
1 
 

Cold Gas Dynamic Spray technology: a comprehensive review of processing conditions for 

various technological developments till to date 

 

 

R.N. Raoelisona*, Y. Xiea, T. Sapanathanb, MP. Planchea, R. Kromera, S. Costila, C. Langladea 

 
a Laboratoire Interdisciplinaire Carnot de Bourgogne - Site UTBM, UMR 6303 CNRS, 

Université de Bourgogne Franche-Comté UTBM, 90100 Belfort, France 
b Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, 

B-1348 Louvain-la-Neuve, Belgium  

 
* Corresponding author:  rija-nirina.raoelison@utbm.fr  (+33 678749153)  

 

 

 

Abstract 

Today, cold gas dynamic spray (CGDS) technology has thrived with considerable capabilities 

for manufacturing various technological depositions. The deposition conditions have been 

developed through many years and that have led to produce ample experimental data which is 

available in the literature. But, recent research and development activities also reveal innovative 

findings regarding various deposition conditions. This paper contains a review of experimental 

deposition procedures for the cold spray additive manufacturing. Details of processing 

conditions are reported and classified into various categories of baseline working conditions, 

specific processing including deposition of nanotechnological components, composites-based 

structures and hybrid coating with substrate deposition. Available substrate treatments and their 

contributions on the deposition capability were also included. A large collection of 

experimental data from the literature is addressed in the Appendices A1-A6.  
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Nomenclature 

Latin-script symbols 

a,b Dimensionless number  (-) 

dp Particle diameter (m) 

A Radial cross section of the nozzle (m2) 

Ae Radial cross section of the nozzle outlet (m2) 

Ai Radial cross section of the nozzle inlet  (m2) 

A* Radial cross section of the nozzle throat (m2) 

r Nozzle radius along the nozzle axis (m) 

re Radius of nozzle exit (m) 

rthroat Radius of nozzle throat (m) 

dthroat Diameter of nozzle throat (m) 

z Coordinate of nozzle axis (m) 

C Drag coefficient of particle  (-) 

Cp Specific heat  (J.kg-1.K-1) 

Ldiv Length of nozzle supersonic part  (-) 

M Mach number  (-) 

P Gas pressure along the nozzle axis (Pa) 

P0 Input stagnation pressure of the propellant gas (Pa) 

Pr Prandtl number  (-) 

Q Flow rate of particles  (kg.s-1) 

Rs Specific gas constant (J.kg-1.K-1) 

Ra Roughness (m) 

Re Reynolds number  (-) 

Rep0 Reynolds number of particle for ρ=ρ0 (-) 

SoD Standoff distance (distance nozzle exit – substrate) (m) 

T Gas temperature along the nozzle axis (K) 

T0 Input stagnation temperature of the propellant gas (K) 

Tm Melting temperature of particle  (K) 

Ti  Impact temperature of particle  (K) 
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Radial cross section of the nozzle throatRadial cross section of the nozzle throat

Nozzle radius along the nozzle axisNozzle radius along the nozzle axis

Diameter of nozzle throatDiameter of nozzle throat

Coordinate of nozzle axisCoordinate of nozzle axis

Drag coefficient of particle Drag coefficient of particle 

Specific heat Specific heat 

Length of nozzle supersonic part Length of nozzle supersonic part 

Mach number Mach number 

Gas pressure along the nozzle axisGas pressure along the nozzle axis

Input stagnation pressure of Input stagnation pressure of 

Prandtl number Prandtl number 

QQ Flow rate of particles Flow rate of particles 

RsRs Specific gas constant

RaRa

ReRe

ReRe
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TR Reference temperature (ambient temperature) (K) 

V Gas velocity along the nozzle axis (m.s-1) 

Vcr Critical velocity of particle for adhesion (m.s-1) 

Vi Impact velocity of particle  (m.s-1) 

Vnozzle Velocity of nozzle displacement (m.s-1) 

Greek-script symbols 

γ Ratio of specific heat  (-) 

ε Ratio of nozzle sections (rexit/rthroat)  (-) 

λ Thermal conductivity (W.m-1.K-1)

μ Dynamic viscosity (kg.m-1.s-1) 

ρ Specific mass (density) (kg.m-3) 

ρ0 Initial density of the propellant gas  (kg.m-3) 

σu Ultimate yield strength (Pa) 

Abbreviations 

ABS Acrylonitrile Butadiene Styrene  

AISI American Iron and Steel Institute  

BMG Bulk Metallic Glass  

cBN Cubic Bore Nitride  

CFD Computational fluid dynamics  

CGDS Cold Gas Dynamic Spray  

CFRC Carbon Fibre Reinforced Composite  

CNT Carbon Nanotube  

CTE Coefficient of Thermal Expansion  

DBC Direct Bonded Copper  

DSSC Dye sensitive solar cell  

FTO Fluorine doped Tin Oxide  

DE Deposition Efficiency  

GFRC Glass Fibre Reinforced Composite  

HA Hydroxyapatite  

HDPE High-Density Polyethylene  

HRTEM High Resolution Transmission Electron Microscopy  

ITO Indium Tin Oxide  

LPCS Low pressure cold spraying  

LZT Lead Zirconate Titanate  

MMC Metal Matrix Composite  

MWCNT MultiWall Carbon NanoTube  

ND NanoDiamond  

NPDS NanoParticle Deposition System  

PA Polyamide  

PC Polycarbonate  

PEEK Polyetheretherketone  

PEG Polyethylene glycol  

PES Polyether Sulfone  
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Carbon Fibre Reinforced Composite

of Thermal Expansionof Thermal Expansion

Dye sensitive solar cellDye sensitive solar cell

Fluorine doped Tin OxFluorine doped Tin Oxiidede

Deposition EfficiencyDeposition Efficiency

Glass Fibre Reinforced CompositeGlass Fibre Reinforced Composite

HydroxyHydroxyaapatitepatite

HighHigh-Density PolyethyleneDensity Polyethylene

High Resolution High Resolution 

Indium Tin OxIndium Tin Ox

LPCSLPCS Low pressure cold sprayingLow pressure cold spraying

LZTLZT Lead Zirconate TitanateLead Zirconate Titanate

MMCMMC

MWCNTMWCNT

NDND
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PET Polyethylene Terephthalate  

PVDF Polyvinylidene fluoride  

PMC Polymer Matrix Composite  

PP Polypropylene  

PPA Polyphthalamide  

PPSU Polyphenylsulfone  

PS Polystyrene  

PSU Polysulfone  

PTFE Polytetrafluoroethylene  

PU Polyurethane  

PVC Polyvinyl Chloride  

SEM Scanning Electron Microscopy  

SoD Standoff distance  

SS Stainless Steel  

WC Tungsten Carbide   

Subscript symbol 

g Gas  

nc nanocrystalline  

np nanoporous  

ns nanosized  

p Particle  

 

1. Introduction: developments and capabilities of CGDS technology  

Cold spraying is an innovative additive manufacturing method and it has recently become a 

promising technique in the material processing field. Primarily, cold spraying is a powder 

deposition method and it exploits the self-consolidation capability of the solid particles which 

join together while they retain in their solid state. A high velocity impact enables such self-

consolidation capability that is governed by a solid state bonding. This technique was developed 

in the early twentieth century by Thurston [1]. Later, a blast or a pressurized gas was used to 

accelerate metallic powders to a maximum velocity of about 300 m/s and subsequently, the 

high speed collision onto a substrate produces a deposit. In 1950s, a major innovation appeared 

with a new development made by Rocheville, using a gas flow through a De Laval nozzle which 

enables to reach higher velocities than those obtained with the existing methodologies at that 

time, and which produces a uniform thin coating. In the 1980s, the phenomenological behaviour 

of the cold spray method has been further investigated by the Institute of Theoretical and 

Applied Mechanics of the Russian Academy of Science [1,2]. Their findings led to the 

development of new patents of cold spray devices and experimental procedures of the cold 

spray manufacturing process that eventually results as a reliable additive processing technique. 

Although, several feasibility studies demonstrate the viability of cold spraying, the mechanisms 

of deposit formation and bonding are continuously being investigated to expand the applicable 

materials.  

 

The deposition during a cold spray process is mainly governed by two steps including an 

adhesion of the particles on a substrate and a growth of the deposit. Each step has been 

characterized by distinct phenomena of bonding mechanisms. Regarding the deposit growth, 
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interparticle cohesion due to a plastic deformation is suggested for ductile materials such as 

metals. The interfacial cohesion is believed to occur by atomic bonding due to an intimate 

contact or by metallurgical bonding due to phase transformations, while the interface is 

subjected to the collision and severely experiences a high strain rate plastic deformation [3–5]. 

In contrast, fragmentation and self-compaction were also identified and the consolidation of the 

final deposit is resulted from the stacking and interlocking of fragments, especially for non-

ductile materials such as ceramics. Successful build-up of coating has been obtained for various 

oxides [6–12]. 

 

In literature for cold spraying, researchers have shown experimental observations of bonding 

mechanisms which mainly occur due to metallurgical bonding, mechanical anchoring, 

mechanical interlocking or interfacial mixing. Metallurgical bonding can be explained as a 

result of a heteroepitaxy phenomenon which causes dynamic recrystallization [13], or a hyper-

quenching phenomenon that occurs due to an interfacial confinement of significantly large 

plastic strain (adiabatic shearing) and forms an amorphous intermediate layer containing 

intermetallic phases [14–16]. Mechanical anchoring is caused by a weak indentation of the 

particles onto the substrate, capable of ensuring anchoring of the particles, and mainly observed 

for combinations of metallic particles with ceramic substrates [17–19]. Mechanical interlocking 

corresponds to an embedment of particles on the substrate due to a deep penetration as observed 

in the following particle/substrate combinations: metal/polymer [20,21], oxide/polymer [22],  

ceramic/metal [23] and metal/metal [24]. The idea of interlocking can also be extended to the 

case of mechanical deformation of particles within the geometrical imperfections on the 

substrate’s surface [25,26]. This is also given as an interpretation for the continuity of material 

across the interface generated during the deposition of soft particles onto a hard substrate. Few 

examples of such cases are soft metal/polymer [21,25–27], metal/ceramic [19] and 

polymer/metal [28,29]. Moreover, during an interfacial mixing, the adhesion mechanism is 

governed by the development of interfacial vortices which allow the particles and the substrate 

to intermix across the interface [26,30,31].  

 

Since cold spraying allows to deposit a broad range of advanced and new materials, academics 

and industries show a growing interest in CGDS technology over the last 15 years. The CGDS 

method provides various functional properties for several existing industrial applications and it 

is also expected to have substantial progress over the next decades. Today, several material 

deposits have been developed [32–34]. They can be classified based on their deposition 

procedure and the type of materials. Thereby, it suggests three distinct categories namely, (1) 

the deposits produced by the nature of one material, (2) the composites-based deposits made of 

a mixture of different powders, and (3) the nanotechnological deposits (i.e. a deposit producing 

nano size features). The flexibility of the CGDS method in terms of adhesion mechanisms also 

suggests an additional deposit category as material hybridization between the particles and the 

substrate. In this respect, this additional deposit category considers the fact of hybridization and 

it can be named as “hybrid deposit/substrate assembly”. Till to date, the later includes the 

following cases: oxide/ceramic [10,35,36], oxide/polymer [22,37,38], metal/polymer 

[17,25,28,39], metal/PMCs [25–27], polymer/metal [29,40], metal/ceramic [17–19,41], 

ceramic/metal [23,37,38,42], and cermet/metal [43–47].  

 

In order to achieve such a wide range of deposits, various deposition conditions have been 

developed. In this context, viability of different deposition methods was proven and ample 

experimental data has been produced. Given the current status of the cold spray technology, it 

is essential that the overall processing conditions are gathered to provide a meaningful database. 

Therefore, the purpose of this paper is to review those existing experimental deposition 
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conditions. It also includes a brief description of the cold spray process and its main 

characteristics (Section 2), and then followed by a description of baseline working conditions 

(Section 3). Processing conditions of advanced coatings are then reported in Section 4. Section 

5 addresses the substrate treatments and their contributions in the efficiency of the cold spray 

technique. Finally, an appendix provides various processing conditions and a summary of 

experimental data which covers a broad range of possible depositions. 
 

2. Characteristics of the CGDS process 

 

2.1 Process behaviour and main working parameters 

Fig. 1 shows a schematic illustration of the cold spray process. Due to the pressure difference 

between the nozzle inlet and the nozzle outlet, a gas flows through the De Laval nozzle at a 

subsonic velocity within the “converging part”, accelerates to supersonic velocity as the gas 

expands within the “diverging part”. The nozzle dimensions and the gas pressure, temperature 

and type determine the gas flow which also governs the in-flight behaviour of the particles. The 

particles leave the nozzle and form a deposit onto the substrate due to high velocity collision. 

Thus, it enables to identify the main process parameters of each component specified in Fig. 1, 

for the nozzle, the propellant gas, the particles and the nozzle outlet conditions. The nozzle is 

characterized by its dimension, and most importantly the throat section, the exit section and the 

length of the “diverging part”. This length affects the velocity of the particles. The nozzle 

expansion ratio (exit section/throat section) is used to determine the Mach number at the exit 

of the nozzle.  

 

For a given propellant gas, the deposition procedure requires to set the temperature and pressure 

of the prechamber (T0 and P0). In terms of powder feedstock, the working parameters are 

determined by the material type, particle shape, morphology, and granulometry. The standoff 

distance between the nozzle and the substrate is also a process variable. Generally, a well-

defined set of parameters provides the working conditions for a successful deposition. For 

various coatings, a review of the processing conditions is addressed in the sections 4 and 5, 

while a comprehensive data collection is also reported in the appendix. 

 

A distinction can be made between the working parameters, particles’ in-flight characteristics 

and substrate treatment. The latter includes the temperature (heated or non-heated) condition 

and the surface condition in terms of topology (smoothness and texture). The surface texture is 

a pattern of periodic irregularity on a surface. The texture of the substrate is a new solution that 

is being explored for its capability to improve the adhesion. A review on the investigation of 

substrate treatments and their contributions to the deposition capabilities including the effect of 

the innovative method of texturing1 are presented in Section 5. The particles’ in-flight 

characteristics are determined by the kinematic behaviour of the particles and the thermal 

kinetics within the propellant gas flow. Hence, both temperature and velocity of the particles 

define a critical set of parameters that highly influences the collision and the subsequent 

adhesion behaviours. 
 

                                                           
1 (“innovative texturing” is a laser ablation technique that enables producing a pattern of periodic irregularity on a 

surface) 
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2.2 In-flight characteristics of the particles 

During a deposition, in-flight characteristics of particles mainly govern the formation of 

coating, its growth, and the quality of the final deposit. The state of the particles prior to the 

collision onto the substrate is generally described using their velocity and their temperature, 

respectively denoted by Vp (particles’ velocity) and Tp (particles’ temperature). These set of 

useful parameters can be used to characterize the deposition capability in terms of a deposition 

window. Moreover, the current technological advances offer the trustworthy measurements of 

Vp for the micron-sized particles. In this context, a large number of experimental results are 

presented in the literature. In many of those previous studies, a DPV2000 laser system was used 

to characterise the kinematics of particles during the cold spraying method. The literature of the 

particles’ velocity measurement also includes other laser measurement systems such as Laser-

2-Focus (L2F) and Particle Image Velocimetry (PIV) while they offer a high spatial resolution 

[48].  

 

Unlike the particles’ velocity (Vp), the particles’ temperature (Tp) is difficult to measure due to 

their low values and the small particle size, (lower than 100 µm). Therefore, the particles’ 

temperature prior to the collision is poorly characterized. Alternatively, numerical simulations 

of the particle/gas interaction combined with the heat transfer over the particles’ surface is 

modelled using a thermal convection with Newton’s law, to predict the Tp. Assuming a uniform 

convection, the equation of Nusselt number for a sphere exposed to an impinging flow is also 

used to predict the particle’s temperature. Under the conditions of a steady state heat transfer 

and a uniform temperature distribution within a particle (i.e. that is acceptable due to the small 

particle size which gives a short heat transfer characteristic time), the particles’ temperature 

variation through the nozzle based on the energy balance of gas flow is given by: 

 

 !"!!#!
$%&
$'

=
()*
$&
+

,-

.%/%&0
                                    (Eq .1) 

 

where, the parameters of particles and gas are respectively denoted using the subscripts of p 

and g. z is the axial coordinate along the nozzle. The Nusselt number is commonly defined by 

Ranz-Marshall correlation (Eq. 2). However, a recent review [48] underlines that there is a few 

expressions of  Nusselt number that suits for various situations such as high particle’s Reynolds 

number [49], high Mach number [50], or including the consideration of boundary layer over 

the particle’s surface [51]. But the accuracy of each correlation has not been completely 

discussed in the literature of cold spraying [48]. In any case, the Nusselt number depends on 

the Reynolds number and consequently it depends on the particles’ velocity which is formulated 

based on the Newton’s law of coupling the gas flow and the particles’ motion (Eq. 3).   
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where, a and b are constants, Rep is the Reynolds number obtained using Vp, Pr is the Prandtl 

number of the gas and C is the drag coefficient.   

 

An accurate determination of the gas flow requires a computational fluid dynamics (CFD) 

simulation, but a 1D compressible flow formulation enables to obtain a quick and useful 
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approximation under the following assumptions: a steady-state flow, an ideal gas, an isentropic 

and frictionless flow without particles’ influence on momentum transfer from the gas to the 

particle, and having a uniform gas expansion along the nozzle radius. The equations (Eq. 4-6) 

sequentially compute the Mach number (M) that depends on the nozzle radius, gas temperature 

and gas velocity.    
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Fig. 2 shows typical temperature and velocity variances of a cold sprayed particle, depicted on 

the grid of pressure and temperature of the propellant gas using a 1D computational procedure. 

Given the large number of process parameters and their mapping, such computations give a 

useful approximation of particles’ in-flight parameters without a long and costly experimental 

work. Furthermore, the 1D procedure can help to predict and/or to optimise the deposition 

efficiency whiles the coupling parameters of adhesion is governed by Vp and/or Tp. A summary 

for the selection of adequate and/or optimum process parameters based on a simple analytical 

tool is also given in Fig. 3.    

 

 

 

2.3 Parameter requirements for an adhesion 

In literature for cold spraying, there are a limited number of studies on physics of adhesion. At 

present, the knowledge in this field is limited despite having several detailed studies of bonded 

interfaces. Different theories were suggested based on interfacial features revealed using 

various observation methods including scanning electron microscopy (SEM), High Resolution 

Transmission Electron Microscopy (HRTEM), light microscope and the characterization tools 

used to describe the physical phenomena. Although, natures of interfaces have been identified, 

the required specifications of parameters to produce a reliable and predictable adhesion through 

well-defined process parameters remain unclear. Currently, macroscopic parameters (e.g. the 

critical velocity of the particle) are suggested to predict the adhesion. Two generic models were 

developed using shear instability phenomenon similar to that observed during an explosive 

welding. The literature on explosive welding method provides significant experimental and 

numerical studies which confirm the necessity of the shear instability condition to produce a 

successful welding using Kelvin-Helmholtz instability model. A model for adhesion was also 

similarly developed, particularly for metal combinations [4]. Assadi et al. have found the 

following correlation for the critical bonding velocity [4]: 
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,-. = 667 / 010243 5 0108#9 5 012:; / 014#<                 (Eq. 7) 

 

where, ρ, σu, Tm and Ti respectively denote material density (kg.m-3), ultimate tensile stress 

(MPa), melting temperature (°C), and impact temperature (°C). Another generic model was 

developed by Schmidt et al. for the particle size larger than 25 µm [52]. Their critical velocity 

formulation based on correlations between the particle’s kinetic energy, material strength, and 

heat generation due to the plastic deformation, is given by [52]: 
 

 !# = $
% &'

$()*
+,-./-01

2 ,34 5 3617
8
9
                         (Eq. 8) 

 

where, cp is the specific heat capacity of the material and TR is the reference temperature 

(ambient temperature usually). 

 

Computing the ratio of Vp/Vcr for different sets of process parameters can help to identify the 

deposition window, but it only predicts the deposition rather than the bond quality. Unlike this 

ratio, a deposition efficiency (DE) model can provide a more accurate prediction of the 

deposition. Fig. 4 demonstrates a typical comparison between these two approaches. The DE is 

computed using a linear model based on particles’ velocities characterized by Alkimov et al. 

[53]. Generally, DE computations are more reliable using a model based on experimental 

measurements. But, ample characterizations of the particles’ behaviour and viable correlations 

governed by the process parameters are required to make a DE model to be well predictive. 

Ongoing investigations are promising to fundamentally increase the prediction capability of the 

CGDS process; nevertheless reliable models have to be developed to realize such radical 

achievements. Although, empirical correlations of the DE have been established [54–56], they 

cannot predict the DE over a wide range of materials and process conditions because those 

existing empirical approaches are very restrictive. However, the empirical models can help to 

identify the deposition capability of the CGDS method using the particles’ in-flight parameters 

which can be determined by the parameters of propellant gas using the equations of the gas 

flow and particles’ interaction  [57].  

 

 

3. The baseline working conditions used in cold spraying method 

The cold spray process involves numerous parameters since the deposition is determined by the 

properties of the propellant gas, particles’ characteristics, nozzle dimensions, nozzle outlet 

conditions and substrate treatment. These parameters are interdependent, thus an experimental 

selection of the accurate parameters becomes a difficult task. In addition, there are no available 

conventional standards for cold spraying until today. However, a good cold spray protocol such 

as MIL-STD (US military standard) provides a high level guidance for the cold spray process.  

 

Generally, the practice of using low temperature and pressure distinguishes the CGDS process 

from the conventional thermal spraying processes. The information presented in this work 

provides a better depiction of CGDS process conditions and a construction of a reliable 

database. It also reports deposition conditions of a powder feedstock of various materials. 

Furthermore, this review represents the majority of the work available in the literature of cold 

spraying, and provides the useful deposition conditions as a guideline which can be used as a 

reliable baseline for a selection of the process parameters.  
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3.1 Usual conditions for the propellant gas  

Helium (He) or nitrogen (N2) or air is used as the main process gas in cold spraying. Helium 

remains the most efficient gas due to its high specific gas constant and low molecular weight 

compared to N2 and air as shown in Table 1. Eq.6 also clearly shows the dependency of the gas 

velocity on the specific heat ratio (γ) and the specific gas constant (Rs). According to Eq. 4-6, 

the Mach number and the term f(γ) are weakly influenced by γ for its range between 1.4-1.66 

(Fig. 5). Thus, among those three gases, the significant change in velocity results from Rs, or 

from the term RsT0. Fig. 5 depicts the gas velocity based on both nozzle expansion ratio and 

RsT0 for the Rs range of 200-2000 J.kg-1.K-1 and T0 value of 293K (i.e., considering a non-heated 

gas). The velocities of N2 and air are very limited due to their low Rs values whereas He 

produces high velocities which subsequently result with better efficiency than that of using 

other gases (Fig. 6). Basically, the particles’ velocity depends on the gas flow (i.e. it is governed 

by the velocity and the density of the propellant gas) whose evolution is described by γ. For a 

given γ between 1.4-1.66, the effect of γ on the gas density is also weak (Fig. 6a). These general 

correlations show that the specific gas constant is an important parameter of the gas which 

determines the velocity efficiency for both propellant gas and particles. That is, the particles 

can easily reach high impact velocities while using the helium gas (Fig. 6b).  

 

He is recommended for costly materials and for metals that require to reach high critical 

velocities [58]. In addition, He offers other advantages such as increase in working temperature, 

increase in productivity, and improvement in densification of the deposits [58–60]. Although 

He is beneficial to obtain an efficient deposition, it is not an economically viable solution. N2 

is more affordable than He, and air can be freely supplied from a compressor. Therefore, both 

N2 and air are widely used to reduce the manufacturing cost. N2 also prevents the samples from 

oxidation compared to the air.  

 

Fig. 7 shows the characteristic pressure and temperature of the propellant gas for various 

materials which require pressures of up to 5MPa. The preheating temperature of the gas is 

normally between 20 - 800°C. Specific details of the preheating temperatures are reported in 

the Appendix (Table A1). For instance a high temperature range (500°C-850°C) is required to 

deposit cermets such as MCrAlY compound and nickel based alloys. Deposition of ceramics 

and oxides requires low temperature and low pressure conditions (typically <300 °C, and 

<2 MPa). Deposition of nickel alloys requires high pressure (up to 4MPa). Fig. 8a shows that 

the low temperature and low pressure are suitable for soft metals such as zinc and tin. 

Deposition of relatively hard metals (e.g. copper, aluminium, titanium) can be performed under 

similar conditions using He. N2 or air requires increase in both gas pressure and temperature 

(Fig. 8b). Successful depositions of stainless steel or titanium based alloys are also performed 

at high temperature and high pressure (Fig. 8c). 

 

 

During the cold spray process, the inlet pressure and the inlet temperature of the propellant gas 

generally affects the kinematics of the particles. The carrier gas has the main function to inject 

the particles inside the nozzle. For this purpose, the injection pressure and the injection 

temperature of the carrier gas do not require to be very high (i.e. similar to the inlet pressure-

temperature of the propellant gas). However, an increase in the pressure and/or temperature of 

the carrier gas contributes for an increase of gas pressure and temperature within the nozzle’s 

convergent zone. With this cumulative effect, it enables the particles to reach high velocities 

and high temperatures. This situation improves the deposition efficiency and the bonding 

strength of the deposit [61]. However, additional pressure resulted from the carrier gas can also 

have an adverse effects on the kinematics of the gas flow, particularly when the temperature of 

whereas He whereas He 

than that of using than that of using 

(i.e. it is (i.e. it is governed governed 

described by described by γ.γ. For a 

a). These general a). These general 

n important parameter n important parameter of the gas of the gas 

ss. . That is, That is, the particles the particles 

(Fig. (Fig. 66b). 

that requirethat require to reach to reach 

such as such as increase in rease in 

densification of the deposits densification of the deposits 

is not an is not an economiceconomic

supplied supplied from from 

to reduce the manufacturing costto reduce the manufacturing cost.. NN

the characteristic pressure and temperature of the the characteristic pressure and temperature of the 

of up toup 5MPa. 5MPa. 

°C. Specific details °C. Specific details 

For instance aFor instance a high temperature range (500°Chigh temperature range (500°C

such as MCrAlY compound and nickel based alloyssuch as MCrAlY compound and nickel based alloys

low temperature and low temperature and 

Deposition of nickel alloys requires high pressureDeposition of nickel alloys requires high pressure

low temperature and low temperature and low low 

relatively relatively hard metals (hard metals (

similar conditions similar conditions using Heusing He

Successful depositions of stainless steel or titanium based alloys Successful depositions of stainless steel or titanium based alloys 

high temperature high temperature and and 

During the During the cold spraycold spray

generally generally 

the particles inside the nozzle. For this purpose, the injection pressure the particles inside the nozzle. For this purpose, the injection pressure 

temperature temperature 



11 
 

the carrier gas is lower than the temperature of the propellant gas. The mixing of those gases 

with such a temperature difference decreases the gas temperature at the upstream of the nozzle 

throat, and then it limits the kinematic capability of the propellant gas due to the drop in 

temperature due to the mixing of temperatures. Moreover, the particles’ deposition becomes 

less efficient, especially when the injection pressure of the carrier gas promotes the mixing of 

temperatures [62]. 

 

 

3.2 Typical size of the cold spray particles 

In practice, the effectiveness of the cold spray deposition depends on the size of the particles. 

A range of particles’ sizes below 100 µm in diameter is generally used while particles with 

larger diameters (i.e.   100 µm) are difficult to accelerate. Thus, extra care must be taken when 

selecting the particles’ sizes. Generally, there exists an optimum range of particles’ sizes above 

which there can be a reduction in the particles’ velocity and consequently in the deposition 

efficiency. Equations 1-7 (Eq.1-7) can be used to assess the viability of the deposition based on 

the capability of a cold spray system and the geometry of a nozzle. In the literature, the 

maximum particle size varies in between 20-60µm for several materials, except aluminium 

(known as a light metal) and zinc (known as a soft metal) have been used with up to 100µm 

and 90µm, respectively (Fig. 9). But the optimum deposition efficiency also relies on the 

granulometry of the particles. For a given particle size distribution denoted by f(dp), Assadi et 

al. suggested that the deposition efficiency (DE) is defined by the following equation: !# =
$ %&'( !!#
$
%  [63]. 

 

The selection of the suitable granulometry requires the information of the optimum particle 

size. Even though equations 1-7 (Eq.1-7) enable to find the upper limit of the particles’ sizes, 

they cannot be used to identify the lower limit since the particles with small diameters become 

very sensitive to the heating within the nozzle’s throat zone, thermomechanical sticking 

phenomenon on the nozzle’s inside wall, flow deviation near the substrates or due to the bow 

shock effect within this zone (the zone near the substrate). In order to overcome these 

limitations, Chun at al. suggested a specific nozzle design that was used to deposit 5 µm copper 

particles using usual temperature and pressure conditions of the propellant gas [64]. Significant 

increase in the DE, adhesion strength and coating thickness were obtained in their experiments. 

But, the deposition was poor when fine particles are used with a conventional nozzle [64]. In 

addition, fine particles can suffer from self-agglomeration that may cause some issues 

associated with the gas flow. Hence, finding the minimum particle size requires a complex 

assessment which should include the limiting behaviour of the deposit formation. In this review, 

a collection of experimental results with various particles’ sizes is provided in Fig. 9 and several 

successful cold spray tests are reported in Section 5.  

 

 

Some studies also investigated the deposition of submicron sized powders [10,12,37,38,65,66]. 

A very low pressure and low temperature condition was used in those studies for majority of 

successful depositions for the particles’ size between 20nm-1µm. A vacuum deposition is 

generally performed and the particles are accelerated by a non-heated gas inside a nozzle 

specifically designed for such submicron powders. This cold spray method can also be used for 

the manufacturing of a fine porous structure and for the coating of thermally sensitive materials. 

Details of this innovative feature are reported in Section 4.2.  

 

A
C
C
EPTED

 M
A

N
U

SC
R
IP

Tthe particlesthe particles. 

articlesarticles with with 

extra care must be taken when extra care must be taken when 

particles’ sizes particles’ sizes above above 

velocity and consequently velocity and consequently in in the the deposition deposition 

can be used to assess the viability of the deposition can be used to assess the viability of the deposition 

nozzle. In the literature, the zle. In the literature, the 

60µm for several materials, except 60µm for several materials, except 

have been used with e been used with 

deposition efficiency deposition efficiency 

particle size distribution denoted particle size distribution denoted 

defined defined by the by the 

requires the information of the optimum particle requires the information of the optimum particle 

7) enable 7) enable to find to find 

the lower limit since the lower limit since 

heating within the nozzleheating within the nozzle

inside wall, flow deviation inside wall, flow deviation 

ct within this zonect within this zone (the zone near the substrate)(the zone near the substrate)

suggestsuggesteded a a specific specific 

temperature and pressure conditions of the temperature and pressure conditions of the 

, adhesion strength and , adhesion strength and 

the deposition the deposition waswas poor poor when when 

addition, fine particles can addition, fine particles can 

associated with the gas flowassociated with the gas flow

assessment which should include assessment which should include 

a collection of a collection of experimental experimental 

cessful cold spray testscessful cold spray tests

Some studies Some studies 

A vA very low pressure and low temperature ery low pressure and low temperature 

successful depositionsuccessful deposition



12 
 

4. CGDS manufacturing of advanced coatings 

Current focus of cold spray method is to develop the process parameters for depositing 

composite-based coatings and the use of nanosized powders. The processing conditions of these 

materials require advanced proficiency in the cold spraying technique. This section reports the 

various methods of composite-based depositions suggested in the literature. Very limited 

literature is available on CGDS manufacturing of nanotechnological deposits. The experimental 

procedures below provide an overview of the diverse methods used for the deposition of the 

nanosized powders.  

 

4.1 Composite-based deposits 

Basically, typical cold spray conditions are used to deposit the composite-based powders. The 

main working parameters are not noticeably different for both a single powder deposition and 

a composite one. The propellant gas working conditions remain same as the usual one while 

conventional nozzles are also suitable for the composite-based deposits. Prior to the spraying, 

the dissimilar powders are mixed to provide a composite feedstock. The starting mixture ratio 

can be adjusted to get the mixed ratio of the deposit. Such preparation is specified in the 

literature but some studies prefer the use of commercially available mixtures. The powder 

mixture is fed into the nozzle and sprayed on a substrate. Finding the effective operating 

conditions may be difficult with this deposition method especially when the dissimilar 

combination includes a large variation in their mechanical properties. The deposition conditions 

can be favourable to the adhesion of one material of the mixed powder feedstock while it can 

be unsuitable for the other. To overcome this difficulty, deposition of an agglomerated mixture 

was suggested. Strong mechanical mixing followed by a grinding operation is used to produce 

a powder feedstock made of composite agglomerates. For a dissimilar combination of hard and 

soft materials such as ceramic/metal, the metal component within agglomerate can act as a 

binder and facilitates the bonding. An appropriate selection of metallic combinations of soft 

and hard materials can also prevent the damage of the hard material [67]. For instance, copper 

particles can confer a buffer function to avoid the cracking of diamond particles during 

deposition. Moreover, deposition of pre-mixed powders enables to provide thick metal-

diamond composite coating [67,68]. Generally, for any pre-mixed feedstock, deposition is 

performed using typical cold spray process conditions.   

 

Regarding the simultaneous deposition of non-agglomerated composite powders, Sova et al. 

have suggested an alternative method [69,70]. Accordingly, the powder mixing prior to the 

deposition is no longer a prerequisite. In their method, different powder feedstocks (each 

feedstock consists of a single powder material) are separately connected to the nozzle [71]. The 

locations of the injection are determined based on the characteristics of the powder feedstocks. 

This arrangement provides the suitable in-flight characteristics for each powder material. Finite 

element computations were also used to determine the location of the injection. Hence, different 

powders are mixed inside the nozzle while each of them can simultaneously reach their optimal 

adhesion conditions during the spraying process. For the cases of multi-metallic mixtures, Sova 

et al. suggested that the easily processable powders (aluminium, copper, zinc, …) were fed in 

the supersonic part of the nozzle, and the difficult ones (requiring higher temperature) were fed 

in or near the subsonic section [69, 70]. In case of a metal-ceramic mixture, the subsonic part 

is suitable for the injection of the metallic powder when a heating of particle is required. An 

injection of the ceramic powders in the supersonic part prevents the damage of the nozzle throat 

due to erosion. The flow rate of each injection feedstock is a main parameter to be adjusted 

since the mixture ratio within the final deposit mainly depends on the flow rate. Several 
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metal/metal or metal/ceramic composite-based deposits are successfully produced using this 

method (see Table A2 in the appendix for additional details). 

 

The selection of material combination and the mixture ratio are important tasks. Selection 

criteria for the deposition of metal matrix composites (MMCs) were reported by Ibrahim et al. 

[72]. The review of Ibrahim et al. includes the guidelines that can help to identify a suitable 

combination of both materials and the ratio of each component. The rule-of-mixture law is also 

used to predict the property of an MMC deposit. Examples of predictive models for the thermal 

conductivity and the Young’s modulus can be found in [72]. The researchers also identified that 

the tensile properties of the MMCs (i.e. the yield strength and ultimate strength) increase with 

the volume fraction of the reinforcements, while decreases in ductility and fracture toughness 

were noticed [72]. For instance, the elongation of MMCs is reduced tenfold with 10% of 

reinforcement and it even becomes extremely low (~ 1%) with 20% of reinforcement. As a 

result of this, beyond a critical ratio of 40% reinforcement, brittle fracture could occur.  

 

4.2 Nanotechnological deposits 

The cold sprayed nanotechnological deposits can be classified into three major categories:  (1) 

nanocrystalline media obtained from nanocrystalline powders [43,73–80], (2) deposits made of 

nano-scaled constituents such as nanoparticulates or  carbon nanotubes (CNTs) [81–85], and 

(3) nano-architectural deposits obtained using nanoporous powders [10,35,65,66,86]. This 

classification is suggested based on the manufacturing perspective. Details of the process 

parameters of these classifications are reported in Tables A3 - A5 in the appendix. 

 

The nanocrystalline powders for cold spraying are generally produced using ball milling. These 

powders are in micron size so that their deposition can be achieved in the same way as suggested 

for the usual powders. Similar gas conditions are also recommended, despite of the mechanical 

property differences between these two powder types (nanocrystalline powder and usual 

powder). The usual deposition conditions provide both the adhesion and consolidation for 

several metallic powder feedstocks while some other requires a low temperature condition (see 

Table A3 in the appendix). Likewise, CGDS process for composites-based nanomaterial 

coating is also performed under the same deposition conditions used for a composite mixture 

(Section 4.1). 

 

The deposition of nano-scaled elements represents a singular case of the cold spray process. 

Very limited literature is available about the integration of CNTs or nanodiamond (ND) using 

this technology [81–84]. The nanosized material is typically mixed with metallic powders 

during a ball milling preparation step. The effective combination of the CNTs or ND into the 

metallic powders generally requires several hours of ball milling. Available data also provides 

an indication of the use of fine metals powder (see Table A5 in the appendix). Cho et al. used 

a powder particle size of 0.5-3µm and 20 hours of ball milling was performed to obtain the 

mixture of multiwall carbon nanotubes (MWCNTs) with copper [82]. This preparation enables 

the robust integration of the MWCNTs with the copper powder. The milling produces spherical 

agglomerates (with a diameter of about 20 µm). The exact granulometry was not reported [82]. 

Pialago et al. have performed a similar preparation but with a different ratio of CNTs and a 

relatively short milling time (4h). The authors used a No.400 sieve to get a final composite 

powder with the size of about 40µm [83]. Woo et al. reported the effects of various ball milling 

conditions when preparing a mixture of 10 µm sized Al powder with nanodiamond crystals 

(with an individual size of 5 nm and an agglomerate with the size of 200 nm) [84]. The ND-Al 

particles become homogeneous in terms of morphology and size distribution with the increase 
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of milling time. The particles also evolve from an irregular shape towards a rounded shape with 

their size decrease. From the parametric studies of ND-Al and MMC powders, the correlation 

between the particle size, mechanical properties and milling conditions were determined [84]. 

Generally, the appropriate ball milling preparation can provide the suitable agglomerate size 

for the cold spray process that can also be used with the usual deposition conditions. 

 

 

Although the direct deposition of nanopowders is possible using the cold spray technique, it 

requires a very low working pressure in the range of 0.1-20 kPa in a vacuum chamber [38]. A 

non-heated gas is also generally used during the nanopowder depositions. The available data 

further explains the deposition conditions including the suitable transverse velocity of the 

nozzle (~ in the order of few mm/s), a short standoff distance (~ 3-9 mm), and a specific nozzle 

throat with a cross section of approximately 2.5 x 0.2 mm. These deposition conditions enable 

to produce nanoporous coating for dye-sensitized solar cell (DSSC) applications. However, 

there can be a variance of these parameters depending on the requirement of the coating 

function. Recommendations for process parameters can be found in [41] which explains the 

sensitivity of the coating thickness to the standoff distance (SoD). Moreover, it may also require 

to have a very short SoD of few hundred micrometers when producing a very thin layer of 

coating [41].  

 

Some other studies have investigated to fabricate nano-architectured materials using the usual 

cold spray powders (i.e. micron sized powders) [65,66,86,87]. “Nano-architectured” stands for 

a structure that contains nano size geometrical features. The nanoporous TiO2 commonly used 

in photovoltaic or photocatalytic application is a typical example in the literature. Prior to the 

deposition, the nanopowders are mixed with a removable PEG solution and are prepared using 

a rotary evaporation method to produce the primary TiO2-PEG composite powder [86], and 

then transformed into small particles (0.5-3µm) by crushing operation. A vacuum deposition is 

then performed with the crushed particles. The PEG phase is then removed using a post 

annealing treatment to form the required nanoporous structure within the coating [66,86]. Such 

coating method provides a higher density of nanopores than that of a porous coating obtained 

using a direct deposition of primary TiO2 nanopowder, under the same deposition conditions. 

Therefore, the nanopores generated with the composite powders provide an improved 

photocatalytic activity and a thicker coating of up to several µm thickness in comparison with 

a few µm thickness obtained from a direct nanopowder deposition [86]. In [35,87], a direct 

deposition of nanoporous powder is suggested without any major modification in terms of 

deposition parameters. To obtain the nanoporous powder, the PEG phase was removed after a 

rotary evaporation and it was treated using both chemical procedure and sintering before the 

crushing step [35, 87]. These additional steps enable to improve the consolidation mechanism 

between the nanoparticles within the porous structure. It also provides bimodal-sized nanopores 

which contribute for an improved photovoltaic efficiency compared to conventional unimodal 

distributed nanoporosity [87]. However, the overall energy conversion efficiency of a dye 

sensitive solar cell (DSSC) produced using the later method (the direct deposition of 

nanoporous powder) is lower than that of obtained from former one (powder with the PEG 

deposition and the post annealing removal) [86]. 

 

4.3 Hybrid coating/substrate deposition 

Among this category, the case of ceramic/metal combination mainly depends on the 

knowledges acquired through the developments of the cold spray process. The usual working 

conditions identified for the metal/metal combinations are suitable for the deposition of a 
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ceramic powder onto various metallic substrates (Table A6 in the appendix). A gas pressure of 

1-3 MPa and a temperature between 500-800°C enables the WC-Co or NiO-Al2O3 coatings. A 

low pressure lying in between 0.6-0.8 MPa and a temperature of about 280°C were applied to 

deposit SiC particles onto an Inconel substrate (Table A6). 

 

Inversely, a metal/ceramic combination requires extra care to facilitate a good adhesion. The 

deposition of spherical aluminium particles onto a lead zirconate titanate (LZT) substrate was 

found to be difficult due to the brittle behaviour of the LZT [19].The fracture is occurred under 

the collision surface and submicronic fragments are ejected from the LZT surface. As evidenced 

by a grain pull-out phenomenon due to an intergranular crack formation, this event can be 

controlled by increasing the velocity of the particle so that the particles’ impact becomes 

favourable to adhesive and resistant to erosion [19]. Thereby, King et al. have presented three 

solutions to obtain adhesive condition by; (1) decreasing the particle size, (2) increasing the gas 

temperature, or (3) increasing the gas pressure. The reduction of the particle size is also 

beneficial in terms of providing momentum reduction which minimizes the surface 

deterioration. Note that a gas temperature increase may become detrimental due to a 

delamination which results from the thermal stresses while the substrate is subjected to the gas 

stream and reaches a certain threshold temperature. Optimal spray parameters are required for 

the deposition of aluminium powders without causing harmful structural defects [19]. King et 

al. used a mean particle diameter of 15µm as the lowest powder size. Zhang et al. performed 

the deposition of aluminium powder onto a glass substrate with nearly round shape particles 

whose characteristic size varies in between 15-75 µm. Their results indicate a poor coating 

capability despite the observation of some anchored particles [17]. Kim et al. considered using 

fine and angular copper particles with a size of 0.5-1.5µm to produce a coating of up to 300µm 

thickness. Their spraying conditions include a low working pressure (0.6 MPa) and a 

temperature of 280°C. Adhesions of single particles and aggregated fine particles were 

observed, the latter revealed more apparent anchoring effect [18]. Hence, the natural 

agglomeration of fine particles within the gas flow seems to facilitate the adhesion, probably 

due to better penetration of the multi-facetted agglomerates onto the substrate.  

 

For polymer metallization (deposition of metals on polymers), the experimental spraying 

conditions are rather broad. High thermal sensitivity of polymers has led to various possible 

depositions (Table A6 in the appendix). Those depositions can be classified into the following 

general conditions:  

· Using the usual pressure, low temperature, with usual CGDS powder sizes 

· Using a very low pressure, room temperature, with nano size powders 

A considerable amount of the works on the polymer metallization using the cold spray 

technique relies on the expertise learned from the deposition of metal/metal combinations. 

Deposition is generally performed with the same conditions of the powder granulometry and 

the propellant gas pressure. Generally, the particle size varies in between 5-50 µm and a gas 

pressure of 1-3 MPa suits for the deposition. To minimize the thermal effect on the polymer 

substrate due to the gas flow, the preheating temperature of the propellant gas is set as 

approximately below 500°C. The expansion of the gas in the nozzle also reduces the 

temperature at the nozzle exit. Although the particles adhere onto the substrate, the deposit 

growth may fail due to the low velocity of particles and the low temperature which are well 

below the critical velocity to produce the metal/metal contact [20,21].Hence, soft metals with a 

low melting temperature such as tin, zinc and aluminium are normally suitable for the CGDS 

polymer metallization [25,26]. Some other studies suggest the deposition of an intermediate 

metallic layer to promote the growth of the coating thickness on a polymer substrate. A 

successful deposition of a thick copper coating of up to 800 µm was produced on a PVC 
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substrate using an intermediate copper or tin layer, and the deposition of tin layer was 

particularly obtained at a low temperature and a low pressure condition [20,21]. To facilitate 

the coating formation, spherical powders were used to obtain the intermediate bonding layer 

while the top coating was made of dendritic particles. The metallization of polymer matrix 

composite (PMC) substrates is also possible without either erosion or damage. For example, 

carbon or glass fibre reinforced composites with brittle nature was coated using soft metals as 

reported in [20,21,25,26]. Among various metals (Al, Sn, Cu, Pb, Zn and SS316L), a good 

deposition capability was demonstrated for a tin (Sn) powder onto an epoxy or glass fibre 

reinforced composite, and for an aluminium powder onto a carbon fibre reinforced PEEK 

[20,21,25,26]. A low impact energy of a few µJ is recommended to avoid the degradation of 

polymer during the coating process [25]. Chun et al. have used tin nanopowders for the 

metallization of some polymer substrates [88]. The deposition is performed under a vacuum 

condition at room temperature. It was indicated that the nanomanufacturing method was 

performed using a nozzle with a narrow exit with a size of 300 µm. 

 

The polymer/metal hybridization also represents a particular case in the literature. Very few 

papers have been published in this area [29,40]. In contrast with metals and ceramics, the 

thermoset polymers are very light and very soft materials. According to experimental 

investigations, the cold spray deposition of polymer powders is tricky. During the deposition, 

the interfacial shearing combined with the dragging action caused by the transverse wall jet 

flow on the substrate removes the polymer layer that was already formed during a prior impact 

[29]. In order to overcome this issue, a nozzle that is long enough to generate shock waves is 

connected to a diffuser at the exit section [29]. The shock waves provide beneficial effects for 

the deposition of polymer particles. That is, inside the diverging part of the long nozzle, the gas 

compression is induced by the shock wave and consequently it heats the particles and promotes 

a good deposition. At the nozzle exit, the particle velocity is reduced thus it reduces the 

interfacial shearing during the collision onto a previously deposited layer. Excellent quality 

deposition was obtained with the gas pressure and temperature of 0.5 MPa and 275 °C, 

respectively [29]. In [40], the successful adhesion was achieved without requiring either 

substrate preheating or a deposition of an intermediate metallic layer as suggested earlier. 

 

5. Substrate treatment and its contributions 

The conditions of the substrate surface, in terms of topology and temperature, affect the 

adhesion of cold sprayed particles. At present, the papers published on this subject can be 

organized into three major categories including the effects of (1) surface roughness, (2) 

substrate heating and (3) surface texturing. The subsections 5.1-5.3 report various findings for 

each one of these effects on the adhesive behaviour.  

 

5.1 Effects of surface roughening on the adhesive behaviour 

In cold spraying, a well prepared surface, free of contaminants and oxides is believed to promote 

a good bonding. Prior to the deposition, preparation of the substrate surface is generally 

recommended. Degreasing and cleaning steps are normally used for glass and polymer 

substrates. For metals, the typical practice consists of sandblasting or grit blasting or grinding 

and/or polishing. Sandblasting and grit blasting are generally suggested to remove the surface 

oxide but also to provide a roughened fresh surface, considered as an activated surface. The 

“activated surface” means that the surface is conducive to the particle adhesion unlike the ‘non-

activated’ one that facilitates the particles to rebound. These terms were employed for metallic 

substrates and the activation factor is related to the surface roughness. Some studies found a 
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positive effect of the roughening on the bond formation [89–92] while some other analysis 

showed the opposite effect [76,92]. Therefore, it brings the need for a comprehensive discussion 

about the roughness effect on the adhesion. The best surface preparation differs for various 

powder/substrate combinations. For instance, Wayne et al. investigated the effect of roughness 

on the adhesion of titanium particles onto a sapphire substrate [93]. An improved adhesion with 

a coating thickness of 250 µm was obtained on the polished substrate that had a roughness of 

lower than 3 nm in comparison with a submicron roughness for a grounded surface which rather 

produces a non-uniform coating of 150 µm. Some other findings for various metal combinations 

are also consistent with this tendency [89–92]. Although polishing and grinding produce a 

deposition with comparable bonding strength, grit blasted surface mitigate the strength 

(Table 2). Yin et al. explain the decrease in bonding strength (of 24%) as a consequence of a 

discontinuous contact at the particle/substrate interface for a grit blasted surface [90]. However, 

such defective bonding is only observed for the particles’ sizes close to the sizes of cavities that 

were produced during the grit blasting whereas the powder feedstock essentially requires 

containing larger powder particles than that of the cavities. Hussain et al. have noticed a 

significant decrease of the bonding strength between a polished surface (Ra=0.05µm) and a grit 

blasted one with a roughness of 3.9µm [91]. According to their experimental observations, the 

roughness hinders the interfacial jetting during the impact and consequently it prevents the 

oxides removal [91]. Hence, the automatic surface cleaning during the process is disturbed and 

it eventually obstructs the formation of a metallurgical bond [91]. Note that the negative effect 

of the roughness on the bonding strength is not a paradigm, although agreements between some 

studies were found (Table 2). In contrast, many other studies suggest that the roughness may 

be beneficial to the adhesion [76,92,94]. Richer et al. have found that a coarse grit blasting 

improves the deposition efficiency of an Al-Mg powder on a Mg substrate [76]. Wu et al. have 

identified the favourable conditions of the substrate roughening. At low impact velocities, Wu 

et al. identified a flawless deposition of an Al-Si powder onto a grit blasted mild steel substrate 

while a polished substrate was difficult to coat under the same spraying conditions [92]. 

However, the bonding strength was comparable for the onset of the successful depositions in 

both cases. With an increase of the impact velocity, there is a range of roughness which 

decreases the bonding strength due to an incomplete contact within the micro-asperities whereas 

a polished surface facilitates a continuous contact between the particle and the substrate. The 

negative effect of the roughness decreases and eventually disappears when the impact velocity 

is high enough to deform the particles onto the roughened surface of the substrate providing an 

improved mechanical interlocking and thus, it forms a continuously bonded interface. These 

various results preclude a general rule for surface roughening for the cold spray process. The 

recommendation of sandblasting or grit blasting is rather useful to remove the oxides from the 

metal surfaces. Moreover, this method is currently being followed for the surface preparation.     

 

 

5.2 Effects of substrate heating on the adhesive behaviour 

Some research studies were focused on the influence of substrate heating on deposition. Legoux 

et al. investigated the deposition of hard, medium and soft particles using Al, Zn, and Sn powder 

feedstocks. A grit blasted carbon-steel substrate was preheated to 350°C and an infrared high-

speed camera (ThermaCAM SC3000) was used to measure the surface temperature during the 

deposition [95]. It was shown that the deposition efficiency increases for the aluminium, 

decreases for the zinc and remains low without any changes for the tin. Based on microstructural 

observations, the increase in DE for the Al particles seems to be related to the particle 

deformation while the adhesion of Zn particles suffers from an oxidation although elongation 

and strong deformation of those particles were observed. For the tin, the effect of the substrate 
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heating was not conclusive since the gas conditions enabled a velocity which was favourable 

for erosion. Fukumoto et al. performed deposition of copper on a SS and an Al substrates both 

had 0.3 µm roughness. The propellant gas was not heated in their study to avoid the additional 

thermal effect caused by the gas itself. Increased substrate temperatures were identified as 

conducive to improve the DE in those experiments. Using a gas pressure of 5bar and a particle 

mean size of 5µm, a DE of up to 80% was achieved with a substrate temperature of 600°C, 

while a substrate at room temperature provides a DE of lower than 20% under the same 

experimental conditions  [96]. Although, low number of crater formation was observed with 

substrate heating, the underlying mechanism in the improvement of the deposition was not 

further clarified. Yu et al. suggested some improvements in the deposition with the substrate 

heating using a numerical simulation of both particles and substrate behaviours [97]. The 

thermomechanical softening of the substrate allows embedding the particles further into the 

substrate, which was interpreted as an interlocking mechanism that governs the bonding. A 

virtual test of a Cu/Cu combination also revealed that the contact area remained nearly 

unchanged for a substrate temperature varies of 100-600 °C. According to the authors, such 

situation limits the role of mechanical interlocking. However, the literature agreed that the 

thermomechanical softening due to substrate heating promotes the adhesion during the cold 

spray process [97–101].  In case of a deposition onto a hard substrate such as Al2O3 with Cu 

particles [94], substrate heating is believed to enable an activation effect. By increasing the 

substrate temperature, the evaporation and decomposition of adsorbate occur on the free surface 

of Al2O3 and then a direct metal/ceramic contact happens at the Cu/Al2O3 interface during the 

cold spray deposition [94].       

 

5.3 Effects of surface texturing on the adhesive behaviour 

A recent novel type of surface preparation arises from the laser technology known as surface 

texturing. A high fidelity pattern on a surface is produced using a sophisticated equipment with 

a high energy laser impulse. Repetition of the specific laser ablation procedure using an 

automated scanning method is performed to obtain various patterns. The laser treatment 

generates a textured surface whose characteristics vary with the diameter and depth of the holes, 

the inter-hole distance and the orientation of the holes, which are tailored by the laser impulse. 

The laser texturing provides a regular surface topography with an optimizable pattern in terms 

of the shape and size. Kromer et al. have found an improvement in the adhesive behaviour using 

a laser texturing method [102,103]. Fig. 10 shows the cases of a weakly textured surface 

(Texture 1) and a highly textured surface (Texture 2). Cold spraying tests were performed on 

each textured surface and compared with a coating performed on a grit blasted surface with a 

roughness of 2.7µm. The bonding strength increases two fold or even more, when using those 

textured surfaces (Fig. 11). The texturing method improves the mechanical anchoring of the 

particles on the substrate. The deposited particles fill the holes of the pattern. This evidence 

shows a convincing solution for an improvement of the bonding strength of cold spray coatings 

provided that the substrate is sensitive to the laser texturing method.  

 

 

6. Prospective improvements based on the powder features 

Selection of the powder features plays a major role in the deposit formation. In the cold spray 

literature, analyses have been focused on the effects of some of these features regardless of the 

material of the powder feedstock. To date, the kinematic effect of the particle size is known. 

However, the suitable particle size to reach the critical velocity and consequently to cause a 

successful adhesion is also a main subject of various research studies. For this purpose, 
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researchers used various experimental measurement techniques and numerical models as 

mentioned in Section 2.2. Nevertheless, the specific features of the powder such as the (1) 

particles’ temperature, (2) morphology, and (3) inner architecture have their own significance 

in the bond formation. The details of these specific features are given in the sub sections 6.1-

6.3.  

 

6.1 Effect of temperature of the powder 

Although the particle velocity prior to impact is a parameter that mainly governs the deposition, 

the particle temperature can also promote the adhesion. Various empirical models have shown 

that the critical velocity of adhesion (Vcr) decreases with the increase in the particles’ 

temperature [104–106]. Vcr is found to be dependent of particles’ temperature according to the 

following generic rule  1 !# !$%  that gives a coefficient with a numerical value of lower 

than one; where Tp and Tm are the particles' temperature prior to the impact and the melting 

temperature of the particles, respectively. Schmidt et al. claimed that the deposition window 

defined in terms of Vcr based on Tp has a low temperature limit and below this temperature the 

material may follow a brittle behaviour, and above which the material becomes ductile and it 

enhances the bonding [104]. That is, the thermomechanical softening of the particles due to Tp 

is interpreted as a factor that facilitates the bonding. It is also believed to increase the area of 

metallurgically bonded interface during the cold spray deposition [105].   

 

Generally, there are two distinct methods to heat the particles either via setting the inlet gas at 

a high temperature or using preheated particles. But at present, a reliable quantification of the 

particles’ temperature in cold spraying suffers from real complexities due to technical 

limitations. Particularly, due to the small size of the particles used in cold spraying, 

experimental measurement of the particles’ temperature is difficult to be obtained. Using 

numerical models including the heat transfer effect over the particles’ surface is an alternative 

way to compute the particles’ temperature within the gas flow but the reliability of this 

assessment has not clearly been discussed. Nevertheless, some analysis focused on the change 

in mechanical properties due to a long preheating step of the powder feedstock [107,108]. 

During the preheating step, it involves a decrease in the hardness of the particles due to an 

annealing effect and a stress relaxation which increase the DE [107,108]. The same annealing 

conditions in a vacuum provides a high DE than that of an annealing treatment performed in a 

non-vacuum environment which causes oxidation [108]. Eventually, the oxide layer obstructs 

the formation of a metallurgical bonding. Thus the oxide layer has to be broken and ejected 

during the deposition to obtain a successful adhesion. Thereby, the oxygen content in the 

annealed powders increases the critical velocity of adhesion. Experimental findings show that 

the required Vcr can substantially increase due to the surface oxidation [104,109–111].  

 

6.2 Effect of morphology of the powder 

The cold spray process is not exclusively used with spherical powders albeit they have always 

been considered as the conventional powders. The nature of the powder feedstock also includes 

the case of irregular morphologies such as angular and dendritic shapes. Generally, spherical 

powders are produced by atomization whereas angular powders are produced by cryomilling. 

Dendritic powders are obtained using an electrolytic production method. Some studies showed 

a substantial gain in the DE using the irregular particles. Unlike the spherical powders, they 

give higher in-flight velocity for the same deposition conditions and similar granulometry 

[107,112]. Similar deposition conditions with the use of similar granulometry of the powders 

confirm the capability of irregular particles to reach the highest possible velocities [113]. The 
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kinematic gain of irregular powders is attributed to a higher drag coefficient due to a rapid 

boundary layer separation over the particles’ surface. The higher drag coefficient generates a 

negative pressure gradient, and consequently a large drag force that allows the particles to reach 

high velocities [114,115]. Therefore, the irregular morphology improves the deposition 

efficiency, decreases the porosity within the deposit.  Thus it can also enable the increase in the 

hardness of the coating [112,114]. 

 

In literature of cold spraying, comparison between dendritic powders and spherical powders 

were also investigated. Deposition of spherical particles fails whereas dendritic particles 

produce dense coating with a high DE [116–118]. Irregular morphology enables the particles 

to reach high impact velocities and better heating. In addition, the free space between the 

dendrites acts as a porous-like structure that confers lower elastic modulus and yield strength 

[116]. Thus, dendritic powders have lower critical velocity than that of spherical powders. 

Therefore, high quality coatings can be manufactured at low temperatures using dendritic 

powders with a DE of up to 80% [117]. With this capability, dendritic powders have been used 

to get successful deposition on the thermally sensitive substrates such as polymers, or to 

improve the DE when using a low pressure cold spray (LPCS) deposition [21,118–121]. The 

deposition of dendritic powders on a polymer substrate is also found to limit the erosion. 

Moreover, LPCS brings innovative contributions such as developments of hybrid 

deposit/substrate combinations [20,25,29], in-situ restoration using a portable LPCS system 

[122], deposition using thermally sensitive materials [25,29]. Furthermore, one can produce 

deposits with metals and MMCs using spherical powders when the deposition using LPCS 

method is less efficient for such materials due to the kinematic limitation of the propellant gas.  

 

6.3 Effect of the inner architecture of the powder 

 New term "powder architecture" can be suggested to note a distinction with the term "powder 

morphology" which generally refers to the shape of the powder, and particularly the outer shape. 

New powder types are rather characterized by their specific inner features. In the literature for 

cold spraying, the cases of porous powders and cladded powders can be identified as type of 

powder architectures for which a very limited literature is available. It includes the following 

distinct types: porous architecture (sponge powders) and core-coated architecture (cladded 

powders: i.e. the core made of a particle is cladded by a thin coating made of a distinct material). 

 

Wong et al. depicted various depositions using powders with sponge architecture [112]. In 

contrast to spherical powders, angular powders and sponge powders can reach higher impact 

velocities as they have higher drag coefficients under the same deposition conditions [112]. 

Thus, a good adhesion is obtained for both angular and sponge powders and the DE is also 

similar and higher than that of obtained for the spherical powders using similar deposition 

conditions. Both sponge and angular powders exhibit similar coating quality except for the 

hardness and the porosity of the coating. Although their primary hardness is the lowest for 

sponge powders, they generate the highest hardness within the coating. Indeed, the hardness 

ratio (HVcoating/HVpowders) for sponge powders can reach 2.1-2.65 in comparison with (1.5-1.95) 

and (1.35-1.6) obtained for angular powders and spherical powders, respectively (the hardness 

of the primary sponge, angular and spherical powders are respectively ~92HV, ~120HV and 

~142HV). Regarding the porosity, the porous architecture of the sponge powders facilitates the 

formation of residual pores within the coating. The amount of porosity is the highest compared 

to the case of angular and spherical powders. However, in some other studies, the porosity of 

primary porous powders provides an advantage in terms of the improvement of energy 

conversion efficiency of DSSCs [86] as reported in Section 4.2. The deposition of the porous 

A
C
C
EPTED

 M
A

N
U

SC
R
IP

T
enables the particles enables the particles 

he free space between the he free space between the 

lower elastic modulus and yield strengthlower elastic modulus and yield strength

spherical powdersspherical powders

using dendritic using dendritic 

With this capability, dendritic powders have been With this capability, dendritic powders have been 

such as polymersuch as polymer

depositiondeposition [21,118[21,118

fofound to limit und to limit 

such assuch as developmentdevelopment

situ restoration using situ restoration using a a portport

[25,29][25,29]. . Furthermore, oFurthermore, o

and MMCs using spherical powdersand MMCs using spherical powders when the when the 

kinematic kinematic limitation of limitation of 

of the powderof the powder

term "powder architecture" can be suggested to note a distinction with the term "powder term "powder architecture" can be suggested to note a distinction with the term "powder 

morphology" which generally refers to the shapemorphology" which generally refers to the shape of the powderof the powder

are rather characterized by are rather characterized by their their 

porousporous powders and cladded powders can be identified as powders and cladded powders can be identified as 

 which a very limited literature is available which a very limited literature is available

distinct types: porous architecture (sponge powders) and coredistinct types: porous architecture (sponge powders) and core

made of a made of a particle particle 

. depicted v. depicted various arious 

spherical powdersspherical powders

as as tthey have highhey have high

good adhesion is obtained for both good adhesion is obtained for both 

similarsimilar and higher than and higher than 

conditions. conditions. Both sponge and angular powders exhibit Both sponge and angular powders exhibit 

hardness hardness and and 

sponge powderssponge powders

ratio (HVratio (HV

and (1.35and (1.35



21 
 

powders produces bimodal-sized nanopores that enable to increase the photovoltage of DSSCs 

[87]. 

 

Core-coated architecture has been investigated as an alternative technique to deposit non-

ductile materials such as ceramics, oxides and diamond. Such powders are known to be hard 

and brittle. Due to the high velocity impact during the cold spray process, they suffer from crack 

formation which affects the structural integrity of the coating. The literature presents several 

successful depositions using a mixture of these powders with metallic powders. The metal phase 

which is ductile, acts as a binder and also experiences plastic deformation. Thus it facilitates 

the deposit formation and improves the structural integrity of the coating by absorbing the 

impact energy via the plastic deformation. To produce the same effect, the use of cladded 

powders was suggested in [67,68]. Diamond powders were precoated by two thin layers (~2-

5µm) with Ni and Cu as the inner and outer layers, respectively. The Ni clad was used as an 

intermediate layer to bond the diamond to Cu. The cold spray deposition of the cladded diamond 

powders onto an Al substrate produced a successful coating [68]. However, the clad layer was 

not sufficiently thick to completely absorb the kinetic energy of the collision.  Hence, the 

diamond core was fragmented due to high stresses during the collision on the substrate. 

Nonetheless, the fabrication of a thick coating exceeding 5mm was demonstrated [67].    

 

7. Conclusions and future perspectives 

Since it discovered in the early 19th century, the cold spray method has been improved over 

decades and integrated with a major innovation step of using a De Laval nozzle. With the help 

of significant research works including the fundamental developments at the Institute of 

Theoretical and Applied Mechanics of the Russian Academy of Science, the cold spray 

manufacturing method has evolved as an innovative cold additive material processing 

technique. Various phenomena during the deposit formation and the growth of the coating have 

been characterized by many researchers. Several distinct mechanisms were identified and it 

revealed the enormous capabilities of the cold spray process. Various technological deposits 

have been obtained and in this context ample experimental data are available in the literature. 

In this review, the cold spray method is categorized using a taxonomy based on both the 

deposition procedure and innovative material perspectives. Thus, a comprehensive review of 

deposition procedures includes the following classifications: baseline working conditions for 

the cold spray process, specific processing conditions including the deposition of 

nanotechnological deposits, deposition of composites-based deposits, and hybrid 

coating/substrate deposition. Available data are gathered to constitute an experimental database 

with a wide overview of the required processing conditions for the cold spray additive 

manufacturing. 

 

Deposition of metals has led to typical experimental conditions of cold spraying, including gas 

pressure and temperature of up to 5MPa and 800 °C, respectively, which is mainly suitable for 

the micron size powders. He, N2 or air can be used as the propellant gas for the deposition 

among which He is the most efficient one due to its high specific gas constant and low molecular 

weight. Small size particles are deposited using a vacuum chamber while the propellant gas is 

set to sub-atmospheric pressures without preheating. Those conditions are specially 

recommended for fine powders (20nm-5µm).  

 

The baseline working conditions of cold spraying are often used to deposit the composite 

powders. The composite powder deposition can be achieved using two distinct methods: using 

a single point injection of a premixed powder feedstock in the nozzle or using a multi-point 
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injection for each powder feedstock at different zones of the nozzle. With the first method, 

deposition can be difficult for dissimilar powders mixture such as metal/ceramic combinations 

due to differences in both mechanical and thermal properties. Moreover, an agglomerated 

mixture prepared by a strong mechanical mixing and grinding was used to facilitate the 

adhesion. With the second method, it is possible to simultaneously reach the optimal adhesive 

conditions for each powder component. In this method, the powders become mixed inside the 

nozzle to form the deposit of the composite on the substrate. This deposition method 

recommends that easily processable powders (requiring low temperature for successful coating) 

are injected in the supersonic region of the nozzle, and the difficult one (requiring higher 

temperature) in or near the subsonic region of the nozzle. 

 

The literature for cold spraying also shows the substantial efforts in manufacturing the hybrid 

deposit/substrate components. The typical cold spray conditions of metal pairs are used for the 

ceramic/metal combination. For other hybrid combinations, such as oxide/ceramic, 

oxide/polymer, metal/polymer, metal/PMCs, polymer/metal and metal/ceramic; the deposition 

using a low pressure and a low temperature is recommended. When using nanoparticles, 

vacuum deposition is recommended while the propellant gas is set to a sub-atmospheric 

pressure which is suitable to achieve a deposit/substrate hybridization without thermal damage 

of the substrate.  

 

The review on the surface conditions for the substrate is classified into three main categories 

based on their contributions: (1) surface roughening, (2) substrate temperature and (3) surface 

texture. For metals, the typical practice of surface preparation consists of sandblasting or grit 

blasting or grinding and/or polishing. Various effects of the substrate roughness on the adhesion 

and bonding strength preclude a general rule for surface roughening in cold spraying. As used 

in typical surface preparation, sandblasting or grit blasting is rather recommended to remove 

the oxides from the metal surfaces. Prior to deposition, the substrate surface can also be textured 

using a laser technology to provide a regular pattern of micro holes which are filled with the 

particles during their collisions onto the substrate. This method creates regular bond and 

improves the bonding strength. The other surface treatment is the substrate heating method 

during the deposition. The literature shows that the thermomechanical softening due to substrate 

heating promotes the adhesion. 

 

The literature of cold spraying also includes the consideration of the following specific features 

of the powders: the particles’ temperature, the powders’ morphology, and the powders’ inner 

architecture. Heating of the particles modifies the mechanical properties of the powders and 

thus it facilitates the bonding during the deposition. It is believed that the critical velocity of 

adhesion decreases with the heating of the particles. Regarding particles’ morphology, 

comparative studies of various shapes (spherical, angular and dendritic) were performed. 

Irregular morphology (e.g. angular or dendritic) improves the deposition efficiency, decreases 

the porosity within the deposit, and thus it increases the hardness of the coating. Finally, effects 

of inner architecture of the powder were shown in this review. Porous powders reach the highest 

possible impact velocities because of their high drag coefficient. A good adhesion and a high 

DE are obtained for porous powders. Cladded powders made of a ceramic core (or another hard 

material) and a thin ductile coating (using a soft material), also produce a successful deposit 

when the ductile coating acts as a binder during the deposit formation. 

 

Although the CGDS process has gained numerous experimental benefits till to date, the 

efficiency of the new emerging applications relies on (1) prediction of the process behaviour 

including the thermal kinetics of the particle within the gas flow, (2) optimization of deposition 
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efficiency and (3) prediction of structural changes during the deposit formation that governs the 

final properties of the deposit. Together, such future works could open new avenues to a wide 

range of efficient CGDS methods. 
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(c) 

Fig. 8. Typical (P0, T0) parameter sets for the powders of (a) Zn and Sn; (b) Stainless steel 

(SS), Fe and Ag and (c) Al, Cu and Ti.   

 
Fig. 9. Typical range of powder diameters used for various materials in CGDS experiments. 
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(a)               (b) 

Fig. 10. Typical pattern on the Al surfaces produced using the laser texturing method: (a) a 

weakly textured surface (Texture 1) and (b) a highly textured surface (Texture 2) [102,103]. 
 

 
Fig. 11. Laser texturing effect on bonding strength for the cold sprayed Al powder onto an Al 

substrate [102,103].  
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Table 1. Specific heat ratio (γ) and specific gas constant (Rs) of the air, N2 and He gases. 
 
 

 Air Nitrogen Helium 

γ (-) 1.4 1.4 1.66 

Rs (J.kg-1.K-1) 287 297 2077 

 
 

Table 2. Effect of surface roughening on the bonding strength (σBS) in cold spraying. 

Combination Cu/Al [91] Ni/Al [90] Ti/Ti6Al4V [89] 

Parameters 
Ra  

(µm) 

σBS 

(MPa) 

dp  

(µm) 

Ra  

(µm) 

σBS 

(MPa) 

dp 

 (µm) 

Ra  

(µm) 

σBS 

(MPa) 

dp  

(µm) 

Polished 0.05 57 

5-25 

0.36 ~25 

10-45 

0.04 ~22.5 

5-45 Grounded 0.4 56 2.12 ~25 0.21 ~22 

Grit-blasted 3.9 35 6.35 ~19 2.66 ~8 
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Appendices: comprehensive review of CGDS processing data 

A1. Deposit with a single powder  

Powder 
dp 

(µm) 
gas 

P0 

(MPa) 
T0 

(°C) 
Q 

(g/mn) 
SoD 

(mm) 
Nozzle parameters Vnozzle

2
 

(mm/s) 
Substrate Ref. 

Ldiv (mm) dthroat (mm) A/A* 

Ag 15-50 Air 1-2 250-450 - 15 - - - - SS 347grit blasted [123] 

Al 20 He 1.5-2 20 20 20 - - - ̴8.3 Al pickled [124] 

Al 2-20 - - - 10-12 12 - - 1 1.66 Al [125] 

Al 5-50 N2 3.45 230 15 25 168 2 14.21 20 Al2024 T351 grit blasted [126] 

Al1100 1-30 He+N2 2.1 227-527 - - - - - - Al1100 [127] 

Al2618 <25 He 1.7 20 - 15 - - - - Al grit blasted [128] 

Al2618 25-38 He 1.4 20 - 20 - - - 8 Al6061 grit blasted [114] 

Al7075 - N2 1.6 500 3(rpm) 15 - 2 9.9 20 Al5052 grit blasted [73] 

Al  15 He 0.62 200 15 12 - - - 0.83 AZ91 Mg [129] 

Al 1-40 Air 1.6 230 - 20 - 2x4 1.375 10 AZ91D3
 sandblasted [130] 

Al 101 6-174 He 0.98 300 - 10 - - 10 - AZ91D-T4 grit blasted [131] 

Al 40; 60; 80 Air 2 204-371 - 20 80 3 ̴2.8 - Brass sandblasted [132] 

Al ̴80 Air 0.7-2.5 280 - 10 - 1 49 - Ni [133] 

Al 15-75 He 2.5 20 10 20 - - - 27 

Sn Hv=0.08 GPa 

[17] 

Cu  Hv=0.95 GPa 

Al 6063 Hv=0.97 GPa 

Brass  Hv=1.10 GPa 

BS B014 
Hv=2.18 GPa 

Hv=6.22 GPa 

Hv=8.05 GPa 

 SS 1040  Hv=2.33 GPa 

Al2O3 Hv=10.7 GPa 

Cu - N2 1.5 300 - 20 - - - 10 Al6061 polished [78] 

                                                           
2 Transverse rate 
3 Magnesium alloy 
4 Chromium-tungsten-steel tool  
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A2. Composites-based deposits 

Deposit 
Powders  

and ratio (%) 
dp 

(µm) 
gas 

P0 

(MPa) 
T0 

(°C) 
Q 

(g/mn) 
SoD 

(mm) 

Nozzle parameters Vnozzle 

(mm/s) 
Injection 
condition 

Substrate Ref. 
Ldiv (mm) dthroat (mm) A/A* 

Al/Cu 
Cu (50) 5-25 

He 1.5; 2.9 - 60 20 100 ̴1.35 ̴8.8 500 
Mixing 30mn  

and injection 
Cu cleaned  [176] 

Al (50) 15-45 

Al/Cu 
Al (10,20) 5-45 

N2 1.72 350 - 10 - - - 20 
Mixing and 

injection 
- [177] 

Cu (20,10) 5-45 

Al/Fe 
Fe (50) 54 

N2 2 350 - 20 100 2 9 40 
Grinding 30mn 
and injection 

SS sandblasted [178] 
Al (50) 74 

Al/Ni 
 

Al/Ti   

Al (75) 77 

Air 0.8 280 - 10 - - 49 - 
Mixing 30mn  

and injection 

Al 

[179] Ni (25) 43  

Ti (25) 3 Al 

Al/Ti 
Al (50) 10-45 

He 1.6 100; 200 20 10 80 - 78.5 33.33 
Mixing and 

injection 
Al grit blasted [180] 

Ti (50) 45 

Al/AlxNiy 
Al (75;90) ̴77 

Air 0.8 280 - 10 - 1 - - 
Mixing 30mn  

and injection 
Al 

[181,
182] Ni (25;10) ̴3 

Al/ 
Mg17Al12 

Al (50-25) <45 
He 1.03 300 - 10 - - - 1 

Mixing 30mn  
and injection 

AZ91D Mg grit 

blasted 
[183] 

Mg17Al12 (50-75) 48.5 

Al/Al2O3 
Al (90;10) ≤44 

Air 0.7 330 - 5 - - 24 - 
Mixing and 

injection 

Al6061 
[184] 

Al2O3(10;90) 50-100 Si 

Al/Al2O3 
Al (7-75) 80-180 

N2 0.62 560 8-12 10 - - - 2 
Mixing and 

injection 

Al7075 grit blasted 
[185] 

Al2O3 (-) 25.5 Steel grit blasted 

Al/Al2O3 
Al2O3 

(15-75vol) 

10 
He 0.62 65; 125 - 12 - - 1 100 

Mixing1h   
 and injection 

AZ91 Mg cleaned [186] 
20 

Al/Al2O3 
Al2O3 

(25-75vol) 

15 
He 0.62 125 15 12 - - 1 0.83 

Mixing 1h   
 and injection 

AZ91E Mg cleaned [187] 
20 

Al/Al2O3 
Al (75,50) 

1-30 Air 1.6 230 - 30 - 2x4 5 10 
Mixing and 

injection 
AZ91 Mg grit blasted [188] 

Al2O3(25,50) 

Al/Al2O3 (1:10, 10:1) <50 Air 0.7 330 - 5 - - 24 - As-purchased 
Si [189] 

Al/SiC (1:10, 10:1) <50 Air 0.7 330 - 5 - - 24 - As-purchased 
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Al 
/CuO 

Al (2:3) 
4.1 

He 1.4-1.7 150 11 10-15 100 2 9.61 10 
Mixing   

et injection 
SS 4130 grit blasted 

[190] 
<20 

Al (2:3) 
4.1 

He 1.4-1.7 150 11 10-15 100 2 9.61 10 
Mixing  

 and injection 
SS 4130 grit blasted 

45-53 

Al/Zn 
Al (40;60) 53-75 

Air 2 315 24; 30 20 - 2.8 ~3.3 25-38 
Mixing and 

injection 
Al 

[154] 

Zn (60;40) 53-90 

Al/Zn/Si 

Zn (17;51) 53-90 

Air 2 315 30 20 - 2.8 ~3.3 25-102 
Mixing and 

injection 
Al Al (68;34)  53-75 

Si (15;15) 40-50 

Al-Si/ 
Zn 

Zn (6-70) 45-90 
Air 2 315 30 20 - 2.8 ~3.3 25-102 

Mixing and 
injection 

Al 
Al-Si(94-30) 53-75 

Al-12Si 
/SiC 

Al-12Si (-) 5-45 
He 1.7-3 360-500 2 10 - - - - 

Mixing and 
injection 

Al6061T6 grit blasted 
[191,
192] SiC (20-60) <32 

Al/ 
Al-Si/CNT 

Al (80;90) ̴26 
He 2.9 - - - - - - - 

Mixing 1h  and 
injection 

Al6061 pickled [81] 
CNT (0.5;1) ̴57 

Al2319/ 
TiN 

Al2319 (50) 5-63 
Air 2.6 490 - 20 170 - 4.9 - 

Mixing 
  and injection 

Al sandblasted [193] 
TiN (50) 10-45 

Al7075 
/B4C 

Al7075 (80) 15 
He 0.98 300 - 10 - - - 1 

Mixing and 
injection 

Al6061T6 cleaned 

[194] 
B4C (20) 7 

Al7075 
/SiC 

Al7075 (90) 15 
He 0.98 300 - 10 - - - 1 

Mixing and 
injection 

Al6061T6 cleaned 
SiC (10) 28 

CuSn8 
/AlCuFeB 

CuSn8 (50) 17 
Air 3 500 - 30 - - - - 

Mixing and 
injection 

Mild steel  

[195] 
AlCuFeB (50) 17 

CuSn8 
/TiN 

CuSn8 (50) 17 
Air 3 500 - 30 - - - - 

Mixing and 
injection 

Mild steel  
TiN (50) 25 

Cu/CNTs 
ratio of CNTs  

(5 - 15) 
~40 N2 

3.5 200 
5cm3/mn 35 - - - 10 

Prior mixing 
and injection 

Cu [83] 
2.8 500 

Fe/Al 
Al (40) 74 

45 N2 2 510 - 15 100 2 9 40 
Grinding  and 

injection 
Steel sandblasted [196] 

Fe (60) 54 

HA-Ag / 
PEEK 

HA-Ag (20-80) 
<45 

Air 1.1-1.2 150-160 - 15 - - - 50 
Mixing 24h   

 and injection 
Glass cleaned [197] 
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51 
 

TiAl3/Al TiAl3  (1:3) 
25-37 

Air 1.8 250 - 10 - - - - 
Mixing 48h and 

injection 
Ti2AlNb polished  [209] 

25-37 

W/Cu 
W (75) <1 

75 N2 37.27 - - 10 - 3 2.22 - 
Grinding   

 and injection 
Mild steel  [210] 

Cu (25) <45 

WC-12Co 
/Ni 

WC (50-96) 15-45 
Air 6.34 550 60 5 - 4.46 ̴2 5 

Mixing and 
injection 

Mild steel 

sandblasted 
[211,
212] Ni (50-4) - 

Zn/Al 
Zn (70) <10 

N2 2.4 400 - 20 - - - - 
Mixing 1h  and 

injection 
Mild steel [213] 

Al (30) <30 

Zn-Fe 
/TiO2 

Zn-Fe (-) 180-500 
Air 0.4-0.6 20 - 50-130 - - - - - 

SS 400 polished 
[214] 

TiO2  (-) - Cu  polished 

Al/Cu 
Al 28 

N2 1.5 300 
18 

- 20 3 ̴4.7 10 
Separate 

injection15 
Al [71] 

Cu 39 30 

Al/Cu 
Al (60) 28 

N2 2 427 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

[69] 

Cu (40) 39 Steel sandblasted 

Al/Ti 
Ti (50) 36 

N2 2 550 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

Al (50) 28 Steel sandblasted 

Al/Al2O3 
Al (50) 28 

N2 3 227 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

Al2O3 (50) 25 Steel sandblasted 

Al/SiC 
Al (50) 28 

N2 3 227 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

SiC (50) 38 Steel sandblasted 

Cu/Al2O3 
Cu (50) 39 

N2 3 427 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

Al2O3 (50) 25 Steel sandblasted 

Cu/SiC 
Cu (50) 39 

N2 3 427 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

SiC (50) 38 Steel sandblasted 

Ti/SiC 
Ti (50) 36 

N2 3 600 - 200 20 3 ̴4.7 - 
Separate 
injection 

Al sandblasted 

SiC (50) 38 Steel sandblasted 

 

  

15 Subsonic injection of  the Cu powders (at the nozzle inlet) and supersonic injection of  the Al powders  (50mm from the throat location)  
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A3. Nanostructured deposits using nanocrystalline powders 

Powder 
dp 

(µm) 
gas 

P0 

(MPa) 
T0 

(°C) 
Q 

(g/mn) 
SoD 

(mm) 
Nozzle parameters Vnozzle 

(mm/s) 
Substrate Ref. 

Ldiv (mm) dthroat (mm) A/A* 

Al5083 nc
16 <45 He 1.7 20 - - 180-270 2 9-13.3 - Al grit blasted [74] 

Al7075 nc - N2 1.7 500 3(rpm) 15 - 2 9.9 20 Al5052 grit blasted [73] 

Cu nc
17 - N2 2 300 - 10 - - - 5 Al6061 polished [78] 

Ni nc 
15 <53 He 1.7 5 - 120.8MPA - - - - Al grit blasted [79] 

NiCrAlYnc 52 He 2.5 500 - (15) 100 2 9 - Inconel 738 [80] 

WC nc
18-12Co  ̴2019

 He 3 600 30 15 - - - 10 SUS 304 grit blasted [215] 

WC nc
20-12Co 5-44 He 2 600 - 20 100 2 4 - SS sandblasted [216] 

WC15-Co nc 37±22 He 1.7 550 - - - - - - Al grit blasted [43] 

 

  

                                                           
16, 17 Grain size of  20-30nm 
17 Grain mean size of 32nm 
18 Grain size of 100-200nm 
19 Preheated at 500°C 
20 Grain size of 50-500nm 
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A4. Nanoporous deposits using nanosized powders 

Powder 
dp 

(µm) 
gas 

P0 

(MPa) 
T0 

(°C) 
Q 

(l/mn) 
SoD 

(mm) 
Nozzle parameters Vnozzle 

(mm/s) 
Substrate Ref. 

Ldiv (mm) dthroat (mm) A/A* 

TiN ns 0.02-0.03 He 1^-4-7^-3 20 - 6 - 2.5x0.25 - 50.2-7kPa
21

 α-Al2O3 cleaned [65] 

TiO2 ns 0.025 He 1 20 - 5 - - - 50.23kPa
22

 FTO glass  cleaned [10] 

TiO2 ns 
0.025 

He 1 20 - 5 - 2.5x0.2 - 52kPa
22 

SS  
[12] 

0.200 ITO glass cleaned 

TiO2 np 10-4522 N2 2 300 - 10 100 2 9 500 SS sandblasted [217] 

TiO2 np 0.5-323 He 0.1 20 3-7.5 10 - 2.5x0.2 - 5<2kPa
22 FTO glass [35,87] 

TiO2 ns/PEG <1 He - - 3 5 - 2.5x0.2 - 52kPa
22 glass [66] 

             

 

  

                                                           
21 Deposition under vacuum condition 
22 Nanoporous powder 
23 Nanoporous powder prepared by a primary TiO225nm-PEG mixture + PEG removal by a post heat treatment 

nc: nanocrystalline, np: nanoporous, ns: nanosized 
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A5. MMCs deposits with nanosized phases 

Deposit 
Powders  

and ratio (%) 
dp 

(µm) 
gas 

P0 

(MPa) 
T0 

(°C) 
Q 

(g/mn) 
SoD 

(mm) 

Nozzle parameters Vnozzle 

(mm/s) 
Injection 
condition 

Substrate Ref. 
Ldiv (mm) dthroat (mm) A/A* 

CNTs/Al 
/Al-Si 

Al (80;90) ̴26 
He 2.9 - - - - - - - 

Mixing 1h  
and injection 

Al6061  

pickled 
[81] Al-Si (-)  

CNT (0.5;1) 
̴57 

Al ns/Ni 
Ni (50) 4.2 

He 1 300 11 10 - - - 1 
Mixing 40mn   

and injection 
Al [77] 

Al (50) 6.8 

CNTs/Cu 
CNTs (3) - 

Air 0.6 - - 
- 

0.5-0.6 MPa
24 

- 4.8 - - 
Mixing 20h  

and injection 
Al [82] 

Cu (-) 0.5-3 

CNTs/Cu 
CNTs (5-15) 

~40 N2 
3.5 200 

5cm3/mn 35 - - - 10 
Mixing 4h and 

injection 
Cu [83] 

Cu (-) 2.8 500 

ND25/Al  
ND(10) 

̴28 N2 1.72 450 - - - - - - 
Mixing 0.5;3h   

and injection 
Steel 1018 

grit blasted 
[84] 

Al(-) 

TiN/SiC 
TiN 

(10; 30; 50) 

0.02 
He 0.01 20 - 3-90.1kPa 

23 - 2.5x0.25  1-5 
Wet milling, 

drying, injection 
α-Al2O3  

cleaned 
[218] 

0.04 

 

 

 

 

 

 

 

 

 

 

  

                                                           
24 Deposition under vacuum condition 
25 Nanodiamond with a size of 30-200nm 

ns: nanosized 
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