
Feature Visualiser:
an Inspection Tool for Context-Oriented Programmers

Benoît Duhoux
Université catholique de Louvain

Louvain-la-Neuve, Belgium
benoit.duhoux@uclouvain.be

Kim Mens
Université catholique de Louvain

Louvain-la-Neuve, Belgium
kim.mens@uclouvain.be

Bruno Dumas
Université de Namur
Namur, Belgium

bruno.dumas@unamur.be

ABSTRACT
As part of our ongoing research on context-oriented software tech-
nology, we propose a feature-oriented programming approach to
context-oriented programming. Behavioural variations are imple-
mented as fine-grained features that can be installed and activated
dynamically, upon changing contexts. Given the highly dynamic
nature of such a programming approach, and to cope with the com-
plexity of many behavioural variations, that can depend on many
varying contexts, developers could benefit from visual inspection
tools to analyse what contexts and features are currently active, in
which order they have been activated, and what code they adapt.
We present a prototype of such a visualisation tool, and discuss
potential improvements to that tool.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Software and its engineering →
Feature interaction; Integrated and visual development en-
vironments;

KEYWORDS
Context-oriented programming, feature-oriented programming, dy-
namic software adaptation, software visualisation, Ruby program-
ming language.
ACM Reference Format:
Benoît Duhoux, Kim Mens, and Bruno Dumas. 2018. Feature Visualiser: an
Inspection Tool for Context-Oriented Programmers. In 10th International
Workshop on Context-Oriented Programming (COP’18), July 16, 2018, Ams-
terdam, Netherlands. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3242921.3242924

1 INTRODUCTION
Building upon earlier exploratory work by Poncelet and Vigneron
[27], Cardozo et al. [6] and Kühn [23], we have started to explore a
novel context-oriented programming approach and software archi-
tecture [26] that reconciles the ideas of feature-oriented and context-
oriented programming [5, 16, 28]. In this approach, behavioural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
COP’18, July 16, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5722-7/18/07. . . $15.00
https://doi.org/10.1145/3242921.3242924

variations of a software system are implemented as fine-grained
feature modules that can be installed or uninstalled dynamically.
The selection of features to be (un)installed dynamically depends
on what contexts are currently active. Contexts are defined as sep-
arate modules, the activation or deactivation of which depends
on sensory and other information detected from the surrounding
environment in which the system executes. As such, the system
becomes highly adaptive, changing its behaviour dynamically to
contextual changes.

Given the highly dynamic nature of such a programming ap-
proach, it is hard for developers to keep track of what is going on.
They need to cope with the complexity of many behavioural varia-
tions, that can depend on many varying contexts, each of which
may be subject to certain declared dependencies. To support them
in better understanding the complexity of such systems, we are
prototyping a visualisation tool to inspect what is going on during
program execution, i.e. what contexts and features get (de)activated
and what existing or previously installed features they adapt.

Section 2 sets the scope of this paper by introducing a motivating
example of a risk information system and summarising our previous
approach and architecture for which we build this visualisation tool.
Section 3 then presents the Feature Visualiser tool and gives some
hints, based on the feedback received from actual programmers, on
how we could further enhance this tool. Related work is presented
in Section 4 and future work in Section 5, before presenting our
conclusion in Section 6.

2 SETTING THE SCOPE
In this section, we describe a case study that will serve as motivat-
ing and running example illustrating the need for context-oriented
software systems composed of many fine-grained features that can
be activated and deactivated dynamically to adapt the system’s
behaviour to the current context of execution. Next, we describe an
approach for building such systems, thus setting the scope for the
work in this paper. Whereas part of this context-oriented software
technology has been explored in previous work, this paper focuses
in particular on a dynamic visualisation tool that can help develop-
ers inspect how the contexts and features interact and whether the
implemented software system behaves as intended.

2.1 Motivating example
Our case study, which serves as running example throughout this
paper, is strongly inspired by two existing applications deployed by
the crisis centre1 of the Belgian government. The goal of this centre

1https://crisiscentrum.be

https://doi.org/10.1145/3242921.3242924
https://doi.org/10.1145/3242921.3242924
https://doi.org/10.1145/3242921.3242924
https://crisiscentrum.be

COP’18, July 16, 2018, Amsterdam, Netherlands B. Duhoux, K. Mens & B. Dumas

and of both applications is to raise awareness, prepare, inform and
alert citizens about possible risks and emergency situations.

The first system, R!SK-iNFO.be2, is a web application whose main
purpose is to inform citizens about possible risks, hazards and emer-
gencies (terrorism, heat waves, industrial calamities, earthquakes,
fire), and to provide generic advice on how to protect themselves
and others in such situations. In what follows, we will refer to such
a system as a Risk Information System, or RIS for short. The current
implementation of this RIS provides up-to-date advice to citizens,
to enhance their self-protection, by informing them about actions
they can initiate before, during or after some emergency situation,
in order to better protect themselves and their families.

The second system, .be alert3, is the alert system of the Belgian
government. Citizens subscribe to this service to receive direct
notifications through SMS, e-mail, Twitter, or voice-recording on
their fixed phone, when an emergency occurs near their premises.
For example, upon detection of a wood fire, the government would
alert all citizens registered to the service and that either live or work
in the affected area, with instructions about what measures they
need to take to remain safe (shut windows, evacuate, ...), through
these different communication channels.

Even though both systems are complementary and together
address a relevant problem, something is still missing to reach the
full potential that such RIS systems could offer. We believe that such
systems could provide enhanced services if they would be made
more dynamic and context-aware. The current R!SK-iNFO.be system
is conceived mostly as a static website that displays a variety of
information about possible risks. However it does not really adapt
its content dynamically to contextual information such as the user,
her age or location. For example, Fig. 1 shows two different sets of
instructions depending on whether a citizen is near a forest or in a
forest. Also, it shows three different panes depending on the status
of the risk: before, during or after.

Other parts of the website, such as the page showing information
about a heat wave, of which an extract is shown on Fig. 2, offer
additional information to specific categories of users, depending
on their age (senior or child) or role (working or not). However, for
each of these cases it requires the user to navigate manually to the
corresponding buttons or panes containing that information. The
information is not selected nor filtered automatically based on the
user’s preferences or context. Another interesting observation is
the presence of meteorological information on the bottom right of
Fig. 2. That information is present to inform the citizen, but is not
actually used by the system. In an ideal system, information about
meteorological conditions should be able to influence instructions
issued by the system. (E.g., wind strength and direction are impor-
tant factors that could influence evacuation instructions given to
citizens in case of woodfire.)

As for the .be alert system, its current version also remains rather
static and mainly propagates alerts about certain emergencies to
citizens living in affected zones, but does not take into account the
actual location of a user 4 or its age. One could also wonder why the

2http://www.risico-info.be
3http://be-alert.be
4As a consequence, people present in an affected area but not registered as living or
working there may not get informed, whereas people who are registered as such will
get informed regardless of whether they are actually present there or not.

Figure 1: Information on how to act before, during or after
a woodfire, depending on the user’s location w.r.t. that fire.

Figure 2: Information about a heat wave, with access to spe-
cific information for specific categories of users.

R!SK-iNFO.be and .be alert systems have been created as separate,
disjoint systems while they cover a same goal, with their only
difference being the platforms used for information diffusion. We
thus conclude that, though useful and relevant, these systems are
currently not optimal to provide the most relevant information to a
citizen, depending on his state (age, role), current context (location),
the current state of an emergency (kind, activity, severity, affected
zone) and other factors that influence it (meteorological conditions).

2.2 Case study
Whereas Subsection 2.1 presented some of the features and limita-
tions of an existing RIS, in this section we discuss the requirements
for a new kind of RIS that can adapt its behaviour, in a fine-grained
way, to the user and its surrounding execution context. The main
purpose of our RIS remains to inform users about how to protect
themselves against certain risks, but also to alert them with specific

http://www.risico-info.be
http://be-alert.be

Feature Visualiser : an Inspection Tool for COP COP’18, July 16, 2018, Amsterdam, Netherlands

information when certain emergencies occur. The system distin-
guishes risks, which provide passive information on possible risks,
from active emergencies, which correspond to events that are cur-
rently occurring. An emergency can have a status representing its
progress, i.e. when the emergency is announced and very likely
to happen (before), when the emergency is happening (during) or
during its aftermath (after).

When no emergencies are actually installed, the system just
provides generic information to users on how to protect themselves
against certain risks. The user has the possibility to flag what risks
she is more interested in, for example because she works close to a
nuclear power plant or lives in a zone prone to earthquakes.

When a potential emergency is imminent (e.g., heightened earth-
quake risk based on seismological data), the emergency is installed
with status ‘before’. When the emergency eventually occurs, its
status changes to ‘during’ and the user is provided with specific in-
structions on how to act during this emergency, taking into account
its severity and its location. If the user is located inside an affected
zone, the system gives more specific instructions depending on the
status of the emergency and the user’s age (child, adult or senior).

Each of these fragments of information (generic, specific, risk,
emergency, for children, for seniors, during, before or after) are
programmed as separate features that are installed or uninstalled as
needed, thus making the system adapt dynamically to the changing
context and to its users. This idea is illustrated in Fig. 3. Information
from the surrounding context (e.g., information about the user, or
emergency warnings issued by the government) can trigger certain
features. Essentially, features are small units of functionality that
can extend or override the functionality already provided by the
base system. For example, when an earthquake alert is issued, one
or more features describing different aspects of that earthquake,
such as its severity and its impact zone, are installed. These fea-
tures adapt the generic information that is shown to users about
an earthquake emergency, with specific information about this par-
ticular earthquake, such as its severity (on a Richter scale) and its
impact zone (described by an epicentre and a radius). To achieve
this, the installed features override an existing method inform_-
about_risk to print additional information, while still calling the
original method. The details of this feature-based context-oriented
programming approach will be explained further in Subsection 2.4.

Since the complexity of a software system consisting of many
such fine-grained features that can be (un)installed dynamically
can quickly become overwhelming, we developed a prototype of
a tool to help programers visualise in real-time the interplay be-
tween features, in a way similar to our diagram of Fig. 3. Fig. 4
shows a sneak preview of a dynamic visualisation rendered by our
Feature Visualiser tool. Blue nodes represent Ruby classes; green
nodes represent dynamically installed features and what classes
or features they adapt; and yellow nodes represent active contexts
and the features they triggered.

The visualisation depicted in Fig. 4 corresponds to a scenario
where an Earthquake emergency has been issued and the earth-
quake is currently ongoing. The SeverityRichter and CircleImpact-
Zone features provide specific information about this particular
emergency. Also note the more basic Instruct feature which gets
composed into the Risk class when a user wants to be informed
about certain risks. This feature provides generic advice such as

Object

inform_about_risk

Risk

inform_about_risk

Earthquake

(Ruby) classes features

severity (get/set)
inform_about_risk

SeverityRichter

context

earthquake
alert

triggers
installation

of

user
location

fire
alert

user
age

CircleImpactZone
epicenter (get/set)
radius (get/set)
inform_about_risk
is_in_danger?(position)

Figure 3: Schematic diagram of our approach.

Figure 4: Sneak preview of our Feature Visualiser tool.

to remain calm and help others in case of emergency. This generic
advice gets overridden with emergency-specific advice whenever
an emergency has been issued.

2.3 Context-oriented software architecture
The feature visualisation tool discussed in this paper fits into our
context-oriented software architecture published earlier [26].

Fig. 5 depicts a simplified version of that architecture. It consists
of three layers: the Interaction, Discovery and Handling layer, that
manage the interpretation, reification and activation of contexts,
respectively. The Handling layer is also responsible for the selection,
activation and execution of features specific to the active contexts.

The workflow of this context-oriented architecture starts when a
new event occurs that represents a change in the context surround-
ing the application. For instance, suppose that a user sets the age
in his profile to 12. As soon as this change is detected by a sensor
from the Interaction layer, the value is interpreted by the Discovery
layer, who interprets this as the user being a child. This information
is then reified as a context named Child, which is a subcontext of
a more abstract Age context, based on a context model of possible

COP’18, July 16, 2018, Amsterdam, Netherlands B. Duhoux, K. Mens & B. Dumas

Handling Layer

Feature
handling

Context
handling

Discovery
Layer

Feature Activation
Reasoning

Interpretation

Interaction
Layer Sensors

Context
Activation

Feature Selection

Context
surrounding the application

Feature Execution

Figure 5: Our context-oriented software architecture.

contexts and their interdependencies declared by the developers
of the software system. Once the context Child has been reified,
the Context Activation component of the Handling layer comes
into play to verify whether this context can be activated or not
taking into account the declared context dependencies. (E.g., an
exclusion dependency could prohibit the activation of a context, if
a context is already active with which that context is mutually ex-
clusive. An implication dependency, on the other hand, may trigger
the activation of a dependent context as soon as a certain context
gets activated.) Finally, the Feature handling sublayer decides what
features to select, activate and execute depending on the currently
active contexts. More specifically, based on the activation of the
Child context, the Feature Selection will select those features dedi-
cated to child users. In our running example, rather than providing
detailed instructions in textual format about what to do in case of
an emergency, for children the text should be kept more simple or
pictograms could be used. As was the case for the Context Activa-
tion component, a Feature Activation component will decide which
of the selected features can be activated. To make this decision it
makes use of a feature model, declared by the developers of the
software system, describing the possible features and their inter-
dependencies. Finally, after activation (resp., deactivation) of the
features, the Feature Execution component adapts (resp., unadapts)
the code at runtime to install the code of the newly actived features
(resp., to remove the code of the deactivated features).

2.4 Feature Execution
The Feature Execution component provides a context-oriented lan-
guage, the semantics of which is inspired by Hirschfeld et al. [17].
It allows a programmer to define fine-grained features, consisting
of a few methods and attributes only, that can be applied to exist-
ing Ruby classes, to alter their existing methods and attributes or
add new ones. In this programming approach, the application core
consists of a set of predefined classes that define the application’s
default behaviour (i.e., its behaviour when no context-specific fea-
tures are installed). In Fig. 3, the application core consists of a class
Risk and some subclasses for different kinds of risks such as Earth-
quake or Fire, providing a generic inform_about_risk method to
inform users about such risks.

This default behaviour can be adapted dynamically with fine-
grained features that can either add new methods and attributes,
or replace or override existing ones from the core. What behaviour
goes into the core and what goes into the dynamic features is up to
the developer to decide. As a rule of thumb, features should contain
information and behaviour specific to particular contexts, whereas
the application core should correspond to default behaviour and in-
formation of generic nature. Also, to promote reuse, we prefer small
fine-grained features that can be composed together easily, rather
than huge monolithic features consisting of many classes, methods
and attributes. In Fig. 3 for instance, we decided to have a separate
feature for each attribute of an emergency. Taking into account
that most emergencies have both a severity and an impact zone, the
intuition behind our guideline would be to have a separate feature
for each of those attributes. So we have a feature CircleImpactZone
for describing the impact zone of an Earthquake emergency. This
feature may be reused for other emergencies having circular impact
zones. Similarly, we have a feature for the severity level of the emer-
gency. In case of an Earthquake emergency, this is provided by the
feature SeverityRichter which defines the severity of an earthquake
using the Richter magnitude scale. Whereas that feature is quite
specific to an earthquake emergency, other emergencies like Fire
may be adapted with a more generic SeverityLevel feature, described
in terms of a simple value (low, middle or high) that can be applied
more easily to other types of emergencies.

The dynamic feature adaptation mechanism also supports mul-
tiple features adapting a same class. Features are then applied one
by one in order of activation, so that the last one activated gets
installed last. This order is important to know in case different
features override a same method. Indeed, it is possible for features
to refine methods defined in the application core or introduced
by previously installed features, using the so-called proceed mech-
anism [16]. More specifically, methods defined by a feature can
make use of a special keyword proceed, which will call a previously
installed method with the same name. This powerful mechanism al-
lows features to incrementally modify previously defined behaviour.
This notion of proceed is inspired by how aspect-oriented [21, 24]
and context-oriented programming languages [12, 16, 17] allow
aspects or contextual adaptations to dynamically extend the appli-
cation core or previous adaptations of that core.

inform_about_risk

Risk

inform_about_risk

Earthquake

classes features

severity (get/set)
inform_about_risk

SeverityRichter
CircleImpactZone

epicenter (get/set)
radius (get/set)
inform_about_risk
…

def inform_about_risk
 proceed
 … print info about
 earthquake severity …
end

def inform_about_risk
 proceed
 … print info about
 impact zone …
end

def inform_about_risk
 super
 … print generic info
 about earthquakes …
end

method call

return from call

Figure 6: Method call semantics in presence of the proceed
mechanism.

Feature Visualiser : an Inspection Tool for COP COP’18, July 16, 2018, Amsterdam, Netherlands

Fig. 6 illustrates the semantics of this proceed mechanism on
our running example. The class Earthquake as well as the two
features SeverityRichter and CircleImpactZone that adapt it, each
implement a method named inform_about_risk. Whereas the
version of this method defined on the Earthquake class just pro-
vides generic information about an earthquake risk, the methods
defined on each of the two features that adapt it, incrementally re-
fine this method to provide additional information. The combined
effect of the interplay of these methods is to print the default infor-
mation implemented by the inform_about_risk method defined
on the class Earthquake, followed by information provided by the
inform_about_risk method of the SeverityRichter feature which
was installed next, followed by the inform_about_riskmethod of
the CircleImpactZone feature which was installed last. The control
flow starts with the latter one, but the proceed immediately dele-
gates to the previously installed feature SeverityRichter, whereas
the proceed there delegates to the default version of the method
defined on the Earthquake class. This one makes a super call, which
redirects to the inform_about_risk method defined on the super-
class Risk. After that the control flows back in opposite order to
execute the remainder of each of those methods. The result of this
execution thus prints some generic information about earthquake
risks, followed by the severity of that risk, followed by its impact
zone (epicenter and radius).

Whereas this example still remains relatively easy to visualise
mentally, things quickly get more complicated when more features
come into play, because of the complex interplay of this powerful
proceed mechanism combined with the dynamic activation and
deactivation of features. Therefore we propose the programmers a
visualisation tool to support the need to manage this complexity.

3 APPROACH
As stated previously, the focus of this paper is on a visualisation
tool helping developers to get a better understanding of how fea-
tures execute and interact within a feature-based context-oriented
software system. Due to the high number of features and the com-
plexity of dealing with many such fine-grained context-specific
features, we created a feature visualisation tool to complement our
context-oriented architecture and programming approach. After
describing the features of our visualisation tool, we discuss some
possible improvements based on the feedback we received from
actual programmers.

3.1 Feature Visualiser
The Feature Visualiser tool allows to visually inspect how features
dynamically adapt a running software system. This tool is dedicated
to developers building highly dynamic context-aware applications
using our approach, to understand the interactions between the
features, or to debug the system if it does not seem to behave as
desired. The visualisation shows what existing Ruby classes the
features adapt, for what contexts, in what order, and can also show
more details on the different methods provided by the features.
Fig. 7 shows the Feature Visualiser tool at work. It consists of four
widgets: a Visualisation, Output console, Legend and Configuration
widget.

The Legend widget explains the visual notation through a simple
meta-model. Classes are denoted by blue rounded rectangles and
can inherit from other classes. Contexts are denoted by yellow
rounded rectangles connected to the features they activate. Features
are depicted as green rounded rectangles that alter either existing
classes, or other features that were previously installed.

The Visualisation consist of a more passive part, i.e. the declared
classes and their inheritance relationships, and a more dynamic
part showing the active contexts, the features triggered by those
contexts, and how these features alter existing classes and other
features. This visualisation is highly dynamic and updated contin-
uously as contexts get (de)activated and features get added to or
removed from the application. To avoid making the visualisation
too complex, it only shows those classes that get altered by features,
together with their direct ancestors. Similarly, no other contexts
and features are shown than those that get activated at runtime by
the context-oriented architecture.

This visualisation is coupled to and triggered by the architecture,
which sends key messages to the Feature Visualiser about what
to visualise. For example, it sends a message (‘adapt’ or ‘unadapt’)
whenever due to a context change an alteration adapts or removes
a feature from the running code, and passes along key data such
as the name of the feature, the class the feature applies to, the
superclass of that class, the methods the feature alters, and so on.
All this information is used by the Feature Visualiser to provide
essential information to developers on what is going on and thus
improve their understanding of the running system.

The Output console outputs a log of all the actions triggered by
the architecture. In a sense it is a textual version of the visualisation
widget, with the added benefit that it keeps a chronological trace
of what contexts and features were activated or deactivated before.
This can provide valuable information to the developer when de-
bugging, for example to understand in what order certain features
were added or removed and upon what contexts.

Finally, the Configuration widget allows a developer to config-
ure the visualisation tool as desired. Enabling the Step-by-step
functionality makes the different contexts and features appear and
disappear dynamically, whenever the ‘Next step’ button is pressed.
When disabled, the visualisation tool plays all actions automati-
cally, though a certain timing delay can be set to slow down this
automatic visualisation. Another configuration option is to show
the contexts too, or only the features. A final configuration flag is
to show more details about the methods provided by each class
and feature. Enabling this option yields a visualisation like the one
in Fig. 8. Note that, in the classes being altered by features, each
method name is prepended with the name of the last (i.e., most
specific) feature that overrode this method. This information is very
valuable for debugging purposes to better understand the dynamic
behaviour of the program.

The Feature Visualiser thus enables developers to easily visualise
what is going on and whether the developed language abstractions
and their behaviour exhibit the right semantics that corresponds
to a developer’s intuition. As a developer’s support tool, it helps
to spot early on conceptual or implementation errors in programs
developed using this approach. It can thus serve as a live feedback
and debugging tool.

COP’18, July 16, 2018, Amsterdam, Netherlands B. Duhoux, K. Mens & B. Dumas

Figure 7: Snapshot of the full Feature Visualiser tool

Figure 8: Feature visualisation in detailed mode.

3.2 Possible improvements
To assess the understandability and usability of our Feature Visu-
aliser tool, we conducted two different validation experiments with
master-level students in computer science and in computer science
engineering. For each experiment, we had around 20 students play-
ing the role of real programmers evaluating our visualisation tool.
During these initial experiments we received interesting feedback
on how to enhance our visualisation tool. Some programmers pro-
posed to add some filters to clean the visualisation to display only
some specific behaviour or only a specific set of features or contexts.
Another request was the addition of a previous button to enable
step-by-step replaying of previous feature or context activations.
The automated layout algorithm could also be improved. The abil-
ity to see the details of only some features or classes was a final
requested improvement.

4 RELATEDWORK
This related work section will be split in two parts exploring, on
the one hand, the programming paradigms of feature-oriented and
context-oriented programming and how they are related. On the
other hand, we discuss alternative visualisation and other tools
helping developers manage the complexity of having many fine-
grained features or contextual adaptations.

FOP versus COP. Kang et al. define the notion of a feature as
“a user-visible aspect or characteristic of the domain” [19], as for
example our feature for managing the severity of an earthquake
(SeverityRichter). Such features are typically used in the domain
of software product lines which are composed of many distinct
features which can be of fine granularity [20]. Different program-
ming approaches exist to build a software product line, of which
Feature-Oriented Programming (FOP) [28] is closest to the approach
used in this paper. Whereas traditionally FOP is static, in the sense
that the composition of features is done at compile-time [20], recent
approaches often take a more dynamic stance allowing features to
be deployed at runtime [13].

When building context-aware systems, Coutaz et al. state that
“context is key” [7], and that developers must take into account the
user, the external and physical environment as possible sources of
contextual information. Whenever the context changes, the system
may discover new contextual information which may trigger the
system to adapt its behavior consequently [26]. The paradigm of
Context-Oriented Programming (COP) [16] was conceived as a new
programming paradigm able to deal with the dynamicity of such
context changes and how they trigger dynamic adaptations of the
system. Many implementations of COP exist, as extensions to a
variety of programming languages like Erlang [9, 30], Java [1, 3, 29],

Feature Visualiser : an Inspection Tool for COP COP’18, July 16, 2018, Amsterdam, Netherlands

JavaScript [11, 25], Smalltalk [15], Lisp [12], Objective-C [10], Ruby
[8, 27] and so on.

When comparing both paradigms, Cardozo et al. [5] came to the
conclusion that they are very similar, their main difference being the
core concept on which they rely. While FOP is based on features,
COP is based on context. Starting from that observation, some
approaches proposed to reconcile both paradigms into a single one
[6, 23]. From the perspective of modeling context-aware systems,
Hartmann and Trew [14] and Capilla et al. [4] also confirmed that
the notions of contexts and features seem complementary and could
be reconciled into a single modeling approach.

Visualisation and other tools. The visual inspection tool pre-
sented in this paper is only one of many possible visualisations that
could be of value to developers. Starting from the same observation
that the large number of features and the complex nature of their in-
teractions can make software development and maintenance tasks
challenging, Illescas et al. [18] put forward four different visualisa-
tions that focus on features and their interactions at source code
level, and evaluate them with four case studies. In the context of
software product lines, Urli et al. [31] present a visual and inter-
active blueprint that enables a software engineer to decompose
a large feature model in many smaller ones while visualising the
dependencies among them. They too, claim that such visual support
is essential especially for large and complex feature models. The
efficiency of their visualisation with respect to maintainability is
studied on two different real case studies. Still in the context of
software product lines, Apel and Beyer [2] present a visual cluster-
ing tool that clusters program elements (like methods, fields and
classes) based on the features they belong to, as a way to assess the
cohesiveness of the features. Features whose elements form clus-
ters are more cohesive than features whose elements are scattered
across the layout. In the domain of context-oriented programming,
Duhoux [8] also argued for the need for tool support when dealing
with many context-specific adaptations and proposed tool support
to simulate the execution of a context-oriented system. All these
tools and visualisations can be seen as complementary to the one
proposed in this paper and stress the importance of tool support to
manage complexity and increase understandability.

5 FUTUREWORK
In this section, we discuss some avenues of future work related
to our Feature Visualiser and how it fits into a bigger vision of
context-oriented software development. In addition we want to
extend our feature-based context-oriented programming approach
to support user interface adaptation.

Improving the Feature Visualiser Taking into account the
feedback received from developers in our initial experiments,
we can further enhance the proposed visualisation tool with
their suggestions as mentioned in Section 3.2.

Other visualisation idioms Whereas our Feature Visualiser
shows the activation and deactivation of contexts and fea-
tures during program execution, other complementary visu-
alisation idioms could be used, as was already mentioned in
the related work section. A visualisation of particular value

to developers would be one that shows the detailed execu-
tion path of a method call taking into account the proceed
mechanism (cf. Fig. 6).

Additional visualisation tools We introduced a visualisation
tool helping programmers to see what contexts and features
get activated and how features alter classes or other features.
To improve the developer’s experience further, we could cre-
ate a entire suite of tools including this visualisation tool. For
example, we could build a simulator tool to simulate such
systems, like the one presented by Duhoux [8].

Further validation After having improved our visualisation
tool, we need to carry out more experiments to collect evi-
dence on the usability and appropriateness of the proposed
visualisation tool, following Ko et al.’s practical guide [22]
to conduct controlled experiments of software engineering
tools with real participants.

User interface adaptation The feature-based context-oriented
programming approach mentioned in this paper is only a
first step in our quest for a novel highly adaptive context-
oriented software development approach, with dedicated
support for user interface adaptation as well. Our current no-
tion of features should thus be extended so that they are no
longer purely behavioural but include user interface aspects
as well.

6 CONCLUSION
In this paper, we briefly discussed our feature-based context-oriented
programming approach to build highly adaptive context-oriented
systems. However, it is not always trivial for developers to under-
stand the run-time semantics of such a program as contexts and
features get incrementally activated and deactivated. This problem
comes from the fine granularity and high dynamicity of the feature
composition mechanism in this approach. To address that com-
plexity, we proposed a visual inspection tool to help programmers
understand how programs are constructed as a dynamic composi-
tion of many fine-grained features and to inspect which features
adapt which methods of what classes, upon what contexts, in what
order, and at what moment. From initial experiments conducted
with programmers to assess the understandability and usability
of our Feature Visualiser tool, we received useful suggestions to
further improve the visualisation. Taking into account these sugges-
tions we will further improve the visualisation tool and complement
it with additional visualisation and development support tools. We
will integrate these tools into an existing context-oriented develop-
ment framework to provide run-time support for dynamic software
adaptation and to be able to simulate and debug such programs
under realistic conditions. Finally, we will extend the approach and
framework with dedicated support for fine-grained dynamic user
interface adaptation.

REFERENCES
[1] Tomoyuki Aotani, Tetsuo Kamina, and Hidehiko Masuhara. 2011. Featherweight

EventCJ: A Core Calculus for a Context-oriented Language with Event-based
Per-instance Layer Transition. In Proceedings of 3rd International Workshop on
Context-Oriented Programming (COP ’11). ACM, Article 1, 7 pages.

[2] Sven Apel and Dirk Beyer. 2011. Feature Cohesion in Software Product Lines:
An Exploratory Study. In Proceedings of 33rd International Conference on Software
Engineering (ICSE ’11). ACM, 421–430.

COP’18, July 16, 2018, Amsterdam, Netherlands B. Duhoux, K. Mens & B. Dumas

[3] Malte Appeltauer, Robert Hirschfeld, and Tobias Rho. 2008. Dedicated Pro-
gramming Support for Context-Aware Ubiquitous Applications. In The Second
International Conference on Mobile Ubiquitous Computing, Systems, Services and
Technologies. IEEE, 38–43.

[4] Rafael Capilla, Oscar Ortiz, and Mike Hinchey. 2014. Context Variability for
Context-Aware Systems. Computer 47, 2 (February 2014), 85–87.

[5] Nicolás Cardozo, Sebastian Günther, Theo D’Hondt, and KimMens. 2011. Feature-
Oriented Programming and Context-Oriented Programming: Comparing Para-
digm Characteristics by Example Implementations. In International Conference
On Software Engineering Advances (ICSEA’11). IARIA, 130–135.

[6] Nicolás Cardozo Alvarez, KimMens, Pierre-Yves Orban, andWolfgang De Meuter.
2014. Features on Demand. In Proceedings of 8th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS). ACM, Article 18,
8 pages.

[7] Joëlle Coutaz, James L. Crowley, Simon Dobson, and David Garlan. 2005. Context
is Key. Commun. ACM 48, 3 (March 2005), 49–53.

[8] Benoît Duhoux. 2016. L’intégration des adaptations interfaces utilisateur dans une
approche de développement logiciel orientée contexte. Master’s thesis. Université
catholique de Louvain, Belgium.

[9] Carlo Ghezzi, Matteo Pradella, and Guido Salvaneschi. 2010. Programming
Language Support to Context-aware Adaptation: A Case-study with Erlang. In
Proceedings of 2010 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS ’10). ACM, 59–68.

[10] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-Christophe
Libbrecht, and Julien Goffaux. 2011. Subjective-C: Bringing Context to Mobile
Platform Programming. In Proceedings of 3rd International Conference on Software
Language Engineering (SLE’10). Springer, 246–265.

[11] Sebastián González, Kim Mens, Marius Colacioiu, and Walter Cazzola. 2013.
Context Traits: Dynamic Behaviour Adaptation Through Run-time Trait Recom-
position. In Proceedings of 12th Annual International Conference on Aspect-oriented
Software Development (AOSD ’13). ACM, 209–220.

[12] Sebastián González, Kim Mens, and Alfredo Cádiz. 2008. Context-Oriented
Programming with the Ambient Object System. Journal of Universal Computer
Science 14, 20 (nov 2008), 3307–3332.

[13] Sebastian Günther and Sagar Sunkle. 2010. Dynamically Adaptable Software
Product Lines Using Ruby Metaprogramming. In Proceedings of 2nd International
Workshop on Feature-Oriented Software Development (FOSD ’10). ACM, 80–87.

[14] Herman Hartmann and Tim Trew. 2008. Using Feature Diagrams with Context
Variability to Model Multiple Product Lines for Software Supply Chains. In
Proceedings of 12th International Software Product Line Conference (SPLC ’08).
IEEE Computer Society, 12–21.

[15] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. 2008. Generative and
Transformational Techniques in Software Engineering II. Springer, Chapter An
Introduction to Context-Oriented Programming with ContextS, 396–407.

[16] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. Journal of Object Technology, March-April 2008, ETH Zurich 7, 3
(2008), 125–151.

[17] Robert Hirschfeld, Atsushi Igarashi, and Hidehiko Masuhara. 2011. ContextFJ: A
Minimal Core Calculus for Context-oriented Programming. In Proceedings of the
10th International Workshop on Foundations of Aspect-oriented Languages (FOAL
’11). ACM, New York, NY, USA, 19–23.

[18] Sheny Illescas, Roberto E. Lopez-Herrejon, and Alexander Egyed. 2016. Towards
Visualization of Feature Interactions in Software Product Lines. In IEEE Working
Conference on Software Visualization (VISSOFT). IEEE, 46–50.

[19] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical Report. Carnegie-Mellon University.

[20] Christian Kästner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In Proceedings of 30th International Conference on Software
Engineering (ICSE ’08). ACM, 311–320.

[21] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. 2001. An Overview of AspectJ. In Proceedings of 15th
European Conference on Object-Oriented Programming (ECOOP ’01). Springer,
327–353.

[22] Andrew J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A practi-
cal guide to controlled experiments of software engineering tools with human
participants. Empirical Software Engineering 20, 1 (February 2015), 110–141.

[23] Alexandre Kühn. 2017. Reconciling Context-Oriented Programming and Feature
Modeling. Master’s thesis. Université catholique de Louvain, Belgium.

[24] Ramnivas Laddad. 2003. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications.

[25] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. 2011. An
Open Implementation for Context-oriented Layer Composition in ContextJS.
Science of Computer Programming 76, 12 (December 2011), 1194–1209.

[26] Kim Mens, Nicolás Cardozo, and Benoît Duhoux. 2016. A Context-Oriented
Software Architecture. In Proceedings of 8th International Workshop on Context-
Oriented Programming (COP’16). ACM, 7–12.

[27] Thibault Poncelet and Loïc Vigneron Vigneron. 2012. The Phenomenal Gem:
Putting Features as a Service on Rails. Master’s thesis. Université catholique de
Louvain, Belgium.

[28] Christian Prehofer. 1997. Feature-oriented programming: A fresh look at objects.
(1997), 419–443.

[29] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2011. JavaCtx: Seamless
Toolchain Integration for Context-oriented Programming. In Proceedings of 3rd
International Workshop on Context-Oriented Programming (COP ’11). ACM, Article
4, 6 pages.

[30] Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. 2012. ContextErlang:
Introducing Context-oriented Programming in the Actor Model. In Proceedings
of 11th Annual International Conference on Aspect-oriented Software Development
(AOSD ’12). ACM, 191–202.

[31] Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino, Philippe Collet, and
Sébastien Mosser. 2015. A visual support for decomposing complex feature
models. In IEEE 3rd Working Conference on Software Visualization (VISSOFT).
IEEE, 76–85.

	Abstract
	1 Introduction
	2 Setting the scope
	2.1 Motivating example
	2.2 Case study
	2.3 Context-oriented software architecture
	2.4 Feature Execution

	3 Approach
	3.1 Feature Visualiser
	3.2 Possible improvements

	4 Related Work
	5 Future Work
	6 Conclusion
	References

