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individual sites. This underlines once more the critical role 
of an adequate integration of the signal inferred from proxy 
records into the climate models for reconstructions based 
on data assimilation.
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1  Introduction

Equatorial Eastern Africa is characterized by a heteroge-
neous spatial distribution of precipitation due to local and 
regional meteorological features, which are influenced by the 
presence of numerous lakes and a complex topography. Con-
sequently, this region supports a large variety of environ-
ments, ranging from deserts with rainfall less than 200 mm 
per year to tropical rain forests with annual rainfall above 
2000 mm (Nicholson 1996). Due to the seasonal migration 
of the Intertropical Convergence Zone (ITCZ) back and forth 
across the equator, the annual cycle of rainfall is bimodal 
over much of East Africa, with a first and main rainy season 
occurring from March to May (the so-called long rains) and 
a second from October to December (short rains). Nonethe-
less, this seasonal distribution of precipitation can change 
rapidly over short distances and some regions, such as the 
Ethiopian and the Eastern Highlands, only have one rainy 
season with a peak during boreal and austral summer, 
respectively (e.g. Owiti and Zhu 2012; Yang et al. 2015).

Because of the influence of large-scale atmospheric and 
oceanic factors, the temporal variability of rainfall tends 
to be more homogeneous than the mean patterns over the 
region (Nicholson 2014). At the inter-annual scale, numer-
ous observation-based (e.g. Ogallo et al. 1988; Hastenrath 
et al. 1993; Saji et al. 1999; Webster et al. 1999; Nicholson 
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and Selato 2000; Clark et al. 2003; Schreck and Semazzi 
2004; Izumo et al. 2014) and model-based (e.g. Goddard 
and Graham 1999; Ummenhofer et al. 2009; Rowell 2013; 
Klein et al. 2016; Schubert et al. 2016) studies have empha-
sised the teleconnections between the short rains, which are 
the main driver of the inter-annual variability of the East 
African rainfall (e.g. Nicholson 1996, 2014), and the Indian 
and Pacific SSTs. Specifically, precipitation over East Africa 
during the short rains correlates positively with the SSTs 
over the Western Indian Ocean and the Central and East-
ern Pacific Ocean, while the correlations are negative over 
the Eastern Indian Ocean. This link appears robust and has 
been reported using various techniques including correlation 
coefficients (Ogallo et al. 1988; Goddard and Graham 1999; 
Saji et al. 1999; Clark et al. 2003; Rowell 2013; Klein et al. 
2016; Schubert et al. 2016), visual comparison of different 
2D fields (Webster et al. 1999; Ummenhofer et al. 2009), 
empirical orthogonal functions (Schreck and Semazzi 2004; 
Goddard and Graham 1999; Saji et al. 1999) and composite 
(Saji et al. 1999) or harmonic (Nicholson and Selato 2000) 
analyses. However, such statistical methods do not allow 
for the identification of the physical nature of this link. For 
instance, they do not provide insight as to whether the SSTs 
are responsible for the East African rainfall variability, or 
whether both variables react to a common forcing.

The goal of this study is to perform reconstructions of 
the East African rainfall and Indian Ocean SSTs over the 
last millennium, based on the covariance observed between 
those two variables, through a data assimilation method. The 
covariance can indeed be used to potentially obtain better 
reconstructions of the two variables considered, and can be 
particularly useful over periods when instrumental observa-
tions are lacking and indirect proxy records are scarce. In 
contrast to more classical statistical methods, data assimila-
tion has the advantage not to rely on the length of a calibra-
tion period and on the quality of the records during this 
period, which could be a problem in Africa. Furthermore, 
it can handle a potential non-stationarity of the covariance, 
related for instance to changes in the mean state, and ensure 
that the reconstruction for both variables is compatible 
with the physics of the system as represented by the model. 
Although a link between the East African rainfall and SSTs 
in the Pacific has also been reported, it seems less robust 
than the one in the Indian Ocean (Klein et al. 2016), and will 
thus not be considered in the present study.

Since the early 1990s, data assimilation has been exten-
sively employed in various Earth science disciplines includ-
ing meteorology, oceanography and hydrology (e.g. Park 
and Xu 2009; Dee et al. 2011; Balmaseda et al. 2015). In 
palaeoclimatology, it is still considered as an emerging topic 
(e.g. Matsikaris et al. 2015), despite growing interest over 
the past 15 years (e.g. von Storch et al. 2000; Goosse et al. 
2006; Crespin et al. 2009; Widmann et al. 2010; Hakim et al. 

2016). When applied to palaeoclimatology, data assimila-
tion aims to combine information from model results and 
proxy-based reconstructions to find estimates of past climate 
changes. Here, a particle filter method has been preferred 
over other data assimilation methods such as forcing singu-
lar vectors (e.g. Barkmeijer et al. 2003) or pattern nudging 
(e.g. von Storch et al. 2000). This ensemble method has the 
advantage of respecting the model physics as much as pos-
sible, by selecting a set of model states that are compatible 
with observations within the range of a finite ensemble, tak-
ing into account the uncertainties. While this choice may 
potentially limit the skill of the reconstructions given that 
the real climate has a large state space with many degrees 
of freedom, the method has already led to very satisfy-
ing results in conditions similar to the ones of the prob-
lem studied here (e.g. Goosse et al. 2012; Mairesse et al. 
2013). Furthermore, ensemble particle filters are relatively 
easy to implement and do not require any information about 
the model. If a satisfactory reconstruction can be obtained 
where the constraint is applied, the empirical information 
will then be propagated to various climate variables and spa-
tially spread, based on the physics and the dynamics of the 
climate model used.

In the last decade, two types of ensemble-based meth-
ods of data assimilation have been applied to study the past 
millennium climate (e.g. Matsikaris et al. 2015). First, data 
assimilation can be used to update an ensemble of simula-
tions at regular interval (on-line data assimilation). In this 
case, the ensemble is generated sequentially, each period 
depending on the diagnostic made by the data assimilation 
process on the previous ones. Second, data assimilation can 
occur a posteriori, making use of an existing ensemble of 
simulations (off-line data assimilation). The on-line method 
has advantages compared to the off-line one. Indeed, it main-
tains the temporal consistency, and it is expected to bring 
better results than an off-line method as the slow component 
of the climate system, such as the oceans, can propagate 
an information forward in time (Pendergrass et al. 2012; 
Matsikaris et al. 2015). However, if the predictability of 
the variables of interest is limited between two assimilation 
steps because of a dominant role of the chaotic nature of 
the system, an on-line technique would not outperform an 
off-line one.

The main interest of an off-line method lies in the fact 
that we can use an existing ensemble of simulations, sav-
ing a significant amount of computational time. This allows 
applying a data assimilation scheme in higher resolution 
general circulation models (GCMs) and considering larger 
ensembles, such as in Bhend et al. (2012) or in Steiger et al. 
(2014). In contrast, on-line data assimilation methods are 
usually used in palaeoclimatology with simplified models 
with a relatively coarse resolution such as in Crespin et al. 
(2009), Goosse et al. (2012), or in Klein et al. (2013), or with 
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relatively small ensembles (Matsikaris et al. 2015). We do 
not expect a large predictability of the East African rainfall 
on the interannual time-scale, meaning that the additional 
information brought by an online method would be limited, 
as shown in previous works (e.g. Annan and Hargreaves 
2012). Furthermore, an off-line procedure is also much more 
flexible as many tests can be performed on a single existing 
ensemble, while new simulations are required each time in 
the on-line approach. Hence, an off-line method is preferred 
over an on-line one in the present study, using the ensemble 
of ten simulations recently performed (Otto-Bliesner et al. 
2015) with the Community Earth System Model version 1.1 
(CESM1; Hurrell et al. 2013), which is the largest ensemble 
to date made with a GCM that covers the last millennium.

To our knowledge, reconstructing simultaneously pre-
cipitation and SSTs over long periods using data assimi-
lation has never been attempted before. Hence, in order 
to test the methodology and to identify the most critical 
issues, this study contains several steps gradually increas-
ing in complexity. The most simple case is the assimilation 
of pseudo-proxies where the data used to constrain model 
results are derived from the climate model CESM1 itself. 
The locations of the sites selected for the assimilation are 
the ones for which actual proxy-based reconstructions are 
available. In this framework, the model physics is supposed 
to be perfect as both the pseudo-observations and the model 
ensemble originate from the same source. Furthermore, the 
reconstruction target and the uncertainty of the records are 
perfectly known, the latter being given by the noise imposed 
on model results to obtain the pseudo-proxies. This setup is 
thus ideal to assess precisely the performance of the data 
assimilation method itself. Two sensitivity analyses are per-
formed using this framework, one assessing the effect of the 
size of the ensemble, and the other looking at the individual 
effect of each site on the quality of the reconstructions. In a 
second step, pseudo-proxy data derived from other climate 
models as well as from recent observations are considered. 
This allows studying how sensitive the reconstructions are to 
biases in the model physics. Lastly, real proxy-based recon-
structions are used to constrain the model simulations. The 
selected hydroclimate-related reconstructions describe the 
water-balance history during roughly the last millennium 
of Lake Challa, Lake Naivasha, Lake Masoko and Lake 
Malawi, and are part of the East African hydroclimate syn-
thesis achieved by Tierney et al. (2013). The six SST-related 
records are derived from the �18O content of coral archives 
spread over the Indian Ocean, the choice of the records being 
based on the compilation of Tierney et al. (2015).

This study is structured as follows. The next section 
describes the climate model used (Sect. 2.1), the data assimi-
lation method (Sect. 2.2), and the different data assimilated, 
ie. the pseudo-proxies (Sect. 2.3) and the proxy-based recon-
structions (Sect. 2.4). Section 3 describes the reconstructions 

of the East African precipitation and Indian Ocean SSTs 
based on the assimilation of the pseudo-proxy data and 
Sect. 4 is focussed on the reconstructions performed by 
assimilating the proxy-based reconstructions. Finally, Sect. 5 
presents the discussion and conclusions.

2 � Methodology

2.1 � Model results

Data assimilation is based on the ensemble of simulations 
performed over the period 850–2005 AD with CESM1 (the 
CESM1 Last Millennium Ensemble or CESM-LME; Otto-
Bliesner et al. 2015). This model has an horizontal resolu-
tion of about two degrees for the atmosphere and land com-
ponents, and of about one degree for the ocean and sea-ice 
components. The ensemble contains ten simulations, which 
only differ from slightly different atmospheric states at the 
start of the experiments. They are driven through the last 
millennium by changes in both natural and anthropogenic 
climate forcings. The solar irradiance variations follow the 
reconstruction of Vieira et al. (2011), with the spectral vari-
ations and ‘11-year’ solar cycle from Schmidt et al. (2012). 
Changes in the forcings related to volcanic aerosols are 
derived from Gao et al. (2008). The evolution of the major 
greenhouse gases (CO

2
, CH

4
 and N

2
O) is based for the pre-

industrial period (850–1850 AD) on Flückiger et al. (2002) 
and MacFarling Meure et al. (2006), and for the recent 
period on Hansen and Sato (2004). Anthropogenic changes 
in land use/land cover are first derived from the reconstruc-
tion of Pongratz et al. (2009) until 1850, and follow Hurtt 
et al. (2011) thereafter. Finally, Earth’s orbital parameters 
are updated every year based on Berger et al. (1993).

CESM1 is able to simulate relatively well the major fea-
tures of the East African rainfall, the Indian Ocean SSTs, 
and the link between those two variables. For instance, Klein 
et al. (2016) have shown that both the unimodal cycle of 
rainfall observed at Lake Masoko and Lake Malawi and the 
bimodal cycle observed at Lake Challa and Lake Naiva-
sha are well reproduced by the model, its results being the 
closest to observations compared to five other GCMs. This 
model is able to simulate correctly the seasonal cycle of 
the SSTs over the eastern and the western Indian Ocean, 
although the amplitude of the seasonal cycle is slightly 
underestimated in the western Indian Ocean, as is the case 
for all GCMs tested (Fig. S1). The recent trend in the Indian 
Ocean SSTs is also relatively well reproduced by CESM1 
and the other GCMs (Fig. S2). Finally, the pattern of correla-
tions between the East African rainfall and the Indian Ocean 
SSTs in CESM1 is the one that best matches the observa-
tions compared to the other GCMs (Klein et al. 2016), mak-
ing CESM1 adequate for the present analysis.
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2.2 � Data assimilation method

The off-line ensemble-based method of data assimilation 
applied here uses a particle filter (e.g. van Leeuwen 2009), 
as described in Dubinkina et al. (2011). This method has the 
advantage to be very general. It does not rely on hypotheses 
such as the Gaussian distribution of the error, as is the case 
for other ensemble-based methods such as the Kalman filter 
(van Leeuwen 2009), and it enables the experiments to be 
performed off-line, which is needed here. The frequency of 
the data assimilation is annual, meaning that annual mean 
values from every members of the ensemble of simula-
tions, called particles, are compared to data each year of 
the reconstruction period. Based on this comparison, the 
likelihood of every particle is computed, taking into account 
the uncertainties of the data. The likelihood is a measure of 
the ability of the different ensemble members to simulate 
the signal showed in the data. The model-data comparison 
is performed using anomalies in order to remove the poten-
tial model mean biases, although CESM1 simulates quite 
well the East African rainfall and the Indian Ocean SSTs 
(and previous section Klein et al. 2016). Depending on the 
likelihood values, a weight is then attributed to the particles. 
When the weights of each ensemble member are known for 
a given year, a weighted mean is computed, which provides 
the reconstruction for that year.

Only the first nine simulations of the CESM-LME are 
used in the data assimilation process, because pseudo-proxy 
data are, in some experiments, derived from the tenth one. 
When mentioning the CESM-LME later in the text, it thus 
refers to the first nine members of the ensemble only. An 
ensemble of nine particles may be too small to obtain a good 
reconstruction since the range of possible climate states cov-
ered by those simulations may not be large enough to repro-
duce the signal present in the data assimilated (e.g. Goosse 
et al. 2006). However, it is not possible to perform additional 
simulations with CESM1 over this period. Hence, in order to 
increase the size of the ensemble and thus the probability to 
find a good match between model results and observations 
for a given year, the natural variability is sampled by also 
selecting other years for the ensemble of model states, that 
will thus differ from the year in observations.

This is only valid if the forcings play a marginal role 
compared to natural variability, as appears to be the case 
for interannual changes in East African precipitation and, 
to a lesser extent, in Indian Ocean SSTs (Klein et al. 2016). 
There is thus a priori no reason why the timing of events in 
observations and in a simulation should be similar, mean-
ing that any model year can be included in the ensemble. 
For the CESM-LME, this means that the potential size of 
the ensemble can rise up to 9 × 1156 members. Here, six 
ensemble sizes are considered containing 9, 27, 99, 207, 
1035 and 2079 particles. In the first case, the data for a 

given year are only compared to the nine ensemble member 
results available for this actual year. When 27 particles are 
selected, the model results of one year out of 500 are added 
to the ensemble, besides the nine results of the actual year 
of the process. To increase the size of the ensemble to 99, 
207, 1035 and 2079, one year out of 100, 50, 10 and 5 are 
considered, besides the actual year of the experiments. Note 
that we keep using only the first nine ensemble members of 
the CESM-LME even when real proxy records or results of 
other models are assimilated, in order to have a meaningful 
comparison between all experiments.

2.3 � Pseudo‑proxy data

This study starts with the assimilation of the results of the 
tenth ensemble member of the CESM-LME over the last 
millennium, at the same locations as the real proxy-based 
reconstructions that are described in the next section. The 
cells of the atmospheric and oceanic grids containing the 
records sites are shown in Fig. 1. The variables measured or 
reconstructed from the proxy data, ie. �18O for the oceanic 
ones and different hydroclimate-related variables for the East 
African lakes, are not explicitly simulated by the climate 
model. Coral �18O changes are directly linked to variations 
in SSTs (e.g. Juillet-Leclerc and Schmidt 2001; Stevenson 
et al. 2013), and East African hydroclimate changes are 
mostly dependent on precipitation rather than on evaporation 
in models (Klein et al. 2016). Thus, in a first step, the vari-
able assimilated at the locations of the six oceanic records is 
yearly averaged SST, while it is yearly averaged precipitation 
at the locations of the four continental grid cells containing 
the East African hydroclimate records. The pseudo-proxy 
time series are generated by the addition to the results of 
the tenth ensemble member of the CESM-LME of a white 
Gaussian noise with a standard deviation of 5 mm·month−1 
for rainfall results and of 0.25 ◦C for SST results, these val-
ues corresponding to the data error estimates applied in the 
data assimilation process. This produces time series with 
signal-to-noise ratios of a similar magnitude to previous 
studies (e.g. Bhend et al. 2012; Steiger and Hakim 2016), 
with values ranging from 0.16 to 0.57 for SST and from 0.14 
to 0.31 for rainfall. Moreover, changing these estimates by 
20% positively or negatively does not significantly affect 
the results.

In order to estimate the uncertainty associated to the 
model biases, the second step of this study consists in assim-
ilating pseudo-proxy data, but taken from other GCMs, ie. 
MPI-ESM-P (Stevens et al. 2013) and GISS-E2-R (Schmidt 
et al. 2014), as well as from instrumental observations, using 
the gridded precipitation data set GPCC-v7 (version 7 of the 
Global Precipitation Climatology Centre data set; Schneider 
et al. 2014) and the SSTs data set ERSST-v4 (version 4 of 
the Extended Reconstructed Sea Surface Temperature data 



3913Reconstructing East African rainfall and Indian Ocean sea surface temperatures over the last…

1 3

set; Smith et al. 2008). The model MPI-ESM-P displays a 
strong teleconnection between the East African rainfall and 
Indian SSTs, that is relatively similar as the one simulated by 
CESM1, while GISS-E2-R shows a very weak link between 
both variables (Klein et al. 2016). These two models are thus 
good candidates to assess the effect of uncertainties in model 
physics and dynamics on the quality of the reconstructions. 
Regarding the instrumental observations, the data assimila-
tion process is applied only over the period 1901–2005. The 
same noise as above is added to the model time series to 
obtain pseudo-proxies. These different models and gridded 
data sets do not have the same spatial resolution as CESM1. 
All results are thus interpolated into the CESM1 continen-
tal and oceanic grids before applying the data assimilation 
scheme.

2.4 � Proxy‑based reconstructions

The last, and most complex, step of this study consists in 
assimilating real proxy-based reconstructions of the East 
African hydroclimate and Indian Ocean coral �18O. The 
selection of the hydroclimate reconstructions is based on 
the compilation achieved in Tierney et al. (2013), which 
contains seven lake-based East African proxy records 
covering the last millennium with a time resolution of at 
least 50 years. As in Klein et al. (2016), the reconstruc-
tions originating from Lake Challa, Lake Naivasha, Lake 
Masoko and Lake Malawi have been selected here. The 
records from Lake Tanganyika and Lake Edward are dis-
carded because they are located far from the Indian Ocean, 
which has thus potentially less influence on their local 
hydroclimate. The reconstruction from Lake Victoria is 
also not included because the representation of this lake 
is different from one model to another. Indeed, CESM1 

and GISS-E2-R simply ignore it, while it is present in the 
model MPI-ESM-P as a single grid point lake, meaning 
that the specific conditions imposed by the presence of 
the lake (e.g. Thiery et al. 2015) cannot be reproduced in 
the simulations.

The hydroclimate reconstructions are based on different 
proxies, but the four of them can be qualitatively seen as 
smoothed versions of the local moisture-balance of the areas 
in which they originate. For Lake Challa, the hydroclimate 
variation is derived in Tierney et al. (2013) from the first 
principal component of composite variation in three mois-
ture-balance proxies, that accounts for 40% of the variance in 
the data (supplementary material of Tierney et al. 2013). The 
three proxies are a presumed indicator of catchment runoff 
(the branched and isoprenoidal tetraether index (BIT); Ver-
schuren et al. 2009), an isotopic proxy for rainfall source and 
intensity (�D in the leaf waxes of terrestrial plants; Tierney 
et al. 2011), and a proxy for variation in dry-season length 
and windiness (varve thickness; Wolff et al. 2011). Regard-
ing Lake Naivasha, the time series is a lake-level reconstruc-
tion derived from the sediment lithostratigraphy (Verschuren 
2001), supported by salinity reconstructions based on fossil 
diatom and midge assemblages (Verschuren et al. 2000). In 
Lake Masoko, the hydroclimate reconstruction is inferred 
from the low-field magnetic susceptibility of the sediment, 
which is a proxy for lake-level changes and/or wind stress. 
Two such records are available for this lake, one that goes 
back to -43,300 AD (Garcin et al. 2006) and one that starts 
around 1500 AD (Garcin et al. 2007). The Masoko time 
series chosen here is obtained from Tierney et al. (2013), 
who used the last millennium of the longer record but with 
age-depth tie-points translated from the shorter one (Anchu-
kaitis and Tierney 2013). The hydroclimate reconstruction in 
Lake Malawi is based on the mass accumulation rate of the 

Fig. 1   Grid cells of CESM1 
containing the sites of the 
proxy-based reconstructions 
selected for data assimilation. 
The red cells belong to the 
atmospheric grid while blue 
ones to the oceanic grid. The 
numbers correspond to the 
identifier of the reconstructions 
as shown in Table 1
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terrigenous sediment fraction, suggested to be a runoff proxy 
(Brown and Johnson 2005; Johnson and McCave 2008).

The Indian Ocean coral �18O time series selected in this 
study are taken from the work of Tierney et al. (2015) who 
compiled 57 marine coral-based archives in order to recon-
struct SST in the tropics over the past four centuries. Out 
of these 57 records, 13 belong to the Indian Ocean domain, 
including 12 oxygen isotopic composition of coral carbon-
ate. However, six of them are discarded because located on 
land in the grid of the CESM model. Thus, six time series 
of coral �18O remain available for our analysis. They origi-
nate from Malindi (Cole 2000), Mayotte (Zinke et al. 2008, 
2009), Houtman Abrolhos (Kuhnert et al. 1999), Mentawai 
(Abram et al. 2008), Seychelles (Charles 1997) and La Réun-
ion (Pfeiffer et al. 2004). The exact geographic coordinates 
of those reconstructions, as well as the period they cover, are 
given in Table 1. Note that the comparison of model results 
and proxy-based reconstructions during the process of data 
assimilation is made at the model grid cell scale, the related 
potential representativeness error being included in the data 
error considered in the data assimilation procedure.

Data assimilation involves an objective comparison 
between model results and the data assimilated, meaning that 
both have to represent the same physical quantity. Since the 
variables reconstructed from proxy records are not included 
as such in the climate models, a processing is applied to the 
simulated variables in order to emulate coral �18O and East 
African hydroclimate. This may potentially affect the quality 
of the reconstructions. Hence, before assimilating the real 
proxy-based reconstructions, the impact of assimilating the 
measured variables, ie. coral �18O and East African hydro-
climate, instead of SSTs and precipitation, is investigated. 
This is done by considering once more the results of the 
tenth ensemble member of the CESM-LME as the “reality”.

For each ensemble member of the CESM-LME, the 
model coral �18O is computed based on the linear function 
of SST and sea surface salinity (SSS) derived by Thompson 
et al. (2011):

where SST is expressed in ◦C and SSS in PSU. The error 
chosen to obtain the pseudo-proxies is 0.05o∕

oo
.

It is not possible to apply the same approach for the four 
hydroclimate proxy-based reconstructions because of the 
complex and not well understood relationship between those 
proxies and the East African hydroclimate-related variables, 
including lake level, catchment runoff or seasonal drought 
severity depending on the site. In this final test, the model 
variable that is compared to the data is annually averaged 
precipitation minus evaporation (P–E). The data assimila-
tion process is performed annually. However, to qualitatively 
match the temporal resolution of the proxy-based recon-
structions, the values considered each year are smoothed by 
performing averages over sub-periods of ten years. Further-
more, since the reconstructions only provide common rela-
tive changes in moisture balance, both the data assimilated 
(pseudo-proxy data or real-world proxy-based reconstruc-
tions) and the model simulations time series are standardized 
before the comparison by subtracting their mean over the 
whole period and by dividing by their standard deviation. 
The data error taken into account is here estimated to be 0.5, 
whatever the data considered for the assimilation. The result-
ing signal-to-noise ratios of the pseudo-proxy time series 
range from 0.14 to 0.28 and from 0.56 to 0.61 for �18O and 
hydroclimate time series, respectively. These are thus typical 
values (e.g. Bhend et al. 2012; Steiger and Hakim 2016) and 

(1)
�
18
O

CESM1-LME
1−10 = −0.22 × SST

CESM1-LME
1−10

+ 0.16 × SSS
CESM1-LME

1−10

Table 1   Geographic coordinates and period covered by the proxy time series used in this study

Id Location Lat Long Period References

Hydroclimate proxy-based reconstructions
 1 Naivasha −0.77 36.35 884–1993 Verschuren et al. (2000)
 2 Challa −3.32 37.7 1031–2005 Time series computed in Tierney et al. (2013) based on Verschuren et al. (2009), Tier-

ney et al. (2011) and Wolff et al. (2011)
 3 Masoko −9.33 33.76 452–1999 Time series computed in Anchukaitis and Tierney (2013) based on Garcin et al. (2006, 

2007)
 4 Malawi −10 34.22 1270–1978 Brown and Johnson (2005); Johnson and McCave (2008)

Coral �18O
 5 Malindi −3.20 40.10 1887–2002 Cole (2000)
 6 Mayotte −12.65 45.10 1865–1994 Zinke et al. (2008, 2009)
 7 Houtman Abrolhos −28.47 113.77 1794–1994 Kuhnert et al. (1999)
 8 Mentawai −0.13 98.52 1858–1998 Abram et al. (2008)
 9 Seychelles −4.62 55 1846–1995 Charles (1997)
 10 La réunion −21.03 55.25 1832–1995 Pfeiffer et al. (2004)
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once again, the results do not change substantially if these 
error estimates vary by 20%.

3 � Reconstructions using pseudo‑proxy data

3.1 � Pseudo‑proxies derived from CESM1

In this section, we focus on the experiments performed in the 
idealized setup, with the assimilation of the tenth ensemble 
member of the CESM1-LME.

3.1.1 � Skill of the reconstructions

As expected, rainfall and SSTs after data assimilation get 
closer to the pseudo-proxy at the grid points where data 
are available (Fig. S9). However, an ensemble sufficiently 
large is necessary to propagate the information spatially 
over the whole Indian Ocean and eastern equatorial region 
of Africa, and to spread it to the other variable (rainfall or 
SSTs), as described in the supplementary materials in Sec-
tion S2. Since the best reconstructions are achieved using 
2079 particles, and since the computational cost of these 
experiments is relatively modest thanks to the use of an 
off-line data assimilation method, this ensemble size will 
be used in all the experiments shown in this study. Overall, 
27% (38%) of these 2079 particles have a non-negligeable 

weight in the experiment with data assimilation of rainfall 
(SSTs), with the first particle representing in average 3.5% 
of the total weight of the reconstructions in both experi-
ments (Figs. S3, S4).

Figure 2 shows the coefficient of efficiency (CE) for all 
the grid cells of our study area, computed from rainfall 
and SST results, for three types of experiments performed 
(assimilation of rainfall, of SST and of both variables), 
using 2079 particles. The CE (Lorenz 1956) is a diagnos-
tic classically used to measure the skill of reconstructions 
(e.g. Steiger et al. 2014). It has the advantage, compared 
to the root-mean-square-error (RMSE) for instance, not 
to be influenced by the variance of the time series on the 
diagnostic, and thus to provide a more meaningful com-
parison of the quality of the reconstruction at different grid 
cells. It is defined for a time series including n samples as:

where x is the “true” time series, x̄ is the “true” time series 
mean over a climatological reference period, and x̂ is the 
reconstructed time series, ie. the output after data assimi-
lation. CE ranges from one, corresponding to a perfect fit 
between the “true” and the reconstructed time series, to −∞. 
It is positive when the reconstruction is more skillful than 

(2)CE = 1 −

∑n

i=1
(x

i
− x̂

i
)2

∑n

i=1
(x

i
− x̄)2

Fig. 2   Coefficients of efficiency in the reconstructions based on the 
CESM-LME with data assimilation of the tenth ensemble member of 
the CESM-LME over the whole last millennium period (850–2005 
AD), using an ensemble size of 2079 particles. For each experiment 
[assimilation of the four rainfall results only (left), assimilation of 

the six SST results only (middle), and assimilation of both (right)], 
the coefficients of efficiency for annual mean rainfall and SSTs are 
shown. The crosses indicate the locations where data are assimilated, 
and are red in case of rainfall and blue in case of SST
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the climatological mean and negative when the opposite is 
true.

With an ensemble of 2079 particles, the assimilation of 
rainfall (first column in Fig. 2) provides a good reconstruc-
tion of rainfall as well as of SSTs over the western and the 
eastern equatorial Indian Ocean. Assimilating SSTs (sec-
ond column in Fig. 2) delivers even better results, with an 
improved representation of SSTs and of rainfall all over the 
Indian Ocean, although the consistency between the pseudo-
observations and our reconstruction is weaker for the precip-
itation in the central Indian Ocean. It also leads to a skillful 
reconstruction of rainfall in East Africa, over the south of the 
Horn of Africa and east of Lake Victoria. In contrast, values 
of CE are close to zero further south, including at the loca-
tions of the lakes Masoko and Malawi. The reconstructions 
obtained when assimilating both variables basically com-
bines the positive effects of both single-variable assimilation 
experiments (third column in Fig. 2).

3.1.2 � Time consistency of the data‑assimilated model 
output

A sufficient number of particles is needed to obtain skillful 
reconstructions. Besides the model results for the actual 
year considered, results of other years must thus also be 
included to have a large ensemble and increase the range 
of available climate states. However, the drawback is that 
the time may be disrupted in the reconstruction, ie. the 
reconstruction for a given year may be based on climate 

states of earlier and/or later periods. Here, we analyze if 
the filter preferentially select the model year correspond-
ing to data or if the time consistency has only a weak 
influence.

Figure 3 shows the years of the particles selected in the 
reconstructions for each year of experiment, grouped by 
periods of ten years for a better readability. In the case of 
the assimilation of rainfall alone (Fig. 3a), the particles cho-
sen for each year are distributed very homogeneously over 
the whole last millennium. Every year appears thus inter-
changeable, which means that no period is characterized by 
a substantial modification of annual precipitation throughout 
the last millennium compared to others. In particular, the 
impact of volcanic eruptions, whose the ten most important 
are represented by red bars with a length proportional to the 
quantity of sulphate aerosols released, is not visible.

The picture is different when the Indian Ocean SSTs are 
assimilated (Fig. 3b). In this case, the particles selected 
by the filter come more often from corresponding years of 
simulation than from other years, as depicted by the dark 
diagonal line. Moreover, the impact of volcanic activity is 
visible. When a volcanic eruption is observed, the probabil-
ity to select a particle characterized by a high aerosol load 
is higher, although it does not necessary correspond to the 
same period in the observation. Indeed, for the particle fil-
ter, the different eruptions are interchangeable, meaning that 
their effect on Indian SSTs goes beyond the natural variabil-
ity of SSTs over the last millennium but is relatively similar 
for each major eruption.

Number of ensemble members

a b

Fig. 3   Years of the particles selected in the data-assimilated model 
output versus reconstructed years, for data assimilation constrained 
by precipitation (a) and SSTs (b), using 2079 particles. The years 
are grouped by periods of 10 years for a better readability. The red 

bars are the ten largest volcanic eruptions of the last millennium, with 
length proportional to the amount of sulphate aerosol released, based 
on Gao et al. (2008)
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Finally, in the case of the assimilation of both rainfall and 
SSTs, the situation becomes very noisy, the forced variabil-
ity of the SSTs appearing masked by the natural variability 
of the East African rainfall (Fig. S5). Overall, the recon-
structions are thus characterized by a strong time inconsist-
ency, ie. each year of the reconstructions is based on the 
results of numerous other years, although to a lesser extent 
in the reconstruction with data assimilation of SSTs.

3.1.3 � Sensitivity analysis to the pseudo‑proxy data 
assimilated

Some of the pseudo-proxies have more influence on the 
skill of the reconstructions at the large-scale than others. To 
investigate the contribution of individual records, we have 
performed data assimilation experiments constrained by each 
pseudo-proxy time series separately, using 2079 particles. 
The assimilation of rainfall over Naivasha and over Challa 
(id 1 and 2 in Fig. 1) yields very similar results (Fig. 4). 
It allows obtaining a virtually perfect match between the 
simulation with data assimilation and the pseudo-proxy 
assimilated over those two grid cells. In contrast, the recon-
struction has only little or even no skill farther south, in the 
grid cells containing the lakes Masoko and Malawi (id 3 
and 4 in Fig. 1). This situation is valid the other way around, 
when assimilating precipitation in Masoko and Malawi. This 
emphasizes the strong heterogeneous nature of the East Afri-
can hydroclimate, as already shown in previous studies (e.g. 
Tierney et al. 2013; Klein et al. 2016). Assimilating rainfall 
over Challa and Naivasha improves the representation of 
Indian SSTs over the six grid cells considered, the best skill 
being obtained over the Seychelles (id 9 in Fig. 1) while 
the worse one, but still with a positive CE, in the location 
which is the farthest away from East Africa, ie. in the Hout-
man Abrolhos, located west of Australia (id 7). In contrast, 
rainfall over Masoko and Malawi brings nearly no skill to 

reconstruct Indian Ocean SSTs, as shown by the CE close 
to zero in every oceanic grid cell.

The skill brought by the assimilation of individual SST 
records appears more homogeneous than when considering 
the East African rainfall: the representation of SSTs over all 
oceanic grid cells and of rainfall over Challa and Naivasha 
grid cells is improved in every sensitivity experiments, as 
depicted by the positive CE. In contrast, there is no experi-
ment with data assimilation of SST that provides skillful 
reconstruction of rainfall over Masoko and Malawi. Despites 
these similarities, some differences are also visible among 
the six experiments. The Houtman Abrolhos and Menta-
wai sites (id 7 and 8) seem to be the most isolated. Indeed, 
the values of the CE of the reconstructions achieved by the 
assimilation of these results at the other sites are the lowest, 
and the improvements lead by the assimilation of the results 
of the other sites is weaker there than elsewhere. This can 
be easily explained by the fact that Houtman Abrolhos and 
Mentawai are located very far from the other records (id 7 
and 8 in Fig. 1). On the contrary, out of the six oceanic sites 
considered, the Seychelles is characterized by the largest 
impact on the reconstruction skill, which can be explained 
by its central localization within the Indian Ocean.

In summary, the SST reconstruction performed by the 
assimilation of rainfall in Challa and in Naivasha are skillful 
in all the oceanic sites considered, although the quality of 
the reconstructions decreases with the distance. Symmetri-
cally, rainfall over Challa and Naivasha are improved when 
assimilating Indian Ocean SSTs. In contrast, rainfall over 
Masoko and Malawi appears to be isolated from the rainfall 
farther north but also from the Indian Ocean SSTs.

3.2 � Pseudo‑proxies derived from other GCMs 
and recent observational data

This section focuses on the assimilation of time series 
derived from the GCMs MPI-ESM-P and GISS-E2-R, and 
from instrumental observations over the 20th century, which 
is an intermediary step before assimilating the real proxy-
based reconstructions throughout the last millennium. The 
physics of MPI-ESM-P, GISS-E2-R and of the reality being 
different than the one in CESM1, the ensemble of parti-
cles may not be able to adequately reproduce the covariance 
present in the data. The resulting reconstructions are thus 
expected to be less skillful than when assimilating the tenth 
ensemble member of the CESM-LME. Only the reconstruc-
tions using 2079 particles, ie. the best ones (Figs. S6, S7, 
S8), are shown. A study of the time distribution of the par-
ticles selected for each year of the reconstruction has been 
done for these experiments. The results are roughly simi-
lar to the ones obtained with the assimilation of the tenth 
ensemble member of the CESM-LME (Fig. 3), although the 
effect of forcings is more marked here in the simulations 

Fig. 4   Coefficient of efficiency at the ten grid cells considered in 
this study (see locations in Fig. 1), for each sensitivity experiment in 
which only one pseudo data is assimilated, using 2079 particles
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with data assimilation of SSTs. These results are available 
in the supplementary materials in Section S3.

Despite the similarities in the teleconnections between 
the East African rainfall and Indian SSTs simulated by MPI-
ESM-P and CESM1 Klein et al. (2016), the reconstruction 
based on the assimilation of pseudo data derived from MPI-
ESM-P has a much lower performance than when assimilat-
ing pseudo data derived from the tenth ensemble member of 
the CESM-LME (Fig. 5). The assimilation of precipitation 
alone leads only to a very local improvement in the repre-
sentation of the East African rainfall. The skill of the recon-
struction rapidly decreases away from the data locations, to 
reach values of CE close to zero in most of the regions dis-
played in Fig. 5, or even negative, for instance in the south 
of the Horn of Africa. Furthermore, the assimilation of pre-
cipitation has virtually no positive effect on Indian SSTs. In 
contrast, assimilating SSTs over the six grid cells considered 
allows having a good reconstruction of the SSTs over all the 
Indian Ocean, but does not improve the representation of 
rainfall, with often negative CE values. Finally, assimilating 
both the East African rainfall and SSTs basically leads to the 
addition of the effects of the single-variable assimilations.

The situation is relatively similar when considering the 
simulation with data assimilation of the results derived 
from the model GISS-E2-R (Fig. 6), characterized by a 
very weak relationship between the East African rainfall 
and Indian SSTs (Klein et al. 2016). Using the SSTs from 

six grid cells only as a constraint for the assimilation is 
sufficient to have a good reconstruction of SSTs over the 
whole Indian Ocean, but this does not lead to any improve-
ment in the representation of rainfall, some regions being 
even characterized by reconstructions worse than a cli-
matological mean. Once again, the assimilation of East 
African rainfall does not lead to a propagation of the infor-
mation away from the locations where the constraint is 
applied. There is, however, a difference with the results of 
the model MPI-ESM-P. When assimilating pseudo-proxies 
of both rainfall and SSTs, the quality of the SST recon-
struction decreases compared to the case in which only 
SST is assimilated. This illustrates the inconsistency of the 
representation of the link between rainfall and SSTs in the 
models CESM1 and GISS-E2-R.

GPCC-v7, the data set selected for rainfall, only cov-
ers the land-surface. This prevents any assessment of 
the reconstruction skill of precipitation over the Indian 
Ocean. Nevertheless, we can see in Fig. 7 that the results 
obtained when assimilating instrumental observations 
over the last century are very similar to those when assim-
ilating GISS-E2-R time series. Indeed, only taking into 
account the four rainfall results does not improve the rep-
resentation of precipitation elsewhere than where the con-
straint is applied, while, in contrast, the six assimilated 
time series of SSTs appear to be enough to reconstruct 
SSTs over the whole of the Indian Ocean. However, the 

Fig. 5   Coefficients of efficiency in the reconstructions based on the 
CESM-LME with data assimilation of pseudo-proxies derived from 
the last millennium simulation performed by MPI-ESM-P over the 
whole last millennium period (850–2005 AD), using 2079 particles. 
For each experiment [assimilation of the four rainfall results only 

(left), assimilation of the six SST results only (middle), and assimi-
lation of both (right)], the coefficients of efficiency for annual mean 
rainfall and SSTs are shown. The crosses indicate the locations where 
data are assimilated, and are red in case of rainfall and blue in case of 
SST
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Fig. 6   Coefficients of efficiency in the reconstructions based on the 
CESM-LME with data assimilation of pseudo-proxies derived from 
the last millennium simulation performed by GISS-E2-R over the 
whole last millennium period (850–2005 AD), using 2079 particles. 
For each experiment [assimilation of the four rainfall results only 

(left), assimilation of the six SST results only (middle), and assimi-
lation of both (right)], the coefficients of efficiency for annual mean 
rainfall and SSTs are shown. The crosses indicate the locations where 
data are assimilated, and are red in case of rainfall and blue in case of 
SST

Fig. 7   Coefficients of efficiency in the reconstructions based on the 
CESM-LME with data assimilation of the time series derived from 
the data sets ERSST-v4 (for SSTs) and GPCC-v7 (for rainfall) over 
the period 1900-2005 AD, using 2079 particles. For each experiment 
[assimilation of the four rainfall results only (left), assimilation of 

the six SST results only (middle), and assimilation of both (right)], 
the coefficients of efficiency for annual mean rainfall and SSTs are 
shown. The crosses indicate the locations where data are assimilated, 
and are red in case of rainfall and blue in case of SST. The data set of 
rainfall only covers the land-surface
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quality of this reconstruction is substantially decreased 
when also assimilating rainfall time series.

Compared to the perfect model experiments, assimilat-
ing rainfall time series from other sources than CESM1 
no longer provides valuable reconstructions of rainfall 
and of SSTs over the Indian Ocean. In fact, the recon-
structions are often worse than a climatological mean, 
characterizing contradictions in the physics and the 
dynamics represented in the different data sets. Further-
more, assimilating both rainfall and SST tends to worsen 
the reconstructions obtained when assimilating the SSTs 
alone, illustrating the inconsistent covariances of rain-
fall and SSTs compared to CESM1. In contrast, it is still 
possible to obtain a skillful reconstruction of the Indian 
SSTs, based on six time series only.

4 � Reconstructions using real proxy‑based 
reconstructions

Before using available proxy-based reconstructions over 
the last millennium, the next section investigates the 
impact of assimilating the reconstructed variables as 
defined in Sect. 2.4, ie. the East African hydroclimate 
and Indian Ocean coral �18O, instead of rainfall and SSTs, 
respectively.

4.1 � From the simulated towards the reconstructed 
variables

In order to focus on the loss in reconstruction skill due only 
to the assimilation of different variables, the results from the 
tenth ensemble member of the CESM-LME are used for the 
generation of the pseudo-proxy data, such as in Sect. 3.1. 
Decadal mean precipitation minus evaporation is the model 
version of what is reconstructed from hydroclimate-related 
records. Assimilating this variable instead of annual mean 
precipitation does not allow obtaining skillful reconstruc-
tions of annual rainfall or SST (not shown), which is not sur-
prising giving the strong interannual variability of the East 
African rainfall that is smoothed at the decadal time scale. 
However, the resulting decadal reconstructions of rainfall 
and of Indian Ocean SSTs have some skill (Fig. 8a, b), with 
spatial pattern of CE similar to the ones found in the annual 
reconstructions achieved with the assimilation of annual 
mean rainfall. Nevertheless, the skill is somewhat dimin-
ished, with a mean CE (averaged over the region shown in 
Fig. 8) of 0.12 instead of 0.19 for rainfall, and of 0.11 instead 
of 0.19 for SSTs (Fig 8a and b to be compared to Fig. 2). The 
assimilation of annual mean coral �18O instead of annual 
mean SST does not lead to any substantial decline in the 
reconstruction skill, the mean CE even being unchanged 
with values of 0.30 and of 0.48 for precipitation and for 
SST, respectively (Fig. 8c, d).

a c e g

b d f h

Fig. 8   Coefficients of efficiency in the reconstructions based on the 
CESM-LME with data assimilation of pseudo-proxies derived from 
the tenth ensemble member of the CESM-LME over the whole last 
millennium period (850–2005 AD), using 2079 particles. From the 
left to the right, the panels show the coefficients of efficiency based 
on rainfall and SSTs from the experiments with data assimilation of 

the four hydroclimate results only, of the six coral �18O results only, 
and of both for the last two columns. The temporal frequency on 
which the coefficients of efficiency are computed is shown in brack‑
ets. The crosses indicate the locations where data are assimilated, and 
are red in case of hydroclimate and blue in case of coral �18O
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As expected given the previous results, there is a loss of 
skill in the annual reconstruction of rainfall when assimilat-
ing together coral �18O and hydroclimate instead of SST 
and precipitation, with a mean CE of 0.21 (Fig. 8e) instead 
of 0.27. This is due to the lack of information on annual 
rainfall brought by the assimilation of hydroclimate vari-
ables. Actually, also considering hydroclimate in addition 
to coral �18O for the assimilation tends to decrease uni-
formly the CE of the reconstruction of rainfall compared to 
the ones obtained with the assimilation of coral �18O alone. 
By contrast, the skill of the reconstruction of annual SST 
is very similar when also assimilating hydroclimate vari-
ables together with coral �18O (Fig. 8f), which was also the 
case when assimilating both annual rainfall and annual SST 
instead of annual SST alone. Finally, assimilating model-
versions of both reconstructed variables also allows having 
a good reconstruction of decadal mean SSTs (Fig. 8h), with 
a mean CE of 0.24, and a relatively good reconstruction of 
decadal mean rainfall (Fig. 8g), with a mean CE of 0.12. 
In the latter reconstructions, however, the CE over the East 
African lakes are not as high as in the experiment with data 
assimilation of hydroclimate only (Fig. 8a).

Overall, no loss of skill in reconstructing rainfall and 
SSTs is observed when assimilating coral �18O instead of 
SST. There is a difference in the reconstructions of annual 
rainfall and SSTs when assimilating hydroclimate instead of 
rainfall, but which lies on the difference in the time resolu-
tion of the records.

4.2 � Assimilation of proxy‑based reconstructions

In this section, we first check if the reconstruction based on 
data assimilation is in agreement with the data that is assimi-
lated in order to identify potential incompatibilities between 
the proxy records and model results, before looking at spa-
tial reconstructions. We only consider the experiments with 
the assimilation of hydroclimate and coral �18O separately, 

given the negative impact on the reconstructions brought by 
the assimilation of the combination of those two variables 
illustrated in Sect. 3.2. The large-scale skill of the recon-
structions of rainfall and SSTs is assessed hereafter from the 
difference to recent observational data sets. As before, we 
show the reconstructions using 2079 particles.

Despite the discrepancies between Naivasha and Challa 
hydroclimate proxy-based reconstructions over the first four 
centuries of the last millennium, both time series agree from 
1400 AD onward on relatively dry conditions followed by 
a wetting trend peaking between about 1700 and 1750 AD 
(violet curves in Fig. 9-1, 2). This wet period is followed 
in both hydroclimate reconstructions by a short dry period 
before some smaller scale fluctuations. The hydroclimate 
time series inferred from the Masoko and Malawi records are 
also characterized by some similar long term changes over 
the last millennium, but that differ from the Naivasha/Challa 
pattern (violet curves in Fig. 9-3, 4). Indeed, they agree on a 
drying trend until about 1700, that is followed by a gradual 
increase in humidity towards the present time.

Except during the last two centuries at Masoko and 
Malawi where the model mean shows a trend towards a 
wetter climate that is consistent with the reconstructed sig-
nal, there is no common signal between the proxy-based 
reconstructed and the simulated hydroclimate without data 
assimilation. With data assimilation, however, the model 
time series get much closer to the four reconstructions (green 
curves to be compared to violet curves in Fig. 9), leading to 
a significant reduction of the RMSE (Table 2).

Out of the six coral �18O proxy-based reconstructions, 
only the one from Houtman Abrolhos goes back to the early 
1800s. It shows that this period was characterized by high 
values of coral �18O relative to the last two centuries (violet 
curve in Fig. 10-7). This is associated with low temperatures, 
likely due to the multiple tropical volcanic eruptions that 
occurred during this period (Tierney et al. 2015), as can be 
seen in Fig. 3. The values of �18O then gradually decreases 

Fig. 9   Evolution of lake-based 
hydroclimate throughout the 
last millennium at the four 
continental sites considered 
(see Fig. 1), according to the 
first nine ensemble members of 
the CESM-LME (black curve 
is the mean surrounded by the 
ensemble range in grey), the 
proxy-based reconstructions 
described in Sect. 2.4 (in violet), 
and the data-assimilated model 
output (in green). The axes are 
oriented such that wetter condi-
tions point upward
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to reach their lowest level at the end of the 20th century, fol-
lowing the warming of the Indian Ocean. This decreasing 
trend is observed in all reconstructions, although it is less 
marked in Mentawai. The ensemble mean of the simulations 
without data assimilation (black curves in Fig. 10) usually 
agrees with these reconstructed downward trends, although 
the simulated trend is less pronounced. Both reconstructed 
and simulated changes in coral �18O show a relatively high 
variability at the interannual time scales, but as can be 
expected, the temporal changes do not coincide.

Data assimilation improves the consistency between 
reconstructed and simulated time series (green curves in 

Fig. 10), as shown by the smaller values of RMSE after 
assimilation (Table 3). The biggest improvement is achieved 
at Malindi, where data assimilation allows matching very 
well the observed interannual changes. Data assimilation 
also makes the simulated trends over the last two centuries 
closer to the reconstructed ones, although the slope is still 
too weak in La Réunion.

Data assimilation provides thus skillful local reconstruc-
tions compared to the time series that are assimilated, which 
is the minimum requirement. The goal here is to obtain spa-
tial reconstructions of precipitation and SSTs, whose skill 
will depend on the propagation of the information contained 

Table 2   RMSE between 
simulated and reconstructed 
time series without (third 
column) and with (fourth 
column) data assimilation, 
at each East African site 
considered

Id Site RMSE: data vs model output 
(ensemble mean)

RMSE: data vs data-assimi-
lated model output

Difference (in %)

1 Naivasha 1.08 0.62 −43.05
2 Challa 1.10 0.57 −57.08
3 Masoko 0.62 0.47 −47.40
4 Malawi 0.43 0.58 −57.74

Fig. 10   Evolution of coral 
�
18O throughout the last two 

centuries at the six oceanic sites 
considered (see Fig. 1), accord-
ing to the first nine ensemble 
members of the CESM-LME 
(black curve is the mean 
surrounded by the ensemble 
range in grey), the proxy-based 
reconstructions described in 
Sect. 2.4 (in violet), and the 
data-assimilated model output 
(in green). Results are shown as 
anomalies with respect to the 
whole period covered

Table 3   RMSE between 
simulated and reconstructed 
time series without (third 
column) and with (fourth 
column) data assimilation, at 
each oceanic site considered

Id Site RMSE: data vs model 
output (ensemble mean)

RMSE: data vs data-
assimilated model output

Difference (in %)

5 Malindi 0.123 0.052 −58.00
6 Mayotte 0.096 0.055 −42.51
7 Houtman Abrolhos 0.124 0.053 −56.92
8 Mentawai 0.120 0.054 −54.89
9 Seychelles 0.106 0.071 −32.78
10 La réunion 0.222 0.168 −24.36
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in the ten proxy-based reconstructions considered. There is 
no spatial proxy-based reconstruction available over the full 
period investigated that would allow assessing the skill of 
our reconstructions. Hence, it is achieved here by comparing 
our results with the observational data sets ERSST-v4 and 
GPCC-v7, over the 20th century (Fig. 11).

The skill of the reconstruction of rainfall performed by 
assimilating hydroclimate is limited, with only a thin strip 
of slightly positive CE observed in East Africa, containing 
the lakes Masoko and Malawi (Fig. 11). However, these 
positive CE are actually due to the common recent trend 
between simulated and observed hydroclimate rather than 
to the data assimilation process. The data set for rainfall 
covers only the land-surface, which prevents the estima-
tion of the reconstruction skill over the Indian Ocean. 
Nevertheless, it is likely close to zero or even negative 
as deduced from the experiments performed in an ide-
alized framework. As expected again from the pseudo-
proxy experiments, the assimilation of hydroclimate does 
not lead to any skill in reconstructing SSTs. The skill 
of the reconstruction of Indian Ocean SSTs is, to some 
extent, higher when assimilating coral �18O, with posi-
tive CE in the north of the ocean as well as along the east 
coast of Africa, an area that includes three sites where 
data is assimilated, ie. Malindi (id 5), Mayotte (id 6) and 
the Seychelles (id 9). However, the latter experiment does 

not allow skillful reconstructions of rainfall over Africa, 
and the CE of the reconstructions of SSTs are negative in 
a large part of the Central and Eastern Indian Ocean.

The lack of skill even at some of the record sites may 
seem surprising at first sight. Indeed, the data assimilation 
process is able to bring the simulated hydroclimate and 
coral �18O close to the proxy time series (Figs. 9, 10), as 
shown by the decreased RMSE. Furthermore, measured 
coral �18O and hydroclimate-related proxy records should 
be, by construction, closely related to local SST and rain-
fall, respectively. However, the correlation coefficients 
between observed decadal rainfall and proxy-based recon-
structed hydroclimate at the four East African sites are 
weak (not shown). This is probably due to the quite indi-
rect nature of the link between the hydroclimate-related 
reconstructed and simulated variables. Indeed, the model 
variable is smoothed precipitation minus evaporation 
while the reconstructed hydroclimate variables depend on 
numerous other elements such as the inflow and outflow 
from and to rivers, surface runoff and ground water, the 
evaporation from the lakes, as well as interactions with the 
aquifer (e.g. Becht and Harper 2002), that may obscure the 
signal brought by actual precipitation minus evaporation. 
Actually, the skillful reconstructions of rainfall in a few 
locations of East Africa is attributable to a common trend 
that exists between the observed and the simulated rainfall 

Fig. 11   Coefficients of 
efficiency computed from the 
difference between the CESM-
LME with data assimilation 
of the real-world proxy-based 
reconstructions and the data 
sets ERSST-v4 (for SSTs) and 
GPCC-v7 (for rainfall, only cov-
ering the land-surface) over the 
period 1900–2005 AD, using 
2079 particles. The two left pan‑
els show the coefficients of effi-
ciency based on the reconstruc-
tions of decadal mean rainfall 
and SSTs from the experiments 
with data assimilation of the 
four hydroclimate results only, 
and the two right panels show 
the coefficients of efficiency 
based on the reconstructions of 
annual mean rainfall and SSTs 
from the experiments with data 
assimilation of the six coral �18
O time series only. The crosses 
indicate the locations where 
data are assimilated, and are red 
in case of hydroclimate and blue 
in case of coral �18O
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time series (not shown), rather than to the data assimila-
tion process.

The negative CE at some of the oceanic records cannot be 
explained by a low correlation between SSTs and coral �18O. 
Indeed, although other environmental variables also play a 
role, the relationship between those two variables is robust 
and well-known (e.g. Brown et al. 2006; Stevenson et al. 
2013). However, the coefficient binding the two variables in 
Eq. 1 may vary significantly from site to site (Evans et al. 
2000). In our data assimilation experiment, we have applied 
at each location the value of −0.22 o∕

oo
 ◦C−1, as proposed 

in Thompson et al. (2011) as a mean estimate. Ideally, the 
forward model should be calibrated at each individual site. 
However, this requires to take into account changes in SSS, 
while there is no reliable instrumental data set of salinity for 
the whole period considered. The changes in SST dominate 
on changes in SSS to produce the coral �18O. Hence, the 
impact of a local calibration is investigated here by estimat-
ing coral �18O from model results using a linear regression 
based on local observed SSTs from the instrumental data 
set ERSST-v4, instead of the forward model proposed in 
Thompson et al. (2011). In this case, the error considered in 
the data assimilation process is different at the six records 
sites depending on the regression model. This was not the 
case in the experiments using the forward model where only 
the error of the measurement is considered, while the error 
related to the relationship between coral �18O on the one 
hand and SST and SSS on the other was neglected.

This approach allows having skillful reconstructions of 
SSTs over the Indian Ocean (Fig. 12). However, as might 
be expected, the skill is not as high as when assimilating 

instrumental observations (Fig. 7), with a mean CE over the 
Indian Ocean of 0.10 instead of 0.32. Also, as in the previ-
ous experiments, the representation of precipitation on land 
is not improved.

5 � Discussion and conclusions

The focus of this paper is to improve reconstructions of the 
East African rainfall and Indian Ocean SSTs based on their 
covariance. This is achieved by means of an off-line method 
of data assimilation, using the recently available ensemble 
of last millennium simulations performed with the model 
CESM1. Hydroclimate-related records at four East African 
sites, Lake Naivasha, Lake Challa, Lake Malawi and Lake 
Masoko, as well as SSTs-related records at six oceanic sites 
spread over the Indian Ocean, are selected as constraints for 
the assimilation.

The assimilation of pseudo-proxy data derived from the 
tenth ensemble member of the CESM-LME allows having 
skillful reconstructions of the Indian SSTs based on the East 
African rainfall, and vice versa. The reconstructions obtained 
when assimilating both variables basically combine the ben-
efits obtained in each single-variable assimilation experi-
ment. The quality of the reconstructions is however strongly 
dependent on the number of particles considered. Only using 
9 particles is usually not sufficient to spread spatially the 
information contained in the record sites selected. Hence, 
most reconstructions based on data assimilation showed in 
this paper use more particles than actually available for each 
year of assimilation, by also selecting particles belonging 

Fig. 12   Coefficients of efficiency computed from the difference 
between rainfall (a) and SSTs (b) of CESM-LME with data assimila-
tion of measured coral �18O and the data sets GPCC-v7 (for rainfall, 
only covering the land-surface) and ERSST-v4 (for SSTs). The period 
covered is 1900–2005 AD. The ensemble size is 560. During the data 

assimilation process, the model coral �18O is induced from the param-
eters of the linear regression computed between measured coral �18O 
and local observed SSTs (data set ERSST-v4). The CE are computed 
from annual mean results. The crosses indicate the locations where 
data are assimilated
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to other years than the one considered. This increases the 
range of possible climate states and thus allows improving 
the agreement between the data-assimilated model output 
and the data. Beyond 99 particles, however, the improve-
ment brought by further increasing the size of the ensemble 
becomes modest in our experimental set up.

The four East African records selected for the assimila-
tion do not contribute equally in providing skillful recon-
structions of the East African rainfall and of Indian SSTs. 
Indeed, precipitation over the lakes Masoko and Malawi 
appears to be isolated from the large-scale since neither the 
assimilation of Indian SSTs nor the assimilation of rainfall 
further north in East Africa provides skillful reconstruction 
of rainfall over these sites, and conversely. Hence, Challa 
and Naivasha are much better candidates to reconstruct 
large-scale patterns of climate than Masoko and Malawi, 
according to the physics of CESM1. This heterogeneity is 
consistent with the very different patterns of correlations 
between the East African rainfall and Indian Ocean SSTs 
obtained when considering the rainfall averaged, on the one 
hand, over the region including Challa and Naivasha, and 
on the other hand, over the region containing Masoko and 
Malawi (Klein et al. 2016). This may appear contradictory 
with the recent study of Nicholson (2014), which shows that 
changes in the East African rainfall over the last two centu-
ries are relatively coherent over the region. The latter study 
is based on a principal component analysis, the objective of 
such tool being to highlight common patterns of variabil-
ity. Here, we suggest that the common signals in the East 
African rainfall found in Nicholson (2014) do not explain a 
fraction of the total variance that is large enough to obtain 
skillful reconstruction of rainfall over an area of East Africa 
based on the rainfall over another area.

Unfortunately, reconstructing Indian SSTs based on the 
East African rainfall or the East African rainfall based on 
Indian ocean SSTs is only possible in idealized conditions 
when the model physics is supposed to be perfect. If the 
pseudo-proxies are derived from another model, this abil-
ity is lost because of the differences in model physics. This 
is also the case if real observations are used. Furthermore, 
assimilating precipitation no more improves regional rain-
fall, but only local precipitation. Taking into account a 
framework closer to reality, in which the model covariances 
are different from the real-world climate, thus drastically 
reduces the skill of the reconstructions. This clearly high-
lights the fact that using the same model for producing the 
pseudo-proxy time series and the ensemble of simulations 
is a strong simplification of reality, that likely artificially 
inflates the skill of the data assimilation approach (e.g., as 
shown in Dee et al. 2016). Hence, the results derived from 
such a framework should be interpreted with caution.

Still, the experiments using pseudo-proxies derived 
from another model than the one that has provided the 

ensemble of simulations or from recent observations show 
that a reconstruction of the whole Indian Ocean SSTs can 
be obtained by only assimilating the SST results of six sites 
spread over the Indian Ocean. However, this does not con-
strain enough the evolution of the East African rainfall. The 
representation of the covariance of the Indian Ocean SSTs 
seems thus to be relatively consistent among models and 
between models and recent instrumental data sets, unlike the 
one between the East African rainfall at different locations 
and of the teleconnection between the two variables. In addi-
tion to the different patterns associated with the modes of 
natural variability in models and observations, this may be 
related to the differential impact of the volcanic events and, 
to a lesser extent, of the anthropogenic forcings, on the vari-
ables assimilated. In the reconstructions based on the assimi-
lation of SST results, most large eruptions are followed by 
similar changes in the pattern of SSTs that go beyond the 
natural variability. In contrast, if there is an effect of the 
eruptions on the East African hydroclimate, it is not visible 
in our experiments, meaning that the effect of the volcanism 
on the East African hydroclimate does not overwhelm the 
internal variability.

Assimilating real proxy-based reconstructions is not 
straightforward, given that the physical quantity that is 
reconstructed from proxy records is not directly simulated by 
the climate model. Here, the model variables are processed 
to match the reconstructed variables as closely as possible. 
For oceanic records, it is done through the use of a linear 
bivariate model that computes the model coral �18O based 
on simulated SSS and SSTs (Thompson et al. 2011). This 
is harder for the East African hydroclimate proxy records, 
since the variables reconstructed as well as the lakes from 
which they originate are different. However, all proxy-based 
reconstructions can be qualitatively interpreted as smoothed 
versions of local-moisture balance, that is translated in the 
model by smoothed precipitation minus evaporation. Within 
the ideal framework considering the assimilation of the 
results of the tenth ensemble member of the CESM-LME, 
assimilating these model versions of the reconstructed vari-
ables has only little impact on the quality of the reconstruc-
tions of rainfall and of SSTs, the overall spatial patterns of 
the reconstructions skill being similar than when assimila-
tion rainfall and SSTs.

The situation is different with real proxy-based recon-
structions. The assimilation technically works: compared 
to the model ensemble mean, the model results with data 
assimilation are characterized by strongly decreased RMSE 
with the reconstructed or measured time series at all record 
sites selected. However, the skill of the resulting recon-
structions, as derived from recent instrumental data set, is 
limited. A first issue for the experiments with data assimi-
lation of hydroclimate-related records is the very indirect 
link between the proxy-based reconstructed variables and 
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the model version of these variables. Furthermore, the spa-
tial representativness of the proxy-based reconstructions is 
assumed to match the surface covered by the grid cells that 
contain the proxy sites. This is clearly a strong assumption, 
given the very high spatial variability associated with rain-
fall, which can further alter the skill of the reconstructions. 
However, even if it was possible to directly assimilate the 
reconstructed variable using a precise forward model for 
each lake, and even if the spatial representativness of the 
proxy-based reconstructions was perfectly consistent with 
the grid cell of the model, assimilating hydroclimate is not 
expected to bring skillful spatial reconstructions of SSTs 
or rainfall, as deduced from the results of the pseudo-proxy 
experiments.

Assimilating coral �18O is a priori more straightforward. 
A simple and robust forward proxy model can be used to 
estimate this variable from model results, which allows a 
meaningful comparison with proxy records. However, using 
the forward model with standard (spatially constant) coef-
ficients provides SST reconstructions with only modest skill. 
The issue here is that the relationship between coral �18O and 
SSTs varies between the individual sites. When this spatial 
variability is taken into account, a skillful reconstruction of 
SSTs over most of the Indian Ocean can be achieved with 
the assimilation of only six records, but this does not lead to 
a better representation of the East African rainfall compared 
to the climatological mean.

Two critical points that tend to decrease the capacity to 
obtain skillful reconstructions have thus been highlighted 
in this study. First, the biases in the physics of the model 
do not allow to take advantage of the correlation between 
SSTs and precipitation. By construction, the data assimi-
lation method employed in this study provides reconstruc-
tions based on fields consistent with the physics of the model 
used, ie. CESM1. However, all climate models show very 
different teleconnections between the East African rainfall 
and tropical SSTs. Although CESM1 is one of the closest 
to the observations regarding this diagnostic over the recent 
past, the differences between the observed and simulated 
teleconnection is still large, as demonstrated by the much 
poorer reconstructions achieved when assimilating recent 
observations compared to the assimilation of the tenth 
ensemble member of the CESM-LME. The results of this 
study highlight the importance of the model errors, show-
ing the strong relevance to continue improving the GCMs. 
This appears particularly critical for precipitation, the sim-
ulation of SST covariance being already good enough to 
provide useful information for reconstructing this variable. 
The second critical point is the interpretation of the proxy-
records in order to have a coherent model-data comparison. 
The variables that are included in climate models are often 
different from the ones reconstructed from proxy records, 
and the link between simulated variables and proxy may 

vary significantly between locations. Hence, the effort to 
reconcile both sources of information, for instance through 
forward modelling, has to be pursued.
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