265 | 0.726 | 14.081 | 0.756 | 13.126 | 0.704 | 12.386
Set 2 0.633 | 20.767 | 0.700 | 16.579 | 0.568 | 20.920 | 0.588 | 19.970 | 0.742 | 14.472 | 0.691 | 17.597 | 0.781 | 10.828
Set 3 0.752 | 16.005 | 0.820 | 14.838 | 0.723 | 16.737 | 0.610 | 19.648 | 0.876 | 11.414 | 0.829 | 14.501 | 0.871 | 10.579
Set 4 0.617 | 24.836 | 0.790 | 19.568 | 0.539 | 23.428 | 0.608 | 24.043 | 0.763 | 15.763 | 0.806 | 16.010 | 0.806 | 15.255
Average | 0.689 | 19.316 | 0.754 | 16.106 | 0.644 | 18.537 | 0.619 | 19.232 | 0.777 | 13.933 | 0.770 | 15.309 | 0.791 | 12.262

Table I. Quantitative evaluation. Considering the four images shown in Eig.4 we compute the SSIM and QEDEndexes between
the ground truth images and the enhanced results of the evaluated teebnifiue hazy images, ground truth and the results are shown
in Figld.

Night time hazy image Fattal [ACM TOG 2014]

: free) images. In tablg | we show the results of structure similarity

SSIM [28] and CIEDE2000[]29],[30] indexes. Qualitatively but
also quantitatively it can be observed that our approach together
with the techniques of Berman et &l. [20] and Ancuti et [24]
are the most competitive.

Moreover, we intensively tested our approach on the night-time
images dataset introduced [n[21]. The dataset contEfisnight-
time hazy images with various visible light-sources colors and haze
intensity.

We compare with the recent ntiﬁzlt-time dehazing techniques

of Li et al. [21] and Ancuti et al.[T24]. To generate the results

(and those included into additional materials) we employed the
original_code as provided by the authors on their web-pages.
Figure [6 shows comparative results based on two images of

this dataset. For additional comparative results please refer to
https://drive.google.com/file/d/1z- YoMqG4rg4mw7aHHIK gf6192SPp/view?usp=sharing.

Night time hazy images

Li et al. [ICCV 2015]

Our results

Ancuti et al. [ICIP 2016]

Fig. 6. Night-time dehazing comparative resultsFrom left to right: hazy

Fig. 5. Comparative results. The night-time hazy image with the reference images, the results of Li et al_T1], Ancuti et d]24] andraesults.

color palette (shown in the top right corner of the hazy imageenhanced
by the dehazing techniques of Fattal[11], Zhang et[all [23]et al. [21],

Ancuti et al [24] and our approach. The Tablel Il shows quattite
evaluation based on PSNR values.

Additionally, we performed a quantitative evaluation using the
pair of images provided by Zhang et &l. [23]. In Fid. 5 is shown
the reference color palette and the night-time hazy image with
yellow [ white | brown | red blue [ green | average | the color palette. We compare with the dehazing technidués [11],

Fattal 21.10 | 2395 | 1543 | 20.72 | 16512 | 15.77 | 18.68
Zhang et al. | 21.20 | 23.22 | 21.30 | 20.11 | 15.39 | 12.66 | 18.98 23], [21], [24] and compute the PSNR values for each of the 6
U etal 1980 | 2322 | 1695 | 2339 | 17.69 | 21..10 | 20.35 colors (shown in Tablglll). As can be seen, in average our approach

Ancuti et al. | 27.34 | 30.05 | 18.59 | 23.22 | 17.59 | 17.66 | 22.41 performs slightly better in terms of PSNR compared with the other
Our method | 32.30 | 31.06 | 18.02 | 21.06 | 1671 | 1741 2276 | techniques.

Table Il. Based on the the results shown in Hi§j. 5 we compute the PSNR To conclude, despite of its simplicity, our approach yields
values as an average on RGB components for each of the 6 afishe ~ comparative results with the recent dehazing techniques for day-
reference palette. time but also for night-time hazy scenes. Another advantage of our
solution is the computational efficiency. Our unoptimized Matlab
NTIRE indoor dehazing challerﬁeln Fig.[4 are shown the hazy implementation processes 800 x 600 image in 0.9 seconds on a
images (first column), the corresponding ground truth (last columnpell Latitude Er450 equipped with 7 at 2.6GHz CPU andl6GB
and the dehazing results yielded by the specialized techniques of RAM. This is almost four time faster than our fusion-based
He et al. [5], Meng et al[[18], Fattal [11], Cai et &l. [15], Ancuti implementation[[24]. On the same image, the processing time of
et al. [24], Berman et al[[20] and our technique. Quantitatively,the method of Li et al.[T21] is approximately 30 seconds, the
we compare directly their outcome with the ground-truth (hazemethod of Zhang et al_[23] requires a similar computation as He et
al. [5] (approx. 20 seconds per image) and the method of Berman
Ihttp:/Awww.vision.ee.ethz.chlen/ntire L8/ et al. [20] requires approximately 8 seconds.


http://www.vision.ee.ethz.ch/en/ntire18/
https://drive.google.com/file/d/1z-YoMqG4rq4mw7aHHifgvX7gf6l92SPp/view?usp=sharing
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