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ABSTRACT
This paper introduces an effective strategy to enhance the visibility
of hazy images, especially those obtained in night-time conditions.
Compared to day-time, in night-time scenes, the lighting generally
arises from multiple artificial sources and therefore may be consid-
ered intrinsically as being non-uniform. As a result, conventional
global atmospheric light (airlight) estimation strategies become
irrelevant. In this work, we propose a simple yet effective patch-
based atmospheric light estimation. To circumvent the problem of
selecting an appropriate patch size, we propose to estimate the
atmospheric light on several patch sizes, and to define the local
airlight as the average of those estimates. An extensive experimental
validation demonstrates that the proposed strategy is able to recover
the scene radiance without unwanted color-shifting, and proves that
our approach is competitive compared to recent techniques in terms
of restored image quality.

Index Terms— night-time dehazing, local airlight estimation,
hazy

I. INTRODUCTION

Atmospheric phenomena such as haze or fog seriously degrade
the visibility of many outdoor scenes. In such bad visibility con-
ditions, different outdoor imaging and computer vision algorithms
perform poorly. To tackle this problem, many dehazing techniques
have been introduced in the last decade. The earlier techniques
employ additional information such as known scene depth map [1],
or multiple images [2]. More recently, single image-based dehazing
techniques have been proposed [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. They generally consider the
inversion of the simplified Koschmieder’s optical model [17], and
build on different priors to estimate its two unknowns, namely
the transmission map and the airlight, assumed to be constant.
Tan [4] computes the airlight from the brightest pixel in the scene,
and estimates the transmission by maximizing a contrast function.
Based on a refined image formation model, the method of Fattal [3]
regularizes the transmission and haze color estimation by searching
for a solution in which the resulting shading and transmission
functions are locally statistically uncorrelated. The seminal method
of He et al. [5] introduces the dark channel prior that appeared to
be a simple but effective strategy to estimate the transmission based
on the observation that in natural scenes the radiance of at least
one color component is very small. Meng et al. [18] introduced a
regularization method to refine the transmission estimated based on
the dark channel prior, while Zhu et al. [19] assume that the depth
can be estimated from pixel saturation and intensity.

These dehazing techniques, by assuming constant airlight, are es-
sentially targeted towards day-time hazy scenes. As can be observed
in figure 1, those approaches suffer from important limitations
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Fig. 1. Night-time hazy images are challenging and recent single-image
dehazing techniques [18], [19] suffer from important limitations when
applied to such images. In some extreme conditions, recovering the color-
appearance is also challenging for solutions that estimates the airlight
locally [20] or dedicated night-time dehazing algorithms [21]

for night-time hazy scenes. Night-time hazy scenes commonly
involve artificial light sources, which tend to introduce additionally
glowing artifacts. To address this issue, several dedicated night-
time dehazing methods [22], [23], [21], [24], [25], [26] have been
introduced recently. Pei and Lee [22] adopt a color transfer strategy
in addition to dark channel prior to estimate haze thickness and
airlight [5], [27]. In Zhang et al. [23], the non-uniform incident
illumination is first estimated for color correction purpose. Li et
al.[21] propose to extend the optical model to incorporate the
atmospheric point spread function for modeling the glowing effect.

In this paper, we introduce a simple but effective approach to
estimate locally the atmospheric light. While the popular dark-
channel strategy [27] computes a constant atmospheric light over
the entire image, our strategy is able to deal with non-uniform
illumination generated by the multiple light-sources present in
night-time scenes. Inspired by our previous work [24], we estimate
the atmospheric light locally by computing it on a grid of patches.
To circumvent the tricky question of selecting an appropriate patch
size, we compute two different estimates of the local atmospheric
light, respectively associated to a large and a small patch size.
The use of a large patch helps in improving the global contrast,
by accounting for a large scene neighborhood. A smaller patch
prevents accounting from too many light sources when estimating
the atmospheric light in a given location. Our optimal atmospheric
intensity is simply estimated as the mean over those two patch sizes.
Finally, the dehazed images are yielded using a rough transmission
map estimated based on the dark channel prior [5] and inverting
the optical model. A comprehensive qualitative and quantitative
evaluation is provided, both for day-time and night-time hazy
scenes. It demonstrates the efficacy of our approach both in terms
of computational efficiency and quality of the outputs.



II. HAZE REMOVAL WITH LOCAL ATMOSPHERIC
LIGHT ESTIMATION

This section presents briefly the optical model and the main
physical parameters that need to be estimated to restore hazy
images in the presence of non-uniform (artificial) lightning. Next,
we review how the dark-channel prior is used to estimate the
transmission map, and finally we introduce our proposed local
estimation of the airlight.

II-A. Optical Model of Hazy Scenes

Haze is an atmospheric phenomena characterized by small
droplets nuclei. As a consequence, in hazy conditions, the light that
is passing through the medium is scattered, deviated and attenuated.
The image formation process is expressed mathematically by the
the Koschmieder’s model [17]. Based on this model, the recorded
light intensityI of each pixel coordinatex is composed from two
main additive components - thedirect attenuationD(x) and the
airlight A(x) :

I(x) = D(x) +A(x) = J (x) T (x) +A∞ [1− T (x)] (1)

The direct attenuationcorresponds to the fraction of the reflected
light that reaches the observer due to the absorbing and scattering.
The airlight term is the principal source of the color shifting.
In this equation,J (x) represents the scene radiance of a clear
medium (haze-free image),T (x) is the transmissionalong the
cone of vision, andA∞ is the atmospheric intensity (airlight).
The transmission mapT (x) is directly related to the depth of the
scene. For homogeneous medium, it is mathematically defined as
T (x) = e(−β d(x)), whereβ represents the medium attenuation
coefficient (due to the scattering), andd(x) is the physical distance
from the camera to the considered surface.
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Fig. 2. Overview. Compared with [24](shown in the top row), our solution
(shown in the bottom row) is more robust and straightforwardto be imple-
mented. First, since we do not employ multi-scale fusion using a Laplacian
pyramid decomposition, the computation complexity is significantly reduced.
Another advantage of our approach is that we solve only once the optical
model Eq. 1 (in [24] this is required for every derived input). Finally, our
optimal atmospheric intensity estimate allows to compute atransmission
map using Eq.2.

II-B. Transmission estimation based on dark channel prior

To estimate the transmission map, we adopt the well-known
dark channel prior introduced by He et al. [27]. For day-time

scenes, the dark channel prior assumes that, in non-sky re-
gions, the radianceJ(x) has a small value for at least one
color channel, in at least one pixel of each patch. Based on
the Koschmieder’ optical model [17] it has been observed that
the transmission map is correlated with dark channel estimate
IDC(x) = miny∈Ω(x)(minc∈r,g,b(I

c(y)/A∞
c)). As a conse-

quence, the transmission mapT (x) can be estimated from the
Koschmieder’s model, by computing:

T (x) = 1− min
y∈Ω(x)

(

min
c∈r,g,b

I
c/A∞

c

)

(2)

where I
c denotes one of the color channels of the hazy image

I while A∞ is the atmospheric light/airlight constant (A∞ =
[Ar

∞,Ag
∞, Ab

∞]), and Ω(x) represents a local patch centered on
the pixelx location.
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Fig. 3. Rough dehazing of night-time scenes.Designed originally for
day-time dehazing, the well-known dark channel [27] shows important
limitations for such scenes because it estimates uniformly(on the entire
image) the atmospheric intensity. Estimating the atmospheric intensity using
a large patch in Eq.3 improves the visibility. However, employing our
optimal atmospheric intensity (Eq.4), the color and details that are close
to the light sources are better recovered.

II-C. Local Atmospheric Intensity Estimation

A critical assumption that hinders the recovery of natural colors
in night-time hazy images is the one that considers the atmospheric
intensity (airlight) A∞ to be constant. Early dehazing methods
assumed that the atmospheric intensity can be estimated by the
color vector of the pixel with highest intensity [4]. This approach
was motivated by the white appearance of haze in day-time scenes.
However, this estimate may fail when the scene contains white
objects (which are wrongly identified as hazy pixels). To avoid
such miss-identification, the transmission information has been
considered in [27] to restrict the selection of haze-opaque pixels to
distant pixels. In practice, these regions are mathematically defined
as having the brightest dark channel, i.e. as the ones that maximize
IDC(x) = miny∈Ω(x)(minc∈r,g,b I

c(y)), wherer, g, b symbolize
the R,G,B color channels. This strategy is quite effective for day-
time scenes, but reveals important limitations in night-time ones
(see Fig. 3). In general, night-time scenes are characterized by
multiple artificial and spatially non-uniform illumination sources,
so that searching for a global and constant atmospheric intensity
becomes inappropriate. Moreover, the fact that night-time scenes
are generally subject to colored lighting makes the search for a
’white’ airlight especially irrelevant.
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Fig. 4. Comparative results. The first row shows the hazy images and the last row shows the ground truth. The other rows from left to
right show the results of He et al. [5], Meng et al. [18], Fattal [11], Cai et al. [15], Ancuti et al. [24], Berman et al. [20] and our results.

To address this problem, we build on our recent work [24] and
estimate the atmospheric intensityAc

Ω∞(x) as a function ofx.
Mathematically, the local atmospheric intensityAc

Ω∞(x) is defined
as:

Ac
Ω∞(x) = max

y∈Ψ(x)

[

min
z∈Ω(y)

(Ic(z))

]

= max
y∈Ψ(x)

[IcMIN (z)] (3)

whereΨ(x) is a spatial neighborhood around the pixel coordinate
x. In practice, the patchΨ is chosen to be twice as big than the
patchΩ. In addition, when the parameterΨ(x) is chosen to cover
the entire image, this method behaves as a global estimator.

Selecting an appropriate size forΩ is however not straight-
forward. A large neighborhood willl be influenced by multiple
light sources, making the estimation and compensation of the
airlight inaccurate, which results in similar color shiftings than
the ones encountered with global airlight estimation. In contrast,
a too small neighborhood prevents effective exploitation of the
dark channel prior, which fundamentally relies on a the observation
of a representative distribution of pixel intensities to estimate the
transmission and remove the corresponding haze. To circumvent
this problem, we propose to compute two different estimates of
the local A∞(x) from Eq.3. The first one is computed with a
relatively large patch size (e.g. 15% of the image size). It primarily
aims at improving the image contrast by reducing the haze, with a
risk of color shifting. The second one is computed using a smaller
patch size (e.g. 5% of the image size). It aims at preventing wrong
estimation of theA∞(x), but might underestimate the attenuation

due to haze.
Next to compute our optimal local atmospheric intensity estimate

we simply calculate the mean over all the local atmospheric values
using different size patches ofΩ:

Ac
Loptim∞(x) = (

∑

i

Ac
Ωi∞

(x))/NΩ (4)

whereAc
Ωi∞

counts for different local atmospheric intensity es-
timates, andNΩ is the number of the estimates. We observed
experimentally that only two estimates, described previously, are
generally sufficient in practice. One might however consider more
granularity in patch sizes, especially in scenarios with multiple
heterogeneous light sources.

Compared with [24], our solution is more robust and straight-
forward to implement. Because we do not employ multi-scale
fusion using a Laplacian pyramid decomposition, the computation
complexity is significantly reduced. Another advantage of our
approach is that it solves the optical model only once (thereby
providing the transmission as a side product), while this model
needs to be solved for every input in [24] (leaving the transmission
ambiguous). Moreover, by a closer inspection it can be observed
that our solution provides results with less color shifting for the
night time hazy scenes.

III. RESULTS AND DISCUSSION

We first tested our approach for several day-time hazy images.
We use four hazy images with ground truth that are used in the



He et al. Meng et al Fattal Cai et al. Ancuti et al. Berman et al. Our results
SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000

Set 1 0.752 15.656 0.706 13.441 0.744 13.062 0.672 13.265 0.726 14.081 0.756 13.126 0.704 12.386
Set 2 0.633 20.767 0.700 16.579 0.568 20.920 0.588 19.970 0.742 14.472 0.691 17.597 0.781 10.828
Set 3 0.752 16.005 0.820 14.838 0.723 16.737 0.610 19.648 0.876 11.414 0.829 14.501 0.871 10.579
Set 4 0.617 24.836 0.790 19.568 0.539 23.428 0.608 24.043 0.763 15.763 0.806 16.010 0.806 15.255
Average 0.689 19.316 0.754 16.106 0.644 18.537 0.619 19.232 0.777 13.933 0.770 15.309 0.791 12.262

Table I. Quantitative evaluation. Considering the four images shown in Fig.4 we compute the SSIM and CIEDE2000 indexes between
the ground truth images and the enhanced results of the evaluated techniques. The hazy images, ground truth and the results are shown
in Fig.4.
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Fig. 5. Comparative results.The night-time hazy image with the reference
color palette (shown in the top right corner of the hazy image) is enhanced
by the dehazing techniques of Fattal [11], Zhang et al. [23],Li et al. [21],
Ancuti et al [24] and our approach. The Table II shows quantitative
evaluation based on PSNR values.

yellow white brown red blue green average
Fattal 21.10 23.95 15.43 20.72 15.12 15.77 18.68
Zhang et al. 21.20 23.22 21.30 20.11 15.39 12.66 18.98
Li et al. 19.80 23.22 16.95 23.39 17.69 21.10 20.35
Ancuti et al. 27.34 30.05 18.59 23.22 17.59 17.66 22.41
Our method 32.30 31.06 18.02 21.06 16.71 17.41 22.76

Table II . Based on the the results shown in Fig. 5 we compute the PSNR
values as an average on RGB components for each of the 6 colorsof the
reference palette.

NTIRE indoor dehazing challenge1. In Fig. 4 are shown the hazy
images (first column), the corresponding ground truth (last column)
and the dehazing results yielded by the specialized techniques of
He et al. [5], Meng et al. [18], Fattal [11], Cai et al. [15], Ancuti
et al. [24], Berman et al. [20] and our technique. Quantitatively,
we compare directly their outcome with the ground-truth (haze

1http://www.vision.ee.ethz.ch/en/ntire18/

free) images. In table I we show the results of structure similarity
SSIM [28] and CIEDE2000 [29], [30] indexes. Qualitatively but
also quantitatively it can be observed that our approach together
with the techniques of Berman et al. [20] and Ancuti et al. [24]
are the most competitive.

Moreover, we intensively tested our approach on the night-time
images dataset introduced in [21]. The dataset contains130 night-
time hazy images with various visible light-sources colors and haze
intensity.

We compare with the recent night-time dehazing techniques
of Li et al. [21] and Ancuti et al. [24]. To generate the results
(and those included into additional materials) we employed the
original code as provided by the authors on their web-pages.
Figure 6 shows comparative results based on two images of
this dataset. For additional comparative results please refer to
https://drive.google.com/file/d/1z-YoMqG4rq4mw7aHHifgvX7gf6l92SPp/view?usp=sharing.

Night time hazy images Li et al. [ICCV 2015] Ancuti et al. [ICIP 2016] Our results

Fig. 6. Night-time dehazing comparative results.From left to right: hazy
images, the results of Li et al. [21], Ancuti et al. [24] and our results.

Additionally, we performed a quantitative evaluation using the
pair of images provided by Zhang et al. [23]. In Fig. 5 is shown
the reference color palette and the night-time hazy image with
the color palette. We compare with the dehazing techniques [11],
[23], [21], [24] and compute the PSNR values for each of the 6
colors (shown in Table II). As can be seen, in average our approach
performs slightly better in terms of PSNR compared with the other
techniques.

To conclude, despite of its simplicity, our approach yields
comparative results with the recent dehazing techniques for day-
time but also for night-time hazy scenes. Another advantage of our
solution is the computational efficiency. Our unoptimized Matlab
implementation processes an800× 600 image in 0.9 seconds on a
Dell Latitude E7450 equipped with i7 at 2.6GHz CPU and16GB
of RAM. This is almost four time faster than our fusion-based
implementation [24]. On the same image, the processing time of
the method of Li et al. [21] is approximately 30 seconds, the
method of Zhang et al. [23] requires a similar computation as He et
al. [5] (approx. 20 seconds per image) and the method of Berman
et al. [20] requires approximately 8 seconds.

http://www.vision.ee.ethz.ch/en/ntire18/
https://drive.google.com/file/d/1z-YoMqG4rq4mw7aHHifgvX7gf6l92SPp/view?usp=sharing
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