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Abstract We study the worst-case convergence rates of the proximal gradient
method for minimizing the sum of a smooth strongly convex function and a
non-smooth convex function, whose proximal operator is available.

We establish the exact worst-case convergence rates of the proximal gra-
dient method in this setting for any step size and for different standard per-
formance measures: objective function accuracy, distance to optimality and
residual gradient norm.

The proof methodology relies on recent developments in performance esti-
mation of first-order methods, based on semidefinite programming. In the case
of the proximal gradient method, this methodology allows obtaining exact and
non-asymptotic worst-case guarantees, that are conceptually very simple, al-
though apparently new.

On the way, we discuss how strong convexity can be replaced by weaker
assumptions, while preserving the corresponding convergence rates. We also
establish that the same fixed step size policy is optimal for all three perfor-
mance measures. Finally, we extend recent results on the worst-case behavior
of gradient descent with exact line search to the proximal case.

Keywords proximal gradient method · composite convex optimization ·
convergence rates · worst-case analysis.

Adrien B. Taylor (�)
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1 Introduction

The proximal gradient method is a well-known extension to the standard gra-
dient method for minimizing the sum of a smooth function with a non-smooth
convex one. Numerous variants of this method were studied in the literature
with a corresponding variety of results depending on the particular assump-
tions made on the optimization problems of interest.

In this work, we are concerned with the case where the smooth term is
also strongly convex. In this situation, the proximal gradient method is known
to converge linearly, as in the case of the gradient method (and its projected
variant), whose convergence is already widely studied — see among others [1,
Section 1.4: Theorem 3], [2, Theorem 2.1.14], [3, Section 5.1] and [4, Section
4.4] (with slight variants in the assumptions: depending on whether the smooth
function is required to be twice differentiable or not).

Our main contribution is to prove exact worst-case rates of convergence of
the method for the three standard optimality measures: distance to optimality,
objective function accuracy and residual gradient norm. These tight rates were
to the best of our knowledge only known for the first of these measures (see
e.g., [1, Section 1.4: Theorem 3], [3, Section 5.1] and [4, Section 4.4]). We also
derive a tight worst-case guarantee for the proximal gradient method with
exact line search.

Other related research trends feature linear convergence rates for the (prox-
imal) gradient method under weaker assumptions than strong convexity, and
linear convergence rates under inexact first-order information [5]. Among oth-
ers, restricted strong convexity-type results are presented in [6,7], and conver-
gence under  Lojasiewicz-type conditions were very recently presented in [8].

The paper is organized as follows: in Section 2, we present the problem
statement and the main results; in Section 3, we prove our main results (tight
convergence rates for the method and for its exact line search variant); in
Section 4, we summarize known and newly derived tight results for the prox-
imal gradient method, that were obtained using the performance estimation
framework developed by Drori and Teboulle [9] and the authors (see [10,11]).
Finally, we conclude the work in Section 5.

2 Problem Statement and Main Results

Let us consider the composite convex minimization (CCM) setting

min
x∈Rd

{F (x) := f(x) + h(x)} (CCM)

where h : Rd → R ∪ {∞} is convex, closed and proper and f : Rd → R is
L-smooth µ-strongly convex, closed and proper for some 0 < µ ≤ L < ∞.
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That is, we assume that f is differentiable over the whole Rd and satisfies the
following conditions (using the Euclidean norm ‖.‖):
� L-smoothness:
‖∇f(x+∆x)−∇f(x)‖ ≤ L‖∆x‖ holds for all x ∈ Rd and ∆x ∈ Rd ,

� µ-strong convexity:
f(x)− µ

2 ‖x‖
2

is a convex function on Rd.
In the sequel, we use the notation F0,∞(Rd) to denote the class of closed and
proper convex functions, and the notation Fµ,L(Rd) for the class of closed and
proper L-smooth µ-strongly convex functions.

In addition, we assume that we can evaluate the gradient of f and the
proximal operator of h [12, Section 1.1] at any x ∈ Rd:

pγh (x) := argmin
y∈Rd

{
γh(y) +

1

2
‖x− y‖2

}
. (PROX)

In this work, we focus on the proximal gradient method (PGM) with constant
step length γ to solve (CCM).

Proximal gradient method (PGM)

Input: x0 ∈ Rd, f ∈ Fµ,L(Rd), h ∈ F0,∞(Rd), 0 ≤ γ ≤ 2
L .

For k = 0 : N − 1

xk+1 = pγh (xk − γ∇f(xk))

The composite convex problem (CCM) admits the following very common
particular cases:

- the unconstrained minimization problem minx∈Rd f(x), when h(x) = 0
and pγh (x) = x. In this case, PGM is simply the standard unconstrained
gradient method (UGM) xk+1 = xk − γ∇f(xk).

- The constrained minimization problem minx∈Q f(x), with Q ⊆ Rd a closed
convex set. This corresponds to choosing h(x) = iQ(x) (iQ is the indicator
function of Q) for which the proximal operation corresponds to a projection
onto Q: pγiQ (x) = ΠQ(x). In this case, PGM is simply the standard
projected gradient method (ΠGM) xk+1 = ΠQ(xk − γ∇f(xk)).

- The composite minimization problem minx∈Rd f(x)+h(x), where h(x) has
an analytical proximal operator available1 (e.g., the classical `1-regularization
term h(x) = ‖x‖1 and the corresponding soft-thresholding operator)).

Convergence rate Consider Problem (CCM) with parameters 0 < µ ≤ L <∞,
and PGM with step size γ. Define the following quantity

ρ(γ) := max
{
|1− Lγ|, |1− µγ|

}
= max

{
(Lγ − 1), (1− µγ)

}
. (RHO)

Observe that ρ(γ) ≥ 0 for all values of the step size such that 0 ≤ γ ≤ 2
L . The

term |1 − Lγ| in the expression of ρ(γ) is minimized by taking the so-called

1 A list of useful analytical proximal operators is available in [13].
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short step 1/L, whereas the second term |1−µγ| is minimized by choosing the
so-called long step 1/µ.

We prove in Section 3.3 that applying PGM to Problem (CCM) produces a
sequence of iterates converging to an optimal solution with a linear convergence
rate, whatever the performance measure considered: distance to optimality,
residual gradient norm and objective function accuracy. Moreover, that rate
is equal to ρ2(γ) for all three measures. This implies that the best possible
worst-case convergence rate is achieved by the step size γ? := 2

L+µ for all

three performance measures (see Fig. 1). Indeed, this step size minimizes ρ(γ)
(it corresponds to the case where both terms are equal), and the corresponding

optimal rate is ρ2? := ρ2(γ?) =
(
L−µ
L+µ

)2
.

γ

ρ2

0 2
L

0

1

(1− µγ)2

(1− Lγ)2

1
µ

1
L

2
L+µ

Fig. 1 Rate of convergence ρ2(γ) as a function of the step size γ.

In the sequel, we will use notation ∇̃F (x) to denote a arbitrary subgradient
of F at x, i.e. ∇̃F (x) ∈ ∂F (x). It will also be convenient to define the following
auxiliary quantity sk for every iteration of PGM

sk+1 :=
xk − xk+1

γ
−∇f(xk). (1)

We will show in Section 3.2 that sk+1 ∈ ∂h(xk+1), i.e. that this quantity is a
subgradient of h (it is in fact the particular subgradient that appears in the op-
timality condition of the proximal operator subproblem generating xk+1). An-
other consequence is that ∇f(xk+1) + sk+1 ∈ ∂F (xk+1), i.e. ∇f(xk+1) + sk+1

is a particular subgradient of F at xk+1. Our results on the convergence of the
residual gradient norm will actually characterize that particular subgradient.

Our main result can now be stated.

Theorem 2.1 Let f ∈ Fµ,L(Rd) and h ∈ F0,∞(Rd), and consider the com-
posite convex optimization problem (CCM) and a starting point x0 ∈ Rd satis-
fying ∂F (x0) 6= ∅ (only required for the result in residual gradient norm). The
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iterates {xk}k≥0 of PGM with step size 0 ≤ γ ≤ 2
L satisfy the following:

max
f ∈ Fµ,L(Rd)
h ∈ F0,∞(Rd)

x0 ∈ Rd

{
‖xk−x?‖2

‖x0−x?‖2

}
= ρ2k(γ),

max
f ∈ Fµ,L(Rd)
h ∈ F0,∞(Rd)

x0 ∈ Rd

{
‖∇f(xk)+sk‖2

||∇̃F (x0)||2

}
= ρ2k(γ),

max
f ∈ Fµ,L(Rd)
h ∈ F0,∞(Rd)

x0 ∈ Rd

{
F (xk)−F (x?)
F (x0)−F (x?)

}
= ρ2k(γ),

where x? ∈ Rd denotes the (unique) optimal solution of (CCM), sk denotes the
subgradient used in the proximal operation to generate xk ( see Equation (1)),
and ∇̃F (x0) ∈ ∂F (x0) denotes an arbitrary subgradient of F at x0.

In addition, the following corollary directly uses Theorem 2.1 to extend
the recent results of [14, Theorem 1.2] on the exact worst-case complexity
of the gradient descent with exact line search. As in the unconstrained case
(h(x) = 0), this result cannot be improved in general, as it is attained by a
two-dimensional quadratic example [14, Example 1.3].

Proximal gradient method with exact line search

Input: x0 ∈ Rd, f ∈ Fµ,L(Rd), h ∈ F0,∞(Rd).
For k = 0 : N − 1

γ = argmin
γ∈R

F [pγh (xk − γ∇f(xk))]

xk+1 = pγh (xk − γ∇f(xk))

Corollary 2.1 Let f ∈ Fµ,L(Rd), and h ∈ F0,∞(Rd) and consider the com-
posite convex optimization problem (CCM) and some starting point x0 ∈ Rd.
The iterates of PGM with exact line search satisfy the following inequality:

F (xk+1)− F? ≤ ρ2? (F (xk)− F?) .

Proof. This is exactly the result of Theorem 2.1 (in terms of objective function
accuracy) for the choice γ = γ?. The corresponding result is an upper bound
on the worst-case of PGM with exact line search, which turns out to be tight
on the quadratic example [14, Example 1.3] [15, Example on p.69].

Remark 2.1 As suggested by an anonymous referee, it is possible to perform
exact line searches over other performance measures, and to deduce results
similar to that of Corollary 2.1 for those methods. For example, in the simple
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case h(x) = 0, it directly follows from Theorem 2.1 that the method using an
exact line search over the residual gradient norm

α = argminα{‖∇f(xk + α∇f(xk))‖}

and xk+1 = xk + α∇f(xk) satisfies

‖∇f(xk+1)‖2 ≤ ρ2?‖∇f(xk)‖2,

and a similar result holds for the distance to optimality. The corresponding
results for the composite case h(x) 6= 0 can also easily be deduced from the
same reasoning. However, we do not know whether the upper bounds valid for
those measures (with line search) are tight, due to a lack of matching lower
bounds.

Prior works The UGM and ΠGM are standard methods, whose analysis in
the context of smooth strongly convex functions can be found in numerous
references. Linear convergence in distance to optimality according to

‖xk+1 − x?‖2 ≤ ρ2(γ)‖xk − x?‖2, (2)

can be found in e.g., [1, Section 1.4: Theorem 3], [3, Section 5.1] and [4, Section
4.4] for UGM and ΠGM, with slight variations in the assumptions (depending
on whether or not f is required to be twice differentiable). For the specific step
size 1/L, the guarantee (2) can be found as a particular case of [5, Proposition
3]. Weaker convergence rates such as ρ(1/L) = (1 − µ

L ) for the specific step
size γ = 1/L can be found in e.g., [2, Theorem 2.2.8] or [16, Theorem 3.10]
for ΠGM. One can also check that (2) also holds for PGM, as it essentially
follows the same proof technique as for ΠGM (using the non-expansiveness of
the proximal operation).

As far as we know, results in terms of F (xN )− F? or ‖∇f(xN ) + sN‖ are
typically not as emphasized (or known) as compared to convergence in terms
of ‖xN − x?‖. A standard technique to convert convergence results in terms
of ‖xN − x?‖ to ‖∇f(xN ) + sN‖ and F (xN ) − F? consists in exploiting the
smoothness and strong convexity assumptions (convergence in ‖∇f(xN ) + sN‖
and in F (xN ) − F? is then obtained as a by-product of the convergence in
‖xN − x?‖). For example, in the particular case of unconstrained minimization
(i.e., h = 0), one can use:

f(xk)− f(x?) ≤
L

2
‖xk − x?‖2, ‖∇f(xk)‖ ≤ L‖xk − x?‖,

f(xk)− f(x?) ≥
µ

2
‖xk − x?‖2, ‖∇f(xk)‖ ≥ µ‖xk − x?‖,

to adapt convergence rates in terms of distance to optimality to the following
convergence results in objective function accuracy and residual gradient norm:

f(xk)− f(x?) ≤
L

µ
ρ2k(γ)(f(x0)− f(x?)), and ‖∇f(xk)‖ ≤ L

µ
ρk(γ)‖∇f(x0)‖.

(3)
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However, the bounds (3) are not tight because of the leading constant L/µ
(see Theorem 2.1). In addition, we typically have L

µρ
2k > 1 for small values

of k, and therefore the former inequality (3) does not even guarantee an im-
provement in terms of objective function accuracy or residual gradient norm
for few iterations.

The global convergence rate ρ2 (γ?) =
(
L−µ
L+µ

)2
in terms of objective func-

tion accuracy was only very recently obtained for UGM with step size γ? as a
by-product of the convergence guarantee when using exact line search for solv-
ing unconstrained smooth convex minimization problems [14, Theorem 1.2],
whereas previous results were only establishing a

(
1− µ

L

)
global convergence

rate (see e.g., [15]). Theorem 2.1 further extends this result in the composite
case (CCM) for the different convergence measures, for embedding a projection
or a proximal step and for all reasonable step sizes.

3 Convergence in Function Values, Residual Gradient and Distance
to Optimum

3.1 Quadratic Lower Bounds

First, we focus on the case of f being quadratic without h (h = 0), which
provides us with lower complexity bounds for the different values of the step
size γ. Those quadratics correspond to lower bounds for UGM and therefore
also for ΠGM and PGM. We will show that those are tight for the class of
smooth strongly convex functions in the following section.

Consider two constants 0 < µ ≤ L < +∞ and the corresponding quadratic
functions fµ(x) := µ

2 ‖x‖
2

and fL(x) := L
2 ‖x‖

2
. We clearly have that fµ, fL ∈

Fµ,L(Rd) and that x? = 0 and f? = 0 for both functions. In addition, one
iteration of UGM on those functions respectively gives:

x
(µ)
k+1 = (1− γµ)x

(µ)
k , x

(L)
k+1 = (1− γL)x

(L)
k ,

which respectively lead to

fµ(x
(µ)
k+1) = µ

2 (1− γµ)2
∥∥∥x(µ)k

∥∥∥2, ∥∥∥∇fµ(x
(µ)
k+1)

∥∥∥2 = (1− γµ)2
∥∥∥∇fµ(x

(µ)
k )
∥∥∥2,

fL(x
(L)
k+1) = L

2 (1− γL)2
∥∥∥x(L)k

∥∥∥2, ∥∥∥∇fL(x
(L)
k+1)

∥∥∥2 = (1− γL)2
∥∥∥∇fL(x

(L)
k )

∥∥∥2.
Those equalities allow to conclude that the worst-case behaviour for any of
the criteria f(xk+1) − f?, ‖xk+1 − x?‖2 and ‖∇f(xk+1)‖2 is at least as bad
as in the cases of those two functions. That is, for any γ ∈ R, there exists a
f ∈ Fµ,L(Rd) such that all iterations (k ≥ 0) of UGM statisfy:

‖xk+1 − x?‖2 = ρ2(γ)‖xk − x?‖2,
f(xk+1)− f? = ρ2(γ)(f(xk)− f?), (QLB)

‖∇f(xk+1)‖2 = ρ2(γ)‖∇f(xk)‖2.
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We will see that that no other function within f ∈ Fµ,L(Rd) behaves (strictly)
worse in the cases of interest.

3.2 Basic Inequalities Characterizing one Iteration of PGM

Now, we make a short inventory of the inequalities available to prove the
different global convergence rates. Recent works on performance estimation
of first-order methods (see [10,11]) guarantee that no other inequalities are
needed in order to obtain the desired convergence results.

In the following, we denote by gk and sk the (sub)gradients of respectively
the smooth function f and the non-smooth component h at the iteration k;
that is gk := ∇f(xk) and sk ∈ ∂h(xk), and by fk and hk the function values at
those points: fk := f(xk) and hk := h(xk). In addition to that, we denote by
x? the optimal point (unique by strong convexity of F ) and by g? := ∇f(x?)
and s? ∈ ∂h(x?) the gradient and some subgradient of respectively f and h at
the optimum. Let us list the (in)equalities that enable us to characterize one
iteration of PGM.

(a) The iteration xk+1 = pγh (xk − γ∇f(xk)) can be rewritten using neces-
sary and sufficient optimality conditions on the definition of the proximal
operation (PROX):

xk+1 = xk − γ(gk + sk+1)

for some sk+1 ∈ ∂h(xk+1).
(b) Optimality of x? for (CCM) amounts to requiring g? + s? = 0 for some

s? ∈ ∂h(x?).
(c) For characterizing smoothness and strong convexity in the case 0 < µ <

L <∞, we use the conditions from [10, Theorem 4]. This should be required
between three points: xk, xk+1 and x?. That is, for the six possible pairs
(i, j) within {k, k + 1, ?} we have:

fi ≥ fj +〈gj , xi − xj〉+ 1
2L‖gi − gj‖

2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L (gi − gj)

∥∥2. (4)

Note that in the remaining case L = µ, function f has to be of the form
f(x) = L

2 ‖x− x?‖
2
, and hence all results can easily be verified separately

for this case.
(d) Similarly, we require that for the same six pairs (i, j):

hi − hj − 〈sj , xi − xj〉 ≥ 0, (5)

for characterizing the (possibly non-smooth) convex function h.

3.3 Upper Bounds on the Global Convergence Rates

In this section, we prove the main convergence results of the paper, beginning
with the convergence in terms of distance to optimality. Each proof of this
section is provided with a symbolic verification code (link available at the end
of Section 5).
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Distance to optimality As mentioned in Section 2, the following convergence
result in term of distance to optimality is not new. For the sake of clarity and
completeness, we start by proving it using the same technique as for the sub-
sequent results (on residual gradient norm and objective function accuracy).
The proof methodology relies from the performance estimation methodology
(see [9,10,11,14,17]). This technique has the advantage of being transparent
and of explicitly identifying weaker assumptions for obtaining this convergence
property (see discussions below Theorem 3.1).

Theorem 3.1 (Distance to optimality) Consider the composite convex
optimization problem (CCM). Every pair of consecutive iterates of the PGM
with 0 ≤ γ ≤ 2

L satisfies the following inequality:

‖xk+1 − x?‖2 ≤ ρ2(γ)‖xk − x?‖2.

Proof. We use the notations and inequalities introduced in the previous section
(Section 3.2) in order to construct the proof. As proposed in Section 3.2, we
use some of the inequalities (4) and (5) between the iterates and the optimal
point. The proof consists in summing those interpolation inequalities after
multiplying them with their respective coefficients2, or multipliers, λ’s.

First, we use (4) with respectively (i, j) = (?, k) and (i, j) = (k, ?):

f? ≥ fk +〈gk, x? − xk〉+ 1
2L‖gk − g?‖

2

+ µ
2(1−µ/L)

∥∥xk − x? − 1
L (gk − g?)

∥∥2 : λ0,

fk ≥ f? +〈g?, xk − x?〉+ 1
2L‖gk − g?‖

2

+ µ
2(1−µ/L)

∥∥xk − x? − 1
L (gk − g?)

∥∥2 : λ1

Then, we use (5) with respectively (i, j) = (?, k + 1) and (i, j) = (k + 1, ?):

h? ≥ hk+1 + 〈sk+1, x? − xk+1〉 : λ2,

hk+1 ≥ h? + 〈s?, xk+1 − x?〉 : λ3.

We use the following multipliers

λ0 = λ1 = 2γρ(γ) ≥ 0, λ2 = λ3 = 2γ ≥ 0.

After appropriate substitutions of xk+1 and s?, using xk+1 = xk−γ(gk+sk+1)
(Section 3.2, Condition (a)) and s? = −g? (Section 3.2, Condition (b)), and
with some effort, one can check that the previous weighted sum of inequalities
can be written in one of the following forms. We divide the proof in two cases
(corresponding to the two regimes of ρ(γ), see (RHO)). In order to illustrate
the reformulation procedure, verification for the first case is detailed explicitly
in Appendix A.

2 Those λ’s were found by identifying an analytical optimal solution to the dual perfor-
mance estimation problem. That is, each λ can be seen as a Lagrange multiplier for the
corresponding inequality. The methodology is explained and illustrated in details in [14,
Section 4.1].
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� When 0 ≤ γ ≤ 2
L+µ (i.e., ρ(γ) = (1 − γµ)), the expression can be written

as (details in Appendix A)

(1− γµ)
2 ‖xk − x?‖2 ≥‖xk+1 − x?‖2 + γ2‖g? + sk+1‖2

+
γ(2− γ(L+ µ))

L− µ
‖µ(xk − x?)− gk + g?‖2,

≥‖xk+1 − x?‖2,

where the last inequality follows from

γ2 ≥ 0, γ(2− γ(L+ µ)) ≥ 0, and L− µ ≥ 0.

� Similarly, when 2
L+µ ≤ γ ≤ 2

L (i.e., ρ(γ) = (Lγ − 1)), the expression is
equivalent to

(1− γL)
2 ‖xk − x?‖2 ≥‖xk+1 − x?‖2 + γ2‖g? + sk+1‖2

+
γ(γ(L+ µ)− 2)

L− µ
‖L(xk − x?)− gk + g?‖2,

≥‖xk+1 − x?‖2,

where the last inequality follows from

γ2 ≥ 0, γ(γ(L+ µ)− 2) ≥ 0, and L− µ ≥ 0.

Note that for any γ such that 0 ≤ γ ≤ 2
L , exactly3 one of the two previous

combinations of inequalities is valid (both multipliers and coefficients of the
squared norms are positive). In addition, the valid expression corresponds to
the maximum value between the two possible rates (1 − γµ)2 and (1 − γL)2,
which concludes the proof.

Before moving to the next convergence result, note that only a subset of the
available inequalities were used in the previous proof. In fact, any composite
function F for which the f component satisfies ∀x ∈ Rd:

〈∇f(x?)−∇f(x), x? − x〉 ≥
1

L
‖∇f(x)−∇f(x?)‖2 (6)

+
µ

1− µ/L

∥∥∥∥x− x? − 1

L
(∇f(x)−∇f(x?))

∥∥∥∥2,
(which is the sum of the two first inequalities used in the proof of Theo-
rem 3.1, as equal multipliers λ0 = λ1 are used) will have a PGM converging
with the same rate in terms of distance to optimality, despite being poten-
tially outside of Fµ,L. For example, consider the following quadratic function

3 Actually, both regimes are valid for γ = 2
L+µ

.
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fA(x) = 1
2x
>Ax with µI � A � LI (hence f ∈ Fµ,L). Therefore, (6) holds

and hence:(
1 +

µ

L

)
(x? − xk)>A(x? − xk) ≥ 1

L
(xk − x?)>A>A(xk − x?)

+ µ(xk − x?)>(xk − x?).

However, this inequality also holds in some cases where 0 � A � LI. For
example, let x? be the projection of xk onto the set of optimal solutions (i.e.,
xk − x? ⊥ Null(A)), and let µ > 0 correspond to the smallest non-zero eigen-
value of A. In that case, the previous inequality is satisfied, although fA does
not belong to Fµ,L, and the gradient method for minimizing fA converges with
the same rate ρ2(γ) in terms of distance to an optimal point.

Also, we only need to require a monotonicity condition on ∂h for keeping
the same convergence guarantees, as only the sum of the third and fourth
inequalities is used in the proof (λ2 = λ3):

〈sk+1 − s?, xk+1 − x?〉 ≥ 0,

Those sorts of relaxations were further exploited in [6,7] (relaxation of the
strong convexity requirement, with motivational examples). We leave further
investigations in that direction for future research.

Residual gradient norm The next theorem is concerned with convergence in
terms of residual gradient norm. Similar results can be obtained for the norm
of the (composite) gradient mapping (i.e.,xk−xk+1

γ ) instead4, which is used in

some standard references on composite minimization [2,18].
Convergence in terms of residual gradient norm is in fact very natural, as

it is measurable in practice, as opposed to the distance to optimality, which
requires the knowledge of x? in order to be evaluated, or in terms of objective
function accuracy, which requires the knowledge of (or a least a bound on) the
true value of F (x?).

Theorem 3.2 (Residual gradient norm) Let f ∈ Fµ,L(Rd), and h ∈
F0,∞(Rd), and consider the composite convex optimization problem (CCM),
and a feasible starting point x0 ∈ Rd (i.e., x0 is such that F (x0) < ∞) such
that there exists s0 ∈ ∂h(x0). The iterates of PGM with 0 ≤ γ ≤ 2

L satisfy:

‖∇f(xk+1) + sk+1‖2 ≤ ρ2(γ)‖∇f(xk) + sk‖2,

with sk ∈ ∂h(xk) (any subgradient of h at xk) and sk+1 ∈ ∂h(xk+1), the
subgradient of h at xk+1 used in the proximal operation ( see Equation (1)).

4 The difference between the gradient mapping and the residual gradient norm is simple,
but somewhat subtle. The gradient mapping measures ‖∇f(xk) + sk+1‖, whereas the resid-
ual gradient norm measures ‖∇f(xk+1) + sk+1‖ with sk+1 ∈ ∂h(xk+1) the subgradient
used in the proximal operation.
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Proof. We use the exact same reasoning as for Theorem 3.1: the notations
and inequalities are introduced in the previous section (Section 3.2), and the
proof consists in summing the following interpolation inequalities after multi-
plication by their respective coefficients. The main difference lies in the choice
of the inequalities to be combined. In this proof, we use conditions between
consecutive iterates, instead of using conditions between the current iterates
and the optimum:

fk ≥ fk+1 +〈gk+1, xk − xk+1〉+ 1
2L‖gk − gk+1‖2

+ µ
2(1−µ/L)

∥∥xk − xk+1 − 1
L (gk − gk+1)

∥∥2 : λ0

fk+1 ≥ fk +〈gk, xk+1 − xk〉+ 1
2L‖gk − gk+1‖2

+ µ
2(1−µ/L)

∥∥xk − xk+1 − 1
L (gk − gk+1)

∥∥2 : λ1,

hk ≥ hk+1 + 〈sk+1, xk − xk+1〉 : λ2,

hk+1 ≥ hk + 〈sk, xk+1 − xk〉 : λ3.

We use the following multipliers:

λ0 = λ1 =
2

γ
ρ(γ) ≥ 0, λ2 = λ3 =

2

γ
ρ2(γ) ≥ 0.

After appropriate substitutions of xk+1, using xk+1 = xk − γ(gk + sk+1) (Sec-
tion 3.2, Condition (a)), the previous weighted sum corresponds to a sum of
squares in the two cases of interest (same two regimes as ρ(γ), see (RHO)).

� When 0 ≤ γ ≤ 2
L+µ (i.e., when ρ(γ) = (1− γµ)):

(1− γµ)
2 ‖gk + sk‖2 ≥‖gk+1 + sk+1‖2 + (1− γµ)

2 ‖sk − sk+1‖2

+
2− γ(L+ µ)

γ(L− µ)
‖gk − gk+1 − µγ(gk + sk+1)‖2,

≥‖gk+1 + sk+1‖2,

where the last inequality follows from

(1− γµ)2 ≥ 0, 2− γ(L+ µ) ≥ 0, and γ(L− µ) ≥ 0.

� When 2
L+µ ≤ γ ≤

2
L (i.e., when ρ(γ) = (Lγ − 1)):

(1− γL)
2 ‖gk + sk‖2 ≥‖gk+1 + sk+1‖2 + (1− γL)

2 ‖sk − sk+1‖2

+
γ(L+ µ)− 2

γ(L− µ)
‖gk − gk+1 − Lγ(gk + sk+1)‖2,

≥‖gk+1 + sk+1‖2,

and the last inequality follows from

(1− γL)2 ≥ 0, γ(L+ µ)− 2 ≥ 0, and γ(L− µ) ≥ 0.
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We conclude the proof in the same way as for the distance to optimality:
since, for any value of γ such that 0 ≤ γ ≤ 2

L , there is always one of the two
previous combinations of inequalities that is valid (both multipliers and coeffi-
cients of the squared norms are positive), and since the valid one corresponds
to the maximum value between the two possible rates (1−γµ)2 and (1−γL)2,
the desired statement is proved.

Interestingly, the inequalities used in this proof do not involve the optimal
point, and only use the information available at the consecutive iterates. In
addition, note that as for the convergence in terms of distance to optimality,
λ0 = λ1 tells us that the result holds under the following weaker assumption:

〈gk+1 − gk, xk+1 − xk〉 ≥
1

L
‖gk − gk+1‖2

+
µ

1− µ/L

∥∥∥∥xk − xk+1 −
1

L
(gk − gk+1)

∥∥∥∥2.
A consequence of this inequality is that one can benefit from using the locally
better strong convexity and smoothness parameters (i.e., better constants µ
and L that satisfy this inequality for two consecutive iterates) instead of the
global ones, in order to improve the convergence rate. Also, it is possible to
exploit this in order to make online estimations of the strong convexity and
smoothness parameters µ and L (we leave this for further research).

Objective function accuracy Finally, we consider convergence in terms of ob-
jective function accuracy. The proof of this convergence rate is much more
tedious than the previous ones, and seems to require more assumptions (i.e.,
more inequalities appear to be needed — of course it may also be that we just
did not discover the simplest proof).

Theorem 3.3 (Objective function accuracy) Let f ∈ Fµ,L(Rd), and h ∈
F0,∞(Rd), and consider the composite convex optimization problem (CCM),
and some starting point x0 ∈ Rd. The iterates of PGM with 0 ≤ γ ≤ 2

L satisfy
the following:

F (xk+1)− F? ≤ ρ2(γ) (F (xk)− F?) .
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Proof. We combine the following interpolation after multiplication with their
respective coefficients:

fk ≥ fk+1 +〈gk+1, xk − xk+1〉+ 1
2L‖gk − gk+1‖2

+ µ
2(1−µ/L)

∥∥xk − xk+1 − 1
L (gk − gk+1)

∥∥2 : λ0,

f? ≥ fk +〈gk, x? − xk〉+ 1
2L‖gk − g?‖

2

+ µ
2(1−µ/L)

∥∥xk − x? − 1
L (gk − g?)

∥∥2 : λ1,

f? ≥ fk+1 +〈gk+1, x? − xk+1〉+ 1
2L‖g? − gk+1‖2

+ µ
2(1−µ/L)

∥∥x? − xk+1 − 1
L (g? − gk+1)

∥∥2 : λ2,

hk ≥ hk+1 + 〈sk+1, xk − xk+1〉 : λ3,

h? ≥ hk+1 + 〈sk+1, x? − xk+1〉 : λ4.

We use the following multipliers:

λ0 = ρ(γ), λ1 = (1− ρ(γ))ρ(γ), λ2 = 1− ρ(γ), λ3 = ρ2(γ), λ4 = 1− ρ2(γ).

Appropriate substitutions of xk+1 and s? using xk+1 = xk − γ(gk + sk+1)
(Section 3.2, Condition (a)) and s? = −g? (Section 3.2, Condition (b)), we
obtain that the weighted sum of inequalities is equivalent to the following
expressions.

� When 0 ≤ γ ≤ 2
L+µ (i.e., when ρ(γ) = (1− γµ)):

(1− γµ)2 (F (xk)− F?)

≥ F (xk+1)− F? +
(2− γµ)β(γ)

2α(γ)
‖(1− γµ)gk − gk+1 + µγg?‖2

+
γLµ2(2− γµ)

2(L− µ)

∥∥∥∥(xk − x?)−
2L− 2µ+ γµ2

Lµ(2− γµ)
sk+1 −

gk + gk+1

µ(2− γµ)
+
g?

L

∥∥∥∥2
+

γµα(γ)

2L(L− µ)(2− γµ)

∥∥∥∥sk+1 +
(µγ − 1)Lβ(γ)

α(γ)
gk +

Lβ(γ)

α(γ)
gk+1 +

(L− µ)(2− γµ)2

α(γ)
g?

∥∥∥∥2,
≥ F (xk+1)− F?,

with α(γ) := −(γ2L2µ + 2L(−2 + γµ) + µ(−2 + γµ)2) and β(γ) := (2 −
γ(L + µ)), and where the last inequality follows from the signs of the
leading coefficients. Indeed, note that α(γ) is positive for 0 ≤ µ < L and
0 ≤ γ ≤ 2

µ+L , as α(γ) is a concave quadratic function with α(0) ≥ 0 and

α(γ?) = 4L2(L−µ)
(L+µ)2 ≥ 0.

� When 2
L+µ ≤ γ ≤

2
L (i.e., when ρ(γ) = (Lγ − 1)):

(1− γL)2 (F (xk)− F?)

≥ F (xk+1)− F? +
(2− γL)β(γ)

2γα(γ)
‖(1− γL)gk − gk+1 + γLg?‖2

+
γL2µ(2− γL)

2(L− µ)

∥∥∥∥(xk − x?)−
sk+1

µ
+

1− γL− γµ
γLµ

gk −
gk+1

γLµ
+
g?

L

∥∥∥∥2
+

γα(γ)

2µ(L− µ)

∥∥∥∥sk+1 +
(γL− 1)Lβ(γ)

γα(γ)
gk +

Lβ(γ)

γα(γ)
gk+1 +

(2− γL)(L− µ)µ

α(γ)
g?

∥∥∥∥2,
≥ F (xk+1)− F?,
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with α(γ) := (−2L2 − 2µ2 + 2Lµ + γL3 + γLµ2) and β(γ) := (γ(L +
µ)− 2), and where the last inequality follows from the signs of the leading
coefficients. Again, α(γ) is nonnegative as it is an increasing linear function
which is nonnegative in the region of interest γ ≥ 2

L+µ . Indeed, one can

check that by evaluating α(γ?) = 2µ2
(
L−µ
L+µ

)
≥ 0.

We conclude the proof in the same way as before: among the two cases, the
valid one corresponds to the maximum value between the two possible rates
(1− γµ)2 and (1− γL)2.

Proof of Theorem 2.1 The Theorem is obtained by combining the upper bounds
from Theorem 3.1, Theorem 3.2 and Theorem 3.3 with the lower bounds pro-
vided by the quadratic functions (QLB).

4 Mixed Performance Measures and Sublinear Convergence Rates

In this section, we consider mixed performance measures for PGM, that is,
we consider cases where the quality of the initial and final iterates x0 and xk
are measured using different criteria. For example, the quality of x0 may be
measured in terms of ‖x0 − x?‖ whereas the quality of xk may be measured in
terms of F (xk)−F (x?). As we will see, this type of combination is particularly
useful for obtaining sublinear convergence rates in the smooth convex but non-
strongly convex case.

We first show that, for certain cases of mixed performance measures, Theo-
rem 2.1 can readily be used to obtain tight bounds. Then, we present additional
results that were obtained numerically using the performance estimation ap-
proach, for which we did not manage to find an analytical proof.

Proposition 4.1 Consider the composite convex optimization problem (CCM),
and a feasible point x ∈ Rd (i.e. x is such F (x) < ∞) such that s ∈ ∂h(x).
The following inequalities are satisfied:

(i) ‖x− x?‖2 ≤ 1
µ2 ‖∇f(x) + s‖2,

(ii) F (x)− F? ≤ 1
2µ‖∇f(x) + s‖2.

(iii) ‖x− x?‖2 ≤ 2
µ (F (x)− F (x?)),

Proof. All the inequalities used in the proofs are either known inequalities
(see e.g., [19, Section 2.5.1]), or can be deduced from known inequalities us-
ing duality between smoothness and strong convexity via Fenchel conjugation
(see [19, Theorem 2.34] for more details).

(i) By strong convexity of F , we have

‖∇f(x) + s−∇f(x?)− s?‖2 ≥ µ2‖x− x?‖2,
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with s? ∈ ∂h(x?) such that ∇f(x?) + s? = 0. Therefore

‖x− x?‖2 ≤
1

µ2
‖∇f(x) + s‖2.

(ii) By strong convexity of F (and feasibility of x), and by using Fenchel duality
between smoothness and strong convexity (see [19, Theorem 2.34]), we have

〈∇f(x?) + s?, x〉 − F (x?) ≤〈∇f(x) + s, x〉 − F (x)

+ 〈∇f(x?) + s? −∇f(x)− s, x〉

+
1

2µ
‖∇f(x) + s−∇f(x?)− s?‖2.

with s? ∈ ∂h(x?) such that ∇f(x?) + s? = 0, so that we obtain:

F (x)− F? ≤
1

2µ
‖∇f(x) + s−∇f(x?)− s?‖2 =

1

2µ
‖∇f(x) + s‖2.

(iii) Again, by strong convexity of F , we have:

F (x) ≥ F? + 〈∇f(x?) + s?, x− x?〉+
µ

2
‖x− x?‖2

with s? ∈ ∂h(x?) such that ∇f(x?)+s? = 0, and we obtain the statement.

Theorem 4.1 Consider the composite convex optimization problem (CCM)
and a feasible starting point x0 ∈ Rd (i.e. x0 is such F (x0) < ∞) such that
s0 ∈ ∂h(x0). The iterates of PGM satisfy the following inequalities:

(i) ‖xk − x?‖2 ≤ ρ2k(γ)
µ2 ‖∇f(x0) + s0‖2,

(ii) F (xk)− F (x?) ≤ ρ2k(γ)
2µ ‖∇f(x0) + s0‖2,

(iii) ‖xk − x?‖2 ≤ 2ρ2k(γ)
µ (F (x0)− F (x?)).

Proof. Combine results of Theorem 2.1 with those of Proposition 4.1.

It turns out that the global bounds provided by the previous theorem are
tight for the shorter step sizes 0 ≤ γ ≤ 2

L+µ (thus including γ = 1
L ). This

comes from the fact that PGM applied on the quadratic function fµ(x) from
Section 3.1 satisfies (i),(ii) and (iii) with equality. However, we observed that
the guarantees of Theorem 4.1 are no longer tight (i.e., they are conservative)
for larger step sizes.

All known exact global convergence guarantees for (possibly mixed) com-
binations performance measures are summarized in Table 1 below. Note that
for some combinations of performance measures, no analytical global and tight
convergence guarantees are known yet.

We now focus on the case of step size γ = 1
L and report lower bounds

(corresponding to the performance of some explicitly identified functions of
the form (CCM)) for all combinations of performance measures in Table 2.
We conjecture those lower bounds to be tight, as they appear to numerically
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Table 1 Summary of the global convergence guarantees proposed by Theorem 2.1 (exact,
diagonal entries) and Theorem 4.1 (exact for 0 ≤ γ ≤ 2

L+µ
, off-diagonal entries).

Initialization ‖x0 − x?‖2 F (x0)− F? ‖∇f(x0) + s0‖2

‖xk − x?‖2 ≤ ρ2k‖x0 − x?‖2 2
µρ

2k(F (x0)− F?) 1
µ2 ρ

2k‖∇f(x0) + s0‖2

F (xk)− F? ≤ (unknown) ρ2k(F (x0)− F?) 1
2µρ

2k‖∇f(x0) + s0‖2

||∇̃F (xk)||2 ≤ (unknown) (unknown) ρ2k‖∇f(x0) + s0‖2

match the true worst-case values obtained using the performance estimation
framework [9,10,11,14,17] (i.e., the lower bounds numerically match the com-
puted worst cases for all tested values of µ,L and γ). For the cases marked
by a star (?), the instances of (CCM) that provided the lower bound have the
following form:

min
x≥0

(µ
2
‖x‖2 + cx

)
,

with appropriate values for c ∈ R (see Appendix B for details). For the other
cases, the lower bounds are quadratics (see Section 3.1).

Table 2 Summary of the lower bounds obtained for the case γ = 1/L, conjectured to be
exact.

Initialization ‖x0 − x?‖2 F (x0)− F? ‖∇f(x0) + s0‖2

‖xk − x?‖2 ≤ ρ2k‖x0 − x?‖2 2
µρ

2k(F (x0)− F?) 1
µ2 ρ

2k‖∇f(x0) + s0‖2

F (xk)− F? ≤ µ
2
‖x0−x?‖2
ρ−2k−1 (?) ρ2k(F (x0)− F?) 1

2µρ
2k‖∇f(x0) + s0‖2

||∇̃F (xk)||2 ≤ µ2‖x0−x?‖2
(ρ−k−1)2 (?) 2µF (x0)−F?

ρ−2k−1 (?) ρ2k‖∇f(x0) + s0‖2

Table 3 below presents bounds obtained from Table 2 when taking the limit
µ → 0, i.e., for smooth convex functions that are not strongly convex. The
corresponding bounds were also validated using the performance estimation
framework [10,11]. Indeed, it can be expected that tight bounds valid in the
case µ > 0 lead to exact bounds in the limiting case µ = 0 (we also point out
that many non-tight bounds found in the literature do not behave properly
when taking the µ → 0 limit). We observe that only trivial bounds are valid
in the non-mixed cases (diagonal entries), which emphasizes the usefulness of
mixed measures for that setting. Case (??) is proved for the projected gradient
method in [17, Chapter 2]. Note that several cases in Table 3 are marked as
unbounded. Those cases correspond to settings in which guarantees can be
made arbitrarily bad. As an example, consider a family of problems of the
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form:

min
x≥0

cx,

with x ∈ R. By adequately tuning c > 0 (i.e., making it arbitrarily small), one
can recover the three unbounded cases from Table 3.

Table 3 Bounds from Table 2 when taking the limit µ→ 0.

Initialization ‖x0 − x?‖2 F (x0)− F? ‖∇f(x0) + s0‖2

‖xk − x?‖2 ≤ ‖x0 − x?‖2 Unbounded Unbounded

F (xk)− F? ≤ L‖x0−x?‖2
4k (??) F (x0)− F? Unbounded

||∇̃F (xk)||2 ≤ L2 ‖x0−x?‖2
k2 (?) LF (x0)−F?

k (?) ‖∇f(x0) + s0‖2

Finally, note that the results presented in Table 1, Table 2, and Table 3 can
be compared with the complexity results for solving linear systems as presented
in the work of Nemirovski [20] (corresponding to the case of f being quadratic
and h being identically zero). In particular, [20, Section 4] emphasizes the fact
that, for the degenerate case µ = 0, only the cases (?) and (??) can provide
nontrivial worst-case convergence results.

5 Conclusions

The main contribution of this work is to close the gap between lower and
upper complexity bounds for the proximal gradient method for strongly convex
composite minimization problems.

Our proof methodology allows a clear and transparent use of the assump-
tions of the theorems. As an example, we observed that strong convexity was
only required between certain pairs of points (between consecutive iterates, or
between iterates and optimum).

Tight convergence results are still open for a variety of first-order methods
and different convergence measures, as for example for accelerated schemes [2],
for inexact methods [5,21] and for coordinate descent schemes [22]. Obtain-
ing such tight convergence results opens the door for a better use of gradient
schemes as primitive operations in more involved algorithms, but also for de-
signing optimized first-order methods (such research directions are carried out
among others in [9,23] for the smooth unconstrained convex case and in [4] in
the strongly convex case when using a noisy gradient), and the corresponding
lower bounds [24]. Finally, the performance estimation framework provides
guarantees that are valid for general Euclidean norms (also with primal-dual
structures, see [11, Section 1.1]), but it remains open to extend the methodol-
ogy for handling more general norms.
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Code In order to ease the verification process, codes for symbolically verifying
the main proofs of the paper are available from:
https://github.com/AdrienTaylor/ProximalGradientMethod

All results can also be numerically verified using the Performance Estimation
Toolbox [25], that can be downloaded from the following location:
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

Appendices

Appendix A - Details of the Proof of Theorem 3.1

In this section, we provide some details on the verification of the proof of Theorem 3.1
(convergence in distance to optimality). The proofs of Theorem 3.2 (convergence in residual
gradient norm) and Theorem 3.3 (convergence in function value) follow the same lines,
although the results in function values are technically more involved (we advise the reader
to use appropriate computer algebra software to preserve his sanity).

As the proofs for both regimes (small and large step sizes) follow the same lines, we only
consider the case 0 ≤ γ ≤ 2

L+µ
here.

The goal is to prove that the inequality

(1− γµ)2 ‖xk − x?‖2 ≥‖xk+1 − x?‖2 + γ2‖g? + sk+1‖2

+
γ(2− γ(L+ µ))

L− µ
‖µ(xk − x?)− gk + g?‖2,

(7)

can be obtained by performing a weighted sum of the following inequalities:

f? ≥ fk +〈gk, x? − xk〉+ 1
2L
‖gk − g?‖2

+ µ
2(1−µ/L)

∥∥xk − x? − 1
L

(gk − g?)
∥∥2 : 2γρ(γ),

fk ≥ f? +〈g?, xk − x?〉+ 1
2L
‖gk − g?‖2

+ µ
2(1−µ/L)

∥∥xk − x? − 1
L

(gk − g?)
∥∥2 : 2γρ(γ),

h? ≥ hk+1 + 〈sk+1, x? − xk+1〉 : 2γ,

hk+1 ≥ h? + 〈s?, xk+1 − x?〉 : 2γ.

For simplicity, let us first sum the previous inequalities two by two:

0 ≥ −〈g? − gk, x? − xk〉+ 1
L
‖gk − g?‖2 + µ

1−µ/L
∥∥xk − x? − 1

L
(gk − g?)

∥∥2 : 2γρ(γ),

0 ≥ −〈s? − sk+1, x? − xk+1〉 : 2γ.

We proceed by showing that (7) can obtained by reformulation of the following expression:

0 ≥2γρ(γ)

[
〈gk − g?, x? − xk〉+

1

L
‖gk − g?‖2 +

µ

1− µ/L

∥∥∥∥xk − x? − 1

L
(gk − g?)

∥∥∥∥2
]

+ 2γ〈sk+1 − s?, x? − xk+1〉.

(8)

https://github.com/AdrienTaylor/ProximalGradientMethod
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox
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For doing that, we simply verify that the expression (7) minus the expression (8) is identically
zero; that is:

0 =2γρ(γ)

[
〈gk − g?, x? − xk〉+

1

L
‖gk − g?‖2 +

µ

1− µ/L

∥∥∥∥xk − x? − 1

L
(gk − g?)

∥∥∥∥2
]

+ 2γ〈sk+1 − s?, x? − xk+1〉

−
[
− (1− γµ)2 ‖xk − x?‖2 + ‖xk+1 − x?‖2 + γ2‖g? + sk+1‖2

]
−
γ(2− γ(L+ µ))

L− µ
‖µ(xk − x?)− gk + g?‖2,

(9)

with xk+1 = xk − 1
L

(gk + sk+1) and s? = −g?.
Finally, one can simply verify the equality (9) by expanding (7) and (8), which are both

equal to:

0 ≥
2

L− µ

(
(γ − γ2µ)‖gk‖2 + (γ2µ+ γ2L− 2γ)〈gk, g?〉

+ (γ2L− γ2µ)〈gk, sk+1〉+ (γ2µ2 + γ2µL− γL− γµ)〈gk, xk〉

+ (−γ2µ2 − γ2µL+ γL+ γµ)〈gk, x?〉+ (γ − γ2µ)‖g?‖2

+ (γ2L− γ2µ)〈g?, sk+1〉+ (2γµ− γ2µ2 − γ2µL)〈g?, xk〉

+ (γ2µ2 + γ2µL− 2γµ)〈g?, x?〉+ (γ2L− γ2µ)‖sk+1‖2

+ (γµ− γL)〈sk+1, xk〉+ (γL− γµ)〈sk+1, x?〉

+ (γµL− γ2µ2L)‖xk‖2 + (2γ2µ2L− 2γµL)〈xk, x?〉

+(γµL− γ2µ2L)‖x?‖2
)
.

Note that all proofs presented in the symbolic validation code rely on the exact same
idea: the equivalences between pairs of expressions are verified by checking their differences
being identically zero.

Appendix B - Details on Lower Bounds for Mixed Performance Measures

In this section, we provide details for obtaining the lower bounds marked with (?) in Table 2
(i.e., those that do not come from purely quadratic functions).

First, consider two constants 0 < µ ≤ L < ∞ and the following one-dimensional
quadratic minimization problem

min
x≥0

(µ
2
x2 + cx

)
.

The function f(x) = µ
2
x2+cx is clearly L-smooth and µ-strongly convex with unique optimal

point x? = 0 over the nonnegative reals. A corresponding composite problem can be written
as F (x) = f(x) + i≥0(x) with i≥0(.) being the indicator function for the nonnegative real
half-line.

Second, consider the starting point x0 ≥ 0 and a number of iterations N ∈ N. Using
the proximal gradient method with step size 1

L
results in the following rule for the iterates,

assuming c is small enough (i.e., such that xk ≥ 0 for all 0 ≤ k ≤ N):

xk+1 = xk −
1

L
∇f(xk),

=
(

1−
µ

L

)
xk −

c

L
.
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Solving the recurrence equation provides us with the following rule for the iterates:

xk =
(1− κ)N (c+ µx0)− c

µ
,

with κ := µ
L

the (inverse) condition number, and the corresponding values:

∇f(xN ) = (1− κ)N (c+ µx0),

f(xN )− f(x?) =
(1− κ)2N (c+ µx0)2

2µ
.

By optimizing over c, we get the following extreme cases:

� (quadratic optimization — maximize f(xN )−f(x?) with respect to c) c = µx0
(1−κ)−2N−1

results in F (xN )− F (x?) = µ
2
‖x0−x?‖2
ρ−2N−1

,

� (linear optimization — maximize |∇f(xN )| with respect to c by enforcing equality in the
constraint xN ≥ 0; that is, we impose xN = 0) c = µx0

(1−κ)−N−1
results in ||∇̃F (xk)||2 =

µ2‖x0−x?‖2
(ρ−N−1)2

,

� (linear optimization — maximize |∇f(xN )| with respect to c by enforcing equality in
the constraint xN ≥ 0; that is, we impose xN = 0) c = µx0

(1−κ)−N−1
(or equivalently

c =
√
2µ
√
F (x0)−F?√

(1−κ)−2N−1
) results in ||∇̃F (xN )||2 = 2µ

F (x0)−F?
ρ−2N−1

,

which match the entries marked (?) in Table 2.
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