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ADb initio calculations of the static longitudinal polarizability of molecular hydrogen model chains have
been performed at different levels of approximation to investigate the effects of including electron corre-
lation. Unlike uncoupled and coupled Hartree-Fock calculations for which a split-valence atomic basis
set already provides suitable longitudinal polarizability estimates, the techniques of the Mgller-Plesset
partitioning leading to successive electron corrections, namely, MP2, MP3, and MP4, and the coupled-
cluster ansatz including all double excitations, all single and double excitations, and all single and double
excitations as well as a perturbational estimate of the connected triple excitations require at least addi-
tional polarization functions and a triple-{-type basis set in order to give suitable polarizability values. It
has also been shown that including electron correlation decreases the longitudinal polarizability values
and that the electron correlation effects are overemphasized when using a too small basis set. Within the
Mgdiller-Plesset treatment of electron correlation, the relative importance of the different orders and the
different classes of substitutions used in the intermediate states has been investigated. The double substi-
tutions present the largest electron correlation correction to the coupled Hartree-Fock longitudinal po-
larizabilities per unit cell. If the atomic basis set is sufficiently extended, the third-order contribution is
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dominant.

PACS number(s): 31.15.Ar, 31.15.Dv, 31.15.Md

1. INTRODUCTION

Using quantum-chemical methods, considerable
research has been directed recently toward predicting
and understanding the linear (polarizability a) and non-
linear (second hyperpolarizabilty y) responses of
stereoregular conjugated polymeric systems to applied
external electric fields (S, the first hyperpolarizability, is
generally zero for these systems as a consequence of their
symmetry) [1]. From deducing structure-property rela-
tionships, these quantum-chemical predictions can help
in the elaboration of new compounds that would present
the largest hyperpolarizabilities. Nowadays, the investi-
gation of large molecular and polymeric systems present-
ing large nonlinear effects is hindered by the complexity
and high sensitivity of the calculations of the second hy-
perpolarizabilities, and the related substantial computa-
tional task. Indeed, y depends strongly upon the geome-
trical parameters, upon the method used (semiempirical
or ab initio), upon the inclusion of electron correlation,
and upon the atomic basis set used.

One means of investigation consists of using well-
parametrized techniques that are able to reproduce in
many cases the experimental results [2]. Another way
consists of using, ab initio, the Hartree-Fock procedure,
which possess a peculiar advantage because its accuracy
can systematically be improved. Indeed, starting from
the Hartree-Fock solution, by enlarging the basis set and
by including via inadequate techniques electron correla-
tion up to a higher order in electron-electron interaction,
one approaches the true results. In this sense, the ab ini-
tio approach represents a consistent way of reaching the
true electronic characteristics of compounds of interest.
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Due to tremendous computational costs, these ab initio
approaches are often limited to the evaluation of the
linear effects, the polarizabilities. To estimate the non-
linear responses, scaling laws that relate y to a are used.
Although large a are often associated with even larger v,
one should perform these scalings cautiously. Indeed,
from the analysis of Nakano and Yamaguchi [3], it ap-
pears that the largest y are always associated with the
largest a, but the relationship does not necessarily hold in
the opposite sense.

In this work, we adopt the ab initio approach to inves-
tigate the effects of electron correlation on the polariza-
bility of large finite oligomeric systems of H, molecules.
The study of increasingly large oligomeric chains built
from the successive addition of the same monomeric unit,
the unit cell, will provide the characteristics and proper-
ties of the infinite stereoregular polymeric chain. The in-
terest brought about by large conjugated polymeric sys-
tems lies in the large increase of the component of the
(hyper)polarizability tensors directed along the periodici-
ty axis as chain length grows as a result of electron delo-
calization along the chain. In the smallest chains, the
response per unit cell increases, then saturates, and finally
becomes constant for the largest chains [4]. Since no
similar evolution is possible for the directions perpendic-
ular to the backbone of the chain, the longitudinal com-
ponent is dominant and therefore of central interest in
the investigation of systems presenting large linear and
nonlinear response properties. Until now the ab initio
evaluations of longitudinal polarizabilities per unit cell of
large conjugated systems have been carried out at the
coupled Hartree-Fock level by using split-valence basis
sets [5—11]. The effects of increasing the atomic orbital
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basis set size have already been' addressed in different
works [6,10—-12] and may be summarized by stating that
adding polarization and/or diffuse functions to a split-
valence or double-{ atomic basis set does not change
significantly the longitudinal polarizability values. For
instance, in the evaluation of the longitudinal polarizabil-
ity per unit cell of polyacetylene [12] and polythiophene
[11], the use of the double-{ 3-21G [46] atomic basis set
provides already 87% and 86%, respectively, of the po-
larizability values obtained by using the medium-size po-
larized basis set designed by Sadlej [13] to reproduce the
experimental values of the polarizability. The next step
consists therefore in going beyond the Hartree-Fock lev-
el, that is, by taking into account electron correlation, in
order to improve the polarizability estimates and to as-
sess the electron correlation effects. Other investigations
to improve the polarizability estimates consist of address-
ing the dynamic character of the polarizability and tak-
ing into account the coupling between the electronic and
the nuclear motions that results in a vibrational contribu-
tion to the polarizability. At the coupled Hartree-Fock
level, a study has recently been carried out to investigate
the frequency dependence of the polarizability in large
finite and infinite molecular hydrogen chains [14]. Very
recently, the importance of the vibrational contribution
to the polarizability per unit cell of polyacetylene, polysi-
lane, and polyethylene has been assessed within the dou-
ble harmonic-oscillator approximation [15].

Section II discusses the techniques used in this work
among the various methods developed and available to
compute the electronic contribution to the electric-dipole
polarizability while taking into account the electron
correlation up to different orders in electron-electron in-
teractions. First, we use the Mgller-Plesset treatment of
the electron correlation up to fourth order in the
electron-electron interactions [16]. The coupled-cluster
ansatz [17] limited to the double substitutions, single and
double substitutions, and single and double substitutions
plus an estimate contribution of the connected triple sub-
stitutions has also been used. Both approaches to include
electron correlation are size consistent and can thus treat
increasingly large systems. The results and their discus-
sion are presented in Sec. III. In order to highlight the
effects, we use model molecular hydrogen chains, which,
with the atomic and molecular hydrogen models, have al-
ready been used many times in quantum chemistry to
demonstrate pedagogically new techniques and features.
Indeed, by modifying the geometry (bond-length alterna-
tion) of the polymeric hydrogen chains, the system
ranges, with increasing alternation, from the regular me-
tallic one-dimensional chains to the Peierls distorted
semiconductor and insulator. In this way, it foreshadows
the polyacetylene chains possessing one 7 electron per
carbon atom that can exhibit a metalliclike, semiconduc-
tor, and insulator behavior depending upon its bond-
length alternation directly related to the doping rate and
that also present very large optical responses in the pris-
tine state [18]. Liegener [19], in his work applying third-
order perturbation theory to infinite alternating hydrogen
chains, gives a list of the papers dealing with such linear
and cyclic, finite and infinite model systems, up to 1985.

In 1986, Liegener and Ladik [20] computed the exciton
spectra of infinite hydrogen chains. Moreover, simple hy-
drogen chains of various bond-length alternations present
the slow convergence behavior of the exchange lattice
summations of insulating and metallic one-dimensional
periodic systems that appear in the Hartree-Fock band-
structure calculations. Different approaches to evaluate
exactly the exchange terms have been proposed and ap-
plied to these model chains [21]. The first ab initio calcu-
lations of the longitudinal polarizabilities per unit have
been computed for hydrogen chains within the Genkin-
Mednis procedure [22], which corresponds to an uncou-
pled Hartree-Fock scheme. The generalization to the
coupled Hartree-Fock procedure has also been carried
out first for the molecular hydrogen chains in order to as-
sess the importance of the various parameters [23]. Very
recently, we have investigated the relations between the
nonsinglet Hartree-Fock instabilities and the polarizabili-
ties for the hydrogen molecule, as well as the effect of ap-
plying an external electrical field on the Hartree-Fock in-
stabilities of H, [24]. The molecular hydrogen model
chains consist thus of ideal systems to investigate the
effect of electron correlation on the longitudinal polariza-
bility of increasingly large systems.

Section III gives thus the longitudinal polarizability re-
sults of these systems as a function of chain length and
the atomic basis set. The choice of the basis set is very
important and is influenced by the technique to be ap-
plied, as well as the property under investigation. In
molecular systems, larger basis sets are necessary to reach
basis set saturation in correlated calculations than in
Hartree-Fock calculations. In other words, the basis set
effects are significantly more important when electron
correlation is included [25]. In one-dimensional extended
systems, it is known from Hartree-Fock polarizability
and hyperpolarizability calculations that the basis set
quality is improved in the longitudinal direction because
the deficiency of the basis set on any atom in one unit cell
(or on one site) is compensated for by the atomic orbitals
on neighboring unit cells (or sites) [6,10—12,26]. By using
different extrapolation procedures, the asymptotic longi-
tudinal polarizabilities per unit cell are computed. These
asymptotic longitudinal polarizability results are then an-
alyzed in order to define which atomic basis set one has
to chose and up to what level of electron-electron interac-
tions one should go to provide reliable estimates of the
longitudinal polarizability of large systems. The accura-
cy of both the finite-field procedure and the extrapolation
technique has been questioned. Since the Mgller-Plesset
treatment of electron correlation enables a decomposition
of the energy in several terms characterized by their or-
der and their class of substitutions, we have also investi-
gated the importance of these various contributions to
the longitudinal polarizability per unit cell of growing
molecular hydrogen chain models.

II. METHODOLOGY

Nowadays, many theoretical techniques exist to com-
pute the polarizability of molecular systems that do or do
not include electron correlation [27-43]. Two classes of
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methods are distinguishable according to the quantities
required to compute the polarizability. In the first class
of techniques, one needs to know the field-perturbed wave
functions and energies (or their derivatives with respect
to that electrical field) to obtain the polarizability values
[27-33], whereas, in the second class, the polarizabilities
can be obtained directly without any knowledge of these
field-perturbed wave functions [35-43].

Another classification key relies on the polarizability
definition, which can be considered as the linear response
of the dipole moment to an external electric field or as the
second-order term in the perturbation expansion of the
electronic energy with respect to that electric field.
When the Hellmann-Feynman theorem [44] is satisfied,
i.e., when dealing with procedures that are variational
with respect to all the parameters [this is the case of the
exact solution of the nonrelativistic electronic
Schrodinger equation obtained by the full configuration-
interaction (CI) technique and of the Hartree-Fock ap-
proximation, whereas the Mgller-Plesset and the
coupled-cluster techniques do not satisfy that theorem],
both procedures are equivalent and one may write

| 3%(E) OE(E)
a=— |\—/=; — . (1)
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In the first class of techniques, the evaluation of the
linear response of the dipole moment or the quadratic
response of the energy with respect to the external elec-
tric field is performed either analytically or numerically.
Indeed, if no analytical procedure is available, the numer-
ical finite-field (FF) technique can always be used. The
FF technique consists of computing the dipole moment of
a system under external electric fields of different ampli-
tudes and considering a finite-difference formula [27]
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where the last equality holds only for centrosymmetric
compounds. In the alternative finite-difference technique,
the central quantity is the field-dependent energy and in
consequence, the polarizability is related to its second-
order derivative

NE(E,) 6B+ E(—E)—26(0)
;== 2 = lim — 2
OE; |g-o E—0 Ej
6(0)—6(E)
= lim 2———> % . 3)
E;—0 Ej

Again, the last equality only concerns centrosymmetric
systems. As stated above, expressions (2) and (3) provide
different solutions when the Hellmann-Feynman thecrem
is not satisfied. Expression (3) is often used when dealing
with techniques including electron correlation where the
dipole moment (computed from the wave function) is not
directly available. The Hartree-Fock (HF) FF procedure
consists of the simplest level of application of the FF

technique where the field-induced relaxation of the orbit-
als has been considered self-consistently. Then, electron
correlation corrections can be included. In a size-
consistent way, electron correlation can be examined in
the framework of many-body perturbation theory by
adopting the Mgdller-Plesset partitioning [16]. This leads
thus to successive electron correlation corrections, name-
ly, MP2, MP3, etc., which are consistent in electron-
electron interaction through second, third, etc., order, re-
spectively. Electron correlation can also be included by
considering the coupled-cluster approach [17]. In this
work, in the coupled-cluster Ansatz all double excitations
(CCD), all single and double excitations (CCSD), and all
single and double excitations as well as a perturbational
estimate of the connected triple excitations are accounted
for (CCSDT). Many works have already been performed
where the polarizability tensor has been obtained by nu-
merical derivative of the energy obtained at these MP2,
MP3, MP4, etc. [25,28-30], CCD, CCSD, CCSDT, etc.
[30,31] levels. Due to the substantial amount of time re-
quired, such highly correlated calculations have been re-
stricted to atoms or small molecules. The FF procedure
could also be used in the CI framework. However, when
the CI expansion is truncated (which is generally the case
in all calculations on large systems), the CI treatment is
not size consistent, i.e., it does not scale properly with the
size of the system and, as a consequence, the CI-based
methods should be avoided when dealing with increasing-
ly large oligomers. This is not the case of the Mgller-
Plesset and the coupled-cluster treatments of electron
correlation, which satisfy the size-consistency condition.
Adopting an FF procedure allows the exploitation of
theories and programs that have been developed and
tuned for the usual correlation problem, the disadvantage
of that being the need to carry out several calculations
per polarizability calculation [see Egs. (2) and (3)] and the
numerical errors associated with the derivative pro-
cedure. This last point will be tackled later in this work.

At the Hartree-Fock level, the analytical technique is
the coupled perturbed Hartree-Fock (CPHF) procedure
[32]. Both HF FF and CPHF methods include field-
induced electron reorganizational effects in a way that is
fully consistent in terms of adjustments in the average
two-electron interactions. Therefore, these techniques
are said to be coupled Hartree-Fock (CHF) procedures.
An analytical procedure based on the evaluation of pseu-
doenergy derivatives has been developed by Rice and
Handy [33] in order to calculate the polarizability at the
MP2 level.

In the second class of techniques one finds the pro-
cedures often referred to as summation over states (SOS)
due to the form of the static polarizability expression [34]

. [(W,l71w, ) |?
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where the sum runs over all the excited states of the sys-
tem, ¥, and ¥, being the ground- and the excited-state
wave functions associated with the energies E, and E,,
respectively; 7 is the dipole moment operator. A usual
approximation to this exact expression is obtained by us-
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ing as wave functions the Hartree-Fock-Slater deter-
minants constructed from the Hartree-Fock occupied
and unoccupied one-electron spin orbitals [35]. This is
called the uncoupled Hartree-Fock (UCHF) technique
because the field-induced electron reorganizational effects
are not taken into account [36]. In fact, only field-
induced one-electron effects are accounted for in the
UCHF procedure. Improvements to this UCHF result
are obtained by using CI wave functions including single,
double, triple, etc., excitations [37]. Again, these CI
truncated treatments should be avoided when dealing
with large oligomers because the electron correlation en-
ergy does not scale properly with the size of the system.
On the other hand, Eq. (4) includes information about the
importance of the excited states in the polarizability
value, which turns out to be an advantage in the design of
new compounds for nonlinear optics applications [1].

Although not used in this work, we should mention the
important class of methods based on the polarization
propagator techniques [38], the linear-response theory
[39], and the equation of motion coupled cluster [40] in
which the electron correlation effects may also be includ-
ed up to the desired level in electron-electron interaction.
In these approaches, the electric response is also comput-
ed directly without any knowledge of the field-perturbed
wave functions and energies. After some transforma-
tions, these polarizability estimates [38—-40] can also be
written in a SOS form. Recently, Sasagne, Aiga, and Itoh
[41] presented a higher-order response theory scheme to
evaluate the frequency-dependent polarizabilities and hy-
perpolarizabilities by means of the differentiation of
quasienergy with respect to the strength of time-
dependent external fields. Their procedure has been
developed for single-exponential transformation Ansdtze
(HF and full CI) and for double-exponential transforma-
tion Ansdtze [truncated CI and multiconfiguration self-
consistent field (MCSCF)]. They derived also expressions
based on quasienergy derivatives for computing the linear
and the nonlinear responses in the Mgdller-Plesset treat-
ment of the correlation energy [42] as well as in the
coupled-cluster theory with Brueckner orbitals [43].
However, to our knowledge, no results have already been
published from this powerful quasienergy derivative for-
malism.

In this work, the minimal STO-3G [45] and double-¢
(3)-21G [46] atomic basis sets have been chosen as well as
the double-{ plus polarization (6)-31G(*)x [47] and
triple-§ plus polarization (6)-311G( ) [48] atomic basis
sets. The parentheses in these basis set notations hold for
the absence of core functions and core electrons for the
hydrogen atom. The polarizability calculations have
been performed at the MP2, MP3, MP4, CCD, CCSD,
and CCSDT levels of approximation as well as at the cou-
pled and the uncoupled Hartree-Fock levels. All the cal-
culations reported in this work have been carried out by
using GAUSSIAN92 [49] of which some of the standard
threshold conditions have been tightened, i.e., 1071° a.u.
for the two-electron integral cutoff and 107 !° for the re-
quested convergence on the density-matrix elements. In
the coupled-cluster calculations, the convergence thresh-
old on the energy has been fixed at 107!° a.u. These

threshold decreases are necessary to meet a 10 3-a.u. ac-
curacy [50] on the polarizability values obtained from the
finite-field procedure based on Eq. (3). Lowering these
thresholds is necessary to avoid any oscillatory behavior
of the polarizability per unit cell values as chain grows.
At the coupled Hartree-Fock level, the GAUSSIANY2 pro-
gram follows the CPHF analytical procedure in which
the requested convergence on the Z vector is 107! [49].
The MP2 polarizability values are also evaluated analyti-
cally. In the other cases (MP3, MP4, CCD, CCSD, and
CCSDT), a finite-field procedure has been adopted where,
in addition to calculations at zero-field amplitude, electric
fields of 0.0016 a.u. (8.23X10® V/m) and 0.0032 a.u.
(16.46 X 108 V/m) have been employed. These amplitudes
have been chosen to avoid numerical instability in the
finite difference and to ensure a suitable use of the finite-
difference formula in order to evaluate correctly the
derivative [50]. Indeed, if the field amplitude is too large,
the contaminations from the higher-order hyperpolariza-
bilities are increasing, whereas if the field amplitude is
too small, the number of significant digits in the dipole or
energy differences [Egs. (2) and (3)] goes down.
Romberg’s procedure [51] is used to improve the finite-
derivative technique. In this case where three field ampli-
tudes (0.0, 0.0016, and 0.0032 a.u.) are used, the next
nonzero term in the series expansion of the energy with
respect to the field amplitude is eliminated. In other
words, since the first (8) and third (8) hyperpolarizabili-
ties are zero due to centrosymmetry, the first term that
contaminates the polarizability value is proportional to
the fourth hyperpolarizability (¢) (which contributes to
the energy by a term at the power 6 in the field ampli-
tude). This technique corresponds exactly to the one pro-
posed by Bartlett and Purvis [29] and used by Sim et al.
[52].

III. RESULTS AND DISCUSSION

The intermolecular (intramolecular) distances of the
molecular hydrogen model chains have been chosen to be
3.0 a.u. (2.0 a.u.) (see Fig. 1) in order to present the polar-
izability exaltation feature described in the Introduction.
The longitudinal polarizability results obtained with the
different atomic basis sets and techniques are listed in
Tables I-VIII.

To have access to the polarizability of the polymer, one
has to consider the longitudinal polarizability per unit

YA g—n
H—H------ H—H
H—H------ H—H------ H—H
H—H------ H—H ------ H—H------ H—H
dinrra=2a'u' dinler=3a'u' -

X

FIG. 1. Cartesian space representation of the molecular hy-
drogen chain models.
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TABLE 1. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the UCHF level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(*)*, and (6)-311G(*)* ]. All the values are given in a.u.

TABLE III. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the MP2 level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G( %)%, and (6)-311G(* )% ]. All the values are given in a.u.

(1.0 awu. of polarizability is equal to 1.6488X10 % (1.0 a.u. of polarizability is equal to 1.6488X10*
Cm?1=0.148 18 A’). C’m?1=0.148 18 3’).
N STO-3G (3)-21G (6)-31G(* )% (6)-311G( % )* N STO-3G (3)-21G (6)-31G( %)% (6)-311G( *)*
1 5.736 9.179 9.257 9.726 1 5.153 9.830 10.532 11.575
2 14.882 22.138 22.066 22.580 2 14.407 26.926 28.696 30.598
3 24.828 36.373 36.128 36.670 3 25.272 48.162 51.374 54.159
4 34.937 50.849 50.407 50.951 4 36.736 71.350 76.205 79.857
5 45.076 65.383 64.743 65.298 5 48.427 95.490 102.113 106.654
6 55.219 79.928 79.087 79.653 6 60.213 120.105 128.568 134.004
7 65.363 94.474 93.434 94.013 7 72.044 144.971 155.317 161.657
8 75.508 109.021 107.780 108.372 8 83.900 169.980 182.235 189.486
9 85.652 123.568 122.127 122.733 9 95.771 195.076 209.257 217.422
10 95.797 138.115 136.474 137.093 10 107.651 220.227 236.346 245.428
11 105.941 152.662 150.820 151.453 11 119.537 245.415 263.479 273.481
12 116.095 167.209 165.167 165.814 12 131.428 270.630 290.644 301.567

cell, which can be given by the longitudinal polarizability
difference  between two  consecutive  oligomers
a,(N)—a, (N —1). Such an expression possesses the ad-
vantage over the relative polarizability expression
a,,(N)/N of removing most of the chain-end effects. As
the chain length increases, the longitudinal polarizability
per unit cell increases and then saturates for longer
chains. Under this saturation regime, the longitudinal
polarizability evolves linearly with chain length. Howev-
er, one should be cautious when stating that the evolution

TABLE II. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the CHF level of approximation by
using' different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(* )%, and (6)-311G(*)*]. All the values are given in a.u.

(10 awu. of polarizability is equal to 1.6488X10™*

CmJ~'=0.14818 &’).

N STO-3G (3)-21G (6)-31G(*)* (6)-311G(* )%
1 5.812 10.852 11.312 12.331
2 16.698 29.821 30.562 31.958
3 29.742 53.423 54.427 56.105
4 43.639 79.216 80.443 82.297
5 57.881 106.100 107.536 109.534
6 72.279 133.544 135.182 137.301
7 86.753 161.294 163.132 165.362
8 101.270 189.224 191.259 193.594
9 115.813 217.263 219.495 221.933

10 130.371 245.374 247.803 250.341

11 144.941 273.533 276.159 278.796

12 159.518 301.725 304.549 307.285

13 174.102 329.943 332.964 335.798

14 188.689 358.180 361.397 364.329

15 203.281 386.430 389.846 392.875

16 217.874 414.692 418.305 421.432

17 232.470 442.963 446.773 449.998

18 247.068 471.241 475.249 478.571

of the longitudinal polarizability per unit cell with chain
length becomes linear for chains containing more than N
unit cells since the behavior is never exactly linear and
the increase continues, though at a much slower rate.
This is thus a question of judgement, which is directly re-
lated to the accuracy that is required. The behavior of
a,(N)—a,(N —1) with chain length is depicted in Fig.
2 for the various techniques with the (3)-21G and (6)-
311G(* )% atomic basis sets.

Since for the largest chains considered in this study the
variation of a,,(N)—a,,(N —1) is still larger than 102
a.u., one has to extrapolate in order to predict the polym-
eric results with a 5X 1073 a.u. accuracy. However, this
is not the case of the UCHF values, which saturate much
more rapidly as a consequence of the lack of any electron
reorganizational effects that are governed by the long-

TABLE IV. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the MP3 level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(*)*, and (6)-311G(*)* ]. All the values are given in a.u.

(1.0 au. of polarizability is equal to 1.6488X10*
C’m'=0.148 18 A).
N STO-3G (3)-:21G (6)-31G(* )% (6)-311G( * )%
1 4.691 9.144 10.120 11.228
2 12.782 24.833 27.533 29.707
3 22.027 44.008 49.093 52.439
4 31.642 64.748 72.601 77.158
5 41.378 86.219 97.073 102.891
6 51.158 108.038 122.027 129.129
7 60.957 130.035 147.238 155.644
8 70.765 152.131 172.595 182.317
9 80.580 174.285 198.041 209.087
10 90.398 196.477 223.545 235.920
11 100.219 218.693 249.085 262.796
12 110.043 240.928 274.654 289.702
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TABLE V. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the MP4 level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(*)*, and (6)-311G(%*)*]. All the values are given in a.u.
(1.0 a.u. of polarizability is equal to 1.6488X10™4
CmY'=0.14818 A°).

TABLE VII. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the CCSD level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(*)*, and (6)-311G(* )%* ]. All the values are given in a.u.
(1.0 au. of polarizability is equal to 1.6488X10%
C*m%J~'=0.148 18 &%)

N STO-3G (3)-21G (6)-31G( *)* (6)-311G(*)* N STO-3G (3)-21G (6)-31G( *)* (6)-311G( * )*
1 4.485 8.804 9.915 11.052 1 4.433 8.619 9.756 10.886
2 12.125 23.829 26.962 29.252 2 12.092 23.316 26.427 28.649
3 20.753 42.026 47.998 51.590 3 20.816 40.981 46.756 50.186
4 29.667 61.611 70.882 75.869 4 29.877 59.897 68.730 73.421
5 38.660 81.829 94.698 101.137 5 39.049 79.370 91.491 97.497
6 47.679 102.341 118.972 126.899 6 48.264 99.102 114.641 121.989
7 56.706 122.998 143.491 152.928 7 57.500 118.963 137.996 147.705
8 65.737 143.734 168.146 179.111 8 66.746 138.897 161.467 171.550
9 74.772 164.516 192.884 205.387 9 75.998 158.872 185.010 196.475

10 83.807 185.327 217.677 231.723 10 85.255 178.875 208.597 221.452

11 92.844 206.158 242.504 258.102 11 94.515 198.898 232.218 246.462

12 101.883 227.001 267.356 12 103.777 218.933 255.860

range Coulombic interactions. These asymptotic values
are obtained by extrapolating to infinite length the ex-
pression

a,(N)—a,(n—1)=a —be N, (5)

of which the parameters have been obtained by fitting the
molecular results. The asymptotic polymeric values,
given by a, are given at the top of Table IX. Five points
have been used in these fittings. These points are associ-
ated with the longest chains because their longitudinal
polarizability per unit cell value is closer to the asymptot-
ic value than the smallest chains. The accuracy on the
extrapolated values has been estimated by the fluctuation
on the a value by comparison with the values associated
with using the four largest oligomers in the fitting pro-
cedure.

TABLE VI. Longitudinal polarizability values of molecular
hydrogen model chains as a function of the number of structural
H, units (N) computed at the CCD level of approximation by
using different atomic basis sets [STO-3G, (3)-21G, (6)-
31G(*)%*, and (6)-311G(*)* ]. All the values are given in a.u.

Since the Hartree-Fock results are much more easily
accessible from the computational point of view, an alter-
native approach to get the extrapolated values within the
correlated techniques consists of using the Hartree-Fock
results as templates and of considering the evolution with
chain length of the ratio a(with electron
correlation)/a(coupled Hartree-Fock) [53]. Indeed, the
CHEF calculations can be performed much more easily for
longer and longer chains, increasing therefore the accura-
cy on the extrapolated value. Fitting the function

[azz(N)_azz(N —1 )]correlated _a —be —¢N

la,(N)—a,(N—1)]HF 1 —ge=/N

(6)

to these ratios, where the different rates of saturation of
the polarizabilities calculated at different levels of ap-

TABLE VIII. Longitudinal polarizability values of molecu-
lar hydrogen model chains as a function of the number of
structural H, units (N) computed at the CCSDT level of ap-
proximation by using different atomic basis sets [STO-3G, (3)-
21G, (6)-31G(*)*, and (6)-311G(*)*]. All the values are

(1.0 au. of polarizability is equal to 1.6488X107* given in a.u. (1.0 a.u. of polarizability is equal to 1.6488 X 10~*
C?m?~1=0.148 18 A’). C2m?I~'=0.148 18 7).
N  STO-3G (321G (6)-31G(*)%  (6)-311G( %)% N  STO-3G  (3)21G  (6)-31G(#)%  (6)-311G(%* )%
1 4.230 8.382 9.690 10.867 1 4.415 8.619 9.756 10.886
2 11.253 22.512 26.262 28.640 2 12.130 23.392 26.497 28.751
3 18.997 39.284 46.438 50.181 3 20.956 41.262 47.029 50.544
4 26.882 57.086 68.221 73.415 4 30.139 60.487 69.307 74.149
5 34.779 75.307 90.769 97.485 5 39.465 80.332 92.439 98.665
6 42.667 93.702 113.688 121.966 6 48.842 100.474 115.994 123.635
7 50.548 112.175 136.803 146.669 7 58.242 120.769 139.773 148.850
8 58.424 130.687 160.028 171.499 8 67.667 141.143 163.680 174.206
9 66.297 149.220 183.319 196.407 9 77.087 161.566 187.665 199.648
10 74.170 167.767 206.652 221.367 10 86.517 182.026 211.701 325.148
11 82.040 186.322 230.015 246.359 11 95.951 202.506 235.768 250.689
12 89.910 204.886 253.396 271.373 12 105.389  222.997 260.860
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proximation have been considered, provides the extrapo-
lated polarizability values given in the middle of Table
IX. The correlated asymptotic polarizability value is
then given by

a,,(correlation)=a,,(CHF)a . (7

Eight points have been used in these fittings. The accura-
cy of a is given by the variation of a obtained when re-
stricting the oligometric results to the seven longest
chains, whereas the uncertainty is estimated by using the
following expressions defining the relation between the
percent relative uncertainty of a product from the per-
cent relative uncertainty of each element entering in the
product:

%a,,(correlation)=V"[%a,,(CHF)*+(%a)” . (8)

As depicted in Fig. 3 for the (6)-31G( % )* basis set and
the CCD technique, this ratio converges faster than both
the corresponding polarizabilities per unit cell. As a
consequence of the sampling of the CHF results that in-
corporate larger chains, the extrapolated values using ex-
pressions (6) and (7) are larger than those obtained by the
more commonly used fitting procedure (5). In addition,
they are also of better quality. However, when the size of
the oligomers becomes large enough, both approaches to

a) —w—UCHF —e—MP2 —>— MP4 —o— CCSD

—8— CHF —0—MP3 —&—CCD —&— CCSD(T)

20.0

Longitudinal polarizability
per unit cell in a.u.

Number of unit cells

b) | —®— UCHF —e— MP2
—&—CHF —o—MP3

—>— MP4 —6— CCSD

—&— CCD —— CCSD(T)

20.0

per unit cell in a.u.

Longitudinal polarizability

Number of unit cells

FIG. 2. Evolution with chain length of the longitudinal po-
larizability per unit cell a,,(N)—a,,(N —1) of molecular hydro-
gen chain models computed at different levels of approximation.
(a) (3)-21G, (b) (6)-311G( * ) *.

get the asymptotic values have to furnish the same result
and, as a consequence, their comparison provides an ad-
ditional way of sampling the accuracy. As listed in Table
IX, the agreement between the two procedures ranges
from 1X1072 to 6X 1072 a.u. It should be noted that
several other forms for the fitting function have been
presented and used to extrapolate the polarizability and
other properties of polymeric chains to infinite chain lim-
it [4,6-9]. For sufficiently large chain length, all these
fittings should provide the same value, the accuracy being
estimated by their comparison. This is, however, beyond
the scope of this work, where we have chosen to restrain
our procedure to Egs. (5) and (6).

Taking care of the electron correlation clearly leads to
a decrease of the longitudinal polarizability in the H,
chains. This point can be rationalized by taking into ac-
count that, at the Hartree-Fock level, the electrons are
forced to share more the same space as a result of the
lack of electron correlation between electrons of different
spin whereas, by including correlation between them,
they are more localized and their associated polarizability
decreases. Similar trends are observed for small mole-
cules composed of carbon and hydrogen atoms, whereas
the opposite is generally true when the molecule contains
electronegative atoms such as nitrogen, oxygen, or
fluorine [28,30,31].

Significant results are given at the bottom of Table IX
and consist of the variation of the asymptotic polarizabil-
ity per unit cell values obtained at different levels of ap-
proximation by increasing the basis set from (3)-21G to
(6)-311G(* )% and from (6)-31G(%)* to (6)-311G(* ).
The asymptotic results obtained by following the second
procedure have been retained for quantitative results of
this comparison. At both the UCHF and the CHF levels,
polarization functions and additional diffuse functions do
not lead to a significant change of the longitudinal polari-
zability per unit cell (£1%). On the contrary, atomic
basis set effects are much stronger when electron correla-
tion is taken into account. The smaller effect is observed

—eo—CHF
1.5— cco
—*— CHF/CCD

0 2 4 6 8 10 12
Number of unit cells

FIG. 3. Evolution with chain length of the CHF and the
CCD longitudinal polarizability per unit cell of molecular hy-
drogen chain models and of their ratio. The (6)-31G( * ) basis
set has been used and the polarizability per unit cell values have
been scaled by a factor of 0.05 to fit the graph.
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TABLE IX. Asymptotic longitudinal polarizability per unit cell of molecular hydrogen model chains computed at various levels of approximation
(UCHF, CHF, MP2, MP3, MP4, CCD, CCSD, and CCSDT) by using different atomic basis sets [STO-3G, (3)-21G, (6)-31G(* )%, and (6)-
311G( %)% ]. The top part tabulates the asymptotic values obtained after extrapolating the polarizability per unit cell obtained within the different
techniques, whereas in the middle part, for the correlated results, the asymptotic values have been obtained after extrapolating the ratio with respect
to the CHF results. See the text for a description of the extrapolation procedures. The last two rows list (in percent) the polarizability changes by go-

ing from smaller basis sets to larger basis sets. All the values are given in a.u.

Atomic basis set UCHF CHF MP2 MP3 MP4 CCD CCSD CCSDT
STO-3G (I) 10.1441+0.001 14.604+0.002 11.902+0.002 9.829+0.001 9.057+0.012  7.858+0.008 9.264+0.006  9.434+0.003
(3)-21G (ID 14.547+0.001 28.305+0.005 25.2724+0.008 22.278+0.010 20.870+0.003 18.583+0.007 20.069+0.008 20.53240.008
(6)-31G(* )% (III) 14.347+0.001 28.502+0.002 27.233+0.009 25.628+0.009 24.895+0.011 23.420+0.003 23.696+0.008 24.139+0.005
(6)-311G(*)% (IV) 14.361+0.001 28.602+0.004 28.160+0.010 26.973+0.010 26.458+0.014 25.048+0.005 25.071+0.004 25.631%0.020
STO-3G

(ratio) (I) 10.144+0.001 14.604+0.002 11.911+0.002 9.839+0.002 9.050+0.002  7.881+0.003  9.278+0.003  9.452+0.002
(3)-21G

(ratio) (II) 14.547+0.001 28.305+0.005 25.309+0.005 22.308+0.005 20.907+0.005 18.611+0.005 20.098+0.005 20.561+0.005
(6)-31G(* )%
(ratio) (III) 14.347+0.001 28.502+0.002 27.270+0.003 25.663+0.003 24.9431+0.002 23.460+0.002 23.726+0.002 24.176%0.002
(6)-311G( * ) *
(ratio)(IV) 14.361+0.001 28.602+0.004 28.198+0.004 27.010+0.004 26.508+0.004 25.105+0.004 25.128+0.004 25.666+0.004
II-Iv —1.3 +1.0 +11.4 +21.1 +26.8 +34.9 +25.0 +24.8
II—1IV 0.1 +0.4 +3.4 +5.2 +6.3 +7.0 +5.9 +6.2

at the less correlated level, the MP2 level. Including elec-
tron correlation results thus in a decrease of the polariza-
bility values that is overestimated by using too small
atomic basis sets. The difference between the CCD and
the CCSD results disappears when the atomic basis set is
augmented. This feature points out the predominant
character of the multiple double excitations to describe
the polarizability phenomena. Atomic basis sets larger
than split-valence are thus required to correctly estimate
the asymptotic polarizability per unit cell of large finite
or infinite systems when electron correlation is included.
For these large basis sets, it is, however, important to no-
tice the weak effect with respect to the CHF results of in-
cluding electron correlation: —1.4%, —5.6%, —7.3%,
—12.2%, —12.1%, and —10.3% at the MP2, MP3,
MP4, CCD, CCSD, and CCSDT levels of approximation,
respectively, by using the (6)-311G(x% )% basis set,
whereas by using the (3)-21G basis set, the variations
with respect to the CHF results are —10.6%, —21.2%,
—26.1%, —34.2%, —29.0%, and —27.4% respectively.
The CCSDT method including corrections from all single

and double substitutions summed to all orders in
electron-electron interactions and a perturbative treat-
ment of the triple substitutions corresponds to the largest
part of the exact electron correlation value among the
techniques we have employed here. In addition, the cor-
responding polarizability values give very reliable results.
The small polarizability variation by going from CCSDT
to CCSD and to CCD shows that most of the electron
correlation effects are reproduced by including the double
substitutions summed to infinite order.

By considering the Mgller-Plesset treatment of electron
correlation, the total energy can be decomposed in
several terms that are characterized by their order (sub-
script) and the class of substitutions used in the inter-
mediate states (superscript S for single substitutions, D
for double substitutions, etc.). Hence the energy up to
fourth order in electron-electron interactions [E(MP4)]
can be rewritten

EMP4)=Escx+EP+EP?+E{+EP+EI+EZ, 9

where E¢ contains the contribution from the disconnect-

TABLE X. Contributions of the different classes of substitutions at the different order in the
Mgiller-Plesset treatment to the asymptotic longitudinal polarizability per unit cell of hydrogen chain

models. All the values are given in a.u.

Contribution STO-3G 3)-21G (6)-31G( %) * (6)-311G( % )%
ascr 14.604+0.002 28.305--0.005 28.502-£0.002 28.602--0.004
P=a, —2.6944+0.001  —2.996+0.001  —1.232+0.001  —0.402+0.003
aP=a, —2.062+0.004  —3.002£0.003  —1.607+0.004  —1.189-£0.004
a? —1.14540.001  —1.810+0.001  —0.954+0.002  —0.715+0.001
ap(4)=al+aP+a? —5.90140.006  —7.808+£0.005  —3.793+0.007  —2.306+0.008
ol 0.250+0.001 0.220+0.001 0.0530.001 0.036+0.001
afl 0.0630.003 0.237+0.001 0.293+0.001 0.35140.001
af 0.051+£0.001  —0.040+0.001  —0.115+0.001  —0.176+0.001
ay=a+al+al+af —0.78140.006  —1.393+0.004  —0.723+0.005  —0.504+0.004
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ed quadruple substitutions plus the renormalization. It is
important to stress that each of these contributions is size
extensive and therefore can be analyzed independently in
the case of our incresingly large oligomeric models. An
expression similar to (9) can be written for the polariza-
bility,

a(MP4)=acypt+al+al+aj+al+al+af. (10

Table X lists the different contributions to the asymptotic
longitudinal polarizability per unit cell of the hydrogen
chain models. The extrapolation have been performed by
fitting the oligomeric results associated with the five larg-
est chains to function (5). In the same way as for the to-
tal values, the accuracy has been sampled by removing
one point in the fitting procedure.

The second-, third-, and global fourth-order contribu-
tions are all negative. Therefore, the more electron
correlation, the smaller the asymptotic longitudinal po-
larizability per unit cell of the hydrogen chain models.
Most of these electron correlation effects originate from
the double substitutions. The third-order contribution is
dominant if the atomic basis set is sufficiently extended
(indeed, the contribution from the second-order double
substitution is overestimated by using small basis sets).
Single, triple, and quadruple substitutions contributions
are very small. The single contribution is more impor-
tant than the triple and quadruple contributions when us-
ing the minimal STO-3G atomic basis set, whereas with
the (6)-31G( %) and (6)-311G(* )% atomic basis sets, the
contribution from the triples is twice as much as that
from the quadruples, the contribution from the singles
being nearly one order of magnitude smaller than the tri-
ple contribution. The small contribution associated with
the single substitutions reflects their inclusions in the
coupled Hartree-Fock procedure. These three negative
contributions associated with the second-, third-, and
fourth-order corrections to the polarizability values differ
from the works on small molecules [13,30,31] for which
the a; and a4 terms are generally of different sign and
nearly compensate mutually. Moreover, the a, term is
often positive as shown by the results of Sekino and
Bartlett [31] (with the exception of the ethylene and ni-
trogen molecules) and of Sadlej [13] on small molecules.
In addition, in these molecular calculations, «, is the
leading term and a; often has a different sign. The calcu-
lations of Maroulis, and Archibong and Thakkar, on the
CO molecule [30] corroborate this fact, whereas the re-
sults of Fowler and Dierksen on C,H,, C,N,, HC;N, and
C,H, present a negative a, contribution [31]. In these
triply bonded molecules, the a, contribution is important
and it is difficult to rationalize the signs of a; and aj,.

It is also important to assess the evolution with chain
length of the different contributions to the longitudinal
polarizability per unit cell. With the exception of the D2
(within the notation, the letter refers to the class of sub-
stitutions, whereas the number refers to the order of the
electron-electron interactions) contribution by using the
(6)-311G(* )% atomic basis set, the amplitudes of the
various contributions to the longitudinal polarizability
per unit cell are all increasing with chain length. Since
their evolution rates are different, the relative contribu-
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oo —6-D3 —o—S4 —a—Q4
50.01 —— a)
40.0
- = a
30.0
20.0 *—— o — 8 90— —0 0 —0—0—¢

10.0

Relative contribution of the 4" order
electron correlation corrections to the
longitudinal polarizability per unit cell
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electron correlation corrections to the
longitudinal polarizability per unit cell

-10.

Number of unit cells
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electron correlation corrections to the
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FIG. 4. Evolution with chain length of the relative contribu-
tions to the fourth-order electron correlation corrections to the
longitudinal polarizability per unit cell. (a) STO-3G, (b) (3)-
21G, (c) (6)-31G(* )%, (d) (6)-311G( * )*.
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tions are more suitable for an analysis of their impor-
tance. The evolution with chain length of the different
relative contributions to the fourth-order electron corre-
lation corrections, given by the general expression

af

aﬁ)+a§)+a4s+af+af+a?

are reported in Fig. 4. These relative contributions can
be grouped in two categories regarding their increasing
or decreasing behavior with chain length. The STO-3G
basis set results do not present any striking effects with
chain length. D2 and Q4 have decreasing relative contri-
butions when the chain length grows, while the opposite
is true for the D3, D4, and T4 contributions and to a
lesser extent for the S4 contribution. As a consequence,
by using the (6)-31G(* )* and (6)-311G(* )% atomic basis
sets, the second-order contribution is the largest for the
smallest chains, while for chains containing more than
three H, units, it becomes smaller than the third-order
contribution with the (6)-31G(* )% atomic basis set and
smaller than the third- and fourth-order double substitu-
tions contributions with the (6)-311G(* )% atomic basis
set. Using a too small atomic basis set, the second-order
contribution is overestimated.

IV. SUMMARY, CONCLUSION, AND OUTLOOK

Different correlated techniques (MP2, MP3, MP4,
CCD, CCSD, and CCSDT) have been used to investigate
the effects of including electron correlation on the evalua-
tion of the static asymptotic longitudinal polarizabilities
per unit cell of molecular hydrogen chain models. Unlike
uncoupled and coupled Hartree-Fock calculations for
which a split-valence atomic basis set already provides
suitable longitudinal polarizability estimates, the MP2,
MP3, MP4, CCD, CCSD, and CCSDT techniques re-
quire at least additional polarization functions and
triple-{ type basis set to give suitable polarizability
values. It has also been shown that including electron
correlation decreases the longitudinal polarizability

values and that the electron correlation effects are
overemphasized when using a too small basis set.

The Mgdller-Plesset breakdown shows that the double
substitutions present the largest electron correlation
correction to the coupled Hartree-Fock asymptotic longi-
tudinal polarizabilities per unit cell. Moreover, among
these double substitution contributions, the third-order
contribution is dominant if the atomic basis set is
sufficiently extended. However, for chains containing less
than three H, units, the second-order contribution is the
most important: subsequently, it becomes smaller than
the third-order contribution and eventually smaller than
the fourth-order double substitutions contribution. Work
is now in progress to investigate the variation of these
electron correlation effects on the asymptotic longitudi-
nal polarizabilities per unit cell as a function of bond-
length alternation.

It should be stressed that these electron correlation
effects will be emphasized if considering the frequency-
dependent polarizability values. Indeed, electron correla-
tion affects strongly the excitation energy values that cor-
respond to the poles of the frequency-dependent polariza-
bility.
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