
Spatial Filtering of EEG Signals to Identify
Periodic Brain Activity Patterns

Dounia Mulders1,2, Cyril de Bodt1, Nicolas Lejeune2,
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Abstract. Long-lasting periodic sensory stimulation is increasingly used
in neuroscience to study, using electroencephalography (EEG), the corti-
cal processes underlying perception in different modalities. This kind of
stimulation can elicit synchronized periodic activity at the stimulation
frequency in neuronal populations responding to the stimulus, referred to
as a steady-state response (SSR). While the frequency analysis of EEG
recordings is particularly well suited to capture this activity, it is limited
by the intrinsic noisy nature of EEG signals and the low signal-to-noise
ratio (SNR) of some responses. This paper compares and adapts spatial
filtering methods for periodicity maximization to enhance the SNR of
periodic EEG responses, a key condition to generalize their use as a re-
search or clinical tool. This approach uncovers both temporal dynamics
and spatial topographic patterns of SSRs, and is validated using EEG
data from 15 healthy subjects exposed to periodic cool and warm stimuli.

Keywords: Periodic Component Analysis - Spatial filtering - General-
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1 Introduction

Understanding the neural mechanisms underlying human perception of stimuli
from different modalities, such as visual, auditory, tactile or nociceptive, is a
challenging issue in neuroscience. In this context, scalp electroencephalography
(EEG) is particularly suited to record brain activity, as it is non-invasive and
directly measures neuronal activity with a high temporal resolution of the mil-
lisecond order. Meanwhile, most studies consider brief sensory stimuli, lasting
less than one second and eliciting well-known event-related potentials (ERPs)
[10]. However, the recording of neural responses to long-lasting periodic stimula-
tion is increasingly proposed in several works as an alternative to probe sensory
perception [2], since it reveals new aspects of the sensory information processing
[8]. Such long-lasting stimuli indeed induce a periodic activity at the stimulation
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frequency in some neuronal populations. This so-called steady-state response
(SSR) can usually be recorded with multichannel EEG.

One of the main advantages of the aforementioned periodic stimuli is that
the signal-to-noise ratio (SNR) of the SSR is usually higher in the frequency
domain compared to the time domain. Therefore, most neuroscience works up
to now use frequency analyses to highlight the SSR features. The EEG time
course and frequency transform at some specific electrodes can be studied, as
well as the distribution across the scalp of the signal amplitude at the stimula-
tion frequency. Although these approaches provide direct measures of the signal
periodicity, their efficiency is limited when the SNR is low. For instance, this is
the case with nociceptive SSRs generated from infrared laser stimulation [3]. In
the meantime, whereas linear filtering methods have been successfully developed
in the context of brain-computer interfaces (BCI) to classify steady-state visu-
ally evoked-potentials (SSVEP) [9], [15], they were surprisingly not yet adapted
to extract, interpret and characterize the EEG activity related to different pe-
riodic stimuli. Indeed, while the optimized filters can lead to high classification
accuracies, their spatial patterns may also refine the analysis of SSRs.

In this context, this paper compares filtering methods maximizing the pe-
riodicity of the extracted components to study and, more importantly, inter-
pret the cortical processing of periodic stimuli. The filters are constrained to
be linear, thereby defining meaningful topographic patterns of the associated
components. We propose to adapt four spatial filtering methods to enhance the
SNR of SSRs. The two first methods are derived from a measure of periodic-
ity in the time domain, first introduced by Saul and Allen [14]. This approach,
called Periodic Component Analysis (πCA), was initially used to extract peri-
odic components from speech signals. Variants have been developed, handling for
instance non-strictly periodic signals such as the electrocardiogram [12]. A third
method is based on Canonical Correlation Analysis (CCA) between the multi-
channel EEG signals and a relevant reference periodic signal [9]. Finally, the last
method directly optimizes the spectral concentration of the filtered signals at
the fundamental stimulation frequency and its harmonics.

This paper is organized as follows. Section 2 defines the compared methods
in the context of our application. Section 3 presents empirical results validating
the proposed methods on an EEG data set collected on 15 healthy subjects.
Finally, Sect. 4 concludes and presents further perspectives.

2 Methods

This section introduces four methods aiming at extracting periodic components
by filtering a noisy multidimensional signal x(t) ∈ RC , assumed to have a zero-
mean (i.e.

∑
t x(t) = 0). Since the ultimate goal is to interpret the links between

these components and the original signals, the spatial filters are constrained to
be linear and will be denoted by vectors w ∈ RC . These filters are optimized to
define a maximally periodic component s(t) := wTx(t) of fundamental frequency
f1 and corresponding fundamental period T1 = 1/f1. Once an optimal filter is
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found by optimizing a cost function F , a second optimal filter can be found,
leading to a component in the orthogonal subspace of the first one. A matrix
W ∈ RC×d is hence recursively built, whose columns are the filters ranked in de-
creasing order of periodicity of the filtered components as measured by F , which
determines d ≤ C. Pseudo-inverting the matrix WT ∈ Rd×C then estimates
patterns of activity of the extracted components. Each filtered signal indeed has
a fixed projection across the components of x: writing the linear forward model
as x(t) = Au(t), with u(t) ∈ Rd×1 the periodic sources, estimates WT ≈ A−1

are derived; the first column of (WT )−1 approximates the spatial pattern of the
first estimated source signal u1(t) [11].

2.1 Periodic Component Analysis

Periodic Component Analysis (πCA) [14] defines an optimal linear filter by min-
imizing a scale-invariant periodicity measure of the filtered signal s(t) = wTx(t):

wπ1 = arg min
w

{
Fπ1(w) =

∑
t(s(t+ T1)− s(t))2∑

t(s(t))
2

=
wTAx(T1)w

wTCx(0)w

}
, (1)

whereAx(T1) = Et{(x(t+ T1)− x(t)) (x(t+ T1)− x(t))
T } and Cx(τ) = Et{x(t+

τ)x(t)T }. The minimization of this generalized Rayleigh quotient is solved by the
generalized eigenvalue decomposition (GEVD) of the matrix pair (Ax(T1), Cx(0)).
These two matrices being symmetric, the matrix of generalized eigenvectors W
sorted in decreasing order of magnitude of the associated generalized eigenvalues
gives the components WTx(t) ranked in decreasing order of periodicity [4].

2.2 Periodic Component Analysis Variant

Another periodicity measure can alternatively be optimized as:

wπ2 = arg max
w

{
Fπ2(w) =

∑
t s(t+ T1) · s(t)∑

t(s(t))
2

=
wTCx(T1)w

wTCx(0)w

}
. (2)

This defines a variant [12] of πCA, denoted here by πCA2. This problem can be
similarly solved by a GEVD of the matrices (Cx(T1), Cx(0)). It is noteworthy
that whenever Cx(T1) is symmetric, Ax(T1) = 2 · (Cx(0) − Cx(T1)) and (2) is
hence equivalent to (1). For any real-world signal x however, Cx(T1) is unlikely
to be symmetric. Therefore (1) and (2) will typically not define the same filters.

2.3 Canonical Correlation Analysis

Another approach to extract periodic components from a multidimensional sig-
nal is based on Canonical Correlation Analysis (CCA) [5]. The principle is to
maximize the correlation between a filtered signal and a linear combination of
the components of a reference signal y(t), with the same length as x. In our
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setting, the components of y are defined from the Fourier series of a periodic sig-
nal of fundamental frequency f1: y(t) = (sin(2πf1t) cos(2πf1t) sin(2π2f1t) . . .
sin(2πNhf1t) cos(2πNhf1t))

T , where Nh is a parameter indicating the number
of accounted harmonics [9]. The CCA optimization problem is

(wπ3,wπ3−y) = arg max
w,wy

Fπ3(w,wy) =
wTCx;ywy√

wTCx(0)w ·wT
y Cy(0)wy

 , (3)

where Cx;y = Et{x(t)y(t)T }. Only the optimal filter wπ3 is interesting in our
context. The filter wπ3−y being also optimized, (3) amounts finding the filtered
signal wT

π3x(t) which is maximally correlated with an arbitrary periodic signal
whose frequency content is limited to Nhf1. The solution to (3) is obtained by
diagonalizing Cx;y, Cx(0) and Cy(0) using only two matrices W and Wy with
the filters in their columns [7].

2.4 Spectral Contrast Maximization

Spectral contrast maximization (SCM) consists in maximizing the magnitude
of some frequency components of the filtered signal, with respect to the whole
spectrum energy [13]. It is recommended when the searched components are
more easily separable in the frequency domain, i.e. when the frequency band
to amplify is known a priori. Let S(f) := Ff{s(t)} = wTFf{x(t)} = wTX(f)
denotes the Fourier transform of the filtered signal at frequency f . The optimal
SCM filter is then defined as

wπ4 = arg max
w

{
Fπ4(w) =

Ef∈ν{|S(f)|2}
Ef∈µ{|S(f)|2}

=
wTSxw

wTCx(0)w

}
, (4)

with ν := {±f1,±2f1, . . . ,±Nhf1} the set of considered frequencies, µ the whole
frequency range (the Nyquist band for discrete signals), Sx := Ef∈ν{X(f)X(f)∗}
and using the Parseval’s identity at the denominator. The set ν contains negative
frequencies to ensure the realness of the cross-spectrum matrix Sx. Again, Nh is
the number of harmonics to consider, including the fundamental frequency. This
problem is solved using the GEVD of (Sx, Cx(0)).

Although the two last methods are formulated differently, they are intrinsi-
cally related. Indeed, CCA maximizes the correlation of the filtered signal with
an arbitrary sum of sines and cosines at the harmonic frequencies, while SCM
maximizes the Fourier amplitudes of the filtered signal at the same frequencies.
In both cases, normalization ensures a scale-invariance of the solutions.

3 Processing EEG Signals

The comparison of the performances of the methods introduced in Sect. 2 is
conducted on an EEG data set, which is first described in Sect. 3.1. Section 3.2
defines the quality criterion employed to quantitatively compare the methods,
and Sect. 3.3 finally summarizes the results.
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3.1 Experimental setting

We recorded scalp EEG on 15 healthy subjects to whom we applied sinusoidal
stimulations with a thermal cutaneous stimulator (TCS) in 4 different conditions,
as shown in Fig. 1: warm and cool with either a fixed or a variable active surface
along the stimulation cycles. Five distinct zones of the TCS stimulation surface
could indeed be controlled independently. These 4 conditions were chosen in
order to determine, for both warm and cool stimuli, whether alternating the
position of the active surface along the stimulation cycles could improve the
SNR of the induced SSR. Varying the active surface is indeed likely to limit the
response habituation, which can for instance be due to skin receptor fatigue.
Each stimulus consisted in a 0.2 Hz sinusoidal waveform lasting 15 periods (i.e.
75 seconds) and was applied to the right forearm. Each subject received 12 trials
from each condition, leading to 48 trials in total presented in a randomized order.
To reduce artifacts, these 12 trials are averaged for each condition. The EEG
was sampled at 1000Hz and recorded using 64 electrodes placed on the scalp
according to the international 10/10 system. All signals were high-pass filtered
above 0.05 Hz to remove slow drifts (4th order zero-phase Butterworth filter).
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Fig. 1: Stimulation temperature profiles (only two thirds of the whole stimulus
length of 75 seconds are shown for readability). Zi means ‘zone i’ of the stimu-
lator. w1 and w2 (resp. c1 and c2) indicate the two warm (resp. cool) conditions
with a variable and fixed stimulation surface.

3.2 Quality Measure

In order to assess the quality of an extracted component, we define a periodicity
measure for a given unidimensional signal y(t) and fundamental frequency f1.
First, since each frequency amplitude |Y (f)| is affected by some background
noise, the average amplitude at 10 neighboring frequencies (5 higher and 5 lower)
is removed from each frequency amplitude [8], resulting in a noise-subtracted
spectrum YNS(f) ∈ R. Then, the periodicity measure is defined as

Mπ(y) = 100 ·
∑bfs/(2·f1)c
k=1 YNS(k · f1)∑

f |Y (f)|
, (5)
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with fs the sampling frequency. In addition to accounting for the background
noise, this measure is normalized with respect to the total signal amplitude. A
positive (resp. negative) Mπ suggests that the spectrum amplitude of y contains
local maxima (resp. minima) on average at the harmonics k ·f1. It is noteworthy
that the components extracted using the methods from Sect. 2 should maximize
this measure. Meanwhile, these methods are constrained to produce a linear
filtering of the original signals, thereby providing topographical patterns of the
extracted components which can be interpreted.

3.3 Periodic Components Extraction

Before analyzing the results obtained with the methods described in Sect. 2,
we can observe whether the periodic components are visible in the raw EEG
signals. The topographies of the Fourier transforms at f1 = 0.2 Hz, shown in
Fig. 2, suggest that the periodic components seem to be most prominent at
centro-frontal electrodes, and in particular at FCZ (see Fig. 2b). The periodicity
of the EEG signal at this location will hence be compared to the periodicity of
filtered signals. The EEG time courses averaged over the stimulation periods as
well as the spectra at this electrode are shown in Figs. 3 and 4 for all subjects.
In both figures, the periodicity is visible for the warm conditions, while it is less
clear for the cool ones, especially when the stimulation surface is fixed (condition
c2). The average over the periods highlights more easily the periodic structure
in the EEG, and in particular gives an estimate of the latency between the
temperature and EEG peaks.

w 1 w 2 c 1 c 2

-0.5

0

0.5

1

a.u.

(a)

FCZ

(b)

Fig. 2: Scalp topographies of (a) the group-level average noise-subtracted spec-
trum amplitudes at f1 = 0.2 Hz and (b) the position of the FCZ electrode.

Performances of the periodicity-maximization methods are given in Table 1.
First, the filter obtained from πCA, wπ1, outperforms the performances reached
by wπ2. Importantly, all filtering methods except πCA2 lead to a filtered signal
with an improved periodicity compared to the raw EEG signal at FCZ, even
when this raw signal is hardly periodic, such as for condition c2 for instance,
which corresponds to cool stimulations with a fixed stimulation surface. Two
values of the parameter Nh are shown for CCA and SCM, chosen according
to an analysis of the method performances as a function of Nh, not depicted
here for space limitations. This analysis revealed a saturating increase of the
performances which was consistent for all the conditions: as long as Nh is chosen
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Fig. 3: EEG time courses averaged over the stimulation periods, at electrode FCZ
for all 4 conditions. There is one curve per subject and the group-level average is
in bold, with intervals of ± one standard deviation around the mean delimited
with dotted lines. Dashed lines indicate the stimulation temperature.
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Fig. 4: EEG frequency spectrum at electrode FCZ for each subject and the 4
conditions. The group-level average is in bold. A star indicates significativity of
the noise-subtracted peaks (Sect. 3.2) at k · f1 = k · 0.2 Hz (paired t-test vs 0).

higher than approximately 8, Mπ has almost reached a plateau. The results of
this table also indicate that:
• the SS responses obtained when stimulating the forearm with a variable surface
(conditions w1 and c1) exhibit a more pronounced periodicity compared to the
stimuli applied with a fixed surface (w2 and c2). The periodicity measure indeed
shows this difference for almost all the filtered and raw signals.
• CCA and SCM extract the same periodic components (for all signals). This is
not very surprising regarding the similarity between these two methods that was
discussed in Sect. 2; a deeper algorithmic comparison is left for future works.
• performances of CCA and SCM are improved when the number of harmonics
is increased, for all conditions. This further motivates the idea of extracting
periodic non sinusoidal components instead of analyzing raw EEG frequency
spectra: a single spatial pattern can regroup information from several harmonics.

The spatial patterns and filters obtained with the best filtering method (SCM
with Nh = 10) are shown in Fig. 5. These spatial patterns indicate the distribu-
tion of the most periodic component across the scalp. The spatial filters on the
other hand have more intricate scalp topographies than their associated patterns
as they need to cancel the other interfering (noise) components [1]. In addition,
the associated component time courses, averaged over the stimulation periods,
and their Fourier transforms are given in Figs. 6 and 7, the y-scales of the latter
differing from Fig. 4. These two last figures show the high periodicity of the fil-
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tered signals. This is in striking contrast with the raw signals at FCZ, especially
for condition c2 depicted in Fig. 3d (with its spectrum in Fig. 4d), where no clear
periodicity was visible. However, all methods rank, according to Mπ, the compo-
nents for each condition (i.e. the entries in each column of Table 1) in almost the
same order as the FCZ signals (i.e. first column of Table 1), which encourages the
valid interpretation of the filtered signal. Further validation will be conducted
to ensure that the periodic amplified activity indeed reflects stimulation-related
patterns. The average curves from Fig. 6 are also interesting as they show the
time lag between the temperature peaks and the extracted part of the SSR.
In particular, we observe a longer time lag for both warm conditions compared
to the cool ones. This is in accordance with the fact that cool stimuli activate
thinly-myelinated Aδ fibers [6], while the employed warm periodic stimuli most
probably activate unmyelinated C fibers with slower conduction velocities [3].

Table 1: Mean(std) for the 15 subjects of the periodicity measure Mπ of the
components extracted with the periodicity-maximization methods of Sect. 2. For
each stimulation type (row), the best performances are in bold. Italic characters
indicate that the corresponding signal is not significantly less periodic than the
best one of the same row. Significativity is computed with paired t-tests and is
adjusted for multiple comparisons using the Holm-Bonferroni correction.

FCZ Signal πCA πCA2 CCA SCM

Nh = 1 Nh = 10 Nh = 1 Nh = 10

w1 1.02(0.49) 1.60(1.72) -0.12(0.19) 2.84(1.20) 3.04(1.15) 2.84(1.20) 3.04(1.15)

w2 0.80(0.51) 1.50(1.65) -0.12(0.18) 2.70(0.96) 2.93(1.01) 2.70(0.96) 2.93(1.01)

c1 0.19(0.24) 0.39(0.40) -0.12(0.11) 1.99(0.56) 2.17(0.57) 1.99(0.56) 2.17(0.57)

c2 0.06(0.31) 0.44(0.51) -0.11(0.14) 1.88(0.41) 2.03(0.47) 1.88(0.41) 2.03(0.47)
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Fig. 5: Group-level average spatial patterns and spatial filters (defined at the
beginning of Sect. 2) of the first component extracted with SCM (Nh = 10).
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Fig. 6: Average over the stimulation periods of the optimal component extracted
with SCM (Nh = 10). There is one curve per subject and the group-level average
is in bold, with intervals of ± one standard deviation around the mean delimited
with dotted lines. Dashed lines indicate the stimulation temperature.
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Fig. 7: Frequency spectrum of the components extracted with SCM (Nh = 10) for
each subject. The group-level average is in bold. A star indicates significativity
of the noise-subtracted peaks (Sect. 3.2) at k · 0.2 Hz (paired t-test vs 0).

4 Conclusions and Perspectives

This paper suggests employing spatial filters to enhance the SNR of EEG re-
sponses elicited by periodic sensory stimulation. Four approaches are detailed
and compared on an EEG data set recorded on 15 healthy subjects exposed
to four different kinds of long lasting sinusoidal thermal stimuli. We show that
these methods are able to extract periodic components from signals which do
not necessarily exhibit a pronounced temporal periodicity. The estimated spatial
activity patterns as well as the component time courses can hence characterize
the steady-state responses.

As to further perspectives, the filtering methods considered in this work have
been applied to the EEG signals averaged over the trials, enhancing their phase-
locked components. Studying the periodic responses on a trial-basis, possibly
using tensor methods, would enable determining whether and to which extent
phase variability across trials affects the observed SSR. Another line of work
is related to the analysis of the multiple suboptimal components, in terms of
periodicity, extracted by the linear filters defined in Sect 2. Whereas this paper
focuses on the periodicity and spatial patterns of the optimal component identi-
fied by each method, it is very likely that the linear space spanned by the spatial
patterns reflecting stimulation-related activity is more than one-dimensional in
the studied EEG data. The considered linear filters moreover cannot compen-
sate some phase changes across channels reflecting the propagation of the SSR
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within brain regions. This hence suggests analyzing the links between the time
dynamics of different filtered components and their spatial localization on the
scalp.
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Reference-based source separation method for identification of brain regions in-
volved in a reference state from intracerebral EEG. IEEE Transactions on Biomed-
ical Engineering 60(7), 1983–1992 (2013)

12. Sameni, R., Jutten, C., Shamsollahi, M.B.: Multichannel electrocardiogram de-
composition using periodic component analysis. IEEE transactions on biomedical
engineering 55(8), 1935–1940 (2008)

13. Sameni, R., Jutten, C., Shamsollahi, M.B.: A deflation procedure for subspace
decomposition. IEEE Transactions on Signal Processing 58(4), 2363–2374 (2010)

14. Saul, L.K., Allen, J.B.: Periodic component analysis: an eigenvalue method for
representing periodic structure in speech. In: Advances in Neural Information Pro-
cessing Systems. pp. 807–813 (2001)

15. Wittevrongel, B., Van Hulle, M.M.: Frequency-and phase encoded ssvep using spa-
tiotemporal beamforming. PloS one 11(8), e0159988 (2016)


	Lecture Notes in Computer Science
	Introduction
	Methods
	Periodic Component Analysis
	Periodic Component Analysis Variant
	Canonical Correlation Analysis
	Spectral Contrast Maximization

	Processing EEG Signals
	Experimental setting
	Quality Measure
	Periodic Components Extraction

	Conclusions and Perspectives


