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The management of locally advanced rectal cancer has passed a long way of developments, where total
mesorectal excision and preoperative radiotherapy are crucial to secure clinical outcome. These and other
aspects of multidisciplinary strategies are in-depth summarized in the literature, while our mini-review
pursues a different goal. From an ethical and medical standpoint, we witness a delayed implementation
of novel therapies given the cost/time consuming process of organizing randomized trials that would
bridge an already excellent local control in cT3-4 node-positive disease with long-term survival. This
unfortunate separation of clinical research and medical care provides a strong motivation to repurpose
known pharmaceuticals that suit for treatment intensification with a focus on distant control. In the
framework of on-going phase II-III IG/IMRT-SIB trials, we came across an intriguing translational obser-
vation that the ratio of circulating (protumor) myeloid-derived suppressor cells to (antitumor) central
memory CD8+ T cells is drastically increased, a possible mechanism of tumor immuno-escape and spread.
This finding prompts that restoring the CD45RO memory T-cell pool could be a part of integrated adju-
vant interventions. Therefore, the immunocorrective potentials of modified IL-2 and the anti-diabetic
drug metformin are thoroughly discussed in the context of tumor immunobiology, mTOR pathways
and revised Warburg effect.

� 2018 Published by Elsevier B.V. Radiotherapy and Oncology xxx (2018) xxx–xxx
Current standard treatment for locally advanced rectal cancer is
radiotherapy with 5-fluorouracil (5-FU) or oral capecitabine, fol-
lowed by total mesorectal excision (TME). This regimen improves
the local control with a local recurrence rate about 5% [1], but
without significantly improving the long-term survival rate. The
distal recurrence rate remains around 30% [2], representing the
main cause of death in rectal cancer [3]. For this reason, oxaliplatin
and targeted therapies, such as bevacizumab and cetuximab were
evaluated in the neoadjuvant setting but with conflicting results
(partially covered by our Section 2) [4–11]. To achieve risk-
adapted and less toxic treatments, the approaches of omission rad-
ical surgery or radiotherapy, or intensity-modulated radiotherapy
without chemotherapy are under investigation in selected sub-
groups of patients [12–15]. The success of immune checkpoint
blockades in the treatment of advanced melanoma and lung cancer
patients revolutionized oncology [16,17]. Recently, in colorectal
cancer (CRC), the anti-PD-1 drug pembrolizumab was approved
to treat metastatic/refractory microsatellite instability-high (MSI-
H) patients [18]. Of note, MSI-H exists in about 15% of CRC [19],
indicating that besides immune checkpoint blockades, other
immune boosting approaches should be explored. Immunological
memory is a fundamental feature of adaptive immunity. A higher
density of memory T cells in CRC is a favorable prognostic factor
for overall survival [20]; in contrast to the ‘protumor’ inflamma-
tory markers at systemic level, such as neutrophil-to-lymphocyte
ratio (NLR) and myeloid-derived suppressor cells (MDSC) (in-
depth overviewed in our Section 3) [21,22]. With the increased
understanding of the mechanisms that govern the formation of
memory T cells, their ability to acquire longevity, and self-
renewal, it becomes conceivable to adopt memory T cells to pro-
vide enduring anti-tumor effects.

Metformin, an anti-diabetic biguanidine, is probably the most
exciting pharmaceutical in the pipeline of drug repurposing with
over 100 clinical trials in oncology. While its antitumor properties
are detailed elsewhere [23], we acknowledge here the intriguing
fact that metformin as a mammalian target of rapamycin (mTOR)
inhibitor might restate the pool of pluripotent CD45RO memory
cancer.
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T cells. Of note, these immunocorrective effects are beyond the
already identified immune checkpoints (as PD-1/PDL-1) that pref-
erentially operate in more differentiated effector T cells within the
tumor site [16,17]. Accumulating evidence suggests that effector T
cells resemble tumor cells characterized by the Warburg metabo-
lism and regulated by mTOR pathways to sustain proliferation
[24,25]. In contrast, memory T cells rely more on fatty acid oxida-
tion regulated via AMP-activated protein kinase (AMPK) signaling
pathways [24,26]. mTOR inhibitors or AMPK activators including
metformin therefore have a potential to initiate the effector to
memory T cell transition [26,27]. Besides a metabolic switch,
memory T cells require a second trigger to maintain their
longevity/expansion, which is largely controlled through the
CD122 chain (Rb) of the IL-2 receptor [28]. Opposed to that,
CD25 chain (Ra) signaling is responsible for the outgrowth of
Tregs, a physiological mechanism to inhibit and shutdown T-cell
stimulation [29]. Therefore, section 4 describes the state-of-the-
art tools of molecular immunology, which offer an elegant solution
to restrain (protumor) CD4 regulatory T cells (Tregs) in favor of
(antitumor) memory CD8 T cells by using a CD122-biased IL-2.
Our understanding is that an efficient re-instatement of T-cell
memory at systemic level (blood and lymph nodes) could be
obtained by the two key triggers: (1) graded mTOR inhibition by
metformin and (2) optimal cytokine stimulation by a CD122-
biased IL-2.

We believe that our review will encourage both researchers and
doctors to (re)consider metformin for immunological evaluations
with the following take-home messages: (1) mTOR inhibitors
appear to favor T-cell memory and offer immunocorrection at sys-
temic level, in contrast to PD-1/PD-L1 checkpoint inhibitors that
operate in the tumor; (2) metformin, an anti-diabetic drug and
mTOR inhibitor, is already repurposed for targeting tumor metabo-
lism in ongoing clinical trials, yet needs a next round of repurpos-
ing for long-term immunocorrective interventions and (3) CD122-
biased IL-2, preferentially expanding the memory T cells, may be
incorporated with metformin to sustain the adaptive immune
response.
Preoperative chemoradiotherapy in rectal cancer

The management of CRC, and particularly locally advanced rec-
tal cancer, has historically established new standards of clinical
research and medical care that illustrated the importance of (i) a
multidisciplinary approach in treatment modalities, (ii) collabora-
tive efforts in organizing international large-scale randomized tri-
als, and (iii) a strong dedication of teams across the world to
examine alternative interventions based on technical and pharma-
cological developments. Despite standing just at its beginning, the
21st century has already introduced into practice two major para-
digms – the TME and preoperative chemoradiation, which together
secure the loco-regional control in rectal cancer above 90%. While
the procedure of TME is globally accepted as the only golden stan-
dard of radical surgery [30], the role of chemoradiation continues
to broaden and evolve leaving enough room for pre- versus post-
operative regimes, and radiation or chemotherapy alone versus
their concomitant application [12–15]. As a result of successful
German, Dutch, French, Polish and other trials, the European
schools put forward preoperative 5-FU/capecitabine-based
chemoradiation, which markedly decreases local tumor recurrence
and seems to minimize the risk of patient under-treatment and
hence the necessity to rely on further aggressive (and more toxic)
adjuvant options [31–36].

Another paradigm shift may be referred to our growing under-
standing that the clinical stage of locally advanced cT3-4 node-
positive rectal cancer represents, in fact, heterogeneous diseases
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with variable clinical outcomes [12,15,37]. Therefore, the opti-
mization of personalized treatment plans may benefit from a
patient-tailored separation of chemo- and radiotherapy, a recent
and unexpected turn in the view of modern combined strategies
that have guided treatment intensification for decades. As an
example, the team of Schrag D et al. opted in their PROSPECT trials
for intensified chemotherapy FOLFOX and selective radiation for
non-responders only [38–40], while Valentini V et al. have chosen
more radiation up to 54 Gy using high-precision IMRT-SIB,
intensity-modulated radiotherapy with simultaneous integrated
boost [41–43]. Those diverged programs, however, pursue the
same twofold goal – to lower delayed toxicity/morbidity despite
an increased tumor cytoreduction and to improve distant control
in high-risk patients by restraining metastatic spread, the main
cause of cancer-related deaths [14]. On the other hand, low-risk
patients staged T3N0M0 with an upper rectal location might favor
from an omitted over-treatment, linked to neoadjuvant chemora-
diation [44,45], once the diagnostics of involved CRM (circumfer-
ential resection margin) and lymph nodes by MRI is improved
[13,45]. CRM remains to be a critical objective parameter for treat-
ment planning, and its narrowmargin (less than 1–2 mm) next to a
low tumor location and extended vascular, lymphatic and perineu-
ral invasion indicates an increased risk of local recurrence and
compromised prognosis [46,47]. Yet, even a low-risk tumor may
be understaged due to the limitations of CT/MRI scanning to
address the micro-disease, a not infrequent situation discovered
by postsurgical pathology that requires adjuvant interventions.
This fine-tuning of disease-oriented chemoradiation, however, pro-
ceeds by slow and incremental steps since a differential analysis of
risk groups (low versus intermediate versus high) would require a
big cohort of randomized patients given the already excellent level
of local control in the TME era. Therefore, overall survival rates as
the primary end-point are hardly feasible, and many on-going
phase II trials contain inherent shortcomings by re-focusing on
non-inferiority, pCR by Dworak and short-term disease-free sur-
vival, including our own studies [48,49].

To improve distant control and overall survival rate, a number
of intensified strategies based on oxaliplatin, targeted and biologi-
cal agents have been recently explored. According to the results
from the ACCORD 12, STAR-01, PETACC-6 and NSAPB R-04 ran-
domized trials, the addition of oxaliplatin increased toxicity, but
failed to improve the early and long-term endpoints, such as the
pCR, disease-free survival and overall survival [4–7]. Conversely,
in the phase III CAO/ARO/AIO-04 trial the addition of oxaliplatin
was well tolerated, associated with increased pCR rate and
disease-free survival [8,9]. In addition, preliminary results from
the large multicenter FORWARC study demonstrated that the
pCR rate was significantly higher in the arm combining mFOLFOX6
with radiotherapy compared to the arm of 5-FU with radiotherapy
[8,9]. Among biological agents representing monoclonal antibod-
ies, the EGFR blocker cetuximab showed disappointing low rates
of pCR [10]. The VEGF blocker bevacizumab demonstrated a trend
toward improved clinical outcomes but at the cost of increased
surgical complications [11]. Altogether, significant advancements
in the management of locally advanced rectal cancer have occurred
over the last decades, resulting in improved local control rates.
However, the risk of distant metastases remains an ongoing prob-
lem and the major obstacle to improve the survival rate, requiring
novel strategies [50].
Immunobiology of colorectal cancer

Immunoprofiling of colorectal cancer at local and systemic levels

Over the last decade, inflammatory and immune biomarkers
underwent extensive investigation in many tumor types, and CRC
ridging preoperative chemoradiation and immunotherapy in rectal cancer.
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is one of the most studied in the context of prognostic significance.
In contrast to other malignancies, macrophages and Tregs are not
qualified as risk factors suggesting an alternative polarization or
distinct functions along chronic inflammation, the key event in
colon carcinogenesis [51,52]. Next, CRC is associated with
expanded granulocytic immunosuppressive networks, resembling
renal cancer but not melanoma in that aspect, where circulating
MDSCs are of monocytic origin [22,53]. At the local level, an in
depth analysis of tumor infiltrating immune cells revealed that
both CD3+ and CD8+ T lymphocytes significantly correlated with
disease-free and overall survival, a basis for the prognostic immu-
noscore system [54,55]. In addition, CD45RO+ memory T cells
appeared to be a strong indicator of improved clinical outcome
with evidence emerging from varying layers [20]. By immunohis-
tochemical staining, increased memory CD45RO+ T cells at the pri-
mary site were associated with a low incidence of tumor
recurrence [54], the absence of signs of early metastatic invasion
and increased overall survival [20]. At metastatic sites (liver and
lung), it was an independent prognostic factor for overall survival
[56]. These findings have been summarized in Table 1 [20,54,56–
69] and a recent meta-analysis [70]. Given that in situ memory T
cells predict long-term oncological outcome, it is plausible that
memory T cells migrate to distant sites and provide enduring
anti-tumor effects due to their trafficking and self-renewal
characteristics.

At a systemic level, the Glasgow prognostic score (GPS), referred
to as an elevated level of C-reactive protein and hypoalbuminemia
in plasma, is associated with poor cancer-specific survival indepen-
dently from TNM in stages II-III CRC [71,72]. An increase in the NLR
in blood was demonstrated to predict poor outcomes in CRC
patients following the resection of the primary tumor or liver
metastases [21,73,74]. This could be explained by the fact that
local T-cell infiltration is associated with tumor immunosurveil-
lance, while systemic inflammation correlates with immunosup-
pression and poor outcome. Therefore, the activation of
(potentially) anti-tumor T-cell responses and/or disruption of a
tumor supporting immunosuppressive network appear to be an
appealing strategy to improve long-term survival in CRC. Unfortu-
nately, so far various immunostimulatory strategies fail to increase
the overall survival rates in CRC. For immune checkpoint blockade,
only the subgroup of tumors with microsatellite instability cur-
rently seems to be a suitable candidate due to the increased load
of (immunogenic) frameshift and missense mutations [75,76]. This
observation is in line with the success of immunotherapy in mela-
Table 1
Main characteristics of studies investigating the prognostic value of CD45RO memory T cell
survival; NR = not reported; OS = overall survival; PFS = progression-free survival.

Ref Authors (year) Rectal/colon No. Patients Diseases stage Cut off

[20] Pages et al. (2005) 287/672 959 Duke’s A-D High: 2
[54] Galon et al. (2006) 245/162 415 I–III Median
[57] Salama et al. (2009) NR 967 II–III Median
[58] Pages et al. (2009) NR 411 I–II Minimu
[59] Peng et al. (2010) 0/72 72 IIIB High: �
[60] Lee et al. (2010) 0/53 53 II Mean
[61] Nosho et al. (2010) 153/615 738 I–IV First to
[62] Zlobec et al. (2010) NR 920 NR NR
[63] Chew et al. (2011) NR 120 I–IV Median
[64] Formica et al. (2013) 5/26 31 Grade 1–3 Median
[56] Lee et al. (2013) 0/79 79 IV Mean
[65] Koelzer et al. (2014) 30/99 130 I–IV Mean
[66] Brunner et al. (2014) 82/119 201 IV Median
[67] Kim et al. (2015) 258/539 797 I–IV Median
[68] Wang et al. (2015) 185/0 185 I–III Median
[69] Chen et al. (2016) 148/152 300 I–IV x-tile so
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noma, renal cell carcinoma and non-small lung cancer, which are
all marked by high mutational burden. Of note, even for the
immunogenic tumors, only a small portion of patients experiences
clinical benefit of immune checkpoint blockade. Therefore, identi-
fication and validation of reliable biomarkers that drive the activity
of immunotherapeutic agents are under intensive investigation
with a series of innovative candidates, such as mutational load
and immune cell populations [77]. Interestingly, baseline NLR is
reported to be significantly associated with the outcome of
ipilimumab-treated melanoma patients [78], indicating its poten-
tial to be explored as a predictive biomarker for checkpoint block-
ade. Altogether, the immune paradox in CRC is that the
immunoscore based on tumor T-cell infiltration represents a strong
prognostic parameter in addition to TNM yet does not predict the
outcome of immunotherapy, possibly because its potential is con-
fined by immunosuppressive networks fostered by inflammation.

Multiple reasons may contribute to an apparent conflict
between the prognostic and predictive parameters in cross-
talking immune compartments, e.g. granulocytic MDSC and T cells.
Our analysis of MDSC in preclinical CRC models and in rectal can-
cer patients indicated that overexpressed arginase-1 (Arg) in gran-
ulocytes may lead to L-arginine depletion and thereby to dual
protumor effects that involve both T-cell suppression and func-
tional inactivation of M1 macrophages, ultimately causing tumor
cell radioprotection through the arrest of nitric oxide synthesis
[79]. Moreover, the nature of inflammation in the tumor microen-
vironment may also impact the response of a tumor to
immunotherapy. Acute inflammation is known to activate cyto-
toxic CD8+ T cells, a terminally differentiated and short-living sub-
set, whereas chronic inflammation induces the functional
exhaustion of CD8+ T cells due to a growing deficiency of the
long-living memory pool [80]. This could explain the elevated
levels of NLR, an established inflammatory score, which has been
repeatedly demonstrated to correlate with poorer survival in CRC
[21,73,74]. Indeed, the increase in NLR coincides with a drastic out-
growth of inflammatory Arg+ granulocytes in the circulation, which
may provoke a dysregulated infiltration of the tumor by Arg+ MDSC
over T cells [79]. In our preliminary data set (Fig. 1), a 1.7-fold
increase of median NLR was observed in rectal cancer patients as
compared with donors (panel 1). In addition, an escalating increase
could be detected in the highest quartile of NLR values (dotted line)
in the cumulative curves (panel 2), a rationale for a widely used
prognostic cut-off of 5.0 [21]. As a result, the levels of (protumor)
Arg+ neutrophils and MDSC were increased by 3.9 and 5.7-times
s in colorectal cancer. Abbreviations: CSS = cancer specific survival; DFS = disease-free

point Counting site Significant
outcomes

50 cell per square mm Tumor OS, DFS
Tumor center and invasive margin OS, DFS
Invasive margin OS

m p value Tumor center and invasive margin OS, DFS
24 cells per high-power field Tumor OS

Tumor center and stroma OS,DFS
fourth quartile Tumor center and stroma OS, CSS

tumor CSS
Tumor CSS
Blood PFS
Tumor center and metastasis OS
Tumor center and stroma OS
Tumor center and stroma OS
Tumor center and invasive margin OS, PFS
Tumor DFS

ftware Tumor OS, DFS
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respectively (panels 3–4). This raise is opposed to a 1.8-fold drop in
(antitumor) CD8+ T-cell numbers and more importantly at the cost
of a 1.7 to 7-fold decline of memory T cells with the highest impact
on the central memory subset (panel 5–6). Extrapolating from
those data, a 2-fold increase in NLR may culminate in a more than
10-fold burst of MDSC over memory T cells, thus raising the con-
cern of whether these immune arms are instrumental in compro-
mising both the adaptive immunity and curability in relapsed
patients. Further decoding of NLR in terms of distinct functional
subsets within the neutrophil and lymphocyte compartments is
required to project accumulating translational findings into future
immunocorrective strategies. Besides, the genetic signature of
tumor cells including microsatellite instability, methylation and
mutation status emerges as an essential orchestrating mechanism
that pre-shapes the nature of tumor immune surveillance and
escape [81,82].
Warburg effect and re-instatement of T-cell memory

The current developments in tumor-promoting MDSC have
been extensively discussed elsewhere [83]. Here we primarily
reflect on potentially antitumor memory T cells whose functional-
Fig. 1. Decoding NLR by flow cytometry in rectal cancer patients as compared with don
curves (panel 2); the composition of neutrophils (total, Arg+ neutrophils and MDSC) is ex
panel 4; the composition of lymphocytes (CD3+, CD8+, and CD4+ T cells) is expressed as a p
abbreviated as Tm and Tcm respectively, is shown apart in panel 6. MDSC, Tm and Tcm a
CD45RA-CD27+CCR7+ CD62L+ CD8+ respectively. These data are a follow-up of our recen
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ity can be apparently reprogrammed through the mTOR pathway.
Three decades ago, the role of helper-inducer T cells was re-
interpreted using antibodies against different isoforms of CD45R,
where CD45RO+ T cells have emerged as a memory subset opposed
to naïve CD45RA+ T cells [84]. In parallel, the multi-protein com-
plex TOR was characterized by Heitman J et al. in yeast as a gate-
way to cell growth and proliferation, and mTOR was next
identified by converging efforts of several teams [85]. After the
seminal work of Sallusto F et al., memory T cells can be further
divided into central memory and effector memory subsets using
CCR7 and CD62L, a chemokine receptor and a selectin respectively,
which control homing to secondary lymphoid organs [86]. How-
ever, the memory T-cell pool in tissues is still recognized at a
glance by staining CD45, a transmembrane tyrosine phosphatase
that switches the isoform RA to RO upon alternative splicing
[20]. This particular activation switch was crucial in comprehend-
ing a selective loss of functional memory T cells in immunodefi-
ciency (e.g. HIV). It is noteworthy to remind that the role of
CD45RO memory T cells has been recently revived in the domain
of chronic viral infections and immunosenescence and their meta-
bolism is now under dissection across the mTOR pathways tightly
linked to the Warburg effect [87,88].
ors. NLR distribution is expressed respectively as dot plots (panel 1) or cumulative
pressed as a percentage (panel 3), while distribution of Arg+ MDSC is shown apart in
ercentage (panel 5), while distribution of memory and central memory CD8+ T cells,
re phenotyped as Arg+Lin-HLA-DRlowCD16lowCD33+CD15+, CD45RA-CD27+CD8+ and
tly published observation [79].

ridging preoperative chemoradiation and immunotherapy in rectal cancer.
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The Warburg effect has been historically described as the exac-
erbated glycolytic tumor metabolism that occurs even under well-
oxygenated conditions, despite the fact that oxidative phosphory-
lation in mitochondria is a more efficient way to generate ATP
[89]. Apparently, the serine-threonine kinase mTOR protein that
senses the energy status of cells and more particularly the avail-
ability of nutrients, participates to the Warburg switch in tumor
cells, a paradigm that may be expanded to T cells [90], as depicted
in Fig. 2. The rapamycin-sensitive mTOR pathways operate mainly
through the multi-protein complex 1 (mTORC1), which is con-
served in a threefold sense. First, it is evolutionarily preserved from
yeast all the way up to mammals. Second, its primary purpose is to
guard cell survival in the event of energy deficit by inhibiting pro-
liferation. Finally, the preserving function of mTOR is ensured by
dominant constitutive negative regulators, like TSC1/2, AKT, AMPK
and PRAS40. Upon activation with growth factors and/or cytokines,
mTOR triggers glucose uptake and aerobic glycolysis – to produce
the intermediate precursors essential for biomass growth, while
blocking further pyruvate oxidation for the maximal ATP output
within mitochondria [91]. Tumor cells frequently overexpress
mTOR, thereby escaping from the growth arrest in any conditions
including chronic hypoxia and nutrient starvation [92]. A similar
escape likely holds true for T cells under chronic viral infections
(EBV, CMV, HBV, HIV) and tumor-associated inflammation, which
provide an array of growth-stimulating cytokines and provoke
the overuse of CD45RO memory pools [80,93]. As a consequence,
the age-related decay of pluripotent memory CD8+ T cells that
respond to CD28-mediated stimulation may be further aggravated
despite that the circulating memory pool rises (an inflation effect)
at the cost of naïve CD28+ CD57� subsets [88,94]. This picture of a
drained memory T-cell pool might be a possible explanation of the
unsatisfied results of immunotherapy in CRC, given that CRC is
commonly associated with chronic inflammation [95–97]. What
are the possible mechanisms of mTOR-mediated T-cell prolifera-
Fig. 2. mTOR and IL-2 pathways in T-cell differentiation. The cross talk of mTOR and A
(panel 1); the multi-protein complex mTOR in normal and cancer cells (panel 2); IL-2 rece
been adapted after [24,28,98].
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tion/differentiation and what CD45RO-biased immunocorrective
interventions will be available in the nearest future?

Of note, the metabolic check-points in T cells are similar to
those in normal/cancer mammalian cells, and are reciprocally con-
trolled by mTOR and AMPK - two opposed energy sensors/switches
that put forward anabolism and catabolism respectively (Fig. 2)
[24,98,99]. We talk here about an overall balance of anabolism ver-
sus catabolism rather than the switch-off/on, as both growing and
quiescent cells require ATP supplied by catabolic reactions. In more
detail, AMPK is activated by an increase in AMP/ATP ratio, which
regulates oxidative phosphorylation and makes a transition toward
the catabolic type of metabolism. In addition, AMPK inhibits
mTORC1 thereby slowing down glycolysis and anabolic build-up
of proteins, lipids and nucleotides. Alternatively, when ample
amounts of energy and nutrients are available and both T-cell
receptor and co-stimulatory signals are present, PI3 kinase is acti-
vated leading to the mTORC1-mediated induction of HIF-1a and
Myc. Subsequently, metabolic reprogramming toward aerobic gly-
colysis is initiated while the transcriptional factors T-bet, BLIMP1,
and STAT4 instruct CD8+ T cells to differentiate into a KLRG1hi IL-
7Rlow CXCR3low CD62Llow phenotype, featured by an increased
cytotoxicity against infection and tumor cells. Following the dan-
ger clearance, effector CD8+ T cells reduce their dependence on gly-
colysis and gradually reset back to the catabolic state, a known
marker of memory cells. Alongside, the T-cell phenotype changes
toward a memory-type, characterized by down-regulation of
KLRG1 and re-expression of CD62L/CCR7 and the IL-7 receptor.
The transcriptional factors EOMES, BCL-6, and STAT3 further
induce memory CD8+ T cells to acquire a self-renewal capacity
and longevity associated with the overexpression of anti-
apoptotic proteins Bcl2 and Mcl-1. In this process, IL-7 is essential
for the development and maintenance of memory T cells, whereas
IL-15 primarily sustains their expansion [100]. Overall, the transi-
tion between the effector and memory functions in T cells is regu-
MPK pathways in T-cell differentiation and molecular targets for mTOR inhibitors
ptor signaling to Tregs and memory T cells (panel 3). These simplified diagrams have
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lated at the coordinated levels of mTOR-driven glucose metabo-
lism, transcription factors, mitochondrial status/apoptosis and
cytokines [87].

While mTOR inhibition may favor the expansion of memory
subsets at the cost of terminally differentiated effectors, a more
specific cytokine signaling through IL-7, IL-15 or (modified) IL-2
is indispensable to shape the anti-tumor functionality of
long-living central memory CD8+ cells. Thus CD45RO-biased
immunotherapy could rely on two complementary types of inter-
vention assigned to (a) a graded mTOR inhibition, either directly
(rapamycin/rapalogs) or indirectly (metformin) and (b) an optimal
cytokine niche that activates CD8+ T cells rather than CD4+ Tregs.
In this regard, metformin and CD122-directed IL-2 complexes
seem to be of special interest for future clinical trials in rectal can-
cer. Accumulating evidence suggests that the switch from glycoly-
sis to fatty acid oxidation is a key process during the effector to
memory cell transition, which involves the transition from a meta-
bolic state governed by the mTOR signaling pathway to a metabolic
state governed by the AMPK signaling pathway [24]. Metformin as
an AMPK activator and the same time a mTOR inhibitor therefore
stands a great potential to initiate the reprograming of effector
T-cells to a memory phenotype [26]. In addition, after the transi-
tion, to efficiently replenish the memory T-cell pool, it is essential
to boost the number with the help of cytokines that promote pro-
liferation. In this context, CD122-directed IL-2 complexes are one
of the best candidates due to the higher expression of CD122 on
memory T-cell than on counterparts such as Tregs [101].
CD45-biased immunotherapy beyond immune checkpoints

Multifaceted mTOR inhibitors with immunocorrective properties

Several lines of evidence suggest that metformin, a drug of
choice for the treatment of type II diabetes, offers great promise
for cancer treatment and prevention, and may be repurposed for
immunotherapeutic applications [23,102]. First, the recent meta-
analysis of CRC incidence demonstrated a decreased risk ratio of
0.64 (0.54–0.76) for diabetes patients who did take metformin
when compared with those not-taking this drug [103]. Second,
three retrospective clinical studies revealed that CRC patients
who use metformin as a part of their diabetic therapy have a signif-
icant survival advantage estimated by overall and cancer-specific
mortality [104–106]. Specifically in rectal cancer, metformin users
showed an improved pCR rate on univariate (P = 0.05) and multi-
variate (P = 0.01) analysis, leading to significantly increased
disease-free survival (P = 0.013) when compared with other dia-
betic patients [106]. Third, about 10 on-going prospective phase
II clinical trials are initiated since 2011 to explore whether met-
formin may improve therapy outcomes or lower CRC incidence in
patients without diabetes. So far, the major focus on metformin
in oncology is still directed to breast and prostate cancer [107–
109], and only two phase II studies address neoadjuvant met-
formin in locally advanced rectal cancer with the primary end-
point being pCR (NCT02437656 and NCT03053544). Fourth, pre-
clinical models suggest that the antitumor effect of metformin is
most likely to be related to the inhibition of mTOR signaling path-
ways, which is triggered indirectly through targeting mitochon-
drial complex I and downstream AMPK activation [23]. This
effect is similar to that of rapamycin, a direct powerful mTOR inhi-
bitor, which is under investigation as an antitumor drug in clinical
trials as well [110]. Currently, the second and third generation of
rapalogs, e.g. ATP-competitive and bivalent mTOR inhibitors, are
tested in clinical trials in a wide range of malignancies but the
results are still awaited. Finally, a preclinical study illuminated
how metformin can restore the functionality of lymphocytes in
the tumor microenvironment through an effector-memory T-cell
Please cite this article in press as: de Mey S et al. Potential of memory T cells in b
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subset, which is responsible for tumor rejection [27]. We believe
that metformin may be directly implemented into standard neoad-
juvant chemoradiation in locally advanced rectal cancer, consider-
ing low if any toxicity of its chronic use. Despite that rapamycin
shows a comparable restoration of memory T cells in mouse mod-
els [25,26], its clinical potential is less rationalized in the view of
strong immunosuppressive effects exploited for organ transplanta-
tion [111]. On the other hand, metformin has been announced in
the press as the first ever safe anti-aging drug to pursue life long-
evity, a remarkable medical event to be examined in coming 6-year
clinical trials (NCT02432287). With these developments in mind, a
phase II clinical trial is running (in our institution, EudraCT num-
ber: 2017-000814-50) for locally advanced cT3-4 rectal cancer,
where metformin is combined with neoadjuvant chemoradiation
to improve tumor radio/immunoresponse and patient outcome.
Furthermore, the immunocorrecting properties of metformin in
comparison with rapalogs are currently under preclinical investi-
gation to support the next steps in CD45RO-biased
immunotherapy.
IL-2 signaling in tumor surveillance versus escape

Among cytokines, IL-2, IL-7 and IL-15 are the most valuable can-
didates for tumor immunotherapy, and IL-2, the major T-cell
growth factor, has been extensively studied in melanoma and renal
cancer two decades ago. Unfortunately, severe side effects, includ-
ing vascular leakage syndrome, hypotension and a preferential
induction of Tregs, have been observed at high doses of IL-2 [29].
The breakthrough for this matter came from two sides, namely
immunocomplexing and pegylation, which changed our under-
standing on the nature of IL-2/receptor interaction and signaling
[28,112]. All three cytokines above share the c-receptor chain
(CD132) that in part explains their redundancy and the key role
in lymphocyte homeostasis [113]. However, it are two other sub-
unit chains – CD25 (IL-2Ra) and CD122 (IL-2Rb) – that create a
variety of unique effects through the trimeric IL-2 receptor.
Although CD25 binds IL-2 with low affinity (compared with di/tri-
mers), its strong constitutive overexpression on Tregs enables
these immunosuppressive cells to benefit from immunostimula-
tion and eventually outperform T-cell cytotoxicity in favor of
immunotolerance [29]. Therefore, the selective blocking of CD25-
mediated signaling is critical in order to trigger memory T-cell
expansion through CD122, by analogy to IL-15 that lacks CD25 sig-
naling. On the experimental level, this effect can be achieved by the
monoclonal antibody S4B6 that forms an immunocomplex with IL-
2 and thereby stimulates memory CD8+ T and NK cells without
affecting Tregs [28]. Another elegant way for CD122-mediated
immunostimulation is already one step forward in clinical trials,
and based on the engineered IL-2 prodrug, NKTR-214, with 6 relea-
sable polyethylene glycol (PEG) chains [112]. This modified IL-2
was well tolerated in mice and upon partial depegylation/activa-
tion induced durable antitumor immune responses linked to mem-
ory T-cell activation.
Conclusions

In summary, significant advancements in the management of
locally advanced rectal cancer have occurred over the last decades,
however, the risk of distant metastases remains an ongoing prob-
lem and the major obstacle to improve the survival rate. The
cutting-edge blockade of immune checkpoints introduced a possi-
bility of long-term survivors in immunogenic tumors, like mela-
noma, that may not be applicable to the majority of CRC due to
low immunogenic mutation loading. In CRC, in situ memory T cells
predict long-term oncological outcomes, mirroring the unique abil-
ridging preoperative chemoradiation and immunotherapy in rectal cancer.
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ity of memory T cells to provide lifelong immune surveillance.
With the increased understanding of the mechanisms that govern
the formation of memory T cells, the generation of memory T cells
becomes now one of the major focuses to treat chronic viral infec-
tions and cancer. In this context, metformin as a mTOR inhibitor is
shown to reprogram the metabolism of T cells toward oxidative
phosphorylation and thus aggravating the generation of memory
T cells in preclinical settings, which is being validated in a running
clinical trial in our institution. After the transition, memory T cells
require a second trigger to maintain their expansion. The modified
IL-2 (a CD122 receptor ligand) could be a good candidate due to its
preferential capacity to bind to memory T cells. Their combina-
tional effect in the frame of the treatment of rectal cancer requires
further investigation; however there is a possibility that this
approach might offer a new means to cope with unsatisfied distant
control and survival. In addition, more efforts should be taken for a
detailed immunoprofiling of rectal cancer to identify the high-risk
subgroup of patients for immunotherapy, for example, the ratio of
MDSC-to-memory T cells rather than basic NLR.
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