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Assessment of Tar Spot Complex (TSC) severity in maize breeding experiments is conducted visually and may sometimes result in
inconsistencies due to human interpretation. Disease scoring using remote sensing technologies may help bring more precision to the
phenotyping process. An experiment for assessment of grain yield losses due to TSC was conducted at the Aguafria Experimental
Station of the International Center for Wheat and Maize Improvement – CIMMYT in Mexico. Twenty-five maize genotypes were planted
in spring of 2016 under a fungicide treatment to control TSC development and no fungicide treatment in a square lattice design with
three replications. Four flights were carried out using an Unmanned Aerial Vehicle (UAV) equipped with a multispectral (550, 660, 735,
790 nm) and a thermal camera, simultaneously with the visual disease scorings and the yield was measured after harvesting. The
preliminary results of the study indicated that the use of remote sensing in disease resistance phenotyping may be as effective as visual
disease scoring since both correlate highly with the grain yield. Structural and chlorophyll vegetation indices (VIs) proved to be a good
alternative for the estimation of yield losses caused by TSC in experimental field conditions, which may be potentially used for
screening for resistance to this disease in maize genotypes, hypothetically reducing the need for visual disease scoring in the field.
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Introduction

Tar Spot Complex of Maize (TSC) is one of the major foliar
fungal diseases of maize in tropical and sub-tropical envir-
onments of some parts of Latin America, mainly in places
with higher humidity and moderate climates. The grain loss
due to the TSC disease ranges from 50 to 75% depending on
the susceptibility of the host and favorable environmental
conditions (Hock et al., 1989; Pereyda-Hernández et al.,
2009). Three different fungal pathogens are involved in the
disease complex: Phyllachora maydis, Monographella
maydis and Coniothyrium phyllachorae (Hock et al., 1992). It
is believed that P. maydis and M. maydis play the most
important part in the complex causing the maximum damage
to the host (Hock et al., 1995).
Resistance to TSC is an important trait that is incorporated

to most of the maize lines and hybrids developed by CIMMYT
for lowland tropical areas of Latin America. Selection for TSC
resistance starts at early generations of breeding population
by eliminating susceptible plants. Later on, more advanced
generations of the maize lines and hybrids are screened for
disease resistance in trials in multiple locations for several years.
The first symptoms of the disease appear as dark spots

(stromas) of P. maydis on the leaf surface (both lower and
upper leaves) usually 2–3 weeks before flowering and the

pustules gradually increase in numbers and size. Approximately
two weeks later, the area surrounding the dark spots becomes
chlorotic due to the development of the second parasite,
M. maydis, and develop into the typical “fish eye” symptoms.
Usually the chlorotic spots are round or oval in shape but if the
disease is developing aggressively the chlorotic circles coalesce
and the entire leaves become necrotic, thus affecting the
photosynthetic activity and reducing the grain yields.
The phenotyping for TSC resistance is performed on a 1 to

5 scale where 1 represents a completely resistant reaction
and 5 is a completely susceptible reaction. The evaluation
is done in the field, in adult plants, usually at or just after
flowering by visually observing the diseased plots and
recording the disease score. This is repeated three to five
times during the growing season depending on the disease
development. Often the notes, for the severity of the disease
are recorded by different personnel causing discrepancies
in the disease severity score notes. In addition, preliminary
field phenotyping trials are often very large and are time
consuming for disease note taking.
Light interception on the leaf surface is differentially

absorbed, transmitted or reflected by the leaf depending on
its internal structure, chemical composition or physiological
status. Spectral imaging sensors detect electromagnetic
waves including those not visible to the human eye such as
infrared radiation. These data can be combined to identify
specific plant features that may not be evident in the visible† Email: F.A.Rodrigues@cgiar.org
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spectrum. Measuring spectral reflectance can thus be used
to inform on the health status of the whole plant or to quantify
disease infected areas of the plant (Simko et al., 2016).
Laboratory-based spectroscopy technologies have been

used to detect different kind of diseases in different crops
(Bauriegel and Herppich, 2014; Bauriegel et al., 2011a, 2011b;
Bergsträsser et al., 2015). Remote sensing aspects, multi-
spectral and hyperspectral imagery had been previously used
for disease phenotyping in different crops, such as powdery
mildew and leaf rust on wheat (Franke and Menz, 2007),
Cercospora leaf spot, sugar beet rust and powdery mildew on
sugar beet (Mahlein et al., 2012), huanglongbing disease in
orange trees (Garcia-Ruiz et al., 2013) and cotton root rot in
cotton (Yang et al., 2010). However, to our knowledge, no such
study has been conducted regarding phenotyping TSC on
maize. Therefore, the current study was designed to explore
how multispectral and thermal images taken from an unman-
ned aerial vehicle (UAV) may be used to phenotype maize
genotypes for TSC resistance, by analyzing the phenotypic and
genetic correlations among grain yield, disease scorings and
the imaging data. If successful, the study may also help with
minimizing the chances of human error in disease phenotyping
and potentially reduce the workload in preliminary field trials.

Material and Methods

Field site and data collection
The experiment was conducted at the Aguafria Experimental
Station of the International Center for Wheat and Maize
Improvement – CIMMYT in Mexico. The experiment was
planted in a square lattice design consisting of 25 maize

genotypes in two main blocks, one under fungicide treat-
ment to control TSC development (figures and tables coded
as 714) and the second without the treatment (figure and
tables coded as 715) in the spring of 2016. Each block
contained three randomized replications. Each experimental
plot consisted of four 4.5m length rows with 0.75m
inter-row and 0.25m plant spacing within row.
The flight campaign were carried out using a fixed wings

eBee UAV from SenseFly, equipped with multispectral
MultiSpec 4C (550, 660, 735, 790 nm) and ThermoMAP
thermal cameras from Arinov, flying at 55m above ground,
yielding a ground resolution of 6 and 12 cm, respectively.
Radiometric calibrations were performed before each flight
using the standard panel of the multispectral camera
provided by the manufacturer. The first disease scoring and a
flight were performed simultaneously at the flowering stage
(79 days after planting) and a total of four flights and
scorings have been conducted at ten-day intervals.
Images were properly geotagged for orthomosaic process

using Pix4D mapper®. Later, 10 different vegetation indices
(NDVI, RDVI, OSAVI, MSR, MCARI1 and MCARI2 – structural
indices; TVI, GM1, PSSRa - chlorophyll indices; G – RGB ratio)
were calculated for each image using the necessary wavelengths
from the multispectral signal (Rouse et al., 1974; Rougean and
Breon, 1995; Rondeaux et al., 1996; Chen, 1996; Haboudane
et al., 2004; Broge and Leblanck, 2000; Gitelson and
Merzlyak, 1997; Blackburn, 1998; Zarco-Tejada et al., 2005).
Two approaches for image data extractions were tested:

(1) average of all pixels contained in a single polygon of both
central rows and (2) average of all pixels contained in double
polygons, one for each central row (Fig 1).

Figure 1 Zooming of the data extraction approaches: single polygon of both central rows (1), and double polygons, one for each central row (2).

Rodrigues, Defourny, Gérard, Vicente and Loladze

260



Data analysis
The results of the two different image data extraction
approaches were compared by the Pearson’s correlation
coefficient using all available information. The phenotypic
data were adjusted with respect to the experimental design
terms using the restricted maximum likelihood method and
the genotypes’ least square means (genotypic) were esti-
mated. The effects of trials, days after sowing and genotypes
were considered as fixed, while replication and blocks within
replication were considered as random effects. Thus, both
phenotypic and genotypic data were used for individual
association by means of the Pearson’s correlation coeffi-
cients among grain yield, diseases scorings and vegetation
indices in each treatment and each survey date (79, 90, 100
and 113 days after sowing). All analyses were performed
with the R software and lme4 and lsmeans packages.

Results and discussion

The comparison between both data extraction approaches is
presented in Figure 2. Although it was expected that approach
2 (double polygons, Figure 1) would be more accurate since it
did not carry the furrow data reflectance, both approaches

yielded similar results, with the coefficient of correlation of
all VIs, wavelengths and canopy temperature close to 1
(Figure 2). Based on these results, it had been decided to use
only the data extracted with approach 2 for the following data
analysis.
The correlation of the yield phenotypic and genotypic data

with VIs, thermal information and disease scoring (TS) are
shown in Tables 1 and 2, respectively. The phenotypic cor-
relations demonstrated how the secondary data (images and
TS) were related to yield variation in the field without taking
into account the genotypic effects, while the genotypic
correlations were analyzed based on the least square means
of the grain yield, which took into account the effect of the
genotype on yield.
The majority of the image variables showed different

degrees of phenotypic correlation with yield in the fields with
and without the fungicide treatment, although some vari-
ables were not significant (p> 0.1). TS showed non-
significant correlations with the fungicide treatment since
the disease development was controlled. The highest coef-
ficient of TS across the dates was −0.43 in the non-fungicide
treatment, which was lower than the correlations of the VIs
of the corresponding images. The correlation of the VIs with

Figure 2 Coefficient of correlation between both data extraction approaches for VIs, wavelengths and canopy temperature. Where: NDVI, RDVI, OSAVI,
MSR, MCARI1 and MCARI2 – structural indices; TVI, GM1, PSSRa – chlorophyll indices; G – RGB ratio; TS – visual disease scoring; temp – canopy
temperature; W550, W660, W735, W790 – reflectance wavelengths (nm); 714 – fungicide treatment; 715 – Non-fungicide treatment.
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the yield under the fungicide treatment was slightly higher
(p< 0.01) with the images acquired from the last flight
performed at 113 days after sowing (das). Furthermore,
under the non-fungicide treatment the disease scores had
lower coefficients than the majority of VIs correlations of
the whole flight campaign, being considerably lower in
comparison with VIs correlations at with the second flight
(90 das; TS = −0.24).
As in case of the phenotypic correlation, no significant

genotypic correlation between TS and yield under the fun-
gicide treatment was observed due to the absence of the
disease that would have resulted in the reduction of the grain
yield. However, correlations have been observed between
the VIs, thermal indices and yield. Even though the disease
scores showed slightly higher genotypic correlations than the
VIs under no fungicide treatment just at the first and last

images (-0.61 and -0.60, respectively), the maximum differ-
ence of the correlation coefficients reached only 5 units. The
correlations of the structural and chlorophyll VIs were higher
than and/or equal to TS at the second and the third dates of
the flight campaign (90 and 100 das, respectively). The
structural and chlorophyll indices, such as MSR and PSSRa,
had the highest coefficients among all of the remote sensing
variables (0.62 and 0.65, respectively) from the image
obtained at 100 das. In other previous studies it was
demonstrated that NDVI – which is a structural index, had
moderate to high accuracy on distinguishing levels of resis-
tance of wheat infected with leaf rust (Franke and Menz,
2007) and Sunn pest (Genc et al., 2008).
These preliminary results showing the potential of the

remote sensing approach is the first step for developing
high throughput phenotyping methods for TSC resistance in

Table 1 Phenotypic correlation between yield, image data and visual scoring (n = 75).

714 715

79 90 100 113 79 90 100 113

NDVI 0.31* 0.31* 0.47* 0.54* 0.42* 0.51* 0.63* 0.57*
RDVI 0.28* 0.36* 0.51* 0.55* 0.55* 0.59* 0.67* 0.59*
OSAVI 0.31* 0.36* 0.50* 0.55* 0.55* 0.58* 0.66* 0.59*
MSR 0.30* 0.31* 0.49* 0.56* 0.42* 0.52* 0.68* 0.58*
MCARI1 0.22** 0.35* 0.47* 0.53* 0.51* 0.60* 0.65* 0.58*
MCARI2 0.29* 0.35* 0.48* 0.54* 0.57* 0.60* 0.66* 0.58*
TVI −0.09 0.27* 0.25** 0.42* 0.15 0.58* 0.57* 0.53*
GM1 0.11 0.36* 0.39* 0.48* 0.23** 0.49* 0.64* 0.60*
PSSRa 0.29* 0.31* 0.50* 0.58* 0.42* 0.53* 0.72* 0.61*
G −0.02 0.05 0.12 0.34* 0.12 0.38* 0.52* 0.51*
Thermal −0.12 0.35* −0.36* 0.19 −0.13 0.01 −0.46* 0.00
TS 0.08 −0.01 −0.05 −0.07 −0.30* −0.24** −0.39* −0.43*

Where: NDVI, RDVI, OSAVI, MSR, MCARI1 and MCARI2 – structural indices; TVI, GM1, PSSRa – chlorophyll indices; G – RGB ratio; thermal – canopy temperature;
TS – visual disease scoring; 714 – fungicide treatment; 715 – Non-fungicide treatment. 79, 90, 100 and 113 days after sowing. * Coefficients of correlation statistically
significant at 1% probability; ** coefficients of correlation statistically significant at 5% probability.

Table 2 Genetic correlation between yield, image data and visual scoring (n = 25).

714 715

79 90 100 113 79 90 100 113

NDVI 0.29 0.21 0.40** 0.45** 0.09 0.26 0.58* 0.54*
RDVI 0.56* 0.38*** 0.44** 0.45** 0.53* 0.48* 0.60* 0.55*
OSAVI 0.50* 0.34*** 0.43** 0.45** 0.52* 0.45** 0.60* 0.55*
MSR 0.26 0.22 0.39*** 0.46** 0.09 0.30 0.62* 0.54*
MCARI1 0.56* 0.46** 0.43** 0.43** 0.51* 0.52* 0.60* 0.54*
MCARI2 0.55* 0.39** 0.43** 0.43** 0.57* 0.51* 0.61* 0.55*
TVI 0.36*** 0.44** 0.36*** 0.39** 0.42** 0.54* 0.57* 0.54*
GM1 0.00 0.19 0.23 0.38*** −0.25 0.13 0.52* 0.53*
PSSRa 0.24 0.22 0.38*** 0.46** 0.09 0.32 0.65* 0.55*
G 0.24 0.24 0.32 0.37*** 0.26 0.38*** 0.60* 0.54*
Thermal −0.36*** 0.56* −0.50* −0.27 −0.17 −0.10 −0.57* −0.33*
TS −0.19 −0.10 −0.11 −0.14 −0.61* −0.51* −0.62* −0.60*

Where: NDVI, RDVI, OSAVI, MSR, MCARI1 and MCARI2 – structural indices; TVI, GM1, PSSRa – chlorophyll indices; G – RGB ratio; thermal – canopy temperature; TS –
visual disease scoring; 714 – fungicide treatment; 715 – Non-fungicide treatment. 79, 90, 100 and 113 days after sowing. * Coefficients of correlation statistically
significant at 1% probability; ** coefficients of correlation statistically significant at 5% probability; *** coefficients of correlation statistically significant at 10%
probability.
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maize. Furthermore, the combination of different VIs into
multivariate models and machine learning procedures will
need to be explored further targeting early detection of the
reduction of photosynthetic activities caused by TSC. This
could also open further possibilities to develop techniques for
upscaling the use of remote sensing in estimating damages
cause by TSC in the farmers’ fields, providing information for
timely crop management.

Conclusions

Structural and chlorophyll VIs proved to be a promising tool
for the estimation of yield losses caused by TSC and offering
new opportunities for high throughput phenotyping for
resistance of maize to this highly important foliar disease.
The experiment will be repeated in the next maize growing
cycle to account for possible environmental variability and
to ensure the repeatability of the methodology. Also different
imagery data extraction methods will be tested to optimize
the phenotyping effectiveness and precision while minimiz-
ing the possibilities of errors occurring during the process.
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