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me rendre le sourire en toute circonstance. La vie à ses côtés est un
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Introduction

The context of this thesis is the study of lattices in locally compact

groups. A cornerstone of this subject is the seminal work of Margulis

[Mar91], one of whose highlights is Margulis’ arithmeticity theorem. It

states that an irreducible lattice in a connected semisimple Lie group

G with finite center and no compact factors is automatically arithmetic

when the rank of G is at least 2. This can be viewed as a classifica-

tion theorem. The set up covered by Margulis’ theory encompasses also

semisimple algebraic groups over non-Archimedean local fields. Bruhat–

Tits theory provides a natural geometric space on which such algebraic

groups act, namely the associated Euclidean buildings. It is important

to emphasize that the full automorphism group of the building is in gen-

eral strictly larger than the algebraic groups to which it is associated.

This is especially manifest in the rank one case, where the building in

question is a tree. In this way, we are naturally led to study lattices in

the automorphism group of a tree, or of a Euclidean building in gen-

eral, without assuming a priori that the geometric space comes from an

algebraic group.

This topic received a lot of attention in the past three decades. The

case of tree lattices is well understood (see [BK90], [BL01]); from the

purely algebraic viewpoint those lattices are rather poor: indeed all co-

compact lattices in the automorphism group of a tree are pairwise com-

mensurable and virtually free. Burger and Mozes revealed in [BM00a]

that things get much more exciting in a product of two trees. After hav-

ing laid the foundations of the study of lattices in products of trees, they

highlighted many new phenomena and constructed for instance lattices

that are finitely presented, torsion-free and simple, thereby answering
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10 Introduction

famous open problems in group theory. A product of two trees is a 2-

dimensional Euclidean building of type Ã1 × Ã1. The study of lattices

in 2-dimensional Euclidean buildings of other types was also undertaken

by various authors (see e.g. [CMSZ93a], [Ess13], [Wit17], [Bar00]), but

focused mainly on the type Ã2. There are similarities between lattices

in buildings of types Ã1× Ã1 and Ã2, but they do not actually enjoy the

same qualitative properties (e.g. QI-rigidity, Kazhdan’s Property (T)).

This thesis provides a contribution to these topics with the construc-

tion of numerous new examples and a detailed study of their enveloping

groups. The first two chapters are concerned with trees and products of

trees, the last two with Ã2-buildings.

We now proceed to describe some of our main results more precisely.

Each chapter has its own introduction containing more information and

additional statements of independent interest.

Trees and products of trees (Chapters 1 and 2)

One of our starting points is the following question, asked by Burger,

Mozes and Zimmer in [BMZ09].

Question (Burger–Mozes–Zimmer, 2009). Which groups arise as clo-

sures of projections of cocompact lattices in Aut(T1) × Aut(T2), where

T1 and T2 are locally finite regular trees?

The cocompact lattices Γ ≤ Aut(T1)×Aut(T2) of interest are those

which are not commensurable to a product of lattices Γt ≤ Aut(Tt).

They are called irreducible. This irreducibility condition is equivalent

to asking both projections on Aut(T1) and Aut(T2) to be non-discrete,

see [BM00b, Proposition 1.2].

Under this irreducibility assumption, the above question thus asks

for which pairs of non-discrete closed subgroups H1 ≤ Aut(T1) and

H2 ≤ Aut(T2) there exists a cocompact lattice Γ ≤ H1 × H2 whose

projections on H1 and H2 are dense. A first remark is that Ht must be

locally topologically finitely generated for each t ∈ {1, 2} (see [BMZ09,

Proposition 1.1.2]), which in particular excludes the full group Aut(Tt).
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Most known irreducible cocompact lattices in products of trees come

from the algebraic world: we call them arithmetic lattices. One can for

instance construct a cocompact lattice Γ ≤ PGL(2,Qp) × PGL(2,Qp′)

with dense projections for each distinct odd primes p and p′, see [Vig80,

§4, Theorem 1.1] and [Rat04, Chapter 3]. Note that PGL(2,Qp) acts on

its Bruhat–Tits tree T (which is (p + 1)-regular), so it can be seen as a

closed subgroup of Aut(T ).

The first non-algebraic groups that were shown to appear as closures

of projections of cocompact lattices in a product of two trees are the

universal groups U(Alt(d)) defined and studied by Burger and Mozes in

[BM00a] (for sufficiently large even values of d). Given a d-regular tree T

and a transitive finite permutation group F ≤ Sym(d), the group U(F )

is the largest vertex-transitive subgroup of Aut(T ) whose stabilizer of a

vertex acts as F on its d neighbors (we write G(v) ∼= F when the local

action of a group G ≤ Aut(T ) at v is given by F ). In [BM00b], the same

authors indeed constructed for each m ≥ 15 and n ≥ 19 a cocompact

lattice Γ ≤ U(Alt(2m)) × U(Alt(2n)) with dense projections. Later,

Rattaggi constructed in his thesis [Rat04] such lattices for some smaller

values of m and n, for instance m = n = 3. He was also able to produce

a cocompact lattice Γ ≤ U(Alt(6)) × U(M12) with dense projections,

where M12 ≤ Sym(12) is the Mathieu group of degree 12. For all these

examples, the density of the projections can be established thanks to

the next result of Burger–Mozes [BM00a, Proposition 3.3.1].

Theorem (Burger–Mozes, 2000). Let T be the d-regular tree and let

H be a non-discrete vertex-transitive closed subgroup of Aut(T ). Let

F ≤ Sym(d) be such that H(v) ∼= F for each v ∈ V (T ). Assume that

F is 2-transitive and that the stabilizer F (1) of 1 in F is simple non-

abelian. Then H = U(F ) (up to conjugation in Aut(T )).

As soon as a projection of an irreducible cocompact lattice in a prod-

uct of trees is vertex-transitive and locally isomorphic to F with F sat-

isfying the conditions of the theorem, its closure is thus ensured to be

U(F ). For F = Alt(d) with d ≥ 6 and F =M12 ≤ Sym(12), it is indeed

true that F is 2-transitive and F (1) is simple non-abelian.

However, as will be remarked in Chapter 2 (see for instance Ta-
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bles 2.12–2.15), the local group F that is the most likely to appear when

considering a generic cocompact lattice is the full group F = Sym(d) (at

least when the degrees of the two trees are large). In that case, F (1) is

not simple so the above theorem does not apply. Our goal in Chapter 1 is

to provide an analogous result when F = Sym(d) and d ≥ 6. One cannot

however expect H = U(Sym(d)) = Aut(T ) to be the unique group sat-

isfying the hypotheses.1 In [BM00a, Proposition 3.3.2], Burger–Mozes

could already conclude in that situation that H must be 2-transitive

on the set of ends ∂T of T . Our result gives a precise (infinite) list of

possible groups to which H can be equal; they are all virtually simple.

Theorem (see Corollary 1.E′). Let T be the d-regular tree with d ≥ 6

and let H be a non-discrete vertex-transitive closed subgroup of Aut(T ).

Assume that H(v) ∼= F ≥ Alt(d) for each v ∈ V (T ). Then H has a

simple subgroup of index ≤ 8 and belongs to an explicit list of examples.

All groups in that list contain U(Alt(d)) (up to conjugation in Aut(T )).

The context in which Chapter 1 falls is actually a bit more general:

we deal with semiregular (and not only regular) trees T and closed sub-

groups H ≤ Aut(T ) acting 2-transitively on ∂T and with an alternating

or symmetric local action at each vertex. Such a group H can be vertex-

transitive (as in the statement above) but it can also have 2 orbits of

vertices. The same kind of results as above is valid in that more general

framework, see Theorem 1.B′.

The assumption that T is semiregular is not really restrictive. In-

deed, given a (locally finite) tree whose vertices have valency at least 3,

the existence of a group acting on it such that the induced action on

the set of its ends is 2-transitive already implies that the tree must be

semiregular (see Lemma 1.2.2).

Once these classification results are established, we come back in

Chapter 2 to cocompact lattices in products of trees, more precisely to

groups Γ ≤ Aut(T1)×Aut(T2) acting simply transitively on the vertices

1Indeed, there exist many irreducible lattices Γ ≤ Aut(T1)×Aut(T2) with T1 and
T2 being 6-regular and such that the closure H1 of the projection of Γ on Aut(T1)
is vertex-transitive and satisfies H1(v) ∼= Sym(6). As explained above, H1 cannot be
equal to Aut(T ).
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of T1 × T2 where T1 and T2 are d1-regular and d2-regular respectively.

We call such a group Γ a (d1, d2)-group. Our first aim is to develop

tools enabling us to identify (as often as possible) the closures of the pro-

jections of a particular (d1, d2)-group. Under some suitable hypotheses

on the local action, we develop algorithms that can be used to compute

the closure of a projection.

Theorem (See Theorem 2.A). Let Γ ≤ Aut(T1)×Aut(T2) be a (d1, d2)-

group and let H1 be the closure of the projection of Γ on Aut(T1). Sup-

pose that d1 ≥ 6 and that H1(v) ≥ Alt(d1) for each v ∈ V (T1).

(i) There is an (efficient) algorithm that determines if Γ is irreducible.

(ii) If Γ is irreducible and d1 is even, then there is an (efficient) algo-

rithm that computes the exact isomorphism class of H1.

Point (i) follows from results of Burger–Mozes [BM00a, Proposi-

tions 3.3.1 and 3.3.2], while (ii) requires a much more involved analysis.

Those algorithms can for instance be used to give the following partial

answer to the question of Burger–Mozes–Zimmer mentioned above.

Theorem (see Theorem 2.B). Let T1 and T2 be two 6-regular trees.

There are exactly 7 groups H ≤ Aut(T1) (up to conjugation) that are

transitive on V (T1), satisfy H(v) ≥ Alt(6) for each v ∈ V (T1), and

appear as the closure of the projection on Aut(T1) of a torsion-free irre-

ducible (6, 6)-group Γ ≤ Aut(T1)×Aut(T2).

For each d1, d2 ≥ 3 there are only finitely many conjugacy classes of

(d1, d2)-groups, so we could not expect in the previous theorem to see

infinitely many of our groups appearing as the closure of a projection of

a (6, 6)-group. However, if we fix d1 = 6 and let d2 vary, then infinitely

many distinct projections on the 6-regular tree do indeed arise.

Theorem (see Theorem 2.F). Let T1 be the 6-regular tree. There are

infinitely many conjugacy classes of groups H ≤ Aut(T1) that are tran-

sitive on V (T1), satisfy H(v) ≥ Alt(6) for each v ∈ V (T1), and appear

as the closure of the projection on Aut(T1) of a torsion-free irreducible

(6, d2)-group Γ ≤ Aut(T1)×Aut(T2) (for some d2 ≥ 3).
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After having studied projections of (d1, d2)-groups, we decided to use

our brand-new computer programs to also go back to one of the original

motivations of Burger–Mozes in [BM00b]. The following problem was

asked by Peter Neumann in [Neu73].

Problem (Neumann, 1973). Let G = Fa ∗Fc Fb be a free amalgamated

product of non-abelian free groups of finite rank over a subgroup of finite

index. Can it happen that G is simple?

Burger and Mozes answered this question in the positive by proving

that for each m ≥ 109 and n ≥ 150, there exists a virtually simple

(2m, 2n)-group Γ ≤ U(Alt(2m)) × U(Alt(2n)) with dense projections

(see Theorem [BM00b, Theorems 5.5 and 6.4]). The simple subgroup of

finite index in Γ is then isomorphic to its projection on U(Alt(2m)), and

this projection is edge-transitive. It can therefore be written as the free

amalgamated product of two adjacent vertex stabilizers over an edge

stabilizer (see [Ser77, Theorem 6]). Each vertex stabilizer in the first

tree is a cocompact lattice in the second tree that is free, so we get a

simple group of the form Fa ∗Fc Fb as wanted.

One main ingredient developed and used by Burger–Mozes for the

construction of virtually simple lattices is their Normal Subgroup The-

orem (NST). The NST states that if the two closures of projections of a

cocompact lattice Γ are boundary-2-transitive and virtually simple, then

all non-trivial normal subgroups of Γ have finite index. The strategy to

find a virtually simple (d1, d2)-group Γ is to ensure not only that the

NST applies but also that Γ is not residually finite: this is in general

done by embedding another non-residually finite lattice in Γ.

The degrees of the free groups involved in the amalgams found by

Burger–Mozes are however really huge, so the presentations of those

groups would be too large to manipulate. Rattaggi later found in [Rat04]

a (8, 12)-group with a simple subgroup of index 4. With the same rea-

soning, he observed that this simple subgroup is a free amalgamated

product F7 ∗F73 F7. Even more recently, Bondarenko and Kivva found

in [BK17] a (8, 8)-group with a simple subgroup of index 4 that decom-

poses as F7 ∗F49 F7. In all these references, no explicit presentation for

the simple subgroup was computed.
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In Chapter 2 and in parallel to our study of projections, we use the

same techniques as the above authors to produce a (4, 5)-group with

a simple subgroup of index 4 that takes the form F3 ∗F11 F3. Some

explanations of how we could go from (8, 8) to (4, 5) are listed below.

• We do not restrict our attention to torsion-free (d1, d2)-groups. In

particular d1 and d2 can be odd (while they are automatically even

when the (d1, d2)-group is torsion-free);

• A non-residually finite (3, 3)-group can be found thanks to a result

of Caprace andWesolek [CW17, Corollary 6.4] (while Bondarenko–

Kiva use a non-residually finite (4, 4)-group);

• We use the NST of Bader–Shalom [BS06] instead of the NST of

Burger–Mozes. Indeed, we are not able to compute the closures

H1 and H2 of the projections of our (4, 5)-group; in particular we

do not know a priori whether they are virtually simple. The NST

of Bader–Shalom gives the same result as the one of Burger–Mozes

but without the assumption that H1 and H2 are virtually simple.

It will then turn out a posteriori from the virtual simplicity of our

(4, 5)-group that H1 and H2 are indeed virtually simple.

The presentation of our simple group is given below.

Theorem (see Corollary 2.D (ii)). The following group is isomorphic

to a free amalgamated product F3 ∗F11 F3. It is simple and is an index 4

subgroup of a (4, 5)-group.

〈x1, x2, x3, y1, y2, y3 | x1 = y1, x
2
2 = y2y

−1
1 y2, x

2
3 = y23 ,

x−1
3 x1x3 = y−1

3 y2y3, x
−1
3 x2x3 = y−1

3 y1y3,

x−1
2 x1x2 = y−1

2 y−1
1 y2, x

−1
2 x−2

3 x2 = y−1
2 y1y

−2
3 y2,

x−1
2 x−1

3 x−1
2 x1x3x2 = y−1

2 y1y
−1
3 y−1

1 y2y3y
−1
1 y2,

x−1
2 x−1

3 x1x2x3x2 = y−1
2 y1y

−1
3 y2y

−1
3 y1y3y

−1
1 y2,

x−1
2 x−1

3 x22x3x2 = y−1
2 y1y

−1
3 y1y

−1
3 y1y3y

−1
1 y2,

x−1
2 x−1

3 x−1
2 x3x2x3x2 = y−1

2 y1y
−1
3 y−1

1 y−1
3 y1y3y

−1
1 y2〉

As mentioned above, Burger–Mozes and their followers were only

dealing with regular trees of even degrees. In the following result, we
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show that any d-regular tree with d ≥ 4 can appear as a factor of a

product of two trees in which a simple cocompact lattice lives.

Theorem (see Theorem 2.E). For each n ≥ 2, there exists a (2n, 2n+1)-

group with a simple subgroup of index 2n.

We finally end Chapter 2 with a short discussion about lattices in

products of three trees. This theme, mentioned as follows by Farb, Mozes

and Thomas in [FMT15, Problem 8], remains a wasteland in which very

few mathematicians ventured.

Problem (Farb–Mozes–Thomas, 2015). Study lattices in products of

three or more trees.

The question whether there exists a virtually simple non-arithmetic

cocompact lattice in a product of more than two trees is actually still

unanswered. We obtain a result about non-existence of certain lattices

in the product of three 6-regular trees, see Theorem 2.H.

Buildings of type Ã2 (Chapters 3 and 4)

After lattices in products of trees, we focus on lattices in buildings of type

Ã2. There is a general definition for a building of any type, but those of

type Ã2 have a very nice alternative characterization. Indeed, a (thick)

Ã2-building is a simply connected simplicial complex of dimension 2 such

that all simplicial spheres of radius 1 around vertices are isomorphic to

the incidence graph of a projective plane. Given an Ã2-building, we call

these projective planes the residue planes of the building.

Any simple algebraic group has a well-understood action on a build-

ing of some type, and these geometric objects can thus help under-

standing the properties of algebraic groups. In the case of locally fi-

nite Ã2-buildings, the algebraic groups that are involved are the groups

PGL(3,D) for D a finite dimensional division algebra over a local field.

An Ã2-building associated to such a group is called Bruhat–Tits, and

its residue planes are all Desarguesian.

On the other hand, the existence of locally finite Ã2-buildings with

non-Desarguesian residue planes has been known since 1986. Ronan
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indeed gave in [Ron86] a general construction affording all possible Ã2-

buildings and from which it is clear that any projective plane can appear

as a residue plane in an Ã2-building. However, this point of view does

not provide any information on the automorphism group of the building.

In particular it does not seem fruitful for the construction of a locally

non-Desarguesian Ã2-building with a cocompact lattice. The problem

of finding such a building was asked by Kantor in [Kan86, Page 124].

Problem (Kantor, 1986). Construct a locally finite Ã2-building with

non-Desarguesian residue planes and admitting a (torsion-free) cocom-

pact lattice.

Independently, Howie also asked the next more specific question

[How89, Question 6.12]. Note that, for any Ã2-building ∆, there ex-

ists a type function t:V (∆)→ {0, 1, 2} such that each triangle in ∆ has

one vertex of each type. An automorphism of ∆ is then called type-

rotating if its induced action σ on the set of types {0, 1, 2} satisfies

σ(t) = t+ c mod 3 for some c ∈ {0, 1, 2}.

Question (Howie, 1989). Does there exist a group acting simply tran-

sitively and by type-rotating automorphisms on the vertices of a locally

finite Ã2-building whose residue planes are non-Desarguesian?

Some constructions in [VM87] and [BP07] yield Ã2-buildings with

exotic residues, but without any lattice (or, as the case may be, without

information on its possible existence). In Chapter 3, we solve the above

problem and question by proving the following result. The Hughes plane

H9 of order 9, which was first constructed by Veblen and Wedderburn in

1907, was the first discovered finite non-Desarguesian projective plane.

Theorem (see Theorem 3.A). There exists a group Γ acting simply

transitively and by type-rotating automorphisms on the vertices of an

Ã2-building whose residue planes are isomorphic to H9.

The construction of that lattice uses the formalism developed by

Cartwright, Mantero, Steger and Zappa in [CMSZ93a]. In their work,

they could for instance list all groups acting simply transitively and

by type-rotating automorphism on the vertices of an Ã2-building whose
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residue planes have order 2 or 3. In our case, constructing only one

lattice in some Ã2-building where the Hughes plane of order 9 appears

as a residue plane is already a challenge. In Chapter 3 we reveal how a

computer could be programmed to search for such a lattice.

Recently, Caprace also solved the problem of Kantor by showing that

any projective plane whose order is a prime power appears as a residue

plane in an Ã2-building admitting a cocompact lattice, see [Cap17b,

Remark 8]. It is however not clear that the lattices constructed in that

way are virtually torsion-free, whereas Γ in the previous theorem has

a torsion-free subgroup of index 3. Also, if the chosen projective plane

is non-Desarguesian, then it does not appear at all vertices of the Ã2-

building. In particular the lattice is not transitive on the vertices.

Our Ã2-building with residue planes isomorphic to H9 can be shown

to have a discrete automorphism group, see Theorem 3.A. This however

requires the help of a computer. In general, deciding whether the au-

tomorphism group of a particular Ã2-building ∆ is discrete or not is a

difficult task. Of course Aut(∆) is non-discrete when ∆ is Bruhat–Tits,

so the real question concerns exotic (i.e. non-Bruhat–Tits) Ã2-buildings.

Below we list the known sources of examples of exotic Ã2-buildings. A

panel in an Ã2-building is a simplex of dimension 1 (i.e. an edge).

(1) Ã2-buildings can be constructed inductively, starting from a point

and gluing triangles to the ball of radius r centered at that point

so as to build the ball of radius r + 1. This kind of construction

is explained in [Ron86] and [BP07], where it was observed that Ã2-

buildings can be“really”exotic. It is however rather hard to have any

information on the automorphism group of a building constructed

in that way.

(2) Ã2-buildings with lattices have been studied a lot: some of them with

a panel-regular lattice (see for instance [Ess13] and [Wit17]), others

with a vertex-regular lattice (as in Chapter 3, see also [CMSZ93a]

and [CMSZ93b]), and also some with a lattice having two orbits of

vertices (see [Bar00, §3], or [Cap17b, Remark 8] mentioned earlier).

For the small examples, i.e. the ones with a small enough thickness
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(the number of triangles adjacent to a single panel), it could be

checked with a computer that the automorphism group was discrete

as soon as the building was exotic.

(3) Exotic Ã2-buildings can also be constructed from valuations on pla-

nar ternary rings, see [VM87]. The automorphism groups of the Ã2-

buildings constructed in that way in [VM90, §7] are vertex-transitive
and non-discrete, but they fix a vertex at infinity, and are thus not

unimodular by [CM13, Theorem M] (in particular, they cannot con-

tain any lattice).

In Chapter 4, we show the following result. We write Aut(∆)+ for

the subgroup of Aut(∆) preserving the types of vertices. Note that,

similarly to vertices, there are three types of panels.

Theorem (See Theorem 4.A). Let ∆ be a locally finite thick Ã2-building

such that Aut(∆)+ is transitive on panels of each type. Then either:

(a) ∆ is Bruhat–Tits; or

(b) Aut(∆) is discrete.

In particular, this theorem applies to all locally finite thick Ã2-

buildings with a panel-regular lattice (see (2) above). A natural question

to ask is whether the panel-transitivity can be weakened in this theo-

rem, and for instance replaced by vertex-transitivity. Because of the Ã2-

building described in [VM90, §7] (see (3) above), such a result cannot

be true in these general terms. We however obtain the same conclusion

if we suppose that Aut(∆) is unimodular and that ∆ has thickness p+1

for some prime p (i.e. the local projective planes in ∆ have order p),

see Theorem 4.B. This other result can in particular be applied to the

locally finite thick Ã2-buildings ∆ with a vertex-regular lattice (see (2)

above) when the thickness of ∆ is p+ 1 for some prime p.

As pointed out by the referee of the paper presenting the results of

Chapter 4, the question whether the automorphism group of an exotic

Ã2-building admitting a cocompact lattice is always discrete was asked

by Steger in talks given in Blaubeuren and Orléans in 2007. We provide

partial answers to that question.
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The theorem above can also be viewed as giving weak hypotheses

on Aut(∆) under which ∆ is automatically Bruhat–Tits. It was proved

in [VMVS98] by Van Maldeghem and Van Steen that ∆ is Bruhat–Tits as

soon as Aut(∆) isWeyl-transitive. Our result actually shows that having

Aut(∆)+ transitive on panels of each type and non-discrete (which is

strictly weaker than requiring the Weyl-transitivity) is already sufficient

to have the same conclusion. Our proof actually uses the machinery

developed by the authors in [VMVS98].

We close Chapter 4 with a result giving a local condition under

which an Ã2-building is ensured to be exotic, see Theorem 4.C. It is

thus somewhat complementary to the above theorem. We mention here

an application of that result to the context of panel-regular lattices. Fol-

lowing [Wit17], a Singer cyclic lattice is a group Γ ≤ Aut(∆) acting

simply transitively on the panels of each type of an Ã2-building ∆ and

such that each vertex stabilizer in Γ is cyclic. It is called exotic if ∆

is exotic, and the parameter of Γ is the order of the local projective

planes in ∆. The number of isomorphism classes of Singer cyclic lat-

tices with parameter q grows super-exponentially with q (see [Wit17,

Theorem B]), and we show that almost all of them are exotic.

Theorem (See Corollary 4.E). Almost all Singer cyclic lattices are ex-

otic in the following sense:

lim
q→∞

|{exotic Singer cyclic lattices with parameter q}/∼|
|{Singer cyclic lattices with parameter q}/∼| = 1,

where q ranges over prime powers and ∼ is the isomorphism relation.

As mentioned above, it is a consequence of our discreteness result

that all exotic Singer cyclic lattices live in an Ã2-building with a discrete

automorphism group. Using the fact that cocompact lattices in Ã2-

buildings are QI-rigid [KL97], this in particular implies that they have

finite index in their abstract commensurator group. This can be seen as

an analog of the result of Margulis stating that an irreducible lattice in

a connected semisimple Lie group G with finite center and no compact

factors is arithmetic if it has infinite index in its commensurator in G,

see [Mar91, Theorem IX.1.16].



Chapter 1

Boundary 2-transitive

automorphism groups

of trees

The main goal of this chapter is to give a full classification of boundary

2-transitive automorphism groups of trees whose local action at each

vertex contains the alternating group, under the assumption that each

vertex has valency at least 6. The results of this chapter have been

published in [Rad17a].

1.1 Main results

Let T be the (d0, d1)-semiregular tree, with d0, d1 ≥ 4. Let V (T ) =

V0(T ) ⊔ V1(T ) be the canonical bipartition of the vertex set V (T ) so

that each vertex of type t ∈ {0, 1} (i.e. in Vt(T )) is incident to dt

edges. The subgroup of Aut(T ) consisting of elements preserving this

bipartition is denoted by Aut(T )+. We write H ≤cl G to mean that H

is a closed subgroup of G and define the sets

HT := {H ≤cl Aut(T ) | H is 2-transitive on ∂T}

and

H+
T := {H ∈ HT | H ≤ Aut(T )+}.

21
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Note that when d0 6= d1, all automorphisms of T are type-preserving so

that H+
T = HT .

Consider a group H ∈ HT . For each vertex v ∈ V (T ), one can look

at the action of the stabilizer H(v) of v in H on the set E(v) of edges

incident to v. The image of H(v) in Sym(E(v)) is denoted by H(v).

Since H is 2-transitive on ∂T , it is transitive on V0(T ) and on V1(T )

(see Lemma 1.2.2 below). Hence, all groups H(v) with v ∈ V0(T ) (resp.
v ∈ V1(T )) are permutation isomorphic to the same group F0 ≤ Sym(d0)

(resp. F1 ≤ Sym(d1)). In this context of finite permutation groups, we

use the symbol ∼= to mean permutation isomorphic. The goal of this

chapter is to provide a full classification of the groups H ∈ HT such that

F0 ≥ Alt(d0) and F1 ≥ Alt(d1), under the assumption that d0, d1 ≥ 6.

Let us first describe some key examples of groups in H+
T . In [BM00a,

§3.2], the notion of a legal coloring of a d-regular tree is defined, and

consists in coloring the edges of the tree with d colors. For our purposes,

we need to generalize this notion to a (d0, d1)-semiregular tree, and a way

to do so is to color the vertices instead of the edges. A legal coloring

i of T consists of two maps i0:V0(T ) → {1, . . . , d1} and i1:V1(T ) →
{1, . . . , d0} such that i0|S(v,1):S(v, 1) → {1, . . . , d1} is a bijection for

each v ∈ V1(T ) and i1|S(v,1):S(v, 1) → {1, . . . , d0} is a bijection for each

v ∈ V0(T ). Here, S(v, r) is the set of vertices of T at distance r from

v. The map i is defined on V (T ) by i|V0(T )= i0 and i|V1(T )= i1 (see

Figure 1.1). Given g ∈ Aut(T ) and v ∈ V (T ), one can look at the local
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Figure 1.1: A legal coloring of B(v, 3) in the (3, 4)-semiregular tree.
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action of g at the vertex v by defining

σ(i)(g, v) := i|S(g(v),1)◦g ◦ i|−1
S(v,1)∈







Sym(d0) if v ∈ V0(T ),
Sym(d1) if v ∈ V1(T ).

In the particular case where d0 = d1, there is a natural correspondence

between our definition of a legal coloring and the definition given in

[BM00a]. One should however note that, with our definition, the group

of all automorphisms g ∈ Aut(T ) such that σ(i)(g, v) = id for each

v ∈ V (T ) is not vertex-transitive (and even not transitive on V0(T )),

while the universal group U(id) defined in the same way in [BM00a,

§3.2] is vertex-transitive. One must therefore be careful when comparing

[BM00a] with the present text. Another definition of legal colorings for

semiregular trees was given by Smith in [Smi17, §3]: it is equivalent to

ours.

The notion of a legal coloring allows us to define the following groups.

Definition. Let T be the (d0, d1)-semiregular tree and let i be a legal

coloring of T . When v ∈ V (T ) and Y is a subset of Z≥0, we set SY (v) :=
⋃

r∈Y S(v, r). For all (possibly empty) finite subsets Y0 and Y1 of Z≥0,

define the group

G+
(i)(Y0, Y1) :=
{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

∏

w∈SY0
(v) sgn(σ(i)(g,w)) = 1 ∀v ∈ Vt0(T ),

∏

w∈SY1
(v) sgn(σ(i)(g,w)) = 1 ∀v ∈ Vt1(T )

}

,

where t0 := (max Y0) mod 2, t1 := (1+max Y1) mod 2 and max(∅) := 0.

The choice of t0 and t1 in this definition is made in such a way that,

in each set SYt(v) under consideration, the vertices at maximal distance

from v are of type t (i.e. S(v,max Yt) ⊆ Vt(T )), for t ∈ {0, 1}.
Remark that G+

(i)(∅,∅) = Aut(T )+ and that all groups G+
(i)(Y0, Y1)

contain the group G+
(i)({0}, {0}), which we also denote by Alt(i)(T )

+ and

satisfies

Alt(i)(T )
+ = {g ∈ Aut(T )+ | σ(i)(g, v) is even for each v ∈ V (T )}.
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When T is the d-regular tree, i.e. when d0 = d1 = d, it can be seen that

Alt(i)(T )
+ is conjugate to the universal group U(Alt(d))+ of Burger–

Mozes [BM00a, §3.2].
Our first result describes various properties of the groups defined

above. We denote by NG(H) the normalizer of H in G and write C2

and D8 for the cyclic group of order 2 and the dihedral group of order 8,

respectively.

Theorem 1.A. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 4

and let i be a legal coloring of T . Let Y0 and Y1 be finite subsets of Z≥0.

(i) G+
(i)(Y0, Y1) belongs to H+

T .

(ii) G+
(i)(Y0, Y1) is abstractly simple.

(iii) We have

NAut(T )+(G
+
(i)(Y0, Y1))

/

G+
(i)(Y0, Y1)

∼= (C2)
k

with k = |{t ∈ {0, 1} | Yt 6= ∅}|.
If d0 = d1 and Y0 = Y1 =: Y with Y 6= ∅, then

NAut(T )(G
+
(i)(Y, Y ))

/

G+
(i)(Y, Y ) ∼= D8 .

Using the fact that the pointwise stabilizers of half-trees are non-

trivial in these groups G+
(i)(Y0, Y1), one can also show that they are not

linear over a local field (see [CRW17, Corollary R]), and even not locally

linear (as defined in [CS15]).

For any group H ∈ HT , Burger and Mozes proved that the subgroup

H(∞) ofH defined as the intersection of all finite index open subgroups of

H is such thatH(∞) ∈ H+
T andH(∞) is topologically simple (see [BM00a,

Proposition 3.1.2]). Our main classification theorem reads as follows.

Note that two groups in HT are topologically isomorphic if and only if

they are conjugate in Aut(T ) (see Proposition 1.I.1 in Appendix 1.I), so

this is a classification up to topological isomorphism.

Theorem 1.B (Classification). Let T be the (d0, d1)-semiregular tree

with d0, d1 ≥ 4 and let i be a legal coloring of T . Let S(i) be the set of
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groups G+
(i)(Y0, Y1) where Y0 and Y1 are finite subsets of Z≥0 satisfying

the following condition: if Y0 and Y1 are both non-empty, then for each

y ∈ Yt (with t ∈ {0, 1}), if y ≥ maxY1−t then y ≡ maxYt mod 2.

(i) Two groups G+
(i)(Y0, Y1) and G

+
(i)(Y

′
0 , Y

′
1) belonging to S(i) are con-

jugate in Aut(T ) if and only if (Y0, Y1) = (Y ′
0 , Y

′
1) or d0 = d1 and

(Y0, Y1) = (Y ′
1 , Y

′
0).

(ii) Suppose that d0, d1 ≥ 6. Let H ∈ H+
T be such that H(x) ∼= F0 ≥

Alt(d0) for each x ∈ V0(T ) and H(y) ∼= F1 ≥ Alt(d1) for each

y ∈ V1(T ). Then [H : H(∞)] ∈ {1, 2, 4} and H(∞) is conjugate in

Aut(T )+ to a group belonging to S(i).

We actually give, in the text, the exact description of all groups

H ∈ H+
T satisfying the hypotheses of Theorem 1.B (ii) (see Theo-

rem 1.B′). The condition d0, d1 ≥ 6 is used several times in our proof

and is actually necessary. Indeed, due to the exceptional isomorphisms

PSL(2,F3) ∼= Alt(4) and PSL(2,F4) = SL(2,F4) ∼= Alt(5), the linear

groups PSL(2,F3((X))) and PSL(2,F4((X))), which act on their respec-

tive Bruhat–Tits trees T4 and T5 (where Td is the d-regular tree), are

elements of H+
T4

and H+
T5

respectively whose local action at each vertex

is the alternating group. This shows that Theorem 1.B (ii) fails when

d0 = d1 ∈ {4, 5}. In §1.6, we also give a non-linear counterexample when

d0 = 4 and d1 ≥ 4.

As a corollary of Theorem 1.B, we find the corresponding result for

H ∈ HT \ H+
T (when d0 = d1, so that H+

T ( HT ). In this case, H is

automatically transitive on V (T ).

Corollary 1.C. Let T be the d-regular tree with d ≥ 6 and let i be a

legal coloring of T . Let H ∈ HT \ H+
T be such that H(v) ∼= F ≥ Alt(d)

for each v ∈ V (T ). Then [H : H(∞)] ∈ {2, 4, 8} and H(∞) is conjugate

in Aut(T )+ to G+
(i)(Y, Y ) for some finite subset Y of Z≥0.

Here again, a full description of all groups H ∈ HT \ H+
T satisfying

the hypotheses of Corollary 1.C is given in the text (see Corollary 1.C′).

When H ∈ HT , the 2-transitivity of H on ∂T implies that H(v) is

a 2-transitive permutation group for each v ∈ V (T ) (see Lemma 1.2.2).
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The finite 2-transitive permutation groups have been classified, using

the Classification of the Finite Simple Groups, and the set of integers

Θ := {m ≥ 6 | each 2-transitive subgroup of Sym(m) contains Alt(m)}

is known (see Proposition 1.II.1 in Appendix 1.II). The ten smallest

numbers in Θ are 34, 35, 39, 45, 46, 51, 52, 55, 56 and 58. Moreover, Θ

is asymptotically dense in Z>0 (see Corollary 1.II.2). When d0, d1 ∈ Θ,

the hypotheses of Theorem 1.B (ii) and Corollary 1.C (if d0 = d1) are

always satisfied (by definition) and we get the following result.

Corollary 1.D. Let T be the (d0, d1)-semiregular tree with d0, d1 ∈ Θ,

let i be a legal coloring of T and let H ∈ HT . If H ∈ H+
T , then [H :

H(∞)] ∈ {1, 2, 4} and H(∞) is conjugate in Aut(T )+ to a group belonging

to S(i) (as defined in Theorem 1.B). If d0 = d1 and H 6∈ H+
T , then

[H : H(∞)] ∈ {2, 4, 8} and H(∞) is conjugate in Aut(T )+ to G+
(i)(Y, Y )

for some finite subset Y of Z≥0.

It has also been proved by Burger and Mozes in [BM00a, Proposi-

tions 3.3.1 and 3.3.2] that if H ≤cl Aut(T ) is vertex-transitive and if

H(v) ∼= F ≥ Alt(d) with d ≥ 6, then H is either discrete or 2-transitive

on ∂T . We can therefore combine this result with Corollary 1.C to

obtain the following.

Corollary 1.E. Let T be the d-regular tree with d ≥ 6, let i be a legal

coloring of T and let H be a vertex-transitive closed subgroup of Aut(T ).

If H(v) ∼= F ≥ Alt(d) for each v ∈ V (T ), then either H is discrete or

[H : H(∞)] ∈ {2, 4, 8} and H(∞) is conjugate in Aut(T )+ to G+
(i)(Y, Y )

for some finite subset Y of Z≥0.

For d ∈ Θ, the condition H(v) ∼= F ≥ Alt(d) can be replaced

by requiring H(v) to be 2-transitive. Note that the result of Burger–

Mozes stated above is not true if we replace vertex-transitivity by edge-

transitivity. Indeed, the group

H =

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

∀v ∈ V0(T ), ∀x, y ∈ S(v, 2):
i(x) = i(y)⇒ i(g(x)) = i(g(y))

}
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where i is a legal coloring of T is an example of a closed subgroup of

Aut(T ) with H(v) ∼= Sym(d) for each v ∈ V (T ) and which is edge-

transitive but such that H is non-discrete and the action of H on ∂T is

not 2-transitive.

Remark. Due to a result of Trofimov, the hypothesis that T is a tree

is not even necessary in Corollary 1.E (see [Tro07, Proposition 3.1]).

In order to prove the classification, we first need to generalize some

results of [BM00a] to the case of non-vertex-transitive groups. This

leads us to the following side result, which is an analog of [BM00a,

Proposition 3.3.1].

Theorem 1.F. Let T be the (d0, d1)-semiregular tree and let F0 ≤
Sym(d0) and F1 ≤ Sym(d1). Let H ∈ H+

T be such that H(x) ∼= F0

for each x ∈ V0(T ) and H(y) ∼= F1 for each y ∈ V1(T ). Suppose that,

for each t ∈ {0, 1}, the stabilizer Ft(1) of 1 in Ft is simple non-abelian.

Then there exists a legal coloring i of T such that H is equal to the group

U+
(i)
(F0, F1) :=

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

σ(i)(g, x) ∈ F0 for each x ∈ V0(T ),
σ(i)(g, y) ∈ F1 for each y ∈ V1(T )

}

.

Notice that U+
(i)(Alt(d0),Alt(d1)) = Alt(i)(T )

+.

Structure of the chapter

The proof of the classification is divided into different main steps. The

first step, which is the subject of §1.2 (where Theorem 1.F is also proved)

and §1.3, consists in showing that the groups satisfying the hypotheses

of Theorem 1.B (ii) all contain, up to conjugation, the group Alt(i)(T )
+:

Theorem 1.G. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 6.

Let H ∈ H+
T be such that H(x) ∼= F0 ≥ Alt(d0) for each x ∈ V0(T )

and H(y) ∼= F1 ≥ Alt(d1) for each y ∈ V1(T ). Then there exists a legal

coloring i of T such that H ⊇ Alt(i)(T )
+.

Note that Theorem 1.G is already sufficient to obtain meaningful

information on the groups H satisfying the hypotheses. For instance, it
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follows from Theorem 1.G that the pointwise stabilizer of a half-tree in

such a group H is never trivial.

For a fixed legal coloring i, we then find in §1.5 all the groupsH ∈ H+
T

containing Alt(i)(T )
+. The strategy adopted to do so is somewhat in-

volved and what follows is a rough description of it. Following [BEW15],

the n-closure J (n) of an arbitrary group J ≤ Aut(T ) is defined by

J (n) := {g ∈ Aut(T ) | ∀v ∈ V (T ),∃h ∈ J : g|B(v,n)= h|B(v,n)}.

The next important step in our proof then reads as follows.

Theorem 1.H. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 6, let

i be a legal coloring of T and let H ∈ H+
T be such that H ⊇ Alt(i)(T )

+.

Then there exists K ∈ Z≥0 such that H = H(K).

Theorem 1.H is crucial, since it means that H is completely deter-

mined by its local action on T on a sufficiently large scale. In particular,

observe that for each K ∈ Z≥0 there is only a finite number of groups

H ∈ H+
T with H ⊇ Alt(i)(T )

+ and such that H = H(K). This already

implies that the classification will lead to a countable family of groups.

The idea to complete the classification is finally to fix K, to find an

upper bound to the number of groups H satisfying the hypotheses and

such that H = H(K), and to show that this upper bound is achieved

by the various groups from the explicit list described beforehand. These

groups are all defined in §1.4, where Theorem 1.A is also proved (see

Lemma 1.4.2, Theorem 1.4.6 and Lemma 1.4.10).

1.2 From local to global structure

In this section, we consider a group H ∈ H+
T and analyze how the

knowledge of H(v) for each v ∈ V (T ) has an impact on the global

structure of H. This section is largely inspired from the work of Burger–

Mozes [BM00a]. Our goal is to generalize several of their results to the

situation where the groups are not vertex-transitive.

Most of our notations come from [BM00a]. If x ∈ V (T ), then S(x, n)

(resp. B(x, n)) is the set of vertices of T at distance exactly n (resp.
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at most n) from x. We also set c(x, n) := |S(x, n)|. If n ≥ 0 and

x1, . . . , xk ∈ V (T ), then define Hn(x1, . . . , xk) to be the pointwise sta-

bilizer of
⋃k

i=1B(xi, n). In the particular case where n = 0, we write

H(x1, . . . , xk) instead of H0(x1, . . . , xk) as it is simply the stabilizer of

vertices x1, . . . , xk. For x ∈ V (T ), set

Hn(x) := Hn(x)
/

Hn+1(x) .

Once again, for n = 0 we write H(x) instead of H0(x) and this exactly

corresponds to the definition of H(x) given in §1.1.
We start by giving the following results which will be used through-

out this chapter.

Lemma 1.2.1. Let T be a locally finite tree whose vertices have valency

at least 3 and let H ≤cl Aut(T ). Then H is 2-transitive on ∂T if and

only if H(v) is transitive on ∂T for each v ∈ V (T ).

Proof. See [BM00a, Lemma 3.1.1].

Lemma 1.2.2. Let T be a locally finite tree whose vertices have valency

at least 3 and let H ≤cl Aut(T ) be acting 2-transitively on ∂T . Then

T is semiregular and, for each x, x′, y, y′ ∈ V (T ) such that x and x′

have the same type and d(x, y) = d(x′, y′), there exists h ∈ H such that

h(x) = x′ and h(y) = y′.

Proof. This is a direct consequence of Lemma 1.2.1.

1.2.1 Subgroups of products of finite simple groups

Lemma 1.2.5 below is a basic result about finite groups and will play

a fundamental role in the sequel. Its statement comes from [BM00a,

Lemma 3.4.3], but the proof therein requires supplementary details be-

cause the definition of a product of subdiagonals needs to be amended

(probably due to a misnomer). The result could be deduced from Gour-

sat’s Lemma (see [Gou89, §11–12] and [Lan02, Exercise I.5]); we provide

a self-contained proof for the reader’s convenience.
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Given a product of groups G1×· · ·×Gn and i1, . . . , im ∈ {1, . . . , n},
we write proji1,...,im :G1 × · · · ×Gn → Gi1 × · · · ×Gim for the projection

on factors Gi1 , . . . , Gim .

Lemma 1.2.3. Let S be a finite simple non-abelian group and let G ≤
Sn (n ≥ 2). If proji,j(G) = S2 for each 1 ≤ i < j ≤ n, then G = Sn.

Proof. We prove by induction on m that proji1,...,im(G) = Sm for each

1 ≤ i1 < · · · < im ≤ n. By hypothesis this is true for m = 2. Now let

m ≥ 3 and suppose it is true for m − 1. Given 1 ≤ i1 < · · · < im ≤ n,

we need to show that proji1,...,im(G) = Sm. For any k ∈ {1, . . . ,m}, we
have that projik(ker(proji1,...,îk,...im))ES, so it is either trivial or equal to

S (since S is simple). In the latter case, since proj
i1,...,îk,...im

(G) = Sm−1

by induction hypothesis, we directly get that proji1,...,im(G) = Sm and

we are done. Now we assume that projik(ker(proji1,...,îk,...im)) is trivial

for all k (∗). Taking k = m in (∗), we get that there exists α:Sm−1 → S

such that projim(g) = α(proji1,...,im−1
(g)) for all g ∈ G. Moreover, k = 1

in (∗) implies that the map β:S → S defined by β(s) = α(s, 1, . . . , 1)

is injective, and hence surjective. For the same reason with k = 2, the

map γ:S → S defined by γ(s) = α(1, s, 1, . . . , 1) is surjective. Since

β(s) · γ(s′) = α(s, s′, 1, . . . , 1) = γ(s′) · β(s) for all s, s′ ∈ S, we get that

S is abelian, a contradiction.

Given a group S and a positive integer n, a product of subdiago-

nals of Sn is a subgroup of Sn of the form (α1 × · · · × αn)(∆I1 · · ·∆Ir),

where {Ij | 1 ≤ j ≤ r} is a partition of {1, . . . , n}, ∆J is defined by ∆J :=

{(s1, . . . , sn) ∈ Sn | si = 1 ∀i 6∈ J and sk = sℓ ∀k, ℓ ∈ J} for each subset

J ⊆ {1, . . . , n}, and α1, . . . , αn ∈ Aut(S). Here, α1×· · ·×αn ∈ Aut(Sn)

is the Cartesian product of α1, . . . , αn.

Lemma 1.2.4. Let S be a finite simple non-abelian group and let G ≤
Sn (n ≥ 1). If proji(G) = S for each i ∈ {1, . . . , n}, then G is a product

of subdiagonals of Sn.

Proof. For any i, j ∈ {1, . . . , n}, we have projj(ker(proji)) E S, so it is

either trivial or equal to S. Let us define the relation ∼ on {1, . . . , n}
by i ∼ j if and only if projj(ker(proji)) is trivial. We claim that ∼ is an
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equivalence relation. Reflexivity and transitivity are clear. Let us prove

that it is also symmetric. For i, j ∈ {1, . . . , n}, write Gi,j := proji,j(G).

Then proji|Gi,j
:Gi,j → S has image S by hypothesis, and its kernel is

trivial if and only if i ∼ j. So |Gi,j | = |S| if and only if i ∼ j. It follows
directly that ∼ is symmetric and hence an equivalence relation.

Now let I1, . . . , Ir be the equivalence classes of ∼ : they form a parti-

tion of {1, . . . , n}. For each 1 ≤ j ≤ r, choose xj ∈ Ij . For such a j and

for y ∈ Ij, we have xj ∼ y and thus ker(projxj
) = ker(projy). As a con-

sequence, there exists αy ∈ Aut(S) such that projy(g) = αy(projxj
(g))

for all g ∈ G. Combined with the fact that projx1,...,xr
(G) = Sr (by

Lemma 1.2.3, because xi 6∼ xj implies projxi,xj
(G) = S2), we obtain

that G is a product of subdiagonals of Sn whose underlying partition is

{Ij | 1 ≤ j ≤ r}.

Lemma 1.2.5. Let S EL be finite groups, where L/S is solvable and S

is simple non-abelian. Let G ≤ Ln (n ≥ 1) be such that proji(G) ≥ S

for all i ∈ {1, . . . , n}. Then G ∩ Sn is a product of subdiagonals of Sn.

Proof. In view of Lemma 1.2.4, it suffices to show that proji(G∩Sn) = S

for each i ∈ {1, . . . , n}. Given a group H, we write H(0) = H and

H(k) = [H(k−1),H(k−1)] for each k ≥ 1. Since L/S is solvable, there

exists k such that (L/S)(k) is trivial. This implies that L(k) ≤ S. Hence,
we obtain G(k) ≤ (Ln)(k) = (L(k))n ≤ Sn and

proji(G ∩ Sn) ≥ proji(G
(k)) = proji(G)

(k) ≥ S(k) = S.

1.2.2 Kernel of the action on balls

We can now start to adapt the results [BM00a, Lemmas 3.4.2, 3.5.1

and 3.5.3] to the case of groups that are not vertex-transitive. Note

that the proofs of some of our results are significantly more complicated

because of this missing hypothesis.

Lemma 1.2.6. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3

and let H ∈ H+
T . Let x and y be adjacent vertices of T and let k ≥ 1.

Then Hk(x) 6= Hk(y). In particular, Hk−1(x) or Hk−1(y) is non-trivial.
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Proof. Assume for a contradiction that Hk(x) = Hk(y). Since Hk(x) E

H(x) and Hk(y) E H(y), we get Hk(x) E 〈H(x),H(y)〉 = H. As H is

transitive on V0(T ) and V1(T ), this means that Hk(x) = Hk(x
′) for each

x′ ∈ V (T ), implying that Hk(x) is trivial. This is impossible as H would

then be countable, which contradicts its 2-transitivity on ∂T .

In particular, Hk(x)\Hk(y) orHk(y)\Hk(x) is non-empty. IfHk(x)\
Hk(y) 6= ∅, then there exists h ∈ Hk(x) \Hk(y) ⊆ Hk−1(y) \Hk(y) and

hence Hk−1(y) is non-trivial. If Hk(y) \ Hk(x) 6= ∅ then we get that

Hk−1(x) is non-trivial.

Recall that the socle of a group G is the subgroup generated by the

minimal non-trivial normal subgroups of G. In the next results, we will

often use the easy fact that if G is a finite group whose socle S is simple

and of index at most 2 in G, then S is the only non-trivial proper normal

subgroup of G. If, moreover, S is non-abelian, then it follows that the

center Z(G) of G is trivial.

Lemma 1.2.7. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3

and let F1 ≤ Sym(d1). Let H ∈ H+
T be such that H(y) ∼= F1 for each

y ∈ V1(T ). Suppose that the socle S1 of the stabilizer F1(1) of 1 in F1 is

simple non-abelian and of index ≤ 2. Then for each x ∈ V0(T ), one of

the following holds.

(A) H1(x, y) = H2(x) for each y ∈ S(x, 1).

(B) H1(x) ⊇ (S1)
d0 , where H1(x) is seen in the natural way as a sub-

group of (F1(1))
d0 .

Proof. Fix x ∈ V0(T ). For each vertex y ∈ S(x, 1), the inclusionH1(x) ⊆
H(x, y) induces a homomorphism ϕy:H1(x)→ H(x, y)

/

H1(y) =: Hx,y

which is such that ϕy(H1(x))EHx,y. Note that Hx,y
∼= F1(1). This also

gives rise to an injective homomorphism

ϕ:H1(x)→
∏

y∈S(x,1)

Hx,y
∼= (F1(1))

d0 .

As ϕy(H1(x))EHx,y and H1(x)EH(x), there are only two possibilities:

either ϕy(H1(x)) is trivial for each y ∈ S(x, 1), or ϕy(H1(x)) ⊇ S1
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(via the isomorphism Hx,y
∼= F1(1)) for each y ∈ S(x, 1). In the first

case, we directly get H1(x) = H1(x, y) for each y ∈ S(x, 1), which

implies H1(x) = H2(x) and in particular H1(x, y) = H2(x) for each

y ∈ S(x, 1). In the second case, by Lemma 1.2.5 the group ϕ(H1(x)) ∩
(S1)

d0 is a product of subdiagonals. These subdiagonals determine a

bloc decomposition for the H(x)-action on S(x, 1). As this action is

2-transitive (by Lemma 1.2.2), there are two options: it is either the

full group (S1)
d0 or a full diagonal (α1 × · · · × αd0)(∆{1,...,d0}) (with the

notation given in §1.2.1). If it is the full group, then ϕ(H1(x)) ⊇ (S1)
d0

as wanted. Otherwise, H1(x, y)
/

H2(x) is a 2-group for each y ∈ S(x, 1).
In particular, if z ∈ S(x, 1) with z 6= y then the image I of H1(x, y) in

Hx,z = H(x, z)
/

H1(z)
∼= F1(1) is a subnormal 2-group of Hx,z (because

H1(x, y)EH1(x)EH(x, z)). Since S1 is not a 2-group, the only possibility

for I is to be trivial. We thus haveH1(x, y) ⊆ H1(z) for each z ∈ S(x, 1),
which means that H1(x, y) = H2(x).

Lemma 1.2.8. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3

and let F0 ≤ Sym(d0) and F1 ≤ Sym(d1). Let H ∈ H+
T be such that

H(x) ∼= F0 for each x ∈ V0(T ) and H(y) ∼= F1 for each y ∈ V1(T ).

Suppose that, for each t ∈ {0, 1}, the socle St of Ft(1) is simple non-

abelian and of index ≤ 2. Fix two adjacent vertices x ∈ V0(T ) and

y ∈ V1(T ) and let k ≥ 1. Assume that Hk(x) ⊇ (Sk mod 2)
c(x,k) and, if

k 6= 1, that Hk−1(x) ⊇ (S(k−1) mod 2)
c(x,k−1). Then Hk(y) is non-trivial.

Proof. For z ∈ S(x, n), let p(z) be the vertex at distance n − 1 from

x that is adjacent to z and Hx,z := H(z, p(z))
/

H1(z) . Define also

Sn(x, y) to be the set of vertices of S(x, n) that are at distance n − 1

from y and a(x, n) := |Sn(x, y)|.
For simplicity, we set s := k mod 2 and t := (k − 1) mod 2. We

first claim that there exists g ∈ Hk−1(x, y) \ Hk(x) whose image σ(g)

in
∏

z∈Sk(x,y)
Hx,z

∼= (Fs(1))
a(x,k) is contained in (Ss)

a(x,k). First re-

mark that Hk−1(x, y) \ Hk(x) is non-empty in view of the hypothesis

Hk−1(x) ⊇ (St)
c(x,k−1) (if k = 1, use H(x, y)

/

H1(x)
∼= Ft(1) ⊇ St).

Hence, if Fs(1) = Ss the claim is trivially true. On the other hand, if

[Fs(1) : Ss] = 2 then take h ∈ Hk−1(x, y) such that h2 ∈ Hk−1(x, y) \
Hk(x). Such an element exists as St is not a 2-group. Then g = h2
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satisfies the claim.

Now take g′ ∈ Hk(x) such that σ(g′) = σ(g), whose existence is

ensured by the fact that Hk(x) ⊇ (Ss)
c(x,k). Then the element g′g−1 is

contained in Hk(y) but not in Hk+1(y) (by construction), so Hk(y) is

non-trivial.

In the proof of the following lemma, we use the Schreier conjecture

stating that Out(S) is solvable for each finite simple group S. This

conjecture has been proved using the Classification of the Finite Simple

Groups. Note however that, except for Theorem 1.F, we will only use

Lemma 1.2.9 with S0 = Alt(d0) and S1 = Alt(d1), in which case the

solvability of Out(S0) and Out(S1) is clear.

Lemma 1.2.9. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3 and

let F0 ≤ Sym(d0) and F1 ≤ Sym(d1). Let H ∈ H+
T be such that H(x) ∼=

F0 for each x ∈ V0(T ) and H(y) ∼= F1 for each y ∈ V1(T ). Suppose

that, for each t ∈ {0, 1}, the socle St of Ft(1) is simple non-abelian,

of index ≤ 2 and transitive but not simply transitive on {2, . . . , dt}.
Then H1(x) ⊇ (S1)

d0 for each x ∈ V0(T ) and H1(y) ⊇ (S0)
d1 for each

y ∈ V1(T ).

Proof. For each v ∈ V (T ), we can apply Lemma 1.2.7. This gives two

possibilities ((A) or (B)) at each vertex of T . As H is transitive on

V0(T ) and V1(T ), the situation must be identical at all vertices of the

same type. In total, there are three possible situations: (A) for all

vertices, (A) for one type of vertices and (B) for the other, or (B) for all

vertices. To prove the statement, we must show that the only situation

that really occurs is the last one. To do so, we prove that the two other

situations are impossible.

We already know that we cannot have (A) for all vertices, since it

would imply that H2(x) = H1(x, y) = H2(y) for two adjacent vertices x

and y, contradicting Lemma 1.2.6.

Now assume for a contradiction that we have (A) for V0(T ) and

(B) for V1(T ) (the reverse situation being identical). If x ∈ V0(T ) and

y ∈ S(x, 1), then (A) means that H1(x, y) = H2(x). The homomorphism

ϕy:H1(x)→ H(x, y)
/

H1(y)
∼= F1(1) has a normal image and its kernel
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is exactly H1(x, y) = H2(x). Hence, H1(x) = H1(x)
/

H2(x) is isomor-

phic to a normal subgroup of F1(1): it is either trivial or isomorphic to

S1 or F1(1). By Lemma 1.2.8 (with k = 1), since H1(y) ⊇ (S0)
d1 , H1(x)

cannot be trivial.

For the sake of brevity, set H̃ := H1(x) and G := H(x)
/

H2(x) .

We have shown that H̃ is isomorphic to S1 or F1(1), which implies that

the center Z(H̃) of H̃ is trivial, and H̃ is a normal subgroup of G.

Hence, G contains the direct product of H̃ and its centralizer CG(H̃)

(the intersection of these two normal subgroups being Z(H̃)).

Claim. The product H̃ · CG(H̃) is a subgroup of index at most 2 of G.

Proof of the claim: Consider the homomorphism

α:G→ Out(H̃): g 7→ [h ∈ H̃ 7→ ghg−1 ∈ H̃].

An element g ∈ G is in the kernel of α if and only if there exists k ∈ H̃
such that ghg−1 = khk−1 for all h ∈ H̃, which is equivalent to saying

that k−1g ∈ CG(H̃). Hence, ker(α) = H̃ · CG(H̃). We write K :=

H̃ · CG(H̃) and want to show that [G : K] ≤ 2. Since K = ker(α),

the quotient G /K can be embedded into Out(H̃). By the Schreier

conjecture (see [DM96, Appendix A]), Out(S1) is solvable. As H̃ ∼= S1 or

F1(1), it implies that Out(H̃) is solvable. Indeed, if [F1(1) : S1] = 2 then

there is a natural map j: Aut(F1(1))→ Out(S1), and one can show that

ker(j) ⊆ Inn(F1(1)), so that Aut(F1(1))
/

ker(j) ∼= im(j) ≤ Out(S1)

surjects onto Out(F1(1)), making it solvable.

We just proved that G /K is solvable. By the third isomorphism

theorem, we have

(

G /H̃
)
/

(

K /H̃
) ∼= G /K .

Since G /H̃ ∼= F0, this means that G /K is isomorphic to a quotient

of F0, let us say F0 /N with N E F0. There remains to show that

[F0 : N ] ≤ 2, using the fact that F0 /N is solvable. Consider the injective

map i:F0(1)
/

N(1) →֒ F0 /N where N(1) is the stabilizer of 1 in N .

Since F0 /N is solvable, F0(1)
/

N(1) is also solvable. However, N(1)
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can only be trivial or equal to F0(1) or S0. It cannot be trivial as F0(1)

is not solvable, so
∣

∣

∣

F0(1)
/

N(1)

∣

∣

∣
≤ 2. In particular, N is a non-trivial

normal subgroup of the 2-transitive group F0, which implies that N

is transitive. Hence, the map i defined above is an isomorphism, and
∣

∣F0 /N
∣

∣ =
∣

∣

∣

F0(1)
/

N(1)

∣

∣

∣
≤ 2 as wanted. �

Using the fact that H̃ · CG(H̃) is a subgroup of index 1 or 2 of G,

one can find a contradiction. Denote by v1, . . . , vd0 the vertices adjacent

to x and by a
(1)
1 , . . . , a

(1)
d1−1 the vertices adjacent to v1 different from x

(see Figure 1.2). As a corollary of the claim, the group CG(H̃) acts non-

trivially and therefore transitively on S(x, 1) = {v1, . . . , vd0}. Hence,

there exist c2, . . . , cd0 ∈ CG(H̃) such that ck(v1) = vk for each k ∈
{2, . . . , d0}. Define a

(k)
i = ck(a

(1)
i ) for each k ∈ {2, . . . , d0} and i ∈

{1, . . . , d1 − 1}. In this way, for each k the vertices a
(k)
1 , . . . , a

(k)
d1−1 are

the vertices adjacent to vk different from x. Thanks to this choice,

if h ∈ H̃ satisfies h(a
(1)
i ) = a

(1)
j for some i and j then the fact that

hck = ckh directly implies that h(a
(k)
i ) = a

(k)
j for each k ∈ {2, . . . , d0}.

In other words, as soon as the action of h ∈ H̃ on the vertices adjacent

to v1 is known, its action on the vertices adjacent to vk is also known

for each k ∈ {2, . . . , d0}.
Now consider c ∈ CG(H̃) with c(vk) = vℓ, for some k, ℓ ∈ {1, . . . , d0}.

If we write c(a
(k)
i ) = a

(ℓ)
σ(i) (for all i) with σ ∈ Sym(d1− 1), then the fact

that c centralizes H̃ implies that σ centralizes S1. Denote by O1, . . . , Or

the distinct orbits of CSym(d1−1)(S1), forming a partition of {1, . . . , d1 −
1}. Since S1 is transitive on {1, . . . , d1 − 1}, we directly get that |O1| =
· · · = |Or| and that S1 preserves the partition O1⊔· · ·⊔Or. If r = 1, then

x

v1 v2 vd0

a
(1)
1 a

(1)
d1−1 a

(d0)
d1−1a

(d0)
1

Figure 1.2: Illustration of Lemma 1.2.9.
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CSym(d1−1)(S1) is transitive and hence S1 is simply transitive, which is

impossible by hypothesis. If r = 2, then {s ∈ S1 | s(O1) = O1} is a

subgroup of index 2 of S1, which contradicts its simplicity. Hence, we

must have r ≥ 3.

We now explain how this contradicts the 2-transitivity of H. Let us

look at the possible images of the ordered pair (a
(1)
1 , a

(2)
1 ) by elements

of G. In view of Lemma 1.2.2, for all distinct k, ℓ ∈ {1, . . . , d0} and all

i, j ∈ {1, . . . , d1 − 1} there should exist some element g ∈ G such that

g((a
(1)
1 , a

(2)
1 )) = (a

(k)
i , a

(ℓ)
j ). This means that

∣

∣

∣G · (a(1)1 , a
(2)
1 )

∣

∣

∣ = d0(d0 −
1)(d1 − 1)2. However, in view of what has been observed above, the

image of (a
(1)
1 , a

(2)
1 ) by an element of H̃ is always of the form (a

(1)
i , a

(2)
i ),

and the image of (a
(1)
i , a

(2)
i ) by an element of CG(H̃) is always of the

form (a
(k)
j , a

(ℓ)
j′ ) with j and j

′ in the orbit Oa ∋ i. Consequently, we have
|(H̃ · CG(H̃)) · (a(1)1 , a

(2)
1 )| ≤ d0(d0 − 1)r

(

d1−1
r

)2
(because there are r

orbits, each of size d1−1
r

). Since [G : (H̃ ·CG(H̃))] ≤ 2, this implies that
∣

∣

∣G · (a(1)1 , a
(2)
1 )

∣

∣

∣ ≤ 2
r
· d0(d0− 1)(d1− 1)2, which contradicts the fact that

r ≥ 3.

Proposition 1.2.10. Under the assumptions of Lemma 1.2.9 and for

each x ∈ V (T ) and each k ∈ Z>0, we have

Hk(x) ⊇ (S(t+k) mod 2)
c(x,k),

where t ∈ {0, 1} is the type of x.

Proof. For x ∈ V (T ) and z ∈ S(x, n), set Hx,z := H(z, p(z))
/

H1(z)

where p(z) is the vertex at distance n − 1 from x that is adjacent to z.

For y ∈ S(x, 1), let also Sn(x, y) be the set of vertices of S(x, n) that are
at distance n− 1 from y and a(x, n) := |Sn(x, y)|.

We prove the result by induction on k. For k = 1, this is exactly

Lemma 1.2.9. Now let k ≥ 2 and assume the result is proved for k − 1

(and for all vertices). We show that it is therefore also true for k. By

Lemma 1.2.6 and sinceH is transitive on V0(T ) and V1(T ), Hk(x) is non-

trivial for each x ∈ V0(T ) or Hk(y) is non-trivial for each y ∈ V1(T ).

Assume without loss of generality that Hk(x) is non-trivial for each

x ∈ V0(T ). We first prove that Hk(x) ⊇ (Ss)
c(x,k) for each x ∈ V0(T ),
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where s := k mod 2.

Fix x ∈ V0(T ). For each y ∈ S(x, 1), let Iy be the image of Hk−1(y)

in the product
∏

z∈Sk(x,y)
Hx,z. By the induction hypothesis, we have

Iy ⊇ (Ss)
a(x,k). But Hk(x)EHk−1(y), so if I ′y is the image of Hk(x) in

this product, then I ′yEIy and I
′
y∩(Ss)a(x,k)E(Ss)

a(x,k). The only normal

subgroups of (Ss)
a(x,k) are the products made from the trivial group and

the full group Ss. By transitivity of H(x) on S(x, k) (see Lemma 1.2.1),

I ′y ∩ (Ss)a(x,k) must be either trivial or equal to (Ss)
a(x,k). Suppose that

I ′y∩(Ss)a(x,k) is trivial. Then I ′y is trivial, since the contrary and the fact

that I ′y E Iy would imply that Fs(1) has a normal subgroup of order 2,

which is not the case. Then, by transitivity of H(x) on S(x, 1), I ′y must

be trivial for each y ∈ S(x, 1). This is impossible as Hk(x) is non-trivial.

Hence, I ′y contains (Ss)
a(x,k).

Now Hk(x) is the image of Hk(x) in
∏

y∈S(x,1)

∏

z∈Sk(x,y)
Hx,z, so

from Lemma 1.2.5 we deduce that Hk(x)∩ (Ss)c(x,k) is a product of sub-

diagonals in (Ss)
c(x,k). We claim that it must be the full group (Ss)

c(x,k).

By contradiction, suppose it is not the case. Then the product of sub-

diagonals induces a bloc decomposition {Bi}1≤i≤r for the H(x)-action

on S(x, k) with |Bi0 | ≥ 2 for some i0 and |Bi ∩ Sk(x, y)| ≤ 1 for all i

and y ∈ S(x, 1) (because I ′y ⊇ (Ss)
a(x,k)). Choose y 6= y′ in S(x, 1) such

that Bi0 ∩ Sk(x, y) = {z} and Bi0 ∩ Sk(x, y′) = {z′}. Take w ∈ Sk(x, y′)
with w 6= z′. By Lemma 1.2.2, there exists g ∈ H(x) such that g(z) = z

and g(z′) = w, which is a contradiction with the bloc decomposition.

Therefore, we have Hk(x) ⊇ (Ss)
c(x,k) as wanted.

We are done for each x ∈ V0(T ). Now if we try to do the same reason-

ing for y ∈ V1(T ), the only issue is that Hk(y) could a priori be trivial.

However, since Hk(x) ⊇ (Ss)
c(x,k) for each x ∈ V0(T ) and as Hk−1(x) ⊇

(S1−s)
c(x,k−1) by induction hypothesis, Lemma 1.2.8 precisely tells us

that Hk(y) is non-trivial. Hence, we also get Hk(y) ⊇ (S1−s)
c(y,k) in the

same way.

1.2.3 A global result

In the particular case where F0(1) and F1(1) are simple non-abelian,

we can deduce from Proposition 1.2.10 that there is, up to conjugation,
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only one group H ∈ H+
T such that H(x) ∼= F0 for each x ∈ V0(T ) and

H(y) ∼= F1 for each y ∈ V1(T ). This is the subject of Theorem 1.F whose

statement is recalled below.

Recall that a legal coloring i of T is a map defined piecewise by

i|V0(T )= i0 and i|V1(T )= i1 where, for each t ∈ {0, 1}, the map it:Vt(T )→
{1, . . . , d1−t} is such that it|S(v,1):S(v, 1) → {1, . . . , d1−t} is a bijection

for each v ∈ V1−t(T ). For g ∈ Aut(T ) and v ∈ V (T ), the local action

of g at v is σ(i)(g, v) := i|S(g(v),1)◦g ◦ i|−1
S(v,1). Given F0 ≤ Sym(d0) and

F1 ≤ Sym(d1), the group U+
(i)(F0, F1) is defined by

U+
(i)
(F0, F1) :=

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

σ(i)(g, x) ∈ F0 for each x ∈ V0(T ),
σ(i)(g, y) ∈ F1 for each y ∈ V1(T )

}

.

The following basic result will be used constantly in the next sections.

Lemma 1.2.11. Let T be the (d0, d1)-semiregular tree and let i be a

legal coloring of T .

• If g, h ∈ Aut(T ) and v ∈ V (T ), then σ(i)(gh, v) = σ(i)(g, h(v)) ◦
σ(i)(h, v).

• If g ∈ Aut(T ) and v ∈ V (T ), then σ(i)(g
−1, v) = σ(i)(g, g

−1(v))−1.

Proof. This directly follows from the definition of σ(i)(g, v).

The next result is the edge-transitive version of [BM00a, Proposi-

tion 3.2.2].

Lemma 1.2.12. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3

and let F0 ≤ Sym(d0) and F1 ≤ Sym(d1). Let H be an edge-transitive

subgroup of Aut(T )+ such that H(x) ∼= F0 for each x ∈ V0(T ) and

H(y) ∼= F1 for each y ∈ V1(T ). Then there exists a legal coloring i of T

such that H ⊆ U+
(i)(F0, F1).

Proof. Fix x ∈ V0(T ) and, for each v ∈ V0(T ) different from x, let

p(v) be the vertex of S(v, 1) the closest to x and q(v) be the vertex of

S(p(v), 1) the closest to x. For each such v, since H is edge-transitive,

we can choose an element hv ∈ H that fixes p(v) and sends v to q(v).

We define an appropriate map i1:V1(T ) → {1, . . . , d0} inductively on
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Xn := V1(T ) ∩ B(x, 2n − 1). For n = 1, we choose a bijection ix:X1 =

S(x, 1) → {1, . . . , d0} such that ixH(x)i−1
x = F0 and set i1|X1= ix.

Now assume that i1 is defined on Xn. To extend i1 to Xn+1, we set

i1|S(v,1)= i1|S(q(v),1)hv |S(v,1) for each v ∈ S(x, 2n). The map i0:V0(T )→
{1, . . . , d1} is defined in the same way by fixing y ∈ V1(T ) and choosing

hv ∈ H for each v ∈ V1(T ) different from y as above. Define finally i by

i|V0(T )= i0 and i|V1(T )= i1.

Given v ∈ V0(T ) different from x, our construction is such that

σ(i)(hv , v) = id. Hence, if v is at distance 2n from x, the element h̃v =

hqn−1(v) · · · hq(v)hv ∈ H satisfies h̃v(v) = x and σ(i)(h̃v, v) = id (by

Lemma 1.2.11). Now if we consider g ∈ H and v ∈ V0(T ), the element

h̃g(v)gh̃
−1
v ∈ H fixes x and is therefore such that σ(i)(h̃g(v)gh̃

−1
v , x) ∈ F0.

Using Lemma 1.2.11, we obtain that σ(i)(g, v) ∈ F0. In the same way,

for v ∈ V1(T ) we get σ(i)(g, v) ∈ F1. We thus have g ∈ U+
(i)(F0, F1) and

hence H ⊆ U+
(i)(F0, F1).

Let us now prove Theorem 1.F. Note that the fact that Ft(1) is

simple non-abelian implies that |Ft(1)| ≥ 60 and hence that dt ≥ 6 for

each t ∈ {0, 1}.

Theorem 1.F. Let T be the (d0, d1)-semiregular tree and let F0 ≤
Sym(d0) and F1 ≤ Sym(d1). Let H ∈ H+

T be such that H(x) ∼= F0

for each x ∈ V0(T ) and H(y) ∼= F1 for each y ∈ V1(T ). Suppose that,

for each t ∈ {0, 1}, Ft(1) is simple non-abelian. Then there exists a legal

coloring i of T such that H = U+
(i)(F0, F1).

Proof. By Lemma 1.2.12, there exists a legal coloring i of T such that

H ⊆ U+
(i)(F0, F1). For each t ∈ {0, 1}, Ft is 2-transitive and hence Ft(1)

is transitive on {2, . . . , dt}. Moreover, Ft(1) is never simply transitive.

Indeed, if it was the case then Ft would be sharply 2-transitive, but

the finite sharply 2-transitive permutation groups have been classified

and they never have a simple non-abelian point stabilizer (see [Zas35],

[DM96, §7.6]). We can therefore apply Proposition 1.2.10 and directly

obtain, since H is closed in Aut(T ), that for each v ∈ V (T ) the stabi-

lizer H(v) is equal to U+
(i)(F0, F1)(v). As H is generated by its vertex

stabilizers, the conclusion follows.
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1.3 A common subgroup

We assume in this section that H ∈ H+
T satisfies H(x) ∼= F0 ≥ Alt(d0)

for each x ∈ V0(T ) and H(y) ∼= F1 ≥ Alt(d1) for each y ∈ V1(T ). Our

goal is to prove, under this hypothesis and when d0, d1 ≥ 6, that there

always exists a legal coloring i of T such that H ⊇ Alt(i)(T )
+. Recall

that Alt(i)(T )
+ = U+

(i)(Alt(d0),Alt(d1)), i.e.

Alt(i)(T )
+ = {g ∈ Aut(T )+ | σ(i)(g, v) is even for each v ∈ V (T )}.

Under these assumptions, we will apply Proposition 1.2.10. Indeed,

when Ft ⊇ Alt(dt) with dt ≥ 6 (for t ∈ {0, 1}), the socle St of Ft(1) is

Alt(dt− 1) which is simple non-abelian, of index at most 2 in Ft(1), and

transitive but not simply transitive on {2, . . . , dt}.
Remark that, if F0 = Alt(d0) and F1 = Alt(d1), then we already

know by Theorem 1.F that H = Alt(i)(T )
+ for some legal coloring i.

The task is however surprisingly more difficult when F0 = Sym(d0) or

F1 = Sym(d1).

1.3.1 Finding good colorings of rooted trees

For our next results, we denote by Td0,d1,n the rooted tree of depth n

where the root v0 has d0 children, the vertices at positive even distance

from v0 (except the leaves) have d0 − 1 children, and the vertices at

odd distance from v0 (except the leaves) have d1− 1 children. Similarly,

T ′
d0,d1,n

is the rooted tree of depth n where v0 and all the vertices at even

distance from v0 have d0 − 1 children while the vertices at odd distance

from v0 have d1 − 1 children. Remark that, in the (d0, d1)-semiregular

tree T , a ball B(v, n) around a vertex v of type 0 is isomorphic to Td0,d1,n.

The intersection of B(v, n) with a half-tree of T rooted in v is isomorphic

to T ′
d0,d1,n

.

The notion of a legal coloring of Td0,d1,n, as well as the permutations

σ(i)(g, v) for g ∈ Aut(Td0,d1,n) and v 6∈ ∂Td0,d1,n (i.e. v is not a leaf),

are defined as for semiregular trees. We can also define a legal coloring

of T ′
d0,d1,n

: it suffices to precise that only d0 − 1 colors are used for the

vertices adjacent to v0. The notation σ(i)(g, v) has also a meaning, but
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σ(i)(g, v0) ∈ Sym(d0 − 1) instead of Sym(d0). Given T̃ = Td0,d1,n or

T ′
d0,d1,n

with a legal coloring i, we finally define

Alt(i)(T̃ ) := {g ∈ Aut(T̃ ) | σ(i)(g, v) is even for each v 6∈ ∂T̃}.

In the rest of this section and for the sake of brevity, we will sometimes

forget the word legal and write coloring instead of legal coloring.

Lemma 1.3.1. Let T̃ = T ′
d0,d1,n

with d0, d1 ≥ 3 and let i be a legal

coloring of T̃ . Then Alt(i)(T̃ ) is generated by the set {g2 | g ∈ Alt(i)(T̃ )}.

Proof. We proceed by induction on n. For n = 0, the tree T ′
d0,d1,0

has

only one vertex and there is nothing to prove. Now let n ≥ 1 and as-

sume the result is proved for n−1. The set
{

g|2
B(v0 ,n−1)

∣

∣

∣
g ∈ Alt(i)(T̃ )

}

thus generates Alt(i)(B(v0, n − 1)), where v0 is the root of T̃ . Hence,

it suffices to show that
{

g2
∣

∣

∣
g ∈ FixAlt(i)(T̃ )(B(v0, n − 1))

}

generates

FixAlt(i)(T̃ )(B(v0, n − 1)). Since alternating groups are generated by 3-

cycles, the group FixAlt(i)(T̃ )(B(v0, n − 1)) is generated by the elements

f ∈ Alt(i)(T̃ ) fixing T̃ \ {a, b, c} and such that f(a) = b, f(b) = c and

f(c) = a where a, b, c ∈ S(v0, n) have the same parent. The conclusion

simply follows from the fact that each such element f is the square of

f−1 ∈ Alt(i)(T̃ ).

In the following, if v is a vertex in a tree T̃ with root v0, thenXv is the

branch of v, i.e. the subtree of T̃ spanned by v and all its descendants.

For G ≤ Aut(T̃ ), RistG(v) is the pointwise stabilizer in G of T̃ \Xv. We

will generally see RistG(v) as a subgroup of Aut(Xv). Finally, Gk is the

pointwise stabilizer in G of B(v0, k) for k ≥ 0.

Lemma 1.3.2. Let T̃ = Td0,d1,n or T ′
d0,d1,n

with d0, d1 ≥ 6 (and n ≥ 1),

let v0 be the root of T̃ and let i be a legal coloring of B(v0, n−1). Let G ≤
Aut(T̃ ) be such that Gn−1 ⊇ Alt(d0 − 1)c(v0,n−1) (or Alt(d1 − 1)c(v0,n−1)

or Alt(d0), depending on n) and G|B(v0 ,n−1)⊇ Alt(i)(B(v0, n−1)). Then

there exists a legal coloring i of T̃ extending i such that G ⊇ Alt(i)(T̃ ).

Moreover, if for some vertex y0 ∈ S(v0, 1) we already had a legal coloring

i′ of Xy0 coinciding with i on Xy0∩B(v0, n−1) and such that RistG(y0) ⊇
Alt(i′)(Xy0), then i can be chosen to extend i′ too.
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Proof. Define e = d0 if T̃ = Td0,d1,n and e = d0 − 1 if T̃ = T ′
d0,d1,n

, so

that the root v0 of T̃ has exactly e neighbors. We proceed by induction

on n. For n = 1, we have G = G0 ⊇ Alt(e) by hypothesis, and thus any

coloring i of T̃ is such that G ⊇ Alt(i)(T̃ ). Now let n ≥ 2 and assume

the lemma is true for n− 1. We show it is also true for n.

Let y1, . . . , ye be the vertices of S(v0, 1). By hypothesis, Gn−1 ⊇
Alt(d̃ − 1)c(v0,n−1) where d̃ = d0 if n is odd and d̃ = d1 if n is even.

This implies that Aut(Xy1) ≥ RistG(y1)n−2 ⊇ Alt(d̃− 1)c(y1,n−2) (where

c(y1, n − 2) counts the vertices of Xy1 at distance n − 2 from y1 and

RistG(y1) is seen as a subgroup of Aut(Xy1)). We also claim that

RistG(y1)|B(y1,n−2)⊇ Alt(i)(Xy1 ∩B(y1, n− 2)). Indeed, as G|B(v0 ,n−1)⊇
Alt(i)(B(v0, n − 1)), for each h ∈ Alt(i)(Xy1 ∩ B(y1, n − 2)) there exists

g ∈ G fixing (T̃ \Xy1)∩B(v0, n−1) and acting as h on Xy1∩B(y1, n−2).
Then g2 ∈ G acts as h2 on this set, and has the advantage that g2|E(x)

is an even permutation of E(x) for each x ∈ (T̃ \ Xy1) ∩ S(v0, n − 1).

As Gn−1 ⊇ Alt(d̃− 1)c(v0,n−1), there exists f ∈ Gn−1 such that f |E(x)=

g2|E(x) for all those x. Then f−1g2 acts as h2 on Xy1 ∩ B(y1, n − 2)

and belongs to RistG(y1). This means that RistG(y1)|B(y1,n−2) contains

{h2 | h ∈ Alt(i)(Xy1 ∩ B(y1, n − 2))}. By Lemma 1.3.1, we obtain

RistG(y1)|B(y1,n−2)⊇ Alt(i)(Xy1 ∩B(y1, n− 2)). We can now use our in-

duction hypothesis on RistG(y1) ≤ Aut(Xy1) to get a coloring i1 of Xy1

extending i and such that RistG(y1) ⊇ Alt(i1)(Xy1). In the particular

case where we are given a vertex y0 and a coloring i′ of Xy0 as in the

statement, we set y1 = y0 and rather define i1 = i′.

Now take g1 ∈ G with g1|B(v0 ,n−1)∈ Alt(i)(B(v0, n − 1)) such that

the induced action of g1 on S(v0, 1) is the 3-cycle (y1 y3 y2), g1 fixes

Xy ∩ B(v0, n − 1) for each y ∈ S(v0, 1) \ {y1, y2, y3}, and g31 |B(v0,n−1)=

id|B(v0,n−1). Such an element g1 exists as G|B(v0 ,n−1)⊇ Alt(i)(B(v0, n −
1)). The element h1 = g21 acts as the 3-cycle (y1 y2 y3) on S(v0, 1), fixes

Xy ∩ B(v0, n − 1) for each y ∈ S(v0, 1) \ {y1, y2, y3} and also satisfies

h31|B(v0,n−1)= id|B(v0 ,n−1). In addition, h1|E(x) is an even permutation

of E(x) for each x ∈ (T̃ \ (Xy1 ∪ Xy2 ∪ Xy3)) ∩ S(v0, n − 1) (because

h1 = g21). From i1, construct a coloring i2 of Xy2 (coinciding with i)

such that i2|S(h1(x),1)◦h1 ◦ i1|−1
S(x,1) is even for each x ∈ Xy1 ∩S(v0, n−1).

In the same way, from i2, construct a coloring i3 of Xy3 (coinciding with
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i) such that i3|S(h1(x),1)◦h1◦i2|−1
S(x,1) is even for each x ∈ Xy2∩S(v0, n−1).

As h1 = g21 , we also obtain that i1|S(h1(x),1)◦h1 ◦ i3|−1
S(x,1) is even for each

x ∈ Xy3 ∩ S(v0, n− 1). This exactly means that, for any coloring i of T̃

extending i, i1, i2 and i3, it will be true that h1 ∈ Alt(i)(T̃ ).

In the case where e is odd, the proof is almost finished. Indeed,

repeat this process to get h3 ∈ G inducing (y3 y4 y5) on S(v0, 1) and

colorings i4 of Xy4 and i5 of Xy5 , and so on until he−2 ∈ G inducing

(ye−2 ye−1 ye) on S(v0, 1) and colorings ie−1 of Xye−1 and ie of Xye .

Then define i as the unique coloring extending i, i1, . . . , ie. In view

of our construction, i is such that h1, h3, . . . , he−2 ∈ Alt(i)(T̃ ). What

is interesting about h1, h3, . . . , he−2 is the fact that the permutations

(y1 y2 y3), (y3 y4 y5), . . . , (ye−2 ye−1 ye) generate Alt(e). In particular, as

RistG(y1) ⊇ Alt(i1)(Xy1) we see by conjugating this inclusion with an ele-

ment of 〈h1, h3, . . . , he−2〉 sending y1 on yk that RistG(yk) ⊇ Alt(ik)(Xyk)

for each k ∈ {1, . . . , e}. This means that G contains all elements of

Alt(i)(T̃ ) fixing S(v0, 1). But it also contains h1, h3, . . . , he−2 ∈ Alt(i)(T̃ )

whose induced actions on S(v0, 1) generate Alt(e), so G ⊇ Alt(i)(T̃ ).

If e is even, then the exact same reasoning gives us h3, h5, . . . , he−3

and colorings i4, . . . , ie−1. At the end, there is no coloring of Xye yet and

the permutations (y1 y2 y3), (y3 y4 y5), . . ., (ye−3 ye−2 ye−1) only generate

the even permutations of S(v0, 1) fixing ye. So as to conclude, take

ge−2 ∈ G as before so that the induced action on S(v0, 1) is (ye−2 ye ye−1)

and define he−2 = g2e−2. For simplicity, we write h := he−2. Here,

the colorings ie−2 and ie−1 are already fixed and we can only choose a

coloring ie of Xye . Choose ie so that ie|S(h(x),1)◦h ◦ ie−1|−1
S(x,1) is even

for each x ∈ Xye−1 ∩ S(v0, n − 1), and define i as the unique coloring

extending i, i1, . . . , ie. The only issue preventing us from concluding as

above is that it is not sure if h ∈ Alt(i)(T̃ ). The permutation σ(i)(h, x)

could indeed be odd for some x ∈ (Xye−2 ∪ Xye) ∩ S(v0, n − 1). More

precisely, these are the only vertices for which σ(i)(h, x) could be odd

and we even know (because h = g2e−2) that σ(i)(h, x) with x ∈ Xye ∩
S(v0, n−1) is odd if and only if σ(i)(h, h(x)) is odd. We therefore define

O := {x ∈ Xye ∩ S(v0, n− 1) | σ(i)(h, x) is odd},
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so that O ∪ h(O) is exactly the set of vertices at which there is an odd

permutation.

To finish the proof, we show that there exists h′ ∈ G∩Alt(i)(T̃ ) with
h′|B(v0,n−1)= h|B(v0,n−1). Denote by a

(e−2)
1 , . . . , a

(e−2)
m the vertices of

Xye−2 ∩S(v0, n−1). Then define a
(e−1)
j = h(a

(e−2)
j ) and a

(e)
j = h(a

(e−1)
j )

for each j ∈ {1, . . . ,m}. Finally, for each k ∈ {1, . . . , e − 3} choose

rk ∈ G ∩ Alt(i)(T̃ ) such that rk(ye−2) = yk and define a
(k)
j = rk(a

(e−2)
j )

for all j. We say that f ∈ Aut(T̃ ) preserves the labelling if f(yk) = yℓ

implies f(a
(k)
j ) = a

(ℓ)
j for all j. One sees that if f preserves the labelling

and if σ(i)(f, v0) is even, then f |B(v0,n−1)∈ Alt(i)(B(v0, n− 1)).

Choose f1, f2 ∈ Alt(i)(T̃ ) preserving the labelling, fixing Xye and

such that the induced action of f1 (resp. f2) on S(v0, 1) is the permu-

tation (y1 y2 ye−1) (resp. (y1 ye−2 ye−1)). Such elements exist by the

previous remark, and they are contained in G. Note that d0 ≥ 6, so

e ≥ 5 and 2 < e− 2. Let us look at the element τ = (f1 ◦ h ◦ f2)2 ∈ G.
Clearly, τ preserves the labelling and it suffices to look at its action on

S(v0, 1) to know its action on S(v0, n − 1). The action of τ on S(v0, 1)

is given by

[(y1 y2 ye−1)(ye−2 ye−1 ye)(y1 ye−2 ye−1)]
2

which is exactly the trivial permutation. Hence, τ acts trivially on

B(v0, n − 1). We should now observe with the help of Lemma 1.2.11 if

σ(i)(τ, x) is even or odd, for each x ∈ S(v0, n− 1). As f1, f2 ∈ Alt(i)(T̃ ),

all the permutations they induce are even. Using that σ(i)(h, x) is odd if

and only if x ∈ O∪h(O), we actually obtain that σ(i)(τ, x) is odd if and

only if x ∈ O∪h(O). This means that h′ = h◦τ ∈ G, which acts as h on

B(v0, n−1), is such that σ(i)(h
′, x) is always even, i.e. h′ ∈ Alt(i)(T̃ ).

1.3.2 The common subgroup Alt(i)(T )
+

We are now ready to complete the proof of Theorem 1.G from §1.1. For
the reader’s convenience we reproduce its statement.

Theorem 1.G. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 6.

Let H ∈ H+
T be such that H(x) ∼= F0 ≥ Alt(d0) for each x ∈ V0(T )
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and H(y) ∼= F1 ≥ Alt(d1) for each y ∈ V1(T ). Then there exists a legal

coloring i of T such that H ⊇ Alt(i)(T )
+.

Proof. Given v ∈ V (T ) and a coloring i of T , we say that i is n-valid at

v (with n ∈ Z>0) if the natural image of H(v) in Aut(B(v, n)) contains

Alt(i)(B(v, n)). If H(v) ⊇ Alt(i)(T )
+(v), i is said to be ∞-valid at v.

As H is closed in Aut(T ), a coloring is ∞-valid at v if and only if it is

n-valid at v for all n ∈ Z>0.

We first claim that if i is a coloring of T that is ∞-valid at v1 and

n-valid at v2 where v1 and v2 are adjacent vertices (with n ∈ Z>0), then

there exists a coloring ĩ of T such that ĩ|B(v1 ,n)∪B(v2,n)= i|B(v1 ,n)∪B(v2,n)

and that is (n + 1)-valid at v1 and ∞-valid at v2. To prove the claim,

first define ĩ on B(v2, n) ∪ Tv1 by ĩ|B(v2,n)∪Tv1
= i|B(v2 ,n)∪Tv1

, where Tv1

is the subtree of T spanned by the vertices that are closer to v1 than to

v2. This is already sufficient for ĩ to be (n+1)-valid at v1 and n-valid at

v2. Now suppose that ĩ is defined on B(v2, k) ∪ Tv1 for some k ≥ n. We

explain how to extend it to B(v2, k+1)∪Tv1 so that it becomes (k+1)-

valid at v2. Define T̃ = B(v2, k+1) and denote by G the image of H(v2)

in Aut(T̃ ). We haveGk ⊇ Alt(d̃−1)c(v2,k) (where d̃ = d0 or d1) in view of

Proposition 1.2.10 and G|B(v2,k)⊇ Alt(̃i)(B(v2, k)) since ĩ is k-valid at v2.

Moreover, Xv1 is already colored (by ĩ too) and RistG(v1) ⊇ Alt(̃i)(Xv1)

(because i is ∞-valid at v1 and ĩ|Xv1
= i|Xv1

). Lemma 1.3.2 thus gives

an extension of ĩ to T̃ making it (k+ 1)-valid at v2. The coloring ĩ of T

defined in this way by induction is (n+1)-valid at v1 and∞-valid at v2.

To prove the theorem, fix x ∈ V0(T ) and y ∈ V1(T ) two adjacent

vertices of T . As Alt(i)(T )
+(x) and Alt(i)(T )

+(y) generate Alt(i)(T )
+,

a coloring i of T is such that H ⊇ Alt(i)(T )
+ if and only if i is ∞-valid

at x and y. Let us construct such a coloring. By Proposition 1.2.10 and

Lemma 1.3.2, there exists a coloring i1 of T that is ∞-valid at x. As all

colorings, i1 is 1-valid at y. Using the claim, construct in+1 from in with

in+1|B(x,n)∪B(y,n)= in|B(x,n)∪B(y,n) for each n ≥ 1. For n odd, in is ∞-

valid at x and n-valid at y; while for n even, in is n-valid at x and∞-valid

at y. There is now a natural way to define our coloring i of T : for each

v ∈ V (T ), set i(v) = in(v) where n is such that v ∈ B(x, n) ∪ B(y, n).

By construction, i is ∞-valid at x and y.
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1.4 Examples, simplicity and normalizers

In this section, we define all the groups that will appear in our classifi-

cation theorems and analyze some of their properties.

1.4.1 Definition of the examples

We first recall the definitions of the groups appearing in §1.1 and also

define new similar groups. The fact that they are indeed groups follows

from Lemma 1.2.11.

Definition 1.4.1. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 4

and let i be a legal coloring of T . When v ∈ V (T ) and X is a subset

of Z≥0, we set SX(v) :=
⋃

r∈X S(v, r). The notation X ⊂f Z≥0 means

that X is a non-empty finite subset of Z≥0. We also write Sgn(i)(g,A) :=
∏

w∈A sgn(σ(i)(g,w)) when A is a finite subset of V (T ) and g ∈ Aut(T ).

First set G+
(i)(∅,∅) := Aut(T )+. Then, for X ⊂f Z≥0, define

G+
(i)(X,∅) :=

{

g ∈ Aut(T )+
∣

∣

∣
Sgn(i)(g, SX(v)) = 1 for each v ∈ Vt(T )

}

and

G+
(i)(X

∗,∅) :=

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

All Sgn(i)(g, SX0(v))

with v ∈ Vt(T ) are equal

}

,

where t = (maxX) mod 2. The groups G+
(i)(∅,X) and G+

(i)(∅,X
∗) are

defined in the same way but with t = (1+maxX) mod 2. For X0,X1 ⊂f

Z≥0 and Y0 ∈ {X0,X
∗
0}, Y1 ∈ {X1,X

∗
1}, define

G+
(i)(Y0, Y1) := G+

(i)(Y0,∅) ∩G+
(i)(∅, Y1).

Finally, for X0,X1 ⊂f Z≥0, set

G+
(i)(X0,X1)

∗ :=
{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

All Sgn(i)(g, SX0(v)) with v ∈ Vt0(T ) and
Sgn(i)(g, SX1(v)) with v ∈ Vt1(T ) are equal

}

,

where t0 = (maxX0) mod 2 and t1 = (1 + maxX1) mod 2.
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We write G(i) for the set of all these groups. Two groups are consid-

ered as different in this definition as soon as they have a different name,

but two different groups may have exactly the same elements. We also

define the following subsets S(i) and N(i) of G(i), so that G(i) = S(i)⊔N(i):

S(i) :=
{

G+
(i)(∅,∅), G+

(i)(X0,∅),

G+
(i)(∅,X1), G

+
(i)(X0,X1)

∣

∣

∣

∣

∣

X0,X1 ⊂f Z≥0

}

,

and

N(i) :=















G+
(i)
(X∗

0 ,∅), G+
(i)
(∅,X∗

1 ),

G+
(i)(X

∗
0 ,X1), G

+
(i)(X0,X

∗
1 ),

G+
(i)
(X∗

0 ,X
∗
1 ), G

+
(i)
(X0,X1)

∗

∣

∣

∣

∣

∣

∣

∣

∣

X0,X1 ⊂f Z≥0















.

Finally, denote by s:N(i) → S(i) the map that simply erases the

stars ∗. Our remark on the groups which are considered as different in

G(i) is essential for s to be well-defined.

Lemma 1.4.2 (Theorem 1.A (i)). Let H ∈ G(i). Then H ∈ H+
T .

Proof. All the groups H ∈ G(i) contain Alt(i)(T )
+ and are closed in

Aut(T ), so it suffices to prove that Alt(i)(T )
+ is 2-transitive on ∂T . By

Lemma 1.2.1, it is equivalent to showing that Alt(i)(T )
+(v) is transitive

on ∂T for each v ∈ V (T ). As Alt(i)(T )
+ is closed, we can just show that

the fixator in Alt(i)(T )
+ of a geodesic (v,w) with v,w ∈ V (T ) always

acts transitively on E(w) \ {e}, where e is the edge of (v,w) adjacent to
w. This is immediate, since Alt(d− 1) is transitive when d ≥ 4.

GivenH ∈ G(i) and h ∈ Aut(T )+, it is not hard to determine whether

h belongs to H. Indeed, one can simply draw the tree T and label each

vertex v of T with the letter e (for even) or o (for odd) depending on the

parity of σ(i)(h, v). A condition on the value of Sgn(i)(h, SX (v)) then

translates in a condition on the parity of the number of vertices labelled

by o in SX(v).

Using this observation, we can easily construct elements of H step by

step. For example, consider H = G+
(i)(X0,X

∗
1 ). Let us observe how one

can construct any labelling of T that satisfies the condition of being in

H, i.e. such that if h ∈ Aut(T )+ realizes this labelling, then h ∈ H. First
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fix a vertex v0 ∈ V (T ). For n ∈ Z≥0 and given a labelling of B(v0, n−1)

(if n 6= 0), we look at how it can be extended to a labelling of B(v0, n)

while satisfying the conditions for being in H. Suppose we already have

a labelling of B(v0, n−1) not contradicting any of the conditions. Let t ∈
{0, 1} be the type of the vertices of S(v0, n). If n < maxXt, then there is

no set SX0(v) or SX1(v) contained in B(v0, n) but not already contained

in B(v0, n− 1), so the labelling can be extended with no restriction. On

the contrary, if n ≥ maxXt, then our new labelling must satisfy some

additional conditions: the ones on the set SXt(v) where v is a vertex

at distance n − maxXt from v0. But {SXt(v) ∩ S(v0, n) | d(v, v0) =

n−maxXt} is a partition of S(v0, n), so there is only one condition on

the parity of the number of labels o on each set SXt(v) ∩ S(v0, n). If

t = 0 (recall that we consider H = G+
(i)(X0,X

∗
1 )), we just have to make

sure that there is an even number of vertices labelled by o in SX0(v).

If t = 1, then we distinguish the following two cases. If this is the first

time (of the whole process) that we observe a set of the form SX1(v),

then we can still make the choice of the parity of the number of labels

o in SX1(v). Otherwise, this parity must be the same as for this first

choice. In all cases, we still have a lot of freedom in our choice of the

new labelling. A labelling of T constructed in this way will always be

suitable, since everything was made for the conditions to be met.

1.4.2 Simplicity

It is clear that each group H ∈ N(i) has s(H) as a proper normal sub-

group, and is therefore not simple. Our next goal is to prove that the

groups in S(i) are simple. Banks, Elder and Willis [BEW15] provided

tools to show that a group of automorphisms of trees is simple. Those

happen to be exactly what we need. Note that their work is based on a

generalization of Tits’ Property P (see [Tit70]). For G ≤cl Aut(T ) and

k ∈ Z>0, define

G+k := 〈Gk−1(v,w) | [v,w] ∈ E(T )〉.

The next proposition is a combination of results of [BEW15].
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Proposition 1.4.3. Let Y0 and Y1 be (possibly empty) finite subsets of

Z≥0, let H = G+
(i)(Y0, Y1) ∈ S(i) and let M = max(max Y0,max Y1) + 1,

where we set max(∅) = 0 by convention. Then H+M is abstractly simple.

Proof. Recall the following definition for n ∈ Z≥0:

H(n) := {g ∈ Aut(T ) | ∀v ∈ V (T ),∃h ∈ H : g|B(v,n)= h|B(v,n)}.

In our case, it is clear from the definition ofH thatH(M) = H. Hence, by

[BEW15, Proposition 5.2], H has Property IPM (as defined in [BEW15,

Definition 5.1]). SinceH is a closed subgroup of Aut(T ), we deduce from

[BEW15, Corollary 6.4] that H has Property PM (as defined in [BEW15,

Definition 6.2]). We can therefore apply [BEW15, Theorem 7.3] that

asserts that H+M is abstractly simple or trivial. Since there exist non-

trivial elements in Alt(i)(T )
+ ⊆ H fixing arbitrarily large balls, we con-

clude that H+M is abstractly simple.

In order to prove that a group H ∈ S(i) is simple, we therefore only

need to prove that H = H+M , where M = max(max Y0,max Y1) + 1.

We first assert that H+1 = H. Note that H+1 is the subgroup of H

generated by the elements fixing an edge of T .

Lemma 1.4.4. Let H ∈ H+
T (with d0, d1 ≥ 3). Then H+1 = H.

Proof. The result readily follows from the fact that the fixator of an

edge e = [v,w] in H is transitive on E(v) \ {e} (by Lemma 1.2.2).

For [v,w] ∈ E(T ), we write Tv,w for the subtree of T spanned by

the vertices that are closer to v than to w. Such a subtree is called a

half-tree.

Lemma 1.4.5. Let H ∈ S(i). Then H is generated by the elements of

H fixing a half-tree of T . In particular, H = H+k for any k ∈ Z>0.

Proof. We already know by Lemma 1.4.4 that H = 〈H(v,w) | [v,w] ∈
E(T )〉. Let us now prove that each h ∈ H(v,w) (for some [v,w] ∈ E(T ))

is generated by elements of H fixing a half-tree of T . We construct an

element g ∈ H such that g|Tv,w= h|Tv,w and g fixes some half-tree of T .

This will prove the statement as h = (hg−1)g.
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First define g on Tv,w by declaring that g|Tv,w= h|Tv,w . Now look at

the labelled tree associated to g: for the moment, all the vertices of Tv,w

are labelled by e or o. We also label all the vertices of Tw,v∩B(w,M−1)

where M = max(max Y0,max Y1) + 1 exactly as in the labelled tree

associated to h. Since h ∈ H, all the conditions to be in H that concern

Tv,w ∪B(w,M − 1) are satisfied.

We now want to put new labellings on S(w,n)∩Tw,v for each n ≥M .

Before doing so, we number the edges of Tw,v in the following way: if x is

a vertex at distance D from w, the edges from x to a vertex at distance

D+1 from w are numbered with 1, 2, . . . , d0− 1 (or d1− 1). Let us now

label the whole tree with e and o. As already explained in §1.4.1, at
each step there will be conditions on the parity of the number of labels

o in sets of the form SX(x). More precisely, if we look at S(w,n) (for

n ≥ M), then either there is no new condition to satisfy (because of

the symbol ∅ in H), or there is a condition on each set of the form

S(w,n)∩S(x,maxX) (where X = X0 or X = X1) with x is at distance

n−maxX from w. If there is no condition then we label all the vertices

of S(w,n)∩Tw,v by e. Otherwise, in each set S(w,n)∩S(x,maxX) with

x at distance n − maxX from w, the number of vertices labelled by o

must be either even or odd (depending on the previous labellings). If it

must be even, we label all the vertices of S(w,n)∩ S(x,maxX) by e. If

it must be odd, we label by o the vertex z of S(w,n)∩S(x,maxX) such

that the path from x to z only contains edges numbered 1. All the other

vertices are labelled by e (see Figure 1.3 where n = 3 and maxX = 2).

We claim that, after having followed these rules to label the whole

tree, there will always exists a half-tree Ts,t whose vertices are all labelled

by e (with s, t ∈ Tw,v and t closer to w than s). This will complete the

proof, since it is always possible to define g on Tw,v so that g fixes the

whole path from w to t, fixes Ts,t, and realizes the labelled tree that we

just constructed. (Note that we need d0, d1 ≥ 4 here.)

Let us prove the claim. Let s0 be a vertex of Tw,v ∩S(w,M) labelled

by e. Define (sn)n∈Z≥0
by saying that sj is the vertex adjacent to sj−1

farther from w than sj and such that [sj−1, sj ] is numbered 2. We show

by induction that, for each j ∈ Z≥0, the ball B(sj, j) only contains

vertices labelled by e. For j = 0 this is clear. Now assume that all the



52 1. Boundary 2-transitive automorphism groups of trees

1
2

3

1
2

3 1
2

3 1
2

3

1

o e

3

e

1

e e

3

e

1

e e

3

e

1

e e

3

e

1

e e

3

e

1

e e

3

e

1

o e

3

e

1

e e

3

e

1

e e

3

e

ve

w

e o e

Figure 1.3: Illustration of Lemma 1.4.5 for H = G+
(i)({2}, {2}).

vertices of B(sj, j) are labelled by e and look at the ball B(sj+1, j + 1).

All the vertices of B(sj+1, j + 1) ∩ B(sj, j) are labelled by e, so we

only need to observe B(sj+1, j + 1) \ B(sj, j) = Tsj+1,sj ∩ (S(sj+1, j) ∪
S(sj+1, j + 1)). The labels of the vertices of Tsj+1,sj ∩ S(sj+1, j) =: A

were determined according to some eventual conditions on sets of the

form SX(x). If there are no such conditions, then all the vertices of A

were labelled by e as wanted. Otherwise, there are two cases: either

maxX ≤ j or maxX > j. If maxX ≤ j, then SX(x) \ A ⊆ B(sj, j)

so all the vertices of SX(x) \ A are labelled by e and the vertices of A

were therefore also labelled by e. If maxX > j, then the condition on

SX(x) may have been to put a label o somewhere, but in any case this

label o was not put in A since [sj, sj+1] is numbered 2 (and not 1). So

all the vertices of A were labelled by e. The reasoning is exactly the

same for Tsj+1,sj ∩S(sj+1, j+1) =: A′. This means that B(sM ,M) only

contains vertices labelled by e. Hence, in TsM ,sM−1
there is no condition

on a set SX(x) asking to label a vertex by o (because maxX < M). All

the vertices of the half-tree TsM ,sM−1
are thus labelled by e.

The previous results together imply that groups in S(i) are simple.

Theorem 1.4.6 (Theorem 1.A (ii)). Let H ∈ S(i). Then H is simple.

Proof. This follows from Proposition 1.4.3 and Lemma 1.4.5.
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1.4.3 Are these examples pairwise distinct?

As highlighted in Definition 1.4.1, it is not clear for the moment if

the members of G(i) are pairwise different. One can actually remark

that this is not the case: for instance, if X0,X1 ⊂f Z≥0 are such that

maxX0 6≡ maxX1 mod 2 and maxX0 < maxX1, then G+
(i)(X0,X1) =

G+
(i)(X0,X1△X0) and G+

(i)(X0,X1)
∗ = G+

(i)(X
∗
0 ,X1△X0), where △ de-

notes the symmetric difference. For this reason, we introduce the fol-

lowing definition.

Definition 1.4.7. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 4

and let i be a legal coloring of T . Say that X0,X1 ⊂f Z≥0 are com-

patible if for each x ∈ Xt (with t ∈ {0, 1}), if x ≥ maxX1−t then

x ≡ maxXt mod 2. Define G(i) to be the set containing the following

groups:

• G+
(i)(Y0, Y1), where Y0 ∈ {∅,X0,X

∗
0}, Y1 ∈ {∅,X1,X

∗
1}, X0,X1 ⊂f

Z≥0 and, if Y0 6= ∅ and Y1 6= ∅, then X0 and X1 are compatible;

• G+
(i)(X0,X1)

∗, where X0,X1 ⊂f Z≥0 are compatible.

We then have the following result.

Proposition 1.4.8. The members of G(i) are pairwise different.

Proof. The groups in S(i) are simple (Theorem 1.4.6) while those in N(i)

are not, so a group in S(i) is never equal to a group in N(i).

Let us now prove that two groups G+
(i)(Y0, Y1) and G+

(i)(Y
′
0 , Y

′
1) in

S(i) ∩ G(i) with (Y0, Y1) 6= (Y ′
0 , Y

′
1) are always different. If Y0 = ∅ but

Y ′
0 6= ∅, then G+

(i)(∅, Y1) 6⊆ G+
(i)(Y

′
0 , Y

′
1). Indeed, for each ball B(v, n)

in T such that S(v, n) ⊆ V0(T ), the fixator of B(v, n) in G+
(i)(∅, Y1) can

act in any manner on B(v, n+1). This is not true for G+
(i)(Y

′
0 , Y

′
1) when

n ≥ maxY ′
0 . This reasoning works whenever exactly one of the two sets

Yt and Y
′
t is empty for some t ∈ {0, 1}.

We now consider X0 6= X ′
0 and show that G+

(i)(X0,∅) 6= G+
(i)(X

′
0,∅)

(the proof is the same for G+
(i)(∅,X1) 6= G+

(i)(∅,X
′
1) with X1 6= X ′

1).

If maxX0 < maxX ′
0, then fix v a vertex of type (maxX0) mod 2 and

construct (as explained in §1.4.1 with the labellings, starting from v) an
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element h ∈ G+
(i)(X

′
0,∅) such that there is exactly one vertex labelled by

o in SX0(v). This is possible because maxX0 < maxX ′
0. By definition,

h 6∈ G+
(i)(X0,∅). The reasoning is the same when maxX0 > maxX ′

0.

Now assume that maxX0 = maxX ′
0. Suppose without loss of gener-

ality that X ′
0 6⊆ X0 and take r ∈ X ′

0 \ X0. Then, if v is a vertex of

type (maxX0) mod 2, there exists h ∈ G+
(i)(X0,∅) such that there is

exactly one vertex labelled by o in S(v, r) and all the other vertices of

B(v,maxX0) are labelled by e. This element h is not in G+
(i)(X

′
0,∅)

because it does not satisfy the condition on SX′
0
(v) (since r ∈ X ′

0).

Finally, let (X0,X1) 6= (X ′
0,X

′
1) be such that X0 and X1 (resp. X ′

0

and X ′
1) are compatible. We show that G+

(i)(X0,X1) 6= G+
(i)(X

′
0,X

′
1).

As in the previous case, if maxX0 < maxX ′
0 then we can construct

an element h ∈ G+
(i)(X

′
0,X

′
1) that is not in G+

(i)(X0,X1). The same

reasoning works when maxX0 > maxX ′
0 or maxX1 6= maxX ′

1. Now

assume that maxX0 = maxX ′
0 and maxX1 = maxX ′

1, and without loss

of generality that maxX0 ≤ maxX1. If X0 6= X ′
0 then as before we

obtain an element that is in exactly one of the two groups G+
(i)(X0,X1)

and G+
(i)(X

′
0,X

′
1). Now suppose that X0 = X ′

0 and X1 6= X ′
1. Once

again, assume without loss of generality that X ′
1 6⊆ X1. Let r be

the greatest element of X ′
1 \ X1. Since X ′

0 and X ′
1 are compatible,

we have r < maxX0 or r ≡ maxX1 mod 2. If v is a vertex of type

(1 +maxX1) mod 2, this means that there is no set of the form SX0(x)

(with x of type (maxX0) mod 2) that is contained in B(v, r) but not

already in B(v, r−1). Hence, there exists h ∈ G+
(i)(X0,X1) with exactly

one vertex labelled by o in S(v, r) and all the other vertices of B(v, r)

labelled by e. Our choice for r is such that h cannot also be an element

of G+
(i)(X

′
0,X

′
1).

We proved that the groups in S(i)∩G(i) are pairwise different. Let us
now do it for N(i)∩G(i). Take H,H ′ ∈ N(i)∩G(i) with different names. If

H and H ′ have exactly the same sets X0 and/or X1 in their name, i.e. if

s(H) = s(H ′), then it is clear from the definitions and the constructions

with the labellings (see §1.4.1) that H 6= H ′. We can therefore assume

that s(H) 6= s(H ′) (and these groups are really different because of our

work for S(i) ∩ G(i)). Suppose for a contradiction that H = H ′. Recall

that s(H)EH, s(H ′)EH ′ and s(H) and s(H ′) are simple. Hence, the
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group H = H ′ has two different simple normal subgroups having a non-

trivial intersection (s(H) and s(H ′) both contain Alt(i)(T )
+), which is

impossible.

As a corollary of the classification, we will also see that each group

in G(i) is equal to a group in G(i), which makes the definition of G(i)
completely natural.

1.4.4 Normalizers

We are now interested in the normalizers of all our groups. Before giving

them, we need to define the groups that will appear in the classification

result for groups in HT \ H+
T .

Definition 1.4.9. Let T be the d-regular tree with d ≥ 4 and let i be

a legal coloring of T . With the same notation as in Definition 1.4.1, set

G(i)(∅,∅) := Aut(T ) and define, for X ⊂f Z≥0,

G(i)(X,X) :=
{

g ∈ Aut(T )
∣

∣

∣ Sgn(i)(g, SX(v)) = 1 for each v ∈ V (T )
}

,

G(i)(X
∗,X∗) :=











g ∈ Aut(T )

∣

∣

∣

∣

∣

∣

∣

All Sgn(i)(g, SX(v)) with v ∈ V0(T )
are equal and all Sgn(i)(g, SX (v))

with v ∈ V1(T ) are equal











,

G(i)(X,X)∗ :=

{

g ∈ Aut(T )

∣

∣

∣

∣

∣

All Sgn(i)(g, SX (v))

with v ∈ V (T ) are equal

}

,

and

G′
(i)(X,X)∗ :=























g ∈ Aut(T )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

All Sgn(i)(g, SX (v)) with v ∈ V0(T )
are equal to p0, all Sgn(i)(g, SX(v))

with v ∈ V1(T ) are equal to p1, and

p0 = p1 if and only if g ∈ Aut(T )+























.

We write G′(i) for the set of all these groups.

The normalizers are then given in the following lemma.

Lemma 1.4.10 (Theorem 1.A (iii)). Let T be the (d0, d1)-semiregular

tree with d0, d1 ≥ 4 and let i be a legal coloring of T .
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(i) Define the map n+:G(i) → G(i) by n+(G+
(i)(∅,∅)) = G+

(i)(∅,∅),

n+(G+
(i)(X0,∅)) = G+

(i)(X
∗
0 ,∅), n+(G+

(i)(∅,X1)) = G+
(i)(∅,X

∗
1 ),

n+(G+
(i)(X0,X1)) = G+

(i)(X
∗
0 ,X

∗
1 ) and n

+(H) = n+(s(H)) for H ∈
N(i). Let H ∈ G(i).

(a) If τ ∈ Aut(T )+ is such that τHτ−1 ⊇ Alt(i)(T )
+, then τ ∈

n+(H).

(b) n+(H) is the normalizer of H in Aut(T )+.

(ii) If d0 = d1 then for each X ⊂f Z≥0 the normalizer of G+
(i)(X,X)

(resp. G+
(i)(X

∗,X∗) and G+
(i)(X,X)∗) in Aut(T ) is G(i)(X

∗,X∗).

Proof.

(i) We first prove (a). Since n+(H) ⊇ H, having τHτ−1 ⊇ Alt(i)(T )
+

implies τn+(H)τ−1 ⊇ Alt(i)(T )
+. As n+(n+(H)) = n+(H), this

means that we can just prove the statement for H = G+
(i)(∅,∅),

G+
(i)(X

∗
0 ,∅), G+

(i)(∅,X
∗
1 ) and G+

(i)(X
∗
0 ,X

∗
1 ). If H = G+

(i)(∅,∅) =

Aut(T )+ then there is nothing to prove.

Now consider H = G+
(i)(X

∗
0 ,∅). Let τ ∈ Aut(T )+ be such that

τG+
(i)(X

∗
0 ,∅)τ−1 ⊇ Alt(i)(T )

+. Remind that

G+
(i)(X

∗
0 ,∅) :=

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

All Sgn(i)(g, SX0(v))

with v ∈ Vt(T ) are equal

}

,

where t = (maxX0) mod 2. We therefore directly obtain

τG+
(i)(X

∗
0 ,∅)τ−1 =

{

g ∈ Aut(T )+

∣

∣

∣

∣

∣

All Sgn(i)(τ
−1gτ, SX0(v))

with v ∈ Vt(T ) are equal

}

.

By Lemma 1.2.11, we have σ(i)(τ
−1gτ, w) = σ(i)(τ

−1, gτ(w)) ◦
σ(i)(g, τ(w))◦σ(i)(τ, w) and σ(i)(τ−1, gτ(w)) = σ(i)(τ, τ

−1gτ(w))−1,

so Sgn(i)(τ
−1gτ, SX0(v)) is equal to

Sgn(i)(τ, SX0(τ
−1gτ(v))) · Sgn(i)(g, SX0(τ(v))) · Sgn(i)(τ, SX0(v)).

In order to show that τ ∈ G+
(i)(X

∗
0 ,∅), we need to prove that all

Sgn(i)(τ, SX0(v)) with v ∈ Vt(T ) are equal. It suffices to show
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that Sgn(i)(τ, SX0(x)) = Sgn(i)(τ, SX0(y)) when x, y ∈ Vt(T ) and

d(x, y) = 2. Fix such x and y and consider z ∈ Vt(T ) such that

d(x, z) = d(y, z) = 2. Take g ∈ Alt(i)(T )
+ such that g(τ(x)) = τ(z)

and g(τ(z)) = τ(y). By hypothesis, we have g ∈ τG+
(i)(X

∗
0 ,∅)τ−1

so the two values

Sgn(i)(τ, SX0(z)) · Sgn(i)(g, SX0(τ(x))) · Sgn(i)(τ, SX0(x))

and

Sgn(i)(τ, SX0(y)) · Sgn(i)(g, SX0(τ(z))) · Sgn(i)(τ, SX0(z))

are equal. As g ∈ Alt(i)(T )
+, we have Sgn(i)(g,A) = 1 for each fi-

nite set A ⊆ V (T ) and hence Sgn(i)(τ, SX0(x)) = Sgn(i)(τ, SX0(y)).

For H = G+
(i)(∅,X

∗
1 ), the reasoning is the same.

For H = G+
(i)
(X∗

0 ,X
∗
1 ), the inclusion τHτ−1 ⊇ Alt(i)(T )

+ im-

plies in particular that τG+
(i)(X

∗
0 ,∅)τ−1 ⊇ Alt(i)(T )

+ and that

τG+
(i)(∅,X

∗
1 )τ

−1 ⊇ Alt(i)(T )
+. By the previous work, we therefore

obtain τ ∈ G+
(i)(X

∗
0 ,∅) ∩G+

(i)(∅,X
∗
1 ) = G+

(i)(X
∗
0 ,X

∗
1 ).

Part (b) follows from (a). Indeed, the normalizer of H in Aut(T )+

is contained in n+(H) by (a), and one readily checks that n+(H)

normalizes H for each H ∈ G(i).

(ii) Let H be one of G+
(i)(X,X), G+

(i)(X
∗,X∗) and G+

(i)(X,X)∗. By (i),

the normalizer of H in Aut(T )+ is n+(H) = G+
(i)(X

∗,X∗). Con-

sider ν ∈ Aut(T ) \ Aut(T )+ not preserving the types but preserv-

ing the colors, i.e. such that i ◦ ν = i. It is clear that ν normalizes

H, and hence the normalizer of H in Aut(T ) is exactly n+(H) ∪
n+(H)ν = G+

(i)
(X∗,X∗) ∪G+

(i)
(X∗,X∗)ν = G(i)(X

∗,X∗).

1.5 The classification

Throughout this section, we let i be a legal coloring of T and fix d0, d1 ≥
6. Our goal is to find all groups H ∈ H+

T satisfying H ⊇ Alt(i)(T )
+. Our

strategy consists in first observing the groups H ∈ H+
T with this prop-

erty and in defining some invariants (namely c(t), K(t) and f tv). We will
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then see that these invariants form a complete set of invariants, i.e. that

they completely characterize the group H. This is the subject of Theo-

rem 1.H′, which is the precise formulation of Theorem 1.H mentioned in

§1.1. The idea is then simple: compute these invariants for the groups

in G(i) and prove that these are the only values that our invariants can

take. This task will turn out to be lengthy and technical because of the

algebraic invariants f tv which are not easy to manipulate.

1.5.1 Evens and odds diagrams

Let us first fix some v ∈ V (T ) and k ∈ Z≥0. The colored rooted tree

B(v, k) where each vertex is additionally labelled by e or o is called a

diagram supported by B(v, k). We write ∆v,k for the set of all these

diagrams. Remark that |∆v,k|= 2|V (B(v,k))|. There is now a natural way

to define the surjective map

D: Aut(B(v, k + 1))→ ∆v,k

where B(v, k + 1) is seen as a colored rooted tree. Indeed, given h̃ ∈
Aut(B(v, k + 1)) we can define D(h̃) (which we call the diagram of

h̃) to be the rooted tree B(v, k) where each vertex w is labelled by the

parity (e for even or o for odd) of σ(i)(h̃, w). We highlight the fact that

D associates a diagram supported by B(v, k) to an automorphism of

the larger ball B(v, k + 1). In this section, we will often deal with such

diagrams. For this reason, the next lemma must be well understood.

Lemma 1.5.1. Let g̃, h̃ ∈ Aut(B(v, k + 1)) and let w be a vertex of

B(v, k).

• The label of w in D(g̃h̃) is e if and only if the label of w in D(h̃)
and the label of h̃(w) in D(g̃) are identical.

• The label of w in D(g̃−1) is equal to the label of g̃−1(w) in D(g̃).

Proof. This is a corollary of Lemma 1.2.11.

We now fix H ∈ H+
T such that H ⊇ Alt(i)(T )

+ and denote by H̃k(v)

the natural image of H(v) in Aut(B(v, k + 1)). Since H is closed in
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Aut(T ) and generated by its vertex stabilizers, it is entirely described

by the groups H̃k(v) with v ∈ V (T ) and k ∈ Z≥0. The next lemma

shows that knowing the diagrams of elements of H̃k(v), i.e. D(H̃k(v)),

suffices to fully know H̃k(v).

Lemma 1.5.2. We have H̃k(v) = D−1(D(H̃k(v))).

Proof. Take h̃ ∈ H̃k(v) and g̃ ∈ Aut(B(v, k+1)) such that D(g̃) = D(h̃).
We want to show that g̃ ∈ H̃k(v). As D(g̃) = D(h̃), Lemma 1.5.1

directly implies that all the vertices of D(g̃h̃−1) are labelled by e, i.e.

g̃h̃−1 is an element of Alt(i)(B(v, k+1)). Since H ⊇ Alt(i)(T )
+, we have

H̃k(v) ⊇ Alt(i)(B(v, k + 1)) and hence g̃ = (g̃h̃−1)h̃ ∈ H̃k(v).

In view of the previous lemma, we only need to describe D(H̃k(v))

to entirely describe H̃k(v). We are first interested in the diagrams of

D(H̃k(v)) where all the vertices of B(v, k − 1) are labelled by e. Let us

call e-diagram a diagram in ∆v,k with this property, and remark that

g̃ ∈ Aut(B(v, k + 1)) is such that D(g̃) is an e-diagram if and only if

g̃|B(v,k)∈ Alt(i)(B(v, k)). We denote by H̃k(v)e the subgroup of H̃k(v)

consisting of elements whose diagram is an e-diagram. If δ ∈ ∆v,k and

if w is a vertex of δ then the subtree of δ spanned by w and all its

descendants is called the branch of w. For 0 ≤ r ≤ k, an r-branch of

δ is a branch of a vertex at distance k − r from v. The only k-branch is

thus the full tree δ and the 0-branches all consist of a single leaf of δ.

Lemma 1.5.3. Let v ∈ V (T ) and k ∈ Z≥0. Exactly one of the following

assertions holds.

1. D(H̃k(v)e) contains all the e-diagrams.

2. There exists 0 ≤ r ≤ k such that D(H̃k(v)e) exactly contains the

e-diagrams with an even number of labels o in each r-branch.

3. D(H̃k(v)e) exactly contains the e-diagrams with an even number

of labels o in each (k − 1)-branch and the e-diagrams with an odd

number of labels o in each (k − 1)-branch. (This case only occurs

if k ≥ 1.)
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Proof. For each e-diagram δ, label each branch of δ with E or O depend-

ing on whether it contains an even or an odd number of vertices labelled

by o. Denote by Ds the set of e-diagrams whose s-branches are all la-

belled byE. By definition, D(Alt(i)(B(v, k+1))) = D0 ⊂ D1 ⊂ · · · ⊂ Dk.

Since H̃k(v) ⊇ Alt(i)(B(v, k + 1)), we have D(H̃k(v)e) ⊇ D0.

Claim 1. Let 0 ≤ s ≤ k − 1. If D(H̃k(v)e) ⊇ Ds, then D(H̃k(v)e) ⊇
Ds+1 or for every diagram δ ∈ D(H̃k(v)e) and every (s+1)-branch b of

δ, all the s-branches in b have the same label.

Proof of the claim: Suppose there exist a diagram D(h̃) ∈ D(H̃k(v)e)

and an (s+1)-branch b of D(h̃) containing both an s-branch b1 labelled

by E and an s-branch b2 labelled by O. Let b3 and b4 be two other s-

branches in b with the same label (such branches exist because d0, d1 ≥
6). Consider τ̃ ∈ Alt(i)(B(v, k+1)) ⊆ H̃k(v) an element interchanging b1

and b2, interchanging b3 and b4, and stabilizing all the other s-branches.

In this way, h̃τ̃ h̃−1 ∈ H̃k(v) is such that the only s-branches of D(h̃τ̃ h̃−1)

labelled by O are b1 and b2 (see Lemma 1.5.1). Conjugating this element

by adequate elements of Alt(i)(B(v, k + 1)) and combining them, we

deduce (once again by using Lemma 1.5.1) that D(H̃k(v)e) contains all

the e-diagrams where each (s + 1)-branch contains an even number of

s-branches labelled by O. These are exactly the e-diagrams with each

(s+ 1)-branch labelled by E, so D(H̃k(v)e) ⊇ Ds+1. �

Claim 2. Let 0 ≤ s ≤ k−2. If D(H̃k(v)e) ⊇ Ds but D(H̃k(v)e) 6⊇ Ds+1,

then D(H̃k(v)e) = Ds.

Proof of the claim: By Claim 1, the fact that D(H̃k(v)e) ⊇ Ds but

D(H̃k(v)e) 6⊇ Ds+1 implies that for every diagram δ ∈ D(H̃k(v)e) and

every (s + 1)-branch b of δ, all the s-branches in b have the same label

(∗). In order to show that D(H̃k(v)e) = Ds, it suffices to prove that it

is impossible to have a diagram with an (s + 1)-branch only containing

s-branches labelled by O. By contradiction, suppose there exist h̃ ∈
H̃k(v)e and some (s + 1)-branch b of D(h̃) all whose s-branches are

labelled by O. In view of Lemma 1.5.2, we can assume that h̃ fixes

B(v, k). Let us say that b is the branch of the vertex w. Denote by

x1, . . . , xr the children of w, by b1, . . . , br the corresponding s-branches,
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y

w

x1 x2 xr

b1 b2 br

b

Figure 1.4: Illustration of Lemma 1.5.3, Claim 2.

and by y the parent of w (note that w 6= v since s ≤ k−2), see Figure 1.4.
Let h ∈ H be an element whose image in H̃k(v) is h̃ and consider an

element g ∈ Alt(i)(T )
+ that fixes w and interchanges x1 and y. Then

f = ghg−1 ∈ H is an element fixing B(w, 1). Now observe the image of

f in H̃s+1(w): it is contained in H̃s+1(w)e and the branches b2, . . . , br

are labelled by O while b1 is labelled by E (see Lemma 1.5.1). Consider

an element τ ∈ Alt(i)(T )
+ that fixes w and all the vertices that are

closer to y than to w, interchanges x1 and x2 and interchanges x3 and

x4. Then fτf
−1 ∈ H is an element that also fixes w and all the vertices

that are closer to y than to w and, if we look at its image in H̃k(v), it is

contained in H̃k(v)e and the branches b1 and b2 are labelled by O while

the branches b3, . . . , br are labelled by E. This contradicts (∗). �

If D(H̃k(v)e) ⊇ Dk then there are two options: either D(H̃k(v)e) =

Dk (i.e. we are in the second case with r = k) or there exists a dia-

gram in D(H̃k(v)e) whose k-branch is labelled by O. In the latter case,

D(H̃k(v)e) contains all the e-diagrams.

Suppose now that D(H̃k(v)e) 6⊇ Dk. Then there exists 0 ≤ s ≤ k− 1

such that D(H̃k(v)e) ⊇ Ds but D(H̃k(v)e) 6⊇ Ds+1. If s 6= k − 1 then

by Claim 2 we have D(H̃k(v)e) = Ds, i.e. we are in the second case

with r = s. If s = k − 1, then by Claim 1 we know that each diagram

in D(H̃k(v)e) either has all its (k − 1)-branches labelled by E or all its

(k−1)-branches labelled by O. If there is no diagram with labels O, then

D(H̃k(v)e) = Dk−1 (i.e. we are in the second case with r = k−1). On the

contrary, if there exists such a diagram, then D(H̃k(v)e) also contains
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the e-diagrams with an odd number of labels o in each (k − 1)-branch

(i.e. we are in the third case).

1.5.2 Four possible shapes for H(v)

For v ∈ V (T ) and k ∈ Z≥0, Lemma 1.5.3 gives different shapes that

D(H̃k(v)e) can take. We now associate a symbol αk(v) to each v and

k by defining αk(v) = ∞ in the first case, αk(v) = r in the second case

and αk(v) = (k − 1)∗ in the third case. A natural total order on the set

of symbols {∞, 0, 0∗, 1, 1∗, . . .} is given by 0 < 0∗ < 1 < 1∗ < · · · and
x <∞ for each x 6=∞.

Lemma 1.5.4. For x ∈ {1, 2, . . . , k}, we have αk(v) ≥ x if and only if

there exists a diagram in D(H̃k(v)e) with exactly two vertices labelled by

o, situated in the same x-branch but in different (x− 1)-branches.

Proof. This is a consequence of the definition of αk(v).

Clearly, since Alt(i)(T )
+ is transitive on V0(T ) and V1(T ), we have

αk(v) = αk(v
′) when v and v′ have the same type. For this reason, for

t ∈ {0, 1} we define αt
k to be equal to αk(v) where v is a vertex of type

(t + k) mod 2. In this way, αt
k tells us the labels that can appear in

S(v, k), which is a sphere containing vertices of type t.

We are now interested in how the sequences (α0
k)k∈Z≥0

and (α1
k)k∈Z≥0

can look like.

Lemma 1.5.5. Let t ∈ {0, 1}. Either αt
k = ∞ for all k ∈ Z≥0 (case

#0), or there exists K ∈ Z≥0 such that the sequence (αt
k)k∈Z≥0

takes

one of the following three shapes. (For cases #2 and #3, K cannot be

equal to 0.)

# αt
0 · · · αt

K−1 αt
K αt

K+1 αt
K+2 · · ·

1 ∞ · · · ∞ K K K · · ·
2 ∞ · · · ∞ K − 1 K − 1 K − 1 · · ·
3 ∞ · · · ∞ (K − 1)∗ K − 1 K − 1 · · ·

Proof. We prove this result by giving two rules that (αt
k)k∈Z≥0

satisfies.

Claim 1. The sequence (αt
k)k∈Z≥0

is non-increasing.
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Proof of the claim: Let k ∈ Z≥0, let v be a vertex of type (t+k+1) mod 2

and let w be a vertex adjacent to v. Given a diagram δ ∈ D(H̃k+1(v)e),

Lemma 1.5.2 tells us that it is realized by an element h̃ ∈ H̃k+1(v)e

that fixes w. Hence, h̃ has a natural image in H̃k(w)e and the dia-

gram of this image is exactly the restriction of δ to B(w, k). Hence,

D(H̃k(w)e) contains the restriction of each element of D(H̃k+1(v)e) to

B(w, k). Observing the different possibilities for αt
k+1, this always im-

plies that αt
k ≥ αt

k+1. �

Claim 2. If αt
k ≥ x with x ∈ {0, 1, . . . , k}, then αt

k+1 ≥ x.

Proof of the claim: If x = 0 then the claim is trivial, so suppose that

x > 0. Let w be a vertex of type (t+k) mod 2. Since αt
k ≥ x, there exists

h ∈ H(w) whose image in H̃k(w) has a diagram which is an e-diagram

with exactly two vertices labelled by o, say a and b, in the same x-branch

but in different (x− 1)-branches (see Lemma 1.5.4). Take c ∈ S(w, k) a
vertex in this same x-branch but in a third (x−1)-branch and v a vertex

adjacent to w such that a is closer to w than to v (see Figure 1.5). By

Lemma 1.5.2, we can assume that h fixes v. Consider τ ∈ Alt(i)(T )
+

an element fixing all the vertices closer to v than to w, stabilizing a

and interchanging b and c. Then by Lemma 1.5.1 the image of hτh−1

in H̃k+1(v) has a diagram which is an e-diagram having exactly two

vertices labelled by o, namely b and c. By Lemma 1.5.4, this implies

that αt
k+1 ≥ x. �

These two claims suffice to get the result. Indeed, we either have

v

w

b

a
b

b
b

c

x-branch

Figure 1.5: Illustration of Lemma 1.5.5, Claim 2.
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αt
0 = 0 or αt

0 = ∞. If αt
0 = 0 then by Claim 1 we get case #1. If

αt
0 = ∞, then either αt

k = ∞ for all k ∈ Z≥0, or there exists a smallest

K such that αt
K < ∞. In the latter case, Claim 2 with k = x = K − 1

gives αt
K ≥ K − 1, so αt

K ∈ {K − 1, (K − 1)∗,K}. If αt
K ∈ {K − 1,K},

then the two claims imply that (αt
k)k≥K is constant and we get cases #1

and #2. If αt
K = (K − 1)∗, then Claim 1 and Claim 2 with k = K and

x = K − 1 give (K − 1) ≤ αt
K+1 ≤ (K − 1)∗. Since αt

K+1 is never equal

to (K − 1)∗, we must have αt
K+1 = K − 1 and then get the constant

sequence as above, which gives case #3.

1.5.3 The numerical invariants c(t) and K(t)

For t ∈ {0, 1}, denote by c(t) ∈ {0, 1, 2, 3} the case that was encountered
in Lemma 1.5.5 and by K(t) the smallest integer such that αt

K(t) < ∞,

as in the lemma (if c(t) = 0, define K(t) =∞). The value

K ′(t) := lim
k→∞

αt
k

will also be useful for our proofs. Note that c(t) and K(t) completely

determine K ′(t). Similarly, c(t) and K ′(t) determine K(t).

These invariants can be computed for each of our key examples. To

simplify the notations, we define the operation ⊞:Z≥0×Z≥0 → Z≥0 by

a⊞ b := a+ b−
⌈ |a− b|

2

⌉

.

Proposition 1.5.6. The values of c(0), c(1), K ′(0) and K ′(1) for the

members of G(i) are given in Table 1.1. The last column of Table 1.1

gives, for fixed c(0), c(1), K ′(0) and K ′(1), the exact number of groups

(in G(i)) in the corresponding line.

Proof. The values of the different invariants can be computed only using

the definitions of the groups and the construction explained in §1.4.1
with labellings e and o. We suggest the reader to compute the invariants

for some of the groups to become familiar with the definitions.

The value 2K
′(0) in the last column for lines 2 and 5 is simply equal

to the number of sets X0 ⊂f Z≥0 such that maxX0 = K ′(0). The
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c(0) K ′(0) c(1) K ′(1) #

1 G+
(i)(∅,∅) 0 ∞ 0 ∞ 1

2 G+
(i)(X0,∅) 1 maxX0 0 ∞ 2K

′(0)

3 G+
(i)(∅,X1) 0 ∞ 1 maxX1 2K

′(1)

4 G+
(i)(X0,X1) 1 maxX0 1 maxX1 2K

′(0)⊞K ′(1)

5 G+
(i)(X

∗
0 ,∅) 3 maxX0 0 ∞ 2K

′(0)

6 G+
(i)(∅,X

∗
1 ) 0 ∞ 3 maxX1 2K

′(1)

7 G+
(i)(X0,X

∗
1 ) 1 maxX0 3 maxX1 2K

′(0)⊞K ′(1)

8 G+
(i)(X

∗
0 ,X1) 3 maxX0 1 maxX1 2K

′(0)⊞K ′(1)

9 G+
(i)(X

∗
0 ,X

∗
1 ) 3 maxX0 3 maxX1 2K

′(0)⊞K ′(1)

10
G+

(i)(X0,X1)
∗

(maxX0 = maxX1)
2 maxX0 2 maxX1 2K

′(0)⊞K ′(1)

11
G+

(i)(X0,X1)
∗

(maxX0 > maxX1)
1 maxX0 3 maxX1 2K

′(0)⊞K ′(1)

12
G+

(i)(X0,X1)
∗

(maxX0 < maxX1)
3 maxX0 1 maxX1 2K

′(0)⊞K ′(1)

Table 1.1: Values of the invariants for the groups in G(i).

reasoning is the same for lines 3 and 6. Concerning line 4 and lines

7–12, the value 2K
′(0)⊞K ′(1) corresponds to the number of pairs (X0,X1)

with X0,X1 ⊂f Z≥0 such that X0 and X1 are compatible (as defined in

Definition 1.4.7), maxX0 = K ′(0) and maxX1 = K ′(1). Note that we

do not count a group twice as all the groups in G(i) are pairwise different
(see Proposition 1.4.8).

In Table 1.1, it is remarkable that having c(0) = 2 also implies c(1) =

2 and K(0) = K(1). This is actually a general fact for any H ∈ H+
T

such that H ⊇ Alt(i)(T )
+.

Lemma 1.5.7. If c(t) = 2 for some t ∈ {0, 1}, then c(1 − t) = 2 and

K(0) = K(1).

Proof. Assume without loss of generality that t = 0 and let v be a vertex

of type (K(0)− 1) mod 2. Since α0
K(0)−1 =∞, there exists h ∈ H fixing
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B(v,K(0) − 1) and such that the diagram of its image in H̃K(0)−1(v)

has exactly one vertex a labelled by o. Let w be a vertex adjacent to v

such that a is not in the branch of w.

We first show that α1
K(0) ≤ K(0)− 1, which will in particular imply

thatK(1) ≤ K(0). Suppose for a contradiction that α1
K(0) ≥ (K(0)−1)∗.

Then there exists g ∈ H fixing B(v,K(0)) and such that the diagram of

its image g̃ in H̃K(0)(v) and the diagram of the image of h in H̃K(0)(v)

coincide on the branch of w. Indeed, the condition α1
K(0) ≥ (K(0)− 1)∗

gives us sufficient freedom to choose the labels of D(g̃) in the branch of

w. Hence, the diagram of the image of hg−1 in H̃K(0)(w) is an e-diagram

with a (K(0)−1)-branch (the branch of v) containing exactly one vertex

labelled by o, contradicting α0
K(0) = K(0)− 1.

We now prove that K(1) ≥ K(0), once again by contradiction, as-

suming that K(1) < K(0). If h̃ is the image of h in H̃K(0)(v), then

since α1
K(1) ∈ {K ′(1),K ′(1)∗} the K ′(1)-branches of D(h̃) contained in

the branch of w all contain an even number of vertices labelled by o.

But α1
K(0) = K ′(1) (because K(0) > K(1)), so there exists g ∈ H fixing

B(v,K(0)) and such that the diagram of its image g̃ in H̃K(0)(v) and the

diagram of h̃ coincide on the branch of w. We therefore have the same

contradiction as above by considering the image of hg−1 in H̃K(0)(w).

As a conclusion, K(1) = K(0) and α1
K(1) ≤ K(1)−1 so c(1) = 2.

1.5.4 The algebraic invariants f t
v

Our next goal is to understand the relationship between D(H̃k−1(v))

and D(H̃k(v)) (for fixed v and k). The first result in this direction is

the following. We identify the group C2 of order 2 with {E,O}, where
E is the neutral element. By convention, we say that B(v,−1) = ∅ and

that D(H̃−1(v)) only contains the empty diagram ε.

Lemma 1.5.8. Let v ∈ V (T ), let k ∈ Z≥0 and let δ ∈ D(H̃k−1(v)).

(i) If αk(v) = ∞, then D(H̃k(v)) contains all the diagrams of ∆v,k

whose intersection with B(v, k − 1) is δ.

(ii) If αk(v) = x ∈ {0, 1, . . . , k}, denote by b1, . . . , bm the x-branches

of B(v, k). Then there exists a unique element (p1, . . . , pm) ∈
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{E,O}m such that the following holds. For each δ̂ ∈ ∆v,k with

δ̂ ∩ B(v, k − 1) = δ, if qi ∈ {E,O} is the parity of the number

of vertices labelled by o in δ̂ ∩ bi ∩ S(v, k), then δ̂ is contained in

D(H̃k(v)) if and only if (q1, . . . , qm) = (p1, . . . , pm).

(iii) If αk(v) = (k − 1)∗, denote by b1, . . . , bm the (k − 1)-branches

of B(v, k). Then there exists a unique element [(p1, . . . , pm)] ∈
{E,O}m

/

〈(O, . . . , O)〉 such that the following holds. For each

δ̂ ∈ ∆v,k with δ̂ ∩ B(v, k − 1) = δ, if qi ∈ {E,O} is the parity

of the number of vertices labelled by o in δ̂ ∩ bi ∩ S(v, k), then δ̂ is

contained in D(H̃k(v)) if and only if [(q1, . . . , qm)] = [(p1, . . . , pm)].

Proof. Let h̃ ∈ H̃k(v) be such that D(h̃) ∩B(v, k − 1) = δ.

(i) Let g̃ ∈ Aut(B(v, k + 1)) be such that D(g̃) ∩ B(v, k − 1) = δ.

Using Lemma 1.5.1, we see that having D(g̃)∩B(v, k−1) = D(h̃)∩
B(v, k − 1) implies that D(g̃h̃−1) is an e-diagram. As αk(v) = ∞,

we get g̃h̃−1 ∈ H̃k(v) and thus g̃ = (g̃h̃−1)h̃ ∈ H̃k(v).

(ii),(iii) For each i ∈ {1, . . . ,m}, let pi ∈ {E,O} be the parity of the

number of vertices labelled by o in D(h̃) ∩ bi ∩ S(v, k). We prove

that (p1, . . . , pm) (resp. [(p1, . . . , pm)]) satisfies the statement (and

it is clear that it is unique). Let g̃ ∈ Aut(B(v, k + 1)) be such

that D(g̃) ∩ B(v, k − 1) = δ and let qi ∈ {E,O} be the parity of

the number of vertices labelled by o in D(g̃) ∩ bi ∩ S(v, k). We

have g̃ ∈ H̃k(v) if and only if g̃h̃−1 ∈ H̃k(v), and D(g̃h̃−1) is an

e-diagram. The value of αk(v) and Lemma 1.5.1 then imply that

g̃h̃−1 ∈ H̃k(v)e if and only if (q1, . . . , qm) = (p1, . . . , pm) (resp.

[(q1, . . . , qm)] = [(p1, . . . , pm)]).

Fix t ∈ {0, 1} such that c(t) 6= 0. For k < K(t), if v is a vertex of

type (t+k) mod 2 then the fact that αt
k =∞ implies by Lemma 1.5.8 (i)

that D(H̃k(v)) exactly contains the diagrams of ∆v,k whose intersection

with B(v, k − 1) is a diagram in D(H̃k−1(v)).

On the other hand, if v is a vertex of type (t+K(t)) mod 2 then the

shape of D(H̃K(t)(v)) cannot be directly deduced from D(H̃K(t)−1(v)).

In view of Lemma 1.5.8 (ii),(iii), we can however define a map f tv to
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encode this information. The domain of f tv will be D(H̃K(t)−1(v)) while

its codomain J t will depend on the value of c(t). Given a diagram

δ ∈ D(H̃K(t)−1(v)), the value of f tv(δ) will exactly give what is the

condition on a diagram of ∆v,K(t) whose intersection with B(v,K(t)−1)

is δ for being contained in D(H̃K(t)(v)). Let us denote by b1, . . . , bd̃ the

branches of the vertices adjacent to v.

• If c(t) = 1, then αt
K(t) = K(t) and we can apply Lemma 1.5.8

(ii) with k = x = K(t). We then set J t := {E,O} and define

f tv:D(H̃K(t)−1(v)) → J t naturally: f tv(δ) is the unique element

p ∈ J t given by the lemma (note that m = 1).

• If c(t) = 2, then αt
K(t) = K(t)− 1 and we can apply Lemma 1.5.8

(ii) with k = K(t) and x = K(t) − 1. We set J t := {E,O}d̃
and define f tv:D(H̃K(t)−1(v)) → J t naturally: f tv(δ) is the unique

element (p1, . . . , pd̃) ∈ Jt given by the lemma.

• If c(t) = 3, then αt
K(t) = (K(t)−1)∗ and we can apply Lemma 1.5.8

(iii) with k = K(t). We set J t := {E,O}d̃
/

〈(O, . . . , O)〉 and de-

fine f tv:D(H̃K(t)−1(v))→ J t naturally: f tv(δ) is the unique element

[(p1, . . . , pd̃)] ∈ Jt given by the lemma.

The next result directly follows from the definition of f tv.

Lemma 1.5.9. Let δe ∈ ∆v,K(t)−1 be the diagram with all vertices la-

belled by e. Then δe belongs to D(H̃K(t)−1(v)) and f tv(δe) is the trivial

element of J t. Moreover, for g̃, h̃ ∈ H̃K(t)−1(v), we have the following.

• If c(t) = 1, then f tv(D(g̃h̃)) = f tv(D(g̃)) · f tv(D(h̃)).

• If c(t) ∈ {2, 3}, then f tv(D(g̃h̃)) = σ(f tv(D(g̃))) · f tv(D(h̃)), where

σ:J t → J t permutes the coordinates in the same way as h̃ permutes

the branches b1, . . . , bd̃.

Proof. For each k ≥ 0, the diagram in ∆v,k with all vertices labelled

by e is always contained in D(H̃k(v)) (because H ⊇ Alt(i)(T )
+). In

particular, we have δe ∈ D(H̃K(t)−1(v)) and f tv(δe) must be the trivial

element of Jt.

The formula for f tv(D(g̃h̃)) can be obtained from Lemma 1.5.1.
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1.5.5 The invariants form a complete system

By definition, the map f tv defined above fully describes the shape of

D(H̃K(t)(v)) from D(H̃K(t)−1(v)). A priori, it seems that we also need

similar maps to deduce the shape of D(H̃k(v)) from D(H̃k−1(v)) for each

k > K(t) (where v is of type (t+ k) mod 2). However, as the following

lemma shows, this is not the case.

Lemma 1.5.10. Let t ∈ {0, 1} be such that c(t) 6= 0, let k > K(t)

and let v be a vertex of type (t + k) mod 2. Let also δ ∈ D(H̃k−1(v)).

Consider δ̂ ∈ ∆v,k with δ̂∩B(v, k− 1) = δ. Then δ̂ belongs to D(H̃k(v))

if and only if, for each vertex w at distance k−K(t) from v, the diagram

δ̂ ∩B(w,K(t)) belongs to D(H̃K(t)(w)).

Proof. If δ̂ ∈ D(H̃k(v)) and w is a vertex at distance k −K(t) from v,

then by Lemma 1.5.2 the diagram δ̂ is realized by an element h̃ of H̃k(v)

fixing w. Hence, the diagram of h̃|B(w,K(t)+1), which is δ̂ ∩ B(w,K(t)),

is contained in D(H̃K(t)(w)).

Now take δ̂ ∈ ∆v,k with δ̂∩B(v, k−1) = δ such that δ̂∩B(w,K(t)) ∈
D(H̃K(t)(w)) for each vertex w at distance k − K(t) from v. Consider

also δ̂′ ∈ D(H̃k(v)) with δ̂′ ∩B(v, k− 1) = δ. In view of the first part of

the proof, we have δ̂′∩B(w,K(t)) ∈ D(H̃K(t)(w)) for each w at distance

k − K(t) from v. Denote by b1, . . . , bm the K ′(t)-branches of B(v, k),

and let pi (resp. p
′
i) be the parity of the number of vertices labelled by

o in δ̂ ∩ bi ∩ S(v, k) (resp. in δ̂′ ∩ bi ∩ S(v, k)). In view of Lemma 1.5.8

(ii), it suffices to show that (p1, . . . , pm) = (p′1, . . . , p
′
m) in order to prove

that δ̂ ∈ D(H̃k(v)). Let j ∈ {1, . . . ,m} and let w be the vertex at

distance k − K(t) from v whose branch b contains bj . The diagrams

δ0 = δ̂ ∩ B(w,K(t)) and δ′0 = δ̂′ ∩ B(w,K(t)), which both belong to

D(H̃K(t)(v)), coincide on B(w,K(t)−1)∪(S(w,K(t))\b). In particular,

we have δ0∩B(w,K(t)−1) = δ′0∩B(w,K(t)−1) and the two diagrams

must therefore satisfy the condition given by f tw(δ0∩B(w,K(t)−1)) ∈ J t

(∗). Given a part X of a diagram, let us write P (X) for the parity of

the number of vertices labelled by o in X.

If c(t) = 1 then b = bj and (∗) means that P (δ0 ∩ S(w,K(t))) =

P (δ′0 ∩ S(w,K(t))). Since δ0 and δ′0 coincide on S(w,K(t)) \ b, this
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means that P (δ0 ∩ S(w,K(t)) ∩ b) = P (δ′0 ∩ S(w,K(t)) ∩ b), i.e. we

have pj = p′j. If c(t) ∈ {2, 3} then let b̃1, . . . , b̃d̃ be the branches (seen

in B(w,K(t))) of the vertices adjacent to w. One of these branches

is equal to bj , say b̃1, and another of these branches is the branch of

the parent of w (in B(v, k)), say b̃2. If c(t) = 2 then (∗) means that

P (δ0 ∩ b̃i ∩S(w,K(t))) = P (δ′0 ∩ b̃i∩S(w,K(t))) for each i ∈ {1, . . . , d̃},
and i = 1 directly gives pj = p′j. If c(t) = 3, then (∗) means that

either P (δ0 ∩ b̃i ∩ S(w,K(t))) = P (δ′0 ∩ b̃i ∩ S(w,K(t))) for each i or

P (δ0 ∩ b̃i ∩ S(w,K(t))) 6= P (δ′0 ∩ b̃i ∩ S(w,K(t))) for each i. But δ0 and

δ′0 coincide on S(w,K(t)) \ b = S(w,K(t)) ∩ b̃2, so we must have the

equality for each i. In particular, i = 1 gives pj = p′j.

As a consequence of the previous lemma, we find that the invariants

c(t), K(t) and f tv (for t ∈ {0, 1} and v ∈ V (T ) such that f tv is defined)

fully describe the entire group H. Note that, since Alt(i)(T )
+ is transi-

tive on V0(T ) and V1(T ), if c(t) 6= 0 then knowing f tv for a fixed vertex

v of type (t+K(t)) mod 2 suffices to get each f tw.

Theorem 1.H′. If H,H ′ ∈ H+
T satisfy H,H ′ ⊇ Alt(i)(T )

+ and have

the same invariants c(t), K(t) and f tv (for t ∈ {0, 1} and v ∈ V (T ) such

that f tv is defined), then H = H ′.

Proof. We fix one group H ∈ H+
T with H ⊇ Alt(i)(T )

+ and show that,

for each v ∈ V (T ) and k ∈ Z≥0, the set D(H̃k(v)) can be described only

using the invariants c(t), K(t) and f tv. By Lemma 1.5.2 and the fact

that H is generated by point stabilizers, this will prove the statement.

Let us do it by induction on k. For k = −1, D(H̃−1(v)) only contains

the empty diagram ε for each v ∈ V (T ). Now fix k ≥ 0 and assume that

D(H̃k−1(v)) is known for each v ∈ V (T ). Let v ∈ V (T ) and define

t ∈ {0, 1} to be such that v is of type (t + k) mod 2. If k < K(t), then

αt
k = ∞ and we know that D(H̃k(v)) exactly contains the diagrams

of ∆v,k whose intersection with B(v, k − 1) is contained in D(H̃k−1(v))

(see Lemma 1.5.8 (i)). If k = K(t), then f tv fully describes D(H̃K(t)(v))

from D(H̃K(t)−1(v)). Finally, if k > K(t), then Lemma 1.5.10 shows

that D(H̃k(v)) can be deduced from D(H̃k−1(v)) and each D(H̃K(t)(w))

with w at distance k −K(t) from v.
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Theorem 1.H formulated in §1.1 is a consequence of Theorem 1.H′.

Indeed, for H ∈ H+
T satisfying H ⊇ Alt(i)(T )

+, take K ∈ Z>0 strictly

greater than the finite numbers among {K(0),K(1)}. Then the K-

closure H(K) of H also satisfies H(K) ∈ H+
T and H(K) ⊇ Alt(i)(T )

+ and

have the same invariants as H, so that H = H(K).

1.5.6 Possible shapes for f t
v when K(t) ≤ K(1− t)

We now observe which shapes f tv can take when c(t) 6= 0 and K(t) ≤
K(1− t). Recall that SX(v) :=

⋃

r∈X S(v, r) when X ⊆ Z≥0.

Lemma 1.5.11. Suppose that c(t) 6= 0 and K(t) ≤ K(1 − t) and let

v be a vertex of type (t+K(t)) mod 2. Then the possible shapes for f tv

are given as follows. Here, b1, . . . , bd̃ denote the branches of the vertices

adjacent to v, as in the definition of J t.

• If c(t) = 1, then there exists A ⊆ {0, 1, . . . ,K(t) − 1} such that

f tv(δ) is equal to the parity of the number of vertices labelled by o

in δ ∩ SA(v).

• If c(t) = 2, then there exist A ⊆ {1, 2, . . . ,K(t) − 1} and B ⊆
{0, 1, . . . ,K(t) − 1} such that f tv(δ) = (p1, . . . , pd̃) where pi is the

parity of the number of vertices labelled by o in δ ∩ ((SA(v) ∩ bi)∪
(SB(v) \ bi)).

• If c(t) = 3, then there exists A ⊆ {1, 2, . . . ,K(t) − 1} such that

f tv(δ) = [(p1, . . . , pd̃)] where pi is the parity of the number of ver-

tices labelled by o in δ ∩ (SA(v) ∩ bi).

Proof. Since K(t) ≤ K(1 − t), we have αt
k = α1−t

k = ∞ for each

k < K(t) and hence D(H̃K(t)−1(v)) = ∆v,K(t)−1. Now, for each r ∈
{0, 1, . . . ,K(t) − 1}, fix a diagram δr ∈ D(H̃K(t)−1(v)) having exactly

one vertex w labelled by o, with w ∈ S(v, r) and, if r ≥ 1, w ∈ b1. In

view of Lemma 1.5.9, it is clear that the image of any diagram by f tv can

always be recovered from the values that f tv takes on {δ0, δ1, . . . , δK(t)−1}.

• If c(t) = 1, then define A = {r ∈ {0, 1, . . . ,K(t)−1} | f tv(δr) = O}.
Then f tv is exactly of the shape given in the statement.
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• If c(t) = 2, then for each r ∈ {0, . . . ,K(t) − 1} we have f tv(δr) =

(pr1, . . . , p
r
d̃
) for some pri ∈ {E,O}. For r ≥ 1, considering elements

g̃ ∈ Alt(i)(B(v,K(t))) stabilizing the branch b1 but permuting the

other branches, we directly obtain using Lemma 1.5.9 that pr2 =

pr3 = · · · = pr
d̃
. We can therefore write f tv(δr) = (xr, yr, . . . , yr)

with xr, yr ∈ {E,O}. For r = 0, we obtain in the same way

that p01 = p02 = · · · = p0
d̃
, and we write f tv(δ0) = (y0, . . . , y0).

Now if we define A = {r ∈ {1, 2, . . . ,K(t) − 1} | xr = O} and

B = {r ∈ {0, 1, . . . ,K(t) − 1} | yr = O}, then we exactly get the

shape given in the statement.

• If c(t) = 3, then the same reasoning as in the previous case works

but it must be remembered that the values are taken modulo

(O, . . . , O). We thus get f tv(δr) = [(xr, yr, . . . , yr)] for r ≥ 1 and

f tv(δ0) = [(y0, . . . , y0)], but it can be assumed that all the yr are

equal to E. Defining A = {r ∈ {1, 2, . . . ,K(t)− 1} | xr = O}, we
obtain the shape given in the statement.

When c(t) = 2, we also have c(1 − t) = 2 and K(0) = K(1) by

Lemma 1.5.7. In this case, Lemma 1.5.11 can be applied with t = 0 and

t = 1. It is however important to note the following result. Remark

that, as Alt(i)(T )
+ is transitive on V0(T ) and V1(T ), the sets A and B

given by Lemma 1.5.11 depend on t ∈ {0, 1} but not on v.

Lemma 1.5.12. Suppose that c(0) = c(1) = 2 and K(0) = K(1) =: K.

For each t ∈ {0, 1}, let At and Bt be the sets given by Lemma 1.5.11.

For each t ∈ {0, 1}, we have K− 1 ∈ Bt and, if r ∈ {0, . . . ,K− 2}, then
r ∈ Bt if and only if r + 1 ∈ A1−t.

Proof. Let t ∈ {0, 1} and let v and w be adjacent vertices with v of type

(t+K) mod 2.

We first assume for a contradiction that K − 1 6∈ Bt. Let a be a

vertex of S(w,K − 1) that is not in the branch of v (see Figure 1.6a).

Since αt
K−1 = ∞, there exists h ∈ H such that a is the only vertex

labelled by o in the diagram of the image of h in H̃K−1(w). Now if we

look at the image h̃ of h in H̃K−1(v), Lemma 1.5.11 and the fact that

K − 1 6∈ Bt imply that f tv(D(h̃)) = (E, ∗, . . . , ∗), where the first branch
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Figure 1.6: Illustration of Lemma 1.5.12.

b1 is the branch of w. This means that the number of vertices labelled

by o in S(v,K)∩ b1 should be even, but this is a contradiction with the

fact that a is the only vertex of S(v,K) ∩ b1 labelled by o.

We now show the second part of the statement. Let r ∈ {0, . . . ,K −
2} and let a′ be a vertex of S(w, r + 1) in the branch of v, which we

denote by b′1 (see Figure 1.6b). Since K(0) = K(1) = K, there exists

h ∈ H such that a′ is the only vertex labelled by o in the diagram of

the image of h in H̃K−1(w). By Lemma 1.5.11 (with 1− t instead of t),

the number of vertices labelled by o in S(w,K) ∩ b′1 is odd if and only

if r + 1 ∈ A1−t. Now we observe the diagram of the image h̃ of h in

H̃K−1(v). Lemma 1.5.11 tells us that f tv(D(h̃)) = (p1, ∗, . . . , ∗) where p1
is the parity of the number of vertices labelled by o in (SAt(v) ∩ b1) ∪
(SBt(v) \ b1). But all the vertices of S(v,K) ∩ b1 are labelled by e, so

p1 = E. Hence, there is an even number of vertices labelled by o in

(SAt(v) ∩ b1) ∪ (SBt(v) \ b1). As K − 1 ∈ Bt and a
′ is the only vertex

of B(v,K − 2) labelled by o, this means that the number of vertices

labelled by o in S(v,K − 1) \ b1 is odd if and only if r ∈ Bt. Since

S(w,K) ∩ b′1 = S(v,K − 1) \ b1, we obtained that r + 1 ∈ A1−t if and

only if r ∈ Bt.
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1.5.7 Possible shapes for f t
v when K(t) > K(1− t)

In the case where c(0), c(1) ∈ {1, 3}, it can happen that K(t) > K(1− t)
and Lemma 1.5.11 cannot be applied. Indeed, D(H̃K(t)−1(v)) does not

contain all the diagrams, which prevents us from using the diagrams δr

as above. To deal with this case, we therefore need to better understand

D(H̃K(t)−1(v)). This is the subject of the following result, which is

illustrated in Figure 1.7.

Lemma 1.5.13. Suppose that c(t) 6= 0 and K(t) > K(1 − t) and let v

be a vertex of type (t +K(t)) mod 2. Denote by b1, . . . , bd̃ the branches

of the vertices adjacent to v. For each j ∈ {1, . . . , d̃ − 1}, fix γ̃j ∈
Alt(i)(B(v,K(t))) sending bj to b

d̃
.

(i) Let r be an element of {0, . . . ,K(t)− 1} such that r < K(1− t) or
r ≡ K(t) mod 2.

(a) If r ≥ 1, then there exist a diagram δ ∈ D(H̃K(t)−1(v)) and a

vertex v′ ∈ S(v, r) ∩ b1 such that v′ is the only vertex labelled

by o in δ ∩ B(v, r) and, for each j ∈ {2, . . . , d̃ − 1} and each

w ∈ bj , γ̃j(w) has the same label as w.

(b) If r = 0, c(1 − t) = 1, K(t) 6≡ K(1 − t) mod 2 and the set A

associated to 1−t in Lemma 1.5.11 contains 0, then there exist

a diagram δ ∈ D(H̃K(t)−1(v)) and a vertex v′ ∈ S(v,K(1−t))∩
b1 such that the only vertices labelled by o in δ∩B(v,K(1− t))
are v and v′ and, for each j ∈ {2, . . . , d̃− 1} and each w ∈ bj ,
γ̃j(w) has the same label as w.

(c) If r = 0 and we are not in (b), then there exists a diagram

δ ∈ D(H̃K(t)−1(v)) in which v is labelled by o and such that,

for each j ∈ {1, . . . , d̃ − 1} and each w ∈ bj , γ̃j(w) has the

same label as w.

(ii) Suppose that c(1− t) = 3 and K(t) 6≡ K(1− t) mod 2. Then there

exist a diagram σ ∈ D(H̃K(t)−1(v)) and a vertex v′j ∈ S(v,K(1 −
t))∩bj for each j ∈ {1, . . . , d̃} such that the only vertices labelled by

o in σ∩B(v,K(1−t)) are v′1, . . . , v′d̃ and, for each j ∈ {1, . . . , d̃−1}
and each w ∈ bj , γ̃j(w) has the same label as w.
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Figure 1.7: Illustration of Lemma 1.5.13.

Proof. We prove all three cases of (i) simultaneously, the proof of (ii)

being similar. Let us say that a diagram δ ∈ ∆v,i (with 0 ≤ i ≤ K(t)−
1) is suitable if δ ∈ D(H̃ i(v)) and if δ satisfies the conditions of the

statement that concern the ball B(v, i).

First remark that there exists a suitable diagram δ ∈ ∆v,r. Indeed,

it suffices to label all the vertices of δ∩B(v, r−1) by e and then to label

exactly one vertex of S(v, r) by o, placed in b1 if r ≥ 1. This always

gives a diagram in D(H̃r(v)) because the assumption on r is made so

that αr(v) =∞.

We now prove that, for each r + 1 ≤ i ≤ K(t) − 1, if δ ∈ ∆v,i−1

is suitable then there exists δ̂ ∈ ∆v,i suitable and extending δ. We

obviously start by defining δ̂∩B(v, i− 1) = δ, and there remains to give

the labels of the vertices in S(v, i). If i < K(1 − t) or i ≡ K(t) mod 2,

we have αi(v) = ∞ and by Lemma 1.5.8 (i) we can simply label all

the vertices of S(v, i) by e. Now if i ≥ K(1 − t) and i 6≡ K(t) mod 2,

then v is of type (1 − t+ i) mod 2 and we know that a diagram δ̂ with

δ̂∩B(v, i−1) = δ is contained in D(H̃ i(v)) if and only if δ̂∩B(w,K(1−
t)) ∈ D(H̃K(1−t)(w)) for each w at distance i − K(1 − t) from v (see
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Lemma 1.5.10 with 1− t). In other words, the only restrictions for being

in D(H̃ i(v)) are given by the maps f1−t
w . These are always restrictions

on the parity of the number of vertices labelled by o in the K ′(1 − t)-
branches. WhenK ′(1−t) < i, these branches are smaller than the whole

ball B(v, i). In this case, since δ is suitable, a labelling of the vertices of

S(v, i) ∩ b
d̃
satisfying the restrictions that concern them can be pulled

back by γ̃j in a labelling of the vertices of S(v, i) ∩ bj also satisfying the

restrictions (for each j ∈ {2, . . . , d̃− 1} in cases (a) and (b) and for each

j ∈ {1, . . . , d̃− 1} in case (c)). The only case where K ′(1− t) = i is the

case where i = K(1 − t), c(1 − t) = 1, and K(1 − t) 6≡ K(t) mod 2. If

r ≥ 1, we want to prove (a) and there is no problem: we can label all

the vertices of S(v, i) \ b1 with e and adapt the labelling of S(v, i) ∩ b1.
If r = 0, and if the set A associated to 1 − t in Lemma 1.5.11 does not

contain 0, then since all the vertices of B(v, i − 1) \ {v} are labelled by

e all the vertices of S(v, i) can be labelled by e. If A contains 0, then

the restriction given by f1−t
v imposes the number of vertices of S(v, i)

labelled by o to be odd. As we want to prove (b), we label one vertex

of S(v, i) ∩ b1 by o and the other vertices of S(v, i) by e. In any cases,

the diagram δ̂ ∈ ∆v,i constructed in this way is suitable.

Thanks to the previous lemma, we can now look at the shapes that

f tv can take when K(t) > K(1 − t). It is actually sufficient for our

classification to count how many shapes are possible.

Lemma 1.5.14. Let t ∈ {0, 1}. Fix c(0), c(1) ∈ {1, 3} and K(t) >

K(1 − t) and let v be a vertex of type (t + K(t)) mod 2. Let N be

the number of maps f tv that can be observed for at least one H ∈ H+
T

satisfying H ⊇ Alt(i)(T )
+ and with these invariants c(0), c(1), K(0) and

K(1). Define

R = {r ∈ {0, 1, . . . ,K(t)− 1} | r < K(1− t) or r ≡ K(t) mod 2}.

• If c(t) = 1, then N ≤ 2|R|+ε where ε = 1 if c(1 − t) = 3 and

K(t) 6≡ K(1− t) mod 2, and ε = 0 otherwise.

• If c(t) = 3, then N ≤ 2|R\{0}|+ε′ where ε′ = 1 if c(1 − t) = 1,

K(1− t) 6= 0 and K(t) 6≡ K(1− t) mod 2, and ε′ = 0 otherwise.
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Proof. First suppose that c(t) = 1. In order find an upper bound on N ,

we start by giving a set of diagrams of D(H̃K(t)−1(v)) generating (via

Lemma 1.5.9) all the diagrams of D(H̃K(t)−1(v)).

For r ∈ R, take δr ∈ D(H̃K(t)−1(v)) as in Lemma 1.5.13 (i). In this

case (c(t) = 1), we actually do not care of the condition with the γ̃j .

For r ∈ {0, 1, . . . ,K(t) − 1} \ R, an element δr with all vertices of

B(v, r − 1) labelled by e and exactly one vertex labelled by o in S(v, r)

does not exist. Instead, and if K ′(1 − t) > 0, we consider an element

ρr ∈ D(H̃K(t)−1(v)) with all vertices of B(v, r − 1) labelled by e and

exactly two vertices labelled by o in S(v, r), placed such that the minimal

branch containing them is a K ′(1− t)-branch. This diagram can be used

to generate, via Lemma 1.5.9, all the possible labellings of S(v, r) with

an even number of vertices labelled by o in each K ′(1− t)-branch.
In the particular case where c(1 − t) = 3 and r = K(1 − t), as

αr(v) = (K(1−t)−1)∗ we also need to add a diagram σ ∈ D(H̃K(t)−1(v))

as in Lemma 1.5.13 (ii). Note that this element σ is considered if and

only if c(1− t) = 3 and K(t) 6≡ K(1− t) mod 2 (so that K(1− t) 6∈ R).
We write ε = 1 in this case and ε = 0 otherwise.

By construction, D(H̃K(t)−1(v)) can be generated using δr, ρr and σ

(if ε = 1). It is however not hard to convince oneself that the diagrams

ρr can be chosen so that f tv(ρr) must always be equal to E. Indeed,

take ρr as above with vertices a, b ∈ S(v, r) labelled by o and let h̃ be an

element realizing this diagram. Let τ̃ ∈ Alt(i)(B(v,K(t))) be an element

that stabilizes a while sending the (K(1 − t) − 1)-branch containing b

to another branch. In this way, h̃τ̃ h̃−1 has a diagram ρ′r satisfying the

same property as ρr but it is now sure by Lemma 1.5.9 that f tv(ρ
′
r) = E.

Hence, a map f tv is fully characterized by its values f tv(δr) (for each

r ∈ R) and f tv(σ) (if ε = 1), which leaves at most 2|R|+ε options for f tv.

For c(t) = 3, the idea is exactly the same. The only difference is that

f tv takes its values in {E,O}d̃
/

〈(O, . . . , O)〉 . The diagrams δr, ρr and σ

with the same properties as above once again generate all the diagrams.

Denote by b1, . . . , bd̃ the branches of the vertices adjacent to v, as for

the definition of J t.

This time, we fix γ̃1, . . . , γ̃d̃−1 as in Lemma 1.5.13 and really want δr
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to satisfy the conditions given in this same lemma. In this way, for r > 0

we obtain using Lemma 1.5.9 that f tv(δr) is of the form [(xr, yr, . . . , yr)],

and we can assume that yr = E. For r = 0, if c(1 − t) = 1, K(t) 6≡
K(1 − t) mod 2 and if the set A associated to 1 − t in Lemma 1.5.11

contains 0, then we define ε = 1 and also get f tv(δ0) = [(x0, y0, . . . , y0)]

(and can assume that y0 = E). Otherwise, we set ε = 0 and find that

f tv(δ0) = [(E, . . . , E)].

For ρr, as in the first case they can generally be chosen so that f tv(ρr)

must always be equal to [(E, . . . , E)]. Indeed, if there exist h̃ and τ̃ as

above and stabilizing the branches b1, . . . , bd̃ then the same reasoning

works. This is always possible, unless c(1− t) = 1 and r = K(1− t) 6= 0.

This only happens when c(1 − t) = 1, K(t) 6≡ K(1 − t) mod 2 and

K(1 − t) 6= 0, in which case we set ε′ = 1. Otherwise, set ε′ = 0.

If ε′ = 1, then the diagram ρK(1−t) has two vertices in S(v,K(1 − t))
labelled by o and they are in different branches, say b1 and b2. Let

h̃ be an element realizing this diagram and let τ̃ ∈ Alt(i)(B(v,K(t)))

be an element interchanging b2 and b3, interchanging b4 and b5, and

fixing b1, b6, . . . , bd̃. In this way, h̃′ = h̃τ̃ h̃−1 has a diagram ρ′
K(1−t)

with two vertices in S(v,K(1 − t)) labelled by o: one in b2 and one

in b3. Moreover, we know that f tv(ρ
′
K(1−t)) = [(E, x, x, y, y,E . . . , E)].

Now let τ̃ ′ ∈ Alt(i)(B(v,K(t))) be an element interchanging b1 and b3,

interchanging b4 and b5, and fixing b2, b6, . . . , bd̃. Then h̃′′ = h̃′τ̃ ′h̃′−1

has a diagram ρ′′
K(1−t) with two vertices in S(v,K(1 − t)) labelled by

o: one in b1 and one in b2. This time, we know that f tv(ρ
′′
K(1−t)) =

[(x, x,E, . . . , E)].

Concerning σ (if it must be considered), take it as in Lemma 1.5.13

(ii) so that all its branches b1, . . . , bd̃ are identical (via γ̃1, . . . , γ̃d̃−1). We

obtain f tv(σ) = [(E, . . . , E)].

In total, there are at most 2|R\{0}|+ε+ε′ possibilities for f tv. However,

having ε = 1 also implies ε′ = 1 and the diagram δ0 that we chose

when ε = 1 can be used to generate an element with the properties of

ρ′′
K(1−t). We can therefore forget ρ′′

K(1−t) when ε = 1, which leaves at

most 2|R\{0}|+ε′ possibilities for f tv.
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1.5.8 Computing upper bounds

For each fixed values of c(0), c(1), K ′(0), K ′(1), we can now compute

an upper bound on the number of groups H ∈ H+
T satisfying H ⊇

Alt(i)(T )
+ and with these invariants. Recall that a⊞ b := a+ b−

⌈

|a−b|
2

⌉

for a, b ∈ Z≥0.

Proposition 1.5.15. Fix c(0), c(1) ∈ {0, 1, 2, 3} such that c(0) = 2

if and only if c(1) = 2 and fix K ′(0),K ′(1) ∈ Z≥0 ∪{∞} such that

K ′(t) =∞ if and only if c(t) = 0, and K ′(0) = K ′(1) if c(0) = c(1) = 2.

Let N be the number of groups H ∈ H+
T satisfying H ⊇ Alt(i)(T )

+ and

with these invariants c(0), c(1), K ′(0) and K ′(1).

(i) If c(0) = c(1) = 0 then N ≤ 1.

(ii) If c(t) ∈ {1, 3} and c(1 − t) = 0 then N ≤ 2K
′(t).

(iii) If c(t) = 1, c(1 − t) = 3 and K ′(t) > K ′(1 − t), then N ≤ 2 ·
2K

′(0)⊞K ′(1).

(iv) If c(0) 6= 0, c(1) 6= 0 and we are not in (iii), then N ≤ 2K
′(0)⊞K ′(1).

Proof. In view of Theorem 1.H′, we simply need to give in each case

an upper bound on the number of ordered pairs (f0v0 , f
1
v1
) that can be

observed, where v0 and v1 are fixed (when c(t) = 0, we say that there

is only one possibility for f tvt (which was not defined)). Recall that the

values of c(t) and K ′(t) completely determine the value of K(t).

• If c(0) = c(1) = 0 then we trivially have N ≤ 1.

• If c(t) = 1 and c(1 − t) = 0, then we get by Lemma 1.5.11 that

N ≤ 2K(t) = 2K
′(t), because 2K(t) is the number of subsets of

{0, . . . ,K(t)− 1}.

• If c(t) = 3 and c(1 − t) = 0, then we get by Lemma 1.5.11 that

N ≤ 2K(t)−1 = 2K
′(t), because 2K(t)−1 is the number of subsets of

{1, . . . ,K(t)− 1}.

• If c(0) 6= 0 and c(1) 6= 0 then we must distinguish some cases:
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– If c(0) = c(1) = 2 then by Lemma 1.5.12 the shape of f1v1
is fully determined by the shape of f0v0 . Let A and B be

the sets given by Lemma 1.5.11 for t = 0. There are 2K
′(0)

possibilities for A and 2K
′(1) possibilities for B (sinceK(1)−1

must always be contained in B by Lemma 1.5.12). Hence,

N ≤ 2K
′(0)+K ′(1) = 2K

′(0)⊞K ′(1) (recall that K ′(0) = K ′(1)

when c(0) = c(1) = 2).

– If c(0), c(1) ∈ {1, 3} and K(0) = K(1), then Lemma 1.5.11

can be applied twice to get N ≤ 2K
′(0)+K ′(1). If c(0) =

c(1) then K ′(0) = K ′(1) so 2K
′(0)+K ′(1) = 2K

′(0)⊞K ′(1). If

c(0) 6= c(1) then |K ′(0) − K ′(1)| = 1 and 2K
′(0)+K ′(1) =

2(K
′(0)⊞K ′(1))+1.

– If c(0), c(1) ∈ {1, 3} andK(t) > K(1−t) (for some t ∈ {0, 1}),
then by Lemma 1.5.11 there are at most 2K

′(1−t) possibil-

ities for f1−t
v1−t

. The number of possibilities for f tvt is given

by Lemma 1.5.14. Remark that |R| = K(t) −
⌈

K(t)−K(1−t)
2

⌉

(where R is defined as in Lemma 1.5.14) and that 0 does not

belong to R if and only if K(1− t) = 0 and K(t) is odd.

∗ If c(t) = c(1 − t) = 1, then there are at most 2|R| pos-

sibilities for f tvt and we directly get N ≤ 2K(0)⊞K(1) =

2K
′(0)⊞K ′(1).

∗ If c(t) = c(1 − t) = 3, then K(1 − t) 6= 0 and 0 is never

contained in R, so there are at most 2|R|−1 possibilities

for f tvt and N ≤ 2K
′(0)⊞K ′(1).

∗ If c(t) = 1 and c(1− t) = 3, then there are at most 2|R|+ε

possibilities for f tvt where ε = 1 if K(t) 6≡ K(1 − t) mod

2 and ε = 0 otherwise. As K ′(t) = K(t) and K ′(1 −
t) = K(1 − t) − 1, we see that ε is exactly equal to 1 +
⌈

K(t)−K(1−t)
2

⌉

−
⌈

K ′(t)−K ′(1−t)
2

⌉

, so N ≤ 2(K
′(0)⊞K ′(1))+1.

∗ If c(t) = 3 and c(1 − t) = 1, then there are at most

2|R\{0}|+ε′ possibilities for f tvt where ε
′ = 1 if K(1− t) 6=

0 and K(t) 6≡ K(1 − t) mod 2, and ε′ = 0 otherwise.

Moreover, the number K ′(1− t) + |R \ {0}| + ε′ is equal

to K ′(1 − t) +K(t) −
⌈

K(t)−K(1−t)
2

⌉

− 1 + η + ε′, where
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η = 1 if 0 6∈ R, i.e. if K(1 − t) = 0 and K(t) is odd,

and η = 0 otherwise. By definition of η and ε′, we see

that η + ε′ = 1 if K(t) and K(1 − t) have a different

parity and η + ε′ = 0 otherwise. Hence, η + ε′ is exactly

equal to
⌈

K(t)−K(1−t)
2

⌉

−
⌈

K ′(t)−K ′(1−t)
2

⌉

so that we obtain

N ≤ 2K
′(0)⊞K ′(1).

1.5.9 The classification theorem

The following main theorem readily follows from the previous results.

Theorem 1.5.16. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 6

and let i be a legal coloring of T . Let H ∈ H+
T be such that H ⊇

Alt(i)(T )
+. Then H belongs to G(i).

Proof. This comes from the fact that the upper bounds given in Proposi-

tion 1.5.15 are all reached by the members of G(i) (see Proposition 1.5.6).

Remark that, in Table 1.1, the lines 7 and 11 (and the lines 8 and 12) give

the same c(0) and c(1), so their total number add up, thereby matching

the factor 2 in the upper bound given by Proposition 1.5.15 (iii).

We can now prove the next explicit formulation of Theorem 1.B.

Theorem 1.B′ (Classification). Let T be the (d0, d1)-semiregular tree

with d0, d1 ≥ 4 and let i be a legal coloring of T .

(i) Two groups H,H ′ ∈ G(i) are conjugate in Aut(T ) if and only if

H = H ′ or d0 = d1 and either H = G+
(i)(Y0, Y1) and H ′ =

G+
(i)(Y

′
0 , Y

′
1) with (Y0, Y1) = (Y ′

1 , Y
′
0) or H = G+

(i)(X0,X1)
∗ and

H ′ = G+
(i)(X

′
0,X

′
1)

∗ with (X0,X1) = (X ′
1,X

′
0).

(ii) Suppose that d0, d1 ≥ 6. Let H ∈ H+
T be such that H(x) ∼= F0 ≥

Alt(d0) for each x ∈ V0(T ) and H(y) ∼= F1 ≥ Alt(d1) for each

y ∈ V1(T ). Then H is conjugate in Aut(T )+ to a group in G(i).

Proof.

(i) It is a direct consequence of Lemma 1.4.10 (i) that two different

groups in G(i) can never be conjugate in Aut(T )+. If d0 6= d1
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then Aut(T ) = Aut(T )+ and we are done. Now suppose that

d0 = d1. Then there exists ν ∈ Aut(T ) \ Aut(T )+ not preserv-

ing the types but preserving the colors, i.e. such that i ◦ ν = i.

Every automorphism τ ∈ Aut(T ) \ Aut(T )+ can be written as

τ = µ ◦ ν with µ ∈ Aut(T )+. The statement then follows from the

fact that νG+
(i)(Y0, Y1)ν

−1 = G+
(i)(Y1, Y0) and νG

+
(i)(X0,X1)

∗ν−1 =

G+
(i)(X1,X0)

∗.

(ii) By Theorem 1.G, there exists a legal coloring i′ of T such that

H ⊇ Alt(i′)(T )
+. Hence, by Theorem 1.5.16, H belongs to G(i′).

But Aut(T )+ is transitive on the set of legal colorings of T , so each

member of G(i′) is conjugate in Aut(T )+ to its counterpart in G(i)
and the conclusion follows.

1.5.10 Proofs of the corollaries

We can now prove the different corollaries mentioned in §1.1. We ac-

tually give, for each one, a more precise formulation than its version in

§1.1. For the definition of the set G′(i), see Definition 1.4.9.

Corollary 1.C′. Let T be the d-regular tree with d ≥ 4 and let i be a

legal coloring of T .

(i) The members of G′(i) are pairwise non-conjugate in Aut(T ).

(ii) Suppose that d ≥ 6. Let H ∈ HT \ H+
T be such that H(v) ∼= F ≥

Alt(d) for each v ∈ V (T ). Then H is conjugate in Aut(T )+ to a

group belonging to G′(i).

Proof. We start by proving (ii).

(ii) Clearly, H+ := H ∩Aut(T )+ is a subgroup of index 2 of H. Since

H+(v) = H(v) for each v ∈ V (T ), we deduce by Lemma 1.2.1

that H+ is also 2-transitive on ∂T , i.e. H+ ∈ H+
T . Moreover,

H+(v) ∼= F ≥ Alt(d) for each v ∈ V (T ), so Theorem 1.B′ can

be applied to find the shapes that H+ can take. It is however

important to note that, if ν ∈ H\H+, then νH+ν−1 = H+ while ν

does not preserve the types. This means that in H+ the situation
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must be the same for the vertices of type 0 and the vertices of

type 1. As a consequence, H+ can only be conjugate in Aut(T )+ to

one of the groups G+
(i)(Y, Y ) with Y ∈ {∅,X,X∗} and G+

(i)(X,X)∗

(with X ⊂f Z≥0). In other words, there exists a legal coloring i′

of T such that H+ is equal to one of the groups G+
(i′)(Y, Y ) and

G+
(i′)(X,X)∗.

Since H+ is normal in H, H is contained in the normalizer of H+

in Aut(T ). By Lemma 1.4.10 (ii), the normalizer in Aut(T ) of

G+
(i′)(∅,∅) (resp. G+

(i′)(X,X), G+
(i′)(X

∗,X∗) and G+
(i′)(X,X)∗) is

G(i′)(∅,∅) (resp. G(i′)(X
∗,X∗), G(i′)(X

∗,X∗) and G(i′)(X
∗,X∗)).

Using the fact that H+ is a subgroup of index 2 of H, we directly

get that H is equal to G(i′)(∅,∅) when H+ = G+
(i′)(∅,∅) and

that H is equal to G(i′)(X
∗,X∗) when H+ = G+

(i′)(X
∗,X∗). For

the other cases, we have:

• If H+ = G+
(i′)(X,X), the normalizer of H+ is G(i′)(X

∗,X∗).

To get H, we must observe the extensions H+(ν) of H+ by an

element ν ∈ G(i′)(X
∗,X∗) that does not preserve the types

and such that ν2 ∈ H+. There are two possibilities: either

Sgn(i′)(ν, SX(v)) = 1 for each v ∈ V (T ) or Sgn(i′)(ν, SX(v)) =

−1 for each v ∈ V (T ) (we cannot have Sgn(i′)(ν, SX(v)) = 1

for each v ∈ V0(T ) and Sgn(i′)(ν, SX(v)) = −1 for each v ∈
V1(T ) since this would imply that ν2 6∈ H+). In the first case

we get H+(ν) = G(i)(X,X). In the second case, define a new

legal coloring i′′ by i′′|V0(T )= i′|V0(T ) and i
′′|V1(T )= τ ◦ i′|V1(T )

where τ ∈ Sym(d) is an odd permutation. In this way, H+ =

G+
(i′)(X,X) = G+

(i′′)(X,X) and H+(ν) = G(i′′)(X,X).

• If H+ = G+
(i′)(X,X)∗, the normalizer of H+ is G(i′)(X

∗,X∗).

Here also, we observe the extensions H+(ν). In this case,

all Sgn(i′)(ν, SX(v)) with v ∈ V0(T ) must be equal and all

Sgn(i′)(ν, SX(v)) with v ∈ V1(T ) must be equal, but there

is no additional condition since each such ν satisfies ν2 ∈
H+. Replacing i′ by i′′ as above if necessary, we can as-

sume that Sgn(i′)(ν, SX(v)) = 1 for each v ∈ V0(T ). Then, if

Sgn(i′)(ν, SX(v)) = 1 for each v ∈ V1(T ) we obtain H+(ν) =
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G(i′)(X,X)∗. On the contrary, if Sgn(i′)(ν, SX(v)) = −1 for

each v ∈ V1(T ), then we get H+(ν) = G′
(i′)(X,X)∗.

In any case, H is conjugate in Aut(T )+ to a group in G′(i).

(i) Suppose that there exist two different groups H,H ′ ∈ G′(i) that

are conjugate in Aut(T ). Then H+ and H ′+ are also conjugate,

and by Theorem 1.B′ (i) this implies that H+ = H ′+. Since the

groups in G(i) are pairwise distinct (Proposition 1.4.8), the only

possibility is to have H = G(i)(X,X)∗ and H ′ = G′
(i)(X,X)∗ (or

the contrary) for some X ⊂f Z≥0. However, G(i)(X,X)∗ and

G′
(i)(X,X)∗ are not conjugate in Aut(T ). Indeed, if H(∞) de-

notes the intersection of all normal cocompact closed subgroups

of H, then (G(i)(X,X)∗)(∞) = (G′
(i)(X,X)∗)(∞) = G+

(i)(X,X) but

G(i)(X,X)∗
/

G+
(i)
(X,X) ∼= (C2)

2 while G
′
(i)(X,X)∗

/

G+
(i)
(X,X)

∼= C4.

Before proving Corollary 1.D′, recall that Θ ⊂ Z>0 is the set of

integers m ≥ 6 such that each finite 2-transitive group on {1, . . . ,m}
contains Alt(m).

Corollary 1.D′. Let T be the (d0, d1)-semiregular tree with d0, d1 ∈ Θ,

let i be a legal coloring of T and let H ∈ HT . Then H is conjugate in

Aut(T )+ to a group belonging to G(i) or G′(i) (when d0 = d1).

Proof. Since H is 2-transitive on ∂T , H(v) is 2-transitive on E(v) for

each v ∈ V (T ) (see Lemma 1.2.2). By definition of Θ, this implies that

H(x) ∼= F0 ≥ Alt(d0) for each x ∈ V0(T ) and H(y) ∼= F1 ≥ Alt(d1)

for each y ∈ V1(T ). The conclusion follows from Theorem 1.B′ (ii) and

Corollary 1.C′ (ii).

Corollary 1.E′. Let T be the d-regular tree with d ≥ 6, let i be a legal

coloring of T and let H be a vertex-transitive closed subgroup of Aut(T ).

If H(v) ∼= F ≥ Alt(d) for each v ∈ V (T ), then H is discrete or H is

conjugate in Aut(T )+ to a group belonging to G′(i).

Proof. By [BM00a, Propositions 3.3.1 and 3.3.2], the hypotheses directly

imply that H is discrete or 2-transitive on ∂T . The conclusion follows

from Corollary 1.C′ (ii).
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1.6 Another example when d0 = 4

Let T be the (4, d1)-semiregular tree with d1 ≥ 4. In this section, we

construct a (non-linear) group G ∈ H+
T for which there is no legal col-

oring i of T such that G ⊇ Alt(i)(T )
+. This group will therefore be

different from all the groups defined in §1.4.
To avoid any confusion, we use the letter j for the legal colorings of

trees that will help to construct our group and the letter i will only be

used for other legal colorings appearing in the results.

First consider the rooted tree T̃0 = T4,3,2, i.e. the rooted tree of

depth 2 where the root v0 has 4 children and each child of v0 has 3−1 = 2

children. Let ψ be a bijection between (F3)
2 \ {(0, 0)} and the set of

eight vertices of T̃0 at distance 2 from v0, such that two such vertices

x and y have the same parent if and only if ψ−1(x) and ψ−1(y) are

a multiple of one another (see Figure 1.8a). The four children of v0

thus correspond to the four lines of (F3)
2, or in other words to the four

elements of the projective line over F3. The natural action of SL(2,F3)

on (F3)
2 \ {(0, 0)} induces via ψ an action of SL(2,F3) on T̃0. Let G̃0

be the image of SL(2,F3) in Aut(T̃0) defined in this way. It is clear

that the pointwise stabilizer of B(v0, 1) in G̃0 corresponds to the two

matrices ( 1 0
0 1 ) and

(

−1 0
0 −1

)

. Hence, G̃0(v0) ∼= PSL(2,F3) which is in

turn isomorphic to Alt(4).

ṽ0

[y = 0]

[x = 2y]

[x = 0]

[x = y]

(1, 0)

(2, 0)

(2, 1)

(1, 2)

(0, 2)(0, 1)

(1, 1)(2, 2)

(a) T̃0 = T4,3,2.

ṽ

d1 − 1 children

(b) T̃ = T4,d1,2.

Figure 1.8: Construction of the group G̃.
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Now consider the rooted tree T̃ = T4,d1,2, i.e. the rooted tree of

depth 2 where the root v has 4 children and each child of v has d1 − 1

children (see Figure 1.8b). Fix a legal coloring j̃ of T̃ and a legal coloring

j̃0 of T̃0 with j̃0(v0) = j̃(v) and let α be the bijection from B(v, 1)

to B(v0, 1) preserving the colorings. We define the map f : Aut(T̃ ) →
Aut(T̃0) by saying that, if g ∈ Aut(T̃ ), then f(g) ∈ Aut(T̃0) is the

unique automorphism of T̃0 such that f(g)(α(x)) = α(g(x)) for each

x ∈ B(v, 1) and σ(j̃0)(f(g), α(x)) has the same parity as σ(j̃)(g, x) for

each x ∈ S(v, 1). Then consider G̃ = f−1(G̃0) ≤ Aut(T̃ ).

It is clear from the definition of G̃ that G̃(v) ∼= Alt(4), and the next

lemma shows that G̃ never contains Alt(̃i)(T̃ ) for a legal coloring ĩ of T̃ .

Lemma 1.6.1. There does not exist a legal coloring ĩ of T̃ such that

G̃ ⊇ Alt(̃i)(T̃ ).

Proof. By contradiction, assume that such a coloring exists. From this

one, we can construct a legal coloring ĩ0 of T̃0 such that G̃0 ⊇ Alt(̃i0)(T̃0).

Indeed, it suffices to set ĩ0|B(v0 ,1)= j̃0|B(v0,1) and then, for each x ∈
S(v0, 1), to define ĩ0 on S(x, 1) \ {v0} such that ĩ0j̃0|−1

S(x,1)∈ Sym(3) has

the same parity as ĩj̃|−1
S(α−1(x),1)

∈ Sym(d1). In this way, f(Alt(̃i)(T̃ )) =

Alt(̃i0)(T̃0) and thus G̃0 = f(G̃) ⊇ f(Alt(̃i)(T̃ )) = Alt(̃i0)(T̃0).

Let us name each vertex of S(v0, 1) with the corresponding line in

(F3)
2 \ {0, 0}, i.e. with [x = 0], [y = 0], [x = y] or [x = 2y]. Let

g ∈ Alt(̃i0)(T̃0) be such that g interchanges [x = 0] and [y = 0] and

interchanges [x = y] and [x = 2y]. Since g ∈ Alt(̃i0)(T̃0) ⊆ G̃0, g acts as
(

0 1
−1 0

)

or as
(

0 −1
1 0

)

on T̃0 (these are the only elements of G̃0 acting as

g on B(v0, 1)). In both cases, g2 acts as
(

−1 0
0 −1

)

on T̃0. But
(

−1 0
0 −1

)

fixes B(v0, 1) and acts as a transposition at each vertex of S(v0, 1), so it

cannot be contained in Alt(̃i0)(T̃0). This is a contradiction with the fact

that g2 ∈ Alt(̃i0)(T̃0).

Using the group G̃ ≤ Aut(T̃ ), we can now construct a group G ∈ H+
T

that acts locally as G̃. For each x ∈ V0(T ), fix a map Jx:B(x, 2) → T̃ .

In this way, for each x ∈ V0(T ) and each g ∈ Aut(T )+, we can define

Σ(J)(g, x) = Jg(x) ◦ g ◦ J−1
x ∈ Aut(T̃ ).
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This allows us to define G ≤cl Aut(T )
+ by

G := {g ∈ Aut(T )+ | Σ(J)(g, x) ∈ G̃ for each x ∈ V0(T )}.

The fact that G is 2-transitive on ∂T is not completely immediate.

Lemma 1.6.2. The group G belongs to H+
T .

Proof. By Lemma 1.2.1, it suffices to prove that G(v) is transitive on

∂T for each v ∈ V (T ). As G is closed in Aut(T ), we can simply show

that the fixator in G of a geodesic (v,w) with v,w ∈ V (T ) always acts

transitively on E(w) \ {e}, where e is the edge of (v,w) adjacent to w.

If x and y are two vertices adjacent to w but not on (v,w), then we

must find g ∈ G fixing (v,w) and such that g(x) = y. We can simply

construct such an element g by defining g(x) = y and g(e) = e, and

then by extending g to larger and larger balls, so that g fixes (v,w) and

Σ(J)(g, z) ∈ G̃ for each z ∈ V0(T ). One easily checks, using the fact that

d1 ≥ 4, that there is sufficient freedom in G̃ to do so.

Finally, as a corollary of Lemma 1.6.1 we find that G is indeed not

isomorphic to any group defined in §1.4.

Proposition 1.6.3. We have G(x) ∼= Alt(4) for each x ∈ V0(T ) and

G(y) ∼= Sym(d1) for each y ∈ V1(T ), but there does not exist a legal

coloring i of T such that G ⊇ Alt(i)(T )
+.

Proof. The fact that G(x) ∼= Alt(4) for x ∈ V0(T ) and G(y) ∼= Sym(d1)

for y ∈ V1(T ) readily follows from the definition of G. Now consider a

legal coloring i of T . We show that G 6⊇ Alt(i)(T )
+. Fix x ∈ V0(T )

and consider the legal coloring ĩ = i ◦ J−1
x of T̃ . By Lemma 1.6.1, there

exists g̃ ∈ Alt(̃i)(T̃ ) such that g̃ 6∈ G̃. One can then construct an element

g ∈ Alt(i)(T )
+ fixing x and with Σ(J)(g, x) = g̃, which is therefore such

that g ∈ Alt(i)(T )
+ \G. Hence, we have G 6⊇ Alt(i)(T )

+.
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1.I Topologically isomorphic groups in HT

We show in this appendix the following proposition, stating that two

groups in HT are topologically isomorphic if and only if they are con-

jugate in Aut(T ). This is a folklore result but, because of the lack in

finding a suitable reference, we give its full proof here.

Proposition 1.I.1. Let T be the (d0, d1)-semiregular tree with d0, d1 ≥ 3

and let H,H ′ ∈ HT be isomorphic as topological groups. Then H and

H ′ are conjugate in Aut(T ).

Proof. SinceH acts edge-transitively on T (see Lemma 1.2.2), the vertex

stabilizers Hv and edge stabilizers He in H are all pairwise distinct.

Moreover, Hv is a maximal compact subgroup of H for each v ∈ V (T ),

He is a maximal compact subgroup of H for each e ∈ E(T ) if and

only if H 6∈ H+
T , and these are the only maximal compact subgroups of

H (see [FTN91, Theorem 5.2]). Given the group H and all its compact

maximal subgroups, one can also recognize which of them must be vertex

stabilizers. Indeed, if H 6∈ H+
T and K = He is an edge stabilizer in H

then there exists another maximal compact subgroup K ′ of H such that

[K : K ∩ K ′] = 2 (namely K ′ = Hv where v is a vertex of e). On

the contrary, if K = Hv is a vertex stabilizer in H (we do not suppose

H 6∈ H+
T here), then there exists no maximal compact subgroup K ′ of H

such that [K : K ∩K ′] = 2, because d0, d1 ≥ 3 and H is edge-transitive.

The vertex stabilizers in H can thus be exactly identified among the

subgroups of H, without knowing anything about the action of H on T .

The same is true for H ′.

Now let ϕ:H → H ′ be an isomorphism of topological groups. For

each v ∈ V (T ), the previous discussion shows that there is a unique ver-

tex τ(v) ∈ V (T ) such that ϕ(Hv) = H ′
τ(v) and that the map τ :V (T )→

V (T ) is a bijection. Moreover, two vertices v, v′ ∈ V (T ) are neighbors in

T if and only if [Hv : Hv′ ∩Hv] ≤ [Hv : Hw ∩Hv] for all vertices w 6= v.

This indeed follows easily from Lemma 1.2.2. In view of the definition

of τ , this implies that v and v′ are adjacent if and only if τ(v) and τ(v′)

are adjacent. In other words, τ is an automorphism of T . We finally

claim that τhτ−1 = ϕ(h) for all h ∈ H. Indeed, we have H ′
τhτ−1(v) =
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ϕ(Hhτ−1(v)) = ϕ(hHτ−1(v)h
−1) = ϕ(h)H ′

vϕ(h)
−1 = H ′

ϕ(h)(v).

1.II Asymptotic density of the set Θ

In this appendix, we give an explicit expression for Θ and show that it

is asymptotically dense in Z>0.

Proposition 1.II.1. The set Θ is equal to

Θ = {m ∈ Z>0 | m ≥ 6}

\
(

{

pd
∣

∣

∣ p prime, d ≥ 1
}

∪
{

pdr − 1

pd − 1

∣

∣

∣

∣

p prime, d ≥ 1, r ≥ 2

}

∪
{

22d−1 ± 2d−1
∣

∣

∣ d ≥ 3
}

∪ {22, 176, 276}
)

Proof. This is a consequence of the classification of finite 2-transitive

groups, see [Cam99, Tables 7.3 and 7.4]. Note that there exist some

sporadic 2-transitive groups with m 6∈ {22, 176, 276}, but we did not

write these values for m since they are already contained in at least one

of the infinite families.

Corollary 1.II.2. The asymptotic density D(Θ) of Θ in Z>0 is equal

to 1, i.e.

lim
n→∞

|Θ ∩ {1, . . . , n}|
n

= 1.

Proof. It suffices to prove that the asymptotic density of each of the

three infinite families is equal to 0. First, we have

∣

∣

∣

{

22d−1 ± 2d−1
∣

∣

∣
d ≥ 3

}

∩ {1, . . . , n}
∣

∣

∣
≤ 2 ·

∣

∣

∣

{

d ≥ 3
∣

∣

∣
22d−2 ≤ n

}∣

∣

∣

= 2 · |{d ≥ 3 | 2d− 2 ≤ log2(n)}|
≤ 2 · log2(n)

This directly implies that D
({

22d−1 ± 2d−1
∣

∣ d ≥ 3
})

= 0.

We now show that the density of
{

pdr−1
pd−1

∣

∣

∣ p prime, d ≥ 1, r ≥ 2
}

is zero. The proof that the density of
{

pd
∣

∣ p prime, d ≥ 1
}

is zero

is similar and even easier. To simplify the notation, define R(n) :=
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∣

∣

∣

{

pdr−1
pd−1

∣

∣

∣ p prime, d ≥ 1, r ≥ 2
}

∩ {1, . . . , n}
∣

∣

∣ so that we need to com-

pute limn→∞
R(n)
n

. Since pdr−1
pd−1

≥ pd(r−1), we have

R(n) ≤
∣

∣

∣

{

(p, d, r)
∣

∣

∣ p prime, d ≥ 1, r ≥ 2, pd(r−1) ≤ n
}∣

∣

∣

≤
∞
∑

d=1

∞
∑

r=2

∣

∣

∣

{

p prime
∣

∣

∣ p ≤ n
1

d(r−1)

}∣

∣

∣

=
∞
∑

d=1

∞
∑

r=2

π(n
1

d(r−1) )

where π(x) is the number of prime numbers less or equal to x. When

d(r − 1) > log2(n), we have n
1

d(r−1) < 2 and hence π(n
1

d(r−1) ) = 0. If

L(n) := ⌊log2(n)⌋, we therefore have

R(n) ≤
L(n)
∑

d=1

L(n)+1
∑

r=2

π(n
1

d(r−1) )

By the prime number theorem, we have lim
x→∞

π(x) ln(x)

x
= 1, so there

exists C > 0 such that π(x) ≤ C x

ln(x)
for all x > 0. We therefore get

R(n) ≤ C
L(n)
∑

d=1

L(n)+1
∑

r=2

n
1

d(r−1)

ln(n
1

d(r−1) )

≤ C

ln(n)

L(n)
∑

d=1

L(n)+1
∑

r=2

d(r − 1) · n
1

d(r−1)

Separating the case (d, r) = (1, 2) from the (L(n)2− 1) other cases gives

R(n) ≤ C

ln(n)

(

n+ (L(n)2 − 1)L(n)2 · n 1
2

)

Hence,
R(n)

n
≤ C

ln(n)

(

1 +
L(n)4√

n

)

→ 0



Chapter 2

Lattices in products of trees

In Chapter 1 we gave a classification result for some non-discrete au-

tomorphism groups of trees. Following ideas developed by Burger and

Mozes in their seminal work [BM00a], these results can be used to study

lattices in products of trees. There indeed are numerous examples of

lattices in a product of two trees whose projections on each tree is non-

discrete. Under some local hypotheses, the closures of those projections

thus fit perfectly into the context of our classification.

2.1 Main results

Given two integers d1, d2 ≥ 3, we consider the product T1 × T2 of the

d1-regular tree T1 and the d2-regular tree T2. It can be seen as a square-

complex whose vertex set, edge set and square set are given by

V = V (T1)× V (T2),

E = (E(T1)× V (T2)) ∪ (V (T1)× E(T2)),

S = E(T1)× E(T2);

with the natural incidence relations. We generally call T1 the horizontal

tree and T2 the vertical tree, so that the edge set E decomposes as

E = Eh ∪ Ev with Eh = E(T1) × V (T2) being the horizontal edge set

and Ev = V (T1)×E(T2) the vertical edge set.

In this chapter, we will mainly be interested in groups Γ acting simply

91
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transitively on the set of vertices of T1 × T2 and that do not exchange

the two trees (i.e. such that Γ ≤ Aut(T1) × Aut(T2)). Such a group Γ

will be called a (d1, d2)-group. In [BM00b, Chapter 6] and [Rat04], the

authors studied those groups with the additional property that they are

torsion-free. We do not make this assumption here; authorizing torsion

will actually lead us to interesting examples. A (d1, d2)-group Γ is said to

be reducible if it is commensurable to a product Γ1×Γ2 of lattices Γt ≤
Aut(Tt). It is called irreducible if it is not reducible, which is equivalent

to asking that H1 = proj1(Γ) ≤ Aut(T1) and H2 = proj2(Γ) ≤ Aut(T2)

are both non-discrete [BM00b, Proposition 1.2]. (Note that H1 and H2

are either both discrete or both non-discrete.)

Given a (d1, d2)-group Γ satisfying Ht(vt) ≥ Alt(dt) and dt ≥ 6 for

some t ∈ {1, 2} (and some vt ∈ V (Tt)), it is not so hard to see if Γ is

irreducible, see (i) below. Moreover, if it is irreducible, then we know

by Corollary 1.E′ that Ht belongs to the collection G′(i) for some legal

coloring i of Tt. In the first part of this chapter, we develop tools allowing

us in such a case to determine which group Ht is (when dt is even), see

(ii) below.

Theorem 2.A. Let Γ ≤ Aut(T1) × Aut(T2) be a (d1, d2)-group, let

t ∈ {1, 2} and let i be a legal coloring of Tt. Suppose that dt ≥ 6 and

that Ht(vt) ≥ Alt(dt) (for some vt ∈ V (Tt)). Then:

(i) There is an (efficient) algorithm that determines if Γ is irreducible.

(ii) If Γ is irreducible and dt is even, then there is an (efficient) algo-

rithm that computes the group from G′(i) to which Ht is isomorphic.

In the following theorem we gather everything we can say about

torsion-free (6, 6)-groups, notably thanks to our algorithms above. This

is a preview of what is done in §2.3. Two (d1, d2)-groups are called

equivalent if they are conjugate in Aut(T1 × T2).

Theorem 2.B. There are 32062 torsion-free (6, 6)-groups up to equiv-

alence. At least 18426 of them are reducible, and at least 8227 of them

are irreducible. Moreover, given a legal coloring i of the 6-regular tree

T1, there are exactly 7 groups in G′(i) that are equal to proj1(Γ) for some

torsion-free (irreducible) (6, 6)-group Γ.
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The next goal of this chapter is to construct (d1, d2)-groups that are

virtually simple. In order to have short presentations for these groups,

we want d1 and d2 to be as small as possible.

Theorem 2.C. There exist (at least):

(i) 160 pairwise non-commensurable virtually simple (6, 6)-groups:

two of them have a simple subgroup of index 12, and the other

158 have a simple subgroup of index 4;

(ii) 60 pairwise non-isomorphic virtually simple (4, 5)-groups: 12 of

them have a simple subgroup of index 8, and the other 48 have a

simple subgroup of index 4.

We record the following down-to-earth illustration.

Corollary 2.D.

(i) The following group, presented by 6 generators and 10 relators, is

a (6, 6)-group with a simple subgroup of index 4:

〈a1, a2, a3, b1, b2, b3 | a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a−1

2 b−1
1 , a1b

−1
1 a−1

2 b2,

a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b−1

1 ,

a3b2a3b3, a3b
−1
2 a3b

−1
2 〉

(ii) The following group is isomorphic to a free amalgamated product

F3 ∗F11 F3, is simple, and is an index 4 subgroup of a (4, 5)-group:

〈x1, x2, x3, y1, y2, y3 | x1 = y1,

x22 = y2y
−1
1 y2,

x23 = y23,

x−1
3 x1x3 = y−1

3 y2y3,

x−1
3 x2x3 = y−1

3 y1y3,

x−1
2 x1x2 = y−1

2 y−1
1 y2,

x−1
2 x−2

3 x2 = y−1
2 y1y

−2
3 y2,

x−1
2 x−1

3 x−1
2 x1x3x2 = y−1

2 y1y
−1
3 y−1

1 y2y3y
−1
1 y2,

x−1
2 x−1

3 x1x2x3x2 = y−1
2 y1y

−1
3 y2y

−1
3 y1y3y

−1
1 y2,

x−1
2 x−1

3 x22x3x2 = y−1
2 y1y

−1
3 y1y

−1
3 y1y3y

−1
1 y2,

x−1
2 x−1

3 x−1
2 x3x2x3x2 = y−1

2 y1y
−1
3 y−1

1 y−1
3 y1y3y

−1
1 y2〉
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We also show that for any d1 ≥ 4, there exists a virtually simple

(d1, d2)-group for some d2. This is a consequence of the following result.

Theorem 2.E. For each n ≥ 2, there exists a (2n, 2n+1)-group with a

simple subgroup of index 2n.

For further information about these virtually simple groups, see The-

orem 2.4.7. Our next result provides a family of virtually simple (6, d2)-

groups with arbitrarily large d2, so that the projection on the 6-regular

tree becomes larger and larger when d2 →∞.

Theorem 2.F. There exists a virtually simple (6, 4n)-group Γ6,4n for

each n ≥ 2, such that proj1(Γ6,4n) → Aut(T1) in the Chabauty topology

of Aut(T1) when n→∞ (where T1 is the 6-regular tree).

We give an explicit presentation for Γ6,4n in Theorem 2.4.8, where

the closures of the two projections are also computed. This theorem

can be used to prove the next statement. It was already established in

much greater generality in [BK90, Corollary 4.25] and [Liu94] with a

completely different approach.

Corollary 2.G. Let F3 be the free group on 3 generators and let T be

the usual Cayley graph of F3, i.e. the 6-regular tree. Then the commen-

surator of F3 in Aut(T ) is dense in Aut(T ).

We finally close the chapter with an experimental study of lattices in

products of three trees. While our previous results show the existence of

many irreducible (d1, d2)-groups, things are apparently different when a

third tree pops up.

Theorem 2.H. Let T1, T2, T3 be 6-regular trees and let vt ∈ V (Tt) for

each t ∈ {1, 2, 3}. There is no subgroup Γ ≤ Aut(T1)×Aut(T2)×Aut(T3)
acting simply transitively on the vertices of T1 × T2 × T3 and such that

the following conditions hold, where Ht = projt(Γ) ≤ Aut(Tt):

• H1,H2,H3 are non-discrete and H1(v1),H2(v2),H3(v3) ≥ Alt(6);

• proj1,3(Γ) is dense in H1×H3 and proj2,3(Γ) is dense in H2×H3;

• the stabilizers Γ(v1, v3) and Γ(v2, v3) are torsion-free.
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2.2 Structure theory of (d1, d2)-groups

2.2.1 (d1, d2)-complexes and (d1, d2)-data

Let Γ be some (d1, d2)-group. Recall from §1.1 that V (T1) = V0(T1) ⊔
V1(T1) and V (T2) = V0(T2)⊔V1(T2). Hence, the vertex set V of T1×T2
can naturally be partitioned as V = V00 ⊔ V01 ⊔ V10 ⊔ V11 where Vij =

Vi(T1) × Vj(T2) for each i, j ∈ {0, 1}. We say that a vertex in Vij is of

type (i, j). Each element of Γ can be type-preserving or not on each

of the two trees T1 and T2, so that this induces a natural (surjective)

homomorphism Γ→ C2×C2. The kernel of this homomorphism, which

we denote by Γ+, is an index 4 normal subgroup of Γ and consists of

elements of Γ that preserve the types in T1 × T2.
Let us focus for a moment on those groups Λ ≤ Aut(T1) × Aut(T2)

that preserve the types and act simply transitively on the vertices of

each type, as Γ+. In the next lemma, we show that those Λ are always

torsion-free.

Lemma 2.2.1. Let Λ ≤ Aut(T1) × Aut(T2) be a type-preserving group

acting freely on the vertices of T1 × T2. Then Λ is torsion-free.

Proof. Let g be a torsion element in Λ, i.e. such that gn = 1 for some

n ≥ 1. For each t ∈ {1, 2}, we deduce from [Tit70, Proposition 3.2] that

projAut(Tt)(g) fixes a vertex of Tt or inverses an edge of Tt. It cannot be

an inversion since it is type-preserving, so it fixes a vertex of Tt. Hence,

g fixes a vertex of T1 × T2. As Λ acts freely on the vertices of T1 × T2,
this means that g = 1.

When Λ acts simply transitively on vertices of each type of T1 × T2,
the quotient square-complex XΛ = Λ\(T1 × T2) has four vertices. We

denote them by v00, v10, v11 and v01, so that the projection of a vertex

in Vij is vij . For each j ∈ {0, 1}, there are d1 edges between v0j and

v1j (call them horizontal), and for each i ∈ {0, 1}, there are d2 edges

between vi0 and vi1 (call them vertical). Also, there are exactly d1d2

squares in XΛ, attached to the four vertices and such that the link of

each vertex is a complete bipartite graph. We call such a finite square-

complex a (d1, d2)-complex, see Definition 2.2.2 below (and Figure 2.1).
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Be aware that, in [Rat04], the author uses the same term for a similar

(but different) square-complex.

Definition 2.2.2. A (d1, d2)-complex is a square-complex with:

• four vertices v00, v10, v11 and v01;

• d1 edges between v00 and v10 and d1 edges between v11 and v01;

• d2 edges between v10 and v11 and d2 edges between v01 and v00;

• d1d2 squares attached to the four vertices, such that for each pair

(eh, ev) of horizontal and vertical edges, there is exactly one square

adjacent to both eh and ev.

We saw above how to go from Λ to a (d1, d2)-complex. Conversely,

given a (d1, d2)-complex X, the universal cover X̃ of X is the product of

the d1-regular tree and the d2-regular tree, and the fundamental group

π1(X) of X acts simply transitively on the vertices of each type of X̃.

One easily checks that this gives a bijective correspondence between

conjugacy classes of such groups Λ (in Aut(T1 × T2)) and isomorphism

classes of (d1, d2)-complexes.

Now if we come back to our (d1, d2)-group Γ, then we can consider

the (d1, d2)-complex XΓ+ = Γ+\(T1 × T2). In addition, the action of

Γ on T1 × T2 induces an action of C2×C2 on XΓ+ . The three non-

trivial elements of C2×C2 permute the vertices of XΓ+ with the three

permutations (v00 v10)(v01 v11), (v00 v01)(v10 v11) and (v00 v11)(v10 v01).

We say that an action of C2×C2 on a (d1, d2)-complex is good if it

induces those permutations on the vertices of that complex. Conversely,

d1 edges

d1 edges

d2 edges d2 edges

v00 v10

v11v01

Figure 2.1: The 1-skeleton of a (d1, d2)-complex.
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given a good action of C2×C2 on a (d1, d2)-complex X, we can consider

the projection p:T1 × T2 ∼= X̃ → X and lift C2×C2 to

C̃2×C2 = {g ∈ Aut(X̃) | ∃h ∈ C2×C2 : p ◦ g = h ◦ p}.

This group C̃2×C2 acts simply transitively on the vertices of T1 × T2
and is thus a (d1, d2)-group. So we now have a bijective correspondence

between (d1, d2)-groups (up to equivalence) and good C2×C2-actions

on (d1, d2)-complexes (up to equivariant isomorphism).

A (d1, d2)-complex with a good C2×C2-action can be encoded via

what we call a (d1, d2)-datum. The following definition is inspired from

the definition of a VH-datum in [BM00b, §6]. The differences between

the two notions come from the fact that we allow torsion. What the

authors call a VH-datum will here be called a torsion-free (d1, d2)-datum,

see Definition 2.2.5 below.

Definition 2.2.3. A (d1, d2)-datum (A,B,ϕA, ϕB , R) consists of two

finite sets A,B with |A| = d1 and |B| = d2, two involutions ϕA:A→ A,

ϕB :B → B and a subset R ⊂ A × B × A× B satisfying conditions (1)

and (2) below. Write a−1 = ϕA(a) for a ∈ A and b−1 = ϕB(b) for b ∈ B.

The two maps σ, ρ:A ×B ×A×B → A×B ×A×B are defined by

σ(a, b, a′, b′) = (a′−1, b−1, a−1, b′−1),

ρ(a, b, a′, b′) = (a′, b′, a, b).

(1) Each of the four projections of R onto the subproducts of the form

A×B or B ×A are bijective;

(2) R is invariant under the action of the group 〈σ, ρ〉 ∼= C2×C2.

Definition 2.2.4. Given (A,B,ϕA, ϕB , R) and (A′, B′, ϕA′ , ϕB′ , R′) two

(d1, d2)-data, an object of one of the following forms is called an equiv-

alence between the two data.

• A pair (α, β) of bijections α:A → A′ and β:B → B′ such that

ϕA′ = αϕAα
−1, ϕB′ = βϕBβ

−1, and R′ = (α × β × α× β)(R).

• A pair (α, β) of bijections α:A → B′ and β:B → A′ such that
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ϕA′ = βϕBβ
−1, ϕB′ = αϕAα

−1, and

R′ = {(β(b), α(a′), β(b′), α(a)) | (a, b, a′, b′) ∈ R}.

This defines an equivalence relation on the set of (d1, d2)-data.

Given a (d1, d2)-datum (A,B,ϕA, ϕB , R), one can build a (d1, d2)-

complex with a good C2×C2-action as follows. Fix four vertices v00,

v10, v11 and v01. For each a ∈ A, draw an horizontal edge ea between v00

and v10 and an horizontal edge e′a between v11 and v01. Also, for each

b ∈ B, draw a vertical edge fb between v10 and v11 and a vertical edge

f ′b between v01 and v00. Then, for each (a, b, a′, b′) ∈ R we glue a square

to the edges ea, fb, e
′
a′ and f

′
b′ . Condition (1) in Definition 2.2.3 ensures

that this square complex X is a (d1, d2)-datum, and (2) enables us to

define a good C2×C2-action on it. Indeed, we can define σ̃ ∈ Aut(X)

by σ̃: v00 ↔ v01, v10 ↔ v11, ea ↔ e′
a−1 , fb ↔ fb−1 , f ′b ↔ f ′

b−1 and

ρ̃ ∈ Aut(X) by ρ̃: v00 ↔ v11, v10 ↔ v01, ea ↔ e′a, fb ↔ f ′b. (The actions

on the squares are then clearly defined.) They are automorphisms of X

because R is invariant under the action of 〈σ, ρ〉.
Conversely, from a good C2×C2-action on a (d1, d2)-complex we can

come back to a (d1, d2)-datum. We can indeed consider two finite sets A

and B with |A| = d1 and |B| = d2, denote the edges between v00 and v10

by ea with a ∈ A (arbitrarily) and those between v10 and v11 by fb with

b ∈ B (arbitrarily). Then, if ρ̃ is the element of C2×C2 that exchanges

v00 and v11, we write e′a = ρ̃(ea) for each a ∈ A and f ′b = ρ̃(fb) for each

b ∈ B. If σ̃ is the element of C2×C2 that exchanges v00 and v01, then

we define ϕB :B → B such that σ̃(fb) = fϕB(b) for each b ∈ B. Similarly,

if σ̃′ exchanges v00 and v10 (i.e. σ̃
′ = σ̃ρ̃), then we define ϕA:A→ A such

that σ̃′(ea) = eϕA(a). Finally, we define R ⊂ A × B × A × B as the set

of all (a, b, a′, b′) such that ea, fb, e
′
a′ and f

′
b′ are the four edges of some

square in the (d1, d2)-complex. One easily checks that (A,B,ϕA, ϕB , R)

is a (d1, d2)-datum.

Recalling that (d1, d2)-groups and good C2×C2-actions on (d1, d2)-

complexes are in correspondence, we now have a bijective correspondence

between equivalence classes of (d1, d2)-groups and equivalence classes of

(d1, d2)-data. A presentation for the (d1, d2)-group Γ corresponding to
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some (d1, d2)-datum (A,B,ϕA, ϕB , R) is given by

Γ = 〈A ∪B | xx−1 = 1 ∀x ∈ A ∪B, aba′b′ = 1 ∀(a, b, a′, b′) ∈ R〉.

Indeed, the group Γ acts simply transitively on the vertices of T1 × T2,
so the 1-skeleton of T1×T2 is a Cayley graph for Γ. Moreover, the edges

of this Cayley graph are labelled by A∪B so that the four edges of each

square in the graph correspond to elements of R.

Definition 2.2.5. A torsion-free (d1, d2)-datum is a (d1, d2)-datum

(A,B,ϕA, ϕB , R) where ϕA and ϕB have no fixed points and the action

of 〈σ, ρ〉 on R is free.

The above correspondence between equivalence classes of (d1, d2)-

groups and equivalence classes of (d1, d2)-data then restricts to a cor-

respondence between equivalence classes of torsion-free (d1, d2)-groups

and equivalence classes of torsion-free (d1, d2)-data. Note that, since ϕA

and ϕB cannot have any fixed point in Definition 2.2.5, there does not

exist any torsion-free (d1, d2)-group when d1 or d2 is odd.

In the following, we will always consider (d1, d2)-data up to equiv-

alence. We write A = {a1, . . . , ad1} and B = {b1, . . . , bd2}. Also, we

denote by τ1 (resp. τ2) the number of fixed points of ϕA (resp. ϕB) in

some (d1, d2)-data, and we assume (without losing any generality) that

ϕA(ai) = ad1+1−i for each i ∈ {1, . . . , d1−τ1
2 } and ϕA(ai) = ai for each i ∈

{d1−τ1
2 +1, . . . , d1+τ1

2 } (resp. ϕB(bi) = bd2+1−i for each i ∈ {1, . . . , d2−τ2
2 }

and ϕB(bi) = bi for each i ∈ {d2−τ2
2 +1, . . . , d2+τ2

2 }). We will sometimes

write Ai instead of ai when ϕA(ai) = ai (i.e. ai = a−1
i ), and Bi instead of

bi when ϕB(bi) = bi (i.e. bi = b−1
i ). Note that, under these assumptions,

τ1, τ2 and R fully determine the (d1, d2)-datum.

2.2.2 Geometric squares

Consider some (d1, d2)-datum with associated parameters τ1, τ2 and R.

Given (a, b, a′, b′) ∈ R, we write [a, b, a′, b′] for the set

{(a, b, a′, b′), (a′, b′, a, b), (a′−1, b−1, a−1, b′−1), (a−1, b′−1, a′−1, b−1)} ⊆ R.
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Figure 2.2: An example of a (3, 4)-datum.

This is the C2×C2-orbit of (a, b, a
′, b′), we call it a geometric square.

If the (d1, d2)-datum is torsion-free, then the action of C2×C2 on R

is free so each geometric square contains exactly four elements. In this

particular case, we have exactly d1d2
4 geometric squares (remember that

d1 and d2 must be even). When allowing torsion, we can actually have

up to d1d2 geometric squares (in the particular case where τ1 = d1,

τ2 = d2 and R = {(a, b, a, b) | a ∈ A, b ∈ B}).
An easy way to define some particular (d1, d2)-datum is then to draw

its geometric squares. We explain how the drawing works by giving an

example. Consider the (3, 4)-datum defined by the geometric squares

[a1, b1, a1, b
−1
2 ], [a1, b2, a1, b2], [a1, b

−1
1 , A2, b

−1
1 ] and [A2, b2, A2, b

−1
2 ]. Note

that the values τ1 = 1 and τ2 = 0 can be understood from the squares.

Then we draw this (3, 4)-datum as in Figure 2.2. Each square can be read

counterclockwise, starting from the bottom edge. The white symbols

thus represent elements of A, while the black ones represent elements of

B. A single arrow with the forward orientation means a1 (or b1), a double

arrow with the forward orientation means a2 (or b2), etc. A single arrow

with the backward orientation means a−1
1 (or b−1

1 ), a double arrow with

the backward orientation means a−1
2 (or b−1

2 ), etc. Finally, a lozenge

(that does not have any orientation) means A1 (or B1), two lozenges

mean A2 (or B2), etc. Note that we can actually read each square from

the bottom or from the top edge, and clockwise or counterclockwise.

These four ways of reading give the four (possibly equal) elements of

R defined by the geometric square. In our example, the first and third

geometric squares give four distinct elements of R, while the second and

fourth geometric squares give two distinct elements of R. Note that

|R| = 4 + 2 + 4 + 2 = 12 = 3 · 4 as is needed for a (3, 4)-datum.

One can quickly check if some set of geometric squares satisfies the

hypotheses for representing a (d1, d2)-datum. For a torsion-free (d1, d2)-
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datum, it suffices to verify that each possible corner appears exactly

once in the geometric squares. By a corner, we mean a vertex of a

square together with the two labelled edges adjacent to it, where the

orientation of the arrows matters. There are d1d2 possible corners, and

they must all appear once (in one of the d1d2
4 geometric squares). Now

the condition is almost the same for a general (d1, d2)-datum: we just

need to take into account that some geometric squares can have non-

trivial automorphisms. So the condition is now that each of the d1d2

possible corners must appear exactly once, up to these square automor-

phisms. Note that a geometric square as [a1, b1, A2, b
−1
1 ] cannot appear

in a (d1, d2)-datum, since some corner appears twice while the square

has no automorphism.

2.3 Projections on each factor

Consider a (d1, d2)-group Γ ≤ Aut(T1) × Aut(T2), associated to some

set of geometric squares. Define H1 = proj1(Γ) ≤ Aut(T1) and H2 =

proj2(Γ) ≤ Aut(T2) as the closures of the projections of Γ on Aut(T1)

and Aut(T2). The goal of this section is to analyze which pairs of groups

(H1,H2) can be obtained from a (d1, d2)-group Γ which is irreducible.

2.3.1 Action of Γ on T1 × T2

Let us see a1, . . . , ad1 , b1, . . . , bd2 as the generators of Γ (recall from §2.2.1
that the natural presentation of Γ has generators a1, . . . , ad1 , b1, . . . , bd2
and relators given by the geometric squares). In T1×T2, whose 1-skeleton
is the Cayley graph of Γ, the vertex (v1, v2) ∈ V (T1)×V (T2) correspond-

ing to the identity element is such that all generators b1, . . . , bd2 fix v1

and all generators a1, . . . , ad1 fix v2. Also, b1, . . . , bd2 send v2 to its d2

neighboring vertices and a1, . . . , ad1 send v1 to its d1 neighboring ver-

tices. This means that 〈b1, . . . , bd2〉 = Γ(v1) and 〈a1, . . . , ad1〉 = Γ(v2),

where Γ(v) denotes the fixator of v in Γ. We now explain how the ac-

tion of a particular element of Γ on T1 × T2 can be computed from the

geometric squares. These explanations are similar to those in [Rat04,

§1.4], but we recall them here so as to remain self-contained.
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The fact that the 1-skeleton of T1×T2 is the Cayley graph of Γ gives a

labelling of the edges of T1×T2 by the generators a1, . . . , ad1 , b1, . . . , bd2 .

As for the geometric squares, we can thus associate a (white or black)

symbol to each edge of T1×T2. This labelling is actually such that each

square in T1×T2 corresponds to one of the geometric squares associated

to Γ. We also have natural embeddings T1 →֒ T1 × T2:w ∈ V (T1) 7→
(w, v2) and T2 →֒ T1 × T2:w ∈ V (T2) 7→ (v1, w) from which we get

a labelling of T1 with white symbols and a labelling of T2 with black

symbols. This is actually equivalent to seeing T1 as the Cayley graph of

〈a1, . . . , ad1〉 and T2 as the Cayley graph of 〈b1, . . . , bd2〉.
The image of (v1, v2) by some element g ∈ Γ is easy to get: it suffices

to write g as a product of the generators and then follow (from the

vertex (v1, v2)) the sequence of symbols in T1×T2 corresponding to these

generators. The vertex at the end of the path will be g(v1, v2). Note

however that this only works because (v1, v2) is the vertex associated to

the identity element of Γ in the Cayley graph T1×T2. Given some g ∈ Γ

and another vertex (w1, w2) ∈ V (T1 × T2), the way to obtain g(w1, w2)

is to first localize g(v1, v2) with the above procedure, and then to recall

that Γ preserves the symbols in T1×T2. Hence, it suffices to look at the

symbols on some path from (v1, v2) to (w1, w2) and to follow the same

symbols from g(v1, v2) so as to arrive at g(w1, w2).

In particular, the action of an element g ∈ 〈a1, . . . , ad1〉 = Γ(v2) on

T2 can be obtained by doing the following. In order to compute g(w) for

some w ∈ V (T2), we draw a rectangle whose bottom side is labelled by

the sequence of white symbols corresponding to g (from left to right) and

whose right side is labelled by the sequence of black symbols on the path

from v2 to w in T2 (from bottom to top), see Figure 2.3. Then we fill

(1) (4) (1) (3)

(3) (3) (1) (2)

Figure 2.3: Example of a computation.
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in the rectangle with the appropriate geometric squares (starting from

the bottom-right corner). The rectangle that we obtain corresponds to

a subcomplex of T1 × T2: the bottom-left corner is (v1, v2), the bottom-

right corner is (g(v1), v2), and the top-right corner is (g(v1), g(w)). Now

T2 corresponds to v1 × T2 in T1 × T2, so we can read g(w) by looking at

the left side of our rectangle. Indeed, the symbols on the path from v2 to

g(w) in T2 are exactly those on the left side of the rectangle (from bottom

to top). Another way to explain why this idea works is to write h for the

element of 〈b1, . . . , bd2〉 corresponding to the right side of the rectangle

(i.e. w = h(v2) in T2), h
′ for the element of 〈b1, . . . , bd2〉 corresponding

to the left side, and g′ for the element of 〈a1, . . . , ad1〉 corresponding to

the top side. From (v1, v2), following g and then h leads to the same

vertex as following h′ and then g′, so gh = h′g′. In particular we have

gh(v2) = h′g′(v2), which reduces to g(w) = h′(v2) as wanted. Similarly,

the action of an element g ∈ 〈b1, . . . , bd2〉 = Γ(v1) on T1 can be obtained

with the same idea.

This method is illustrated on Figure 2.3, with the (3, 4)-group Γ

defined by the squares of Figure 2.2. On this figure we computed the

image of vertex b1b2(v2) by a1A2a
−1
1 A2 ∈ Γ(v2). The bottom side of

the rectangle is indeed labelled by the symbols of a1A2a
−1
1 A2, and the

right side by the symbols of b1b2. After filling in the rectangle with

the squares of Figure 2.2 (the numbers (1), (2), (3), (4) indicate which

squares were used), it appears on the left side that the image of b1b2(v2)

is b−2
1 (v2). Note that this rectangle also shows, for instance, that the

image of A2a
−3
1 (v1) by b

−2
1 ∈ Γ(v1) is a1A2a

−1
1 A2(v1).

2.3.2 Irreducibility

Recall that a (d1, d2)-group Γ is said to be reducible if it is commen-

surable to a product Γ1 × Γ2 of lattices Γt ≤ Aut(Tt). By [BM00b,

Proposition 1.2], Γ is reducible if and only if proj1(Γ) or proj2(Γ) is dis-

crete. If Γ is reducible, both projections are actually discrete. In some

sense, the irreducible (d1, d2)-groups are the interesting ones. There is no

known general algorithm deciding if a (d1, d2)-group is irreducible, but

such an algorithm exists under suitable assumption on the local action.
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We saw in the previous section that, for each n ∈ Z≥0, the action of

all bi (resp. ai) on the ball B(v1, n) (resp. B(v2, n)) of T1 (resp. T2) can

be computed from the geometric squares. The group projt(Γ) ≤ Aut(Tt)

is vertex-transitive, so it is discrete if and only if Fixprojt(Γ)(B(vt, n)) =

Fixprojt(Γ)(B(vt, n + 1)) for some n ∈ Z≥0. A way to show that some Γ

is reducible thus consists in finding some t ∈ {1, 2} and some n ∈ Z≥0

for which the latter equality is true.

Proving that a (d1, d2)-group Γ is irreducible is not easy in general,

but there is a case where a good criterion exists: when dt ≥ 6 and

Ht(vt) ≥ Alt(dt) for some t ∈ {1, 2}. Indeed, in this case it follows from

[BM00a, Propositions 3.3.1 and 3.3.2] that Ht is non-discrete if and only

if the image of Ht(vt) in Aut(B(vt, 2)) has order ≥ dt!
2

(

(dt−1)!
2

)dt
. (The

result is actually more subtle but we only need this lower bound here.)

Moreover, once we know that Ht is non-discrete and that Ht(vt) ≥
Alt(dt) with dt ≥ 6, we actually get from Corollary 1.E′ that Ht is

a member of G′(i) for some legal coloring i of Tt (as defined in Defini-

tion 1.4.9). In the next section, we investigate the question of determin-

ing from the geometric squares which group of G′(i) it actually is.

2.3.3 Recognizing a group in G ′(i)
Let T be the d-regular tree for some d ≥ 3, let i be a legal coloring of

T and let H be an element of G′(i) different from Aut(T ). In particular

H is transitive on V (T ). We fix some vertex v ∈ V (T ) and denote by

K the smallest non-negative integer such that the homomorphism from

H(v) to Aut(B(v,K + 1)) is not surjective. Such an integer exists be-

cause H 6= Aut(T ). It is equal to the two invariants K(0) and K(1)

defined in §1.5.3. We also define ρ = |Aut(B(v,K+1))|

|H̃K(v)|
, where H̃K(v) is the

image of H(v) in Aut(B(v,K + 1)) (as in §1.5.1). Let us finally define

the homomorphism s:H(v) → (C2)
K+1 by s(h) = (s0(h), . . . , sK(h))

where sk(h) = Sgn(i)(h, S(v, k)) =
∏

w∈S(v,k) sgn(σ(i)(h,w)), as in Defi-

nition 1.4.1. As Lemma 2.3.1 below shows, the value of sk(h) does not

depend on the coloring i.

Lemma 2.3.1. Let v be a vertex of the d-regular tree T and let k ∈ Z≥0.

Consider some h ∈ Aut(T )(v). For each w ∈ S(v, k), fix a bijection
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ιw:S(w, 1)→ {1, . . . , d}. Then the value of

∏

w∈S(v,k)

sgn(ιh(w) ◦ h ◦ ι−1
w )

does not depend on the choices for the bijections ιw.

Proof. Fix some other bijections ι′w:S(w, 1) → {1, . . . , d}, for each w ∈
S(v, k). Then we have

∏

w∈S(v,k)

sgn(ι′h(w) ◦ h ◦ ι′−1
w )

=
∏

w∈S(v,k)

sgn(ι′h(w) ◦ ι−1
h(w) ◦ ιh(w) ◦ h ◦ ι−1

w ◦ ιw ◦ ι′−1
w )

=
∏

w∈S(v,k)

sgn(ι′h(w) ◦ ι−1
h(w)) · sgn(ιh(w) ◦ h ◦ ι−1

w ) · sgn(ιw ◦ ι′−1
w )

=
∏

w∈S(v,k)

sgn(ιh(w) ◦ ι′−1
h(w)) · sgn(ιh(w) ◦ h ◦ ι−1

w ) · sgn(ιw ◦ ι′−1
w )

=
∏

w∈S(v,k)

sgn(ιh(w) ◦ h ◦ ι−1
w ).

The last equality holds because, for each w ∈ S(v, k), the term sgn(ιw ◦
ι′−1
w ) also appears as sgn(ιh(h−1(w)) ◦ ι′−1

h(h−1(w))
) in the product.

We now prove in the following results that, when d is even, computing

K, ρ and s(H(v)) ≤ (C2)
K+1 (almost) suffices to recognize which group

of G′(i) we actually have. These invariants do not depend on the coloring

i of T , which means that they can be computed without knowing for

which coloring i the group H is contained in G′(i).

Lemma 2.3.2. Let H = G(i)(X,X) for some X ⊂f Z≥0. Then K =

maxX, ρ = 2 and s(H(v)) = {(s0, . . . , sK) ∈ (C2)
K+1 |∏r∈X sr = 1}.

Proof. This follows immediately from the definition of G(i)(X,X).

For each X ⊂f Z≥0, we define α(X) as the subset of Z≥0 such that

Sα(X)(v) is the set of vertices of T that appear in an odd number of sets

SX(w1), . . . , SX(wd), where w1, . . . , wd are the d neighbors of v in T . In

other words, Sα(X)(v) is the support of 1SX(w1) + · · · + 1SX(wd) mod 2
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where 1 denotes the characteristic function. It is clear from its definition

that this set of vertices indeed takes the form Sα(X)(v) for some α(X).

In the next lemma we give an explicit expression for α(X), depending

on the parity of d.

Lemma 2.3.3. Let X ⊂f Z≥0. We have the following expressions for

α(X), where △ denotes the symmetric difference.

α(X) =

{

{x+ 1 | x ∈ X}△{x− 1 | x ∈ X,x ≥ 2} if d is even,

{x+ 1 | x ∈ X} ∪ ({x− 1 | x ∈ X} ∩ {0}) if d is odd.

Proof. For each j ∈ {1, . . . , d}, we write SX(wj) = S+
X(wj) ⊔ S−

X(wj),

where S+
X(wj) is the set of vertices of SX(wj) that are further from v

than from wj , and S
−
X(wj) = SX(wj)\S+

X(wj). Then, all the sets S
+
X(wj)

with j ∈ {1, . . . , d} are disjoint and their union is S{x+1|x∈X}(v). Now

if we look at the sets S−
X(wj), they only contain vertices that are at

distance x− 1 from v for some x ∈ X (x ≥ 1). More precisely, if x ∈ X
and x ≥ 2 then each vertex at distance x − 1 from v is contained in

exactly d−1 of the sets S−
X(wj), j ∈ {1, . . . , d}. Also, if x = 1 ∈ X, then

v is contained in all d sets S−
X(wj), j ∈ {1, . . . , d}. These affirmations

directly lead to the expressions given in the statement.

The next lemma then follows almost immediately.

Lemma 2.3.4. We have α(X) ⊂f Z≥0 for each X ⊂f Z≥0, and the

map α: {X ⊂f Z≥0} → {X ⊂f Z≥0} is injective. Moreover, we have

α({X ⊂f Z≥0}) =
{

{X ⊂f Z≥0 | 0 6∈ X} if d is even,

{X ⊂f Z≥0 | 0 ∈ X ⇔ 2 ∈ X} if d is odd.

Proof. From Lemma 2.3.3 we see that α(X) is finite and non-empty for

each X ⊂f Z≥0 (because maxX + 1 ∈ α(X)), i.e. α(X) ⊂f Z≥0. Now

remark from the definition of α that α(X△X ′) = α(X)△α(X ′) for each

X,X ′ ⊂f Z≥0, where we define α(∅) = ∅. Therefore, if α(X) = α(X ′),

then α(X△X ′) = ∅ and hence X△X ′ = ∅, i.e. X = X ′.

The expressions for α({X ⊂f Z≥0}) can be found directly by exam-

ining Lemma 2.3.3.
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Lemma 2.3.5 is then the reason why α was defined above.

Lemma 2.3.5. Suppose that d is even and let H be one of G(i)(X
∗,X∗),

G(i)(X,X)∗ and G′
(i)(X,X)∗ for some X ⊂f Z≥0. Then H is contained

in G(i)(α(X), α(X)).

Proof. For any h ∈ H and v ∈ V (T ), all Sgn(i)(h, S(wj ,X)) with j ∈
{1, . . . , d} are equal, where w1, . . . , wd are the d neighbors of v in T .

Since d is even, the product of these d signatures is 1. This product

is also equal to Sgn(i)(h, S(v, α(X))) (by definition of α), so we deduce

that h ∈ G(i)(α(X), α(X)).

From the previous lemma we can now compute s(H(v)) for other

groups H in G′(i) (when d is even).

Lemma 2.3.6. Suppose that d is even and let H be one of G(i)(X
∗,X∗),

G(i)(X,X)∗ and G′
(i)(X,X)∗ for some X ⊂f Z≥0. Then K = maxX+1

and s(H(v)) = {(s0, . . . , sK) ∈ (C2)
K+1 | ∏r∈α(X) sr = 1}. Moreover,

we have ρ = 2d−1 if H = G(i)(X
∗,X∗) and ρ = 2d if H = G(i)(X,X)∗

or G′
(i)(X,X)∗.

Proof. The values of K and ρ can be directly deduced from the def-

initions of the groups. By definition of K, the homomorphism from

H(v) to Aut(B(v,K)) is surjective. Hence, for each (s0, . . . , sK−1) ∈
(C2)

K , there exists sK ∈ C2 such that (s0, . . . , sK) ∈ s(H(v)). If

H ′ = G(i)(α(X), α(X)), then Lemma 2.3.5 states that H ⊆ H ′, so

s(H(v)) ⊆ s′(H ′(v)) (where s′:H ′(v) → (C2)
K+1 is the map associated

to H ′). Note that H and H ′ share the same K because max(α(X)) =

maxX+1. Now s′(H ′(v)) = {(s0, . . . , sK) ∈ (C2)
K+1 |∏r∈α(X) sr = 1}

by Lemma 2.3.2, and in particular for each (s0, . . . , sK−1) ∈ (C2)
K there

is a unique sK ∈ C2 such that (s0, . . . , sK) ∈ s′(H ′(v)). From all this

information it follows that s(H(v)) = s′(H ′(v)).

When d is even, we see from Lemmas 2.3.2 and 2.3.6 that the groups

in G′(i) can be differentiated by computing K, ρ and the image of the

map s, with one exception: G(i)(X,X)∗ and G′
(i)(X,X)∗ have the same

invariants (for a fixed X ⊂f Z≥0). This is due to the facts that their

type-preserving subgroups are both equal to G+
(i)(X,X)∗ and that all
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invariants are computed from vertex stabilizers. We will however be

able to differentiate these two groups later, see Proposition 2.3.10.

For d odd, the task would be more complicated. For instance,

G(i)({0, 1}∗, {0, 1}∗) and G(i)({1}∗, {1}∗) have the same invariants when

d is odd (K = 2, ρ = 2d−1 and s is surjective). This occurs because

Lemma 2.3.5 is no longer true in that case. We will not deal with the

odd case in this text.

2.3.4 Labelled graphs associated to a (d1, d2)-group

Let us come back to a (d1, d2)-group Γ associated to some (d1, d2)-datum

(A,B,ϕA, ϕB , R). We assume that d2 ≥ 6 is even, that H2 = proj2(Γ) is

non-discrete and that H2(v2) ≥ Alt(d2). As explained in §2.3.2, the non-
discreteness of H2 can be checked by computing the action of H2(v2) on

B(v2, 2). We now would like an efficient algorithm to determine which

group from G′(i) is isomorphic to H2. In this section, we give a way to

compute K(2) (the K associated to H2) and s
(2)(H2(v2)) by associating

a labelled graph G
(2)
Γ to our (d1, d2)-group Γ. In view of the results of

§2.3.3, this will reduce to 4 (or less) the number of groups in G′(i) that

could be isomorphic to H2. Of course, everything we do here for H2 can

be translated for H1.

Given h ∈ H2(v2) and k ∈ Z≥0, we write s
(2)
k (h) = Sgn(i)(h, S(v2, k))

where i is any legal coloring of T2 as in §2.3.3. The invariant K(2) can

be characterized as the smallest non-negative integer such that the map

s(2):H2(v2)→ (C2)
K(2)+1:h 7→ (s

(2)
0 (h), . . . s

(2)

K(2)(h))

is not surjective. This indeed follows from the definition of K(2) and

from Lemmas 2.3.2 and 2.3.6. An efficient algorithm to compute s
(2)
k (aj)

for each j ∈ {1, . . . , d1} and each k ∈ Z≥0 would thus be sufficient to

determine K(2) as well as s(2)(H2(v2)). (Note that aj should actually be

read as proj2(aj) here, but we will omit the projection.) This is where

the graph G
(2)
Γ , defined hereafter, becomes useful.

Let us define the labelled graph G
(2)
Γ associated to Γ. First, the

vertex set V (G
(2)
Γ ) is simply defined to be A. Then, we put an edge

between a ∈ A and a′ ∈ A if and only if |R ∩ ({a} ×B ×{a′−1} ×B)| is
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odd. Note that |R∩({a}×B×{a′−1}×B)| = |R∩({a′}×B×{a−1}×B)|
because R is invariant under the action of C2×C2, so the edge set is

well-defined. We obtain an undirected graph that can possibly contain

loops (edges from a vertex to itself). Finally, to each vertex a of G
(2)
Γ ,

we associate a label σ(a) = ±1 whose value depends on the signature

of the permutation that the generator a ∈ Γ induces on E(v2) (the set

of d2 edges adjacent to v2 in T2). This labelled graph has a non-trivial

automorphism defined by a 7→ a−1 for each a ∈ A. Indeed, we clearly

have σ(a) = σ(a−1) for each a ∈ A, and there is an edge between a and

a′ if and only if there is an edge between a−1 and a′−1. Once again this

follows from the fact that R is invariant under the action of C2×C2.

The labelled graph G
(2)
Γ can easily be drawn from the geometric

squares that define Γ. Indeed, the vertex set corresponds to the set of

white symbols (with orientation) that the horizontal edges can have. For

each vertex a, the permutation induced by a on E(v2) can also be directly

computed from the geometric squares, see §2.3.1. We thus obtain the

labels associated to the vertices by taking the signatures. Then, given

two vertices a and a′, we can determine if there is an edge between a

and a′ by counting the number of b ∈ B such that there is a geometric

square that can be read as (a, b, a′−1, ∗). We put an edge if and only if

there is an odd number of such b ∈ B.

In the graph G
(2)
Γ , a non-repeating path p is a finite sequence of

vertices x0, x1, . . . , xn where xi−1 and xi are connected by an edge for

each i ∈ {1, . . . , n} and xi−1 6= xi+1 for each i ∈ {1, . . . , n− 1}. In other

words, the path cannot use a same edge twice consecutively. Such a path

has length n, origin x0 and destination d(p) = xn. We write Pn(x0)
for the set of all non-repeating paths of length n whose origin is x0.

The next result now shows that the non-repeating paths in G
(2)
Γ can

be helpful in order to compute the values s
(2)
k (aj) defined above. Note

that this proposition is true for any (d1, d2)-group.

Proposition 2.3.7. Let Γ be a (d1, d2)-group and fix j ∈ {1, . . . , d1}
and k ∈ Z≥0. Then we have

s
(2)
k (aj) =

∏

p∈Pk(aj)

σ(d(p)).
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Proof. Given a sequence of vertices x0, . . . , xn of G
(2)
Γ , we are first in-

terested in rectangles 1 × n (made of n geometric squares) appearing

in T1 × T2 and whose n + 1 white symbols from bottom to top exactly

correspond to the n+1 vertices x0, . . . , xn (with the good orientations).

Let us denote by Rect(x0, . . . , xn) the set of all those rectangles.

Claim. |Rect(x0, . . . , xn)| is odd if and only if (x0, . . . , xn) is a non-

repeating path in G
(2)
Γ .

Proof of the claim: We prove the claim by induction. For n = 1 it

follows from the definition of the edge set of G
(2)
Γ . Now let n ≥ 2 and

assume the claim is true for n− 1. Observe that

|Rect(x0, . . . , xn)| = |Rect(x0, . . . , xn−1)|·(|Rect(xn−1, xn)|−δxn−2,xn),

where δxn−2,xn = 1 if xn−2 = xn and 0 otherwise. Indeed, a rect-

angle 1 × n in Rect(x0, . . . , xn) is made of a rectangle 1 × (n − 1) in

Rect(x0, . . . , xn−1) and a square in Rect(xn−1, xn). The term −1 when

xn−2 = xn appears because the square between xn−1 and xn cannot be

the same as the one between xn−1 and xn−2.

Now if (x0, . . . , xn) is a non-repeating path then (x0, . . . , xn−1) is a

non-repeating path, xn 6= xn−2 and (xn−1, xn) is a non-repeating path.

So |Rect(x0, . . . , xn−1)| and |Rect(xn−1, xn)| are odd by hypothesis and

hence |Rect(x0, . . . , xn)| is odd by the above formula.

Conversely, assume that |Rect(x0, . . . , xn)| is odd. By the formula

above, this already means that |Rect(x0, . . . , xn−1)| is odd and thus that

(x0, . . . , xn−1) is a non-repeating path. Then there are two possibilities:

• If xn−2 6= xn then we also get that |Rect(xn−1, xn)| is odd, so

(xn−1, xn) is a non-repeating path. Altogether, these affirmations

imply that (x0, . . . , xn) is a non-repeating path.

• If xn−2 = xn, we get that |Rect(xn−1, xn)| is even, so (xn−1, xn) is

not a non-repeating path, i.e. there is no edge between xn−1 and

xn. This situation is however impossible: we already know that

there is an edge between xn−2 and xn−1, and xn−2 = xn. �
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We now prove the proposition. Recall from Lemma 2.3.1 that

s
(2)
k (aj) =

∏

w∈S(v2,k)

sgn(ιaj (w) ◦ aj ◦ ι−1
w )

for any k ∈ Z≥0 and j ∈ {1, . . . , d1}, where ιw:S(w, 1) → {1, . . . , d2} is
any bijection for each w ∈ S(v2, k). In our context, we have a canonical

choice for the bijections ιw: the edges of T2 are labelled by the black

symbols, and the d2 edges adjacent to any vertex carry the d2 different

black symbols (considered with their orientation). So the bijections ιw

can simply be defined by identifying S(w, 1) with E(w) and the set

{1, . . . , d2} with the set of black symbols with orientation.

Take some w ∈ S(v2, k) and let h ∈ 〈b1, . . . , bd2〉 be the element

such that h(v2) = w. Let us draw, as in §2.3.1, the rectangle 1 × k

made of k geometric squares such that the bottom symbol corresponds

to aj , and the k symbols on the right side correspond to h. After having

filled in the rectangle with geometric squares, we obtain the equation

ajh = h′aj′ , where aj′ is given by the top side and h′ by the left side

of the rectangle. From the equality ajh(v2) = h′aj′(v2) we obtain that

aj(w) = h′(v2). Moreover, since h and h′ preserve the symbols in T2, we

have that ι−1
w = hι−1

v2
and ι−1

aj(w) = h′ι−1
v2

. Using these equalities, we get

ιaj (w)ajι
−1
w = ιv2h

′−1ajhι
−1
v2

= ιv2aj′ι
−1
v2
.

This implies that

s
(2)
k (aj) =

∏

w∈S(v2,k)

sgn(ιaj(w) ◦ aj ◦ ι−1
w )

=
∏

(aj ,x1,...,xk)∈V (G
(2)
Γ )k+1

σ(xk)
|Rect(aj ,x1,...,xk)|.

But |Rect(aj , x1, . . . , xk)| is odd if and only if (aj , x1, . . . , xk) is a non-

repeating path in G
(2)
Γ (by the claim), so this leads to the formula

s
(2)
k (aj) =

∏

(aj ,x1,...,xk)∈Pk(aj)

σ(xk).



112 2. Lattices in products of trees

The graph G
(2)
Γ has d1 vertices and is somewhat redundant as it has

a non-trivial automorphism defined by a 7→ a−1 for each a ∈ A. In the

particular case where a 6= a−1 for each a ∈ A, i.e. when τ1 = 0 (as

defined in §2.2.1), we can define the simplified labelled graph G̃
(2)
Γ

associated to Γ as follows. The vertex set V (G̃
(2)
Γ ) corresponds to the

set of all {a, a−1} with a ∈ A, so that there are d1
2 vertices. The label of

{a, a−1} in G̃(2)
Γ is equal to the label of a (or a−1) in G

(2)
Γ . Then, we put

an edge between {a, a−1} and {a′, a′−1} if and only if exactly one of a′

and a′−1 is connected to a by an edge in G
(2)
Γ . This amounts to saying

that |R ∩ ({a} ×B ×{a′, a′−1} ×B)| is odd. The automorphism of G
(2)
Γ

ensures that this edge set is well-defined. A non-repeating path in

G̃
(2)
Γ is defined exactly as in G

(2)
Γ , and we write P̃n(x) for the set of all

non-repeating paths in G̃
(2)
Γ with length n and origin x.

The next proposition then shows that the values s
(2)
k (aj) can be com-

puted from the simplified labelled graph G̃
(2)
Γ when τ1 = 0.

Proposition 2.3.8. Let Γ be a (d1, d2)-group with τ1 = 0 and fix j ∈
{1, . . . , d1} and k ∈ Z≥0. Then we have

s
(2)
k (aj) =

∏

p∈P̃k({aj ,a
−1
j })

σ(d(p)).

Proof. Recall that τ1 = 0 means that a 6= a−1 for all a ∈ A. Let us first
focus on the (non-simplified) labelled graph G

(2)
Γ . Given an edge (x, y)

in G
(2)
Γ , we say that (x, y) is stylish if (x, y−1) is also an edge in G

(2)
Γ .

Note that this also means that (x−1, y) and (x−1, y−1) are edges in G
(2)
Γ .

Let us say that a non-repeating path (x0, . . . , xn) in G
(2)
Γ is redundant

if there exists i ∈ {0, . . . , n−1} such that (xi, xi+1) is stylish. Given such

a redundant non-repeating path, we let i ≥ 1 be the smallest number

such that (xi, xi+1) is stylish, and j ≤ n be the greatest number such

that all edges (xi, xi+1), (xi+1, xi+2), . . ., (xj−1, xj) are stylish. Then we

define the mirror m(p) of the path p = (x0, . . . , xn) to be

(x0, . . . , xi, x
−1
i+1, xi+2, x

−1
i+3, . . . , x

−1
j−1, xj , xj+1, . . . , xn)
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if j ≡ i mod 2 and

(x0, . . . , xi, x
−1
i+1, xi+2, x

−1
i+3, . . . , xj−1, x

−1
j , x−1

j+1, . . . , x
−1
n )

if j 6≡ i mod 2. The mirror of a redundant non-repeating path is still a

redundant non-repeating path, and taking the mirror is an involution.

This means that, if we look at the formula

s
(2)
k (aj) =

∏

p∈Pk(aj)

σ(d(p)).

given by Proposition 2.3.7, we can simply compute the product over the

non-redundant non-repeating path in Pk(aj). Indeed, the redundant

ones come by pairs (p,m(p)), and d(p) = d(m(p)) or d(m(p))−1 so that

p and m(p) give the same signs. In order to conclude, there remains to

observe that the map

(aj , x1, . . . , xn) 7→ ({aj , a−1
j }, {x1, x−1

1 }, . . . , {xn, x−1
n })

defines a bijection between the set of non-redundant non-repeating paths

in G
(2)
Γ with origin aj and the set of non-repeating paths in G̃

(2)
Γ with

origin {aj , a−1
j }. This is a simple exercise.

Thanks to Proposition 2.3.7 (or 2.3.8), computing the invariantsK(2)

and s(2):H2(v2) → (C2)
K(2)+1 from the geometric squares defining Γ is

easy. For small d1 and d2 this can be done by hand, as illustrated

in §2.3.6. We also know in advance, from Lemmas 2.3.2 and 2.3.6,

that s(2)(H2(v2)) must take the form {(s0, . . . , sK(2)) ∈ (C2)
K(2)+1 |

∏

r∈X sr = 1} for some X ⊂f Z≥0 with maxX = K(2). If 0 ∈ X,

then X 6∈ α({Y ⊂f Z≥0}) by Lemma 2.3.4 and thus the only possibil-

ity for H2 is to be equal to G(i)(X,X) for some legal coloring i of T2.

On the other hand, if 0 6∈ X then there exists a unique Y ⊂f Z≥0 such

that α(Y ) = X (once again by Lemma 2.3.4) and we conclude that H2 is

equal to one of the four groups G(i)(X,X), G(i)(Y
∗, Y ∗), G(i)(Y, Y )∗ and

G′
(i)(Y, Y )∗ for some legal coloring i of T2. Then it is still possible to com-

pute the invariant ρ(2): if ρ(2) = 2 then H2 = G(i)(X,X), if ρ(2) = 2d2

then H2 = G(i)(Y
∗, Y ∗), and if ρ(2) = 2d2−1 then H2 = G(i)(Y, Y )∗ or
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G′
(i)(Y, Y )∗. However, computing ρ(2) in general requires a computer,

and even a computer is too slow if K(2) is big. In the next subsection,

we see how to identify by hand which of the four groups is the good one.

2.3.5 Choosing among the four possible groups

Let us suppose we are in presence of a (d1, d2)-group as in §2.3.4 and

such that s(2)(H2(v2)) = {(s0, . . . , sK(2)) ∈ (C2)
K(2)+1 | ∏r∈X sr = 1}

for some X ⊂f Z≥0 with maxX = K(2) and 0 6∈ X. Let Y ⊂f Z≥0 be

such that α(Y ) = X. Our goal is now to give a method enabling us to

determine which of the four groups G(i)(X,X), G(i)(Y
∗, Y ∗), G(i)(Y, Y )∗

and G′
(i)(Y, Y )∗ is isomorphic to H2.

We start with the following proposition which, in some sense, enables

to compute the invariant ρ(2) ∈ {1, 2d2−1, 2d2}.

Proposition 2.3.9. Let Γ be a (d1, d2)-group with d2 ≥ 6 even and sup-

pose that H2 = proj2(Γ) is non-discrete and satisfies H2(v2) ≥ Alt(d2).

Let X ⊂f Z≥0 be such that maxX = K(2) and

s(2)(H2(v2)) =

{

(s0, . . . , sK(2)) ∈ (C2)
K(2)+1

∣

∣

∣

∣

∣

∏

r∈X

sr = 1

}

,

and assume that 0 6∈ X. Let Y ⊂f Z≥0 be such that α(Y ) = X.

For each j ∈ {1, . . . , d1}, define Σj =
∏

r∈Y s
(2)
r (aj) ∈ {−1, 1}.

Also, for each j ∈ {1, . . . , d1} and each k ∈ {1, . . . , d2}, define µj,k ∈
{1, . . . , d1} and νj,k ∈ {1, . . . , d2} so that ajbk = bνj,kaµj,k

.

Then exactly one of the following assertions holds.

(1) There exist x1, . . . , xd2 ∈ {−1, 1} such that

(∗)























x1xν1,1Σµ1,1 = x2xν1,2Σµ1,2 = · · · = xd2xν1,d2Σµ1,d2
= Σ1

x1xν2,1Σµ2,1 = x2xν2,2Σµ2,2 = · · · = xd2xν2,d2Σµ2,d2
= Σ2

...

x1xνd1,1Σµd1,1
= x2xνd1,2Σµd1,2

= · · · = xd2xνd1,d2Σµd1,d2
= Σd1

and H2 = G(i)(Y, Y )∗ or G′
(i)(Y, Y )∗ for some legal coloring i of T2.
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(2) There exist no x1, . . . , xd2 ∈ {−1, 1} satisfying (∗) but there exist

x1, . . . , xd2 ∈ {−1, 1} such that

(∗∗)























x1xν1,1Σµ1,1 = x2xν1,2Σµ1,2 = · · · = xd2xν1,d2Σµ1,d2

x1xν2,1Σµ2,1 = x2xν2,2Σµ2,2 = · · · = xd2xν2,d2Σµ2,d2
...

x1xνd1,1Σµd1,1
= x2xνd1,2Σµd1,2

= · · · = xd2xνd1,d2Σµd1,d2

and H2 = G(i)(Y
∗, Y ∗) for some legal coloring i of T2.

(3) There exist no x1, . . . , xd2 ∈ {−1, 1} satisfying (∗) or (∗∗), and H2 =

G(i)(X,X) for some legal coloring i of T2.

Proof. For each w ∈ V (T2), we define ιw:S(w, 1) → {1, . . . , d2} as be-

fore, i.e. so that the edge e ∈ E(w) is labelled by the black symbol

corresponding to bιw(z), where z is the vertex of e different from w.

For i a legal coloring of T2 and k ∈ {1, . . . , d2}, we define x
(i)
k =

∏

w∈S(bk(v2),Y ) sgn(i ◦ ι−1
w ) ∈ {−1, 1}. It is clear that any element of

{−1, 1}d2 can be written as (x
(i)
1 , . . . , x

(i)
d2
) for some legal coloring i. Now

for such a coloring, we write iw:S(w, 1)→ {1, . . . , d2} for the restriction
of i to S(w, 1), and compute

∏

w∈S(bk(v2),Y )

sgn(iaj (w) ◦ aj ◦ i−1
w )

=
∏

w∈S(bk(v2),Y )

sgn(iaj (w) ◦ ι−1
aj (w)) · sgn(ιaj(w) ◦ aj ◦ ι−1

w ) · sgn(ιw ◦ i−1
w )

= x
(i)
k x(i)νj,k

∏

w∈S(bk(v2),Y )

sgn(ιaj(w) ◦ aj ◦ ι−1
w )

= x
(i)
k x(i)νj,k

∏

w∈S(v2,Y )

sgn(ιajbk(w) ◦ aj ◦ ι−1
bk(w))

= x
(i)
k x(i)νj,k

∏

w∈S(v2,Y )

sgn(ιbνj,kaµj,k (w) ◦ bνj,k ◦ aµj,k
◦ b−1

k ◦ ι−1
bk(w))

= x
(i)
k x(i)νj,k

∏

w∈S(v2,Y )

sgn(ιaµj,k (w) ◦ aµj,k
◦ ι−1

w )

= x
(i)
k x(i)νj,k

Σµj,k
.

This implies that, if H2 = G(i)(Y, Y )∗ or G′
(i)(Y, Y )∗, then (x

(i)
1 , . . . , x

(i)
d2
)
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is a solution of (∗). Conversely, if (x
(i)
1 , . . . , x

(i)
d2
) is a solution of (∗)

for some coloring i, then the equalities defining G(i)(Y, Y )∗ are true in

B(v2,max Y +2) and we can deduce in particular that ρ(2) ≥ 2d2 . In view

of Lemmas 2.3.2 and 2.3.6, the only options for H2 are then G(i)(Y, Y )∗

and G′
(i)(Y, Y )∗ (for some coloring i that may be different).

Now if we assume that (∗) has no solution, H2 is different from

G(i)(Y, Y )∗ and G′
(i)(Y, Y )∗. Then by the same argument we obtain that

(∗∗) has a solution if and only if H2 = G(i)(Y
∗, Y ∗). In the case where

neither (∗) nor (∗∗) has a solution, the only remaining possibility is to

have H2 = G(i)(X,X).

The next proposition then explains how G(i)(Y, Y )∗ and G′
(i)(Y, Y )∗

can be distinguished. As explained earlier, this requires observing an

element exchanging the two types of vertices.

Proposition 2.3.10. Let Γ be a (d1, d2)-group as in Proposition 2.3.9,

and assume that H2 = G(i)(Y, Y )∗ or G′
(i)(Y, Y )∗ for some legal coloring i

of T2. Let k ∈ {1, . . . , d2}, m ≥ 0 and j1, . . . , jm, j
′
1, . . . , j

′
m ∈ {1, . . . , d1}

be such that

aj1 · · · ajmbk = b−1
k a′j′1

· · · a′j′m.

Then H2 = G(i)(Y, Y )∗ if and only if Σj1 · · ·ΣjmΣj′1
· · ·Σj′m

= 1, where

Σj =
∏

r∈Y s
(2)
r (aj) ∈ {−1, 1} for each j ∈ {1, . . . , d1}.

Proof. The element γ = proj2(aj1 · · · ajmbk) ∈ H2 sends v2 ∈ V (T2) to

one of its neighbors, say w. In particular, γ exchanges the types of

vertices in T2. Moreover, the hypothesis implies that

γ2 = proj2(aj1 · · · ajma′j′1 · · · a
′
j′m

).

So γ2 fixes v2 (i.e. γ exchanges v2 and w) and

Sgn(i)(γ
2, SY (v2)) = Σj1 · · ·ΣjmΣj′1

· · ·Σj′m
.

The conclusion then follows from the definitions of the groupsG(i)(Y, Y )∗

and G′
(i)(Y, Y )∗. Indeed, if γ ∈ G(i)(Y, Y )∗ then Sgn(i)(γ, SY (v2)) =

Sgn(i)(γ, SY (w)) and hence Sgn(i)(γ
2, SY (v2)) = 1. On the contrary, if
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γ ∈ G′
(i)(Y, Y )∗ then Sgn(i)(γ, SY (v2)) 6= Sgn(i)(γ, SY (w)) and in that

case Sgn(i)(γ
2, SY (v2)) = −1.

Note that there always exist elements k ∈ {1, . . . , d2}, m ≥ 0 and

j1, . . . , jm, j′1, . . . , j
′
m ∈ {1, . . . , d1} as in Proposition 2.3.10: they simply

correspond to a rectangle m× 1 in the square-complex T1× T2 with the

property that the left and right edges of the rectangle correspond to b−1
k

and bk for some k ∈ {1, . . . , d2}. The existence of such a rectangle is a

consequence of the transitivity of H2(v2) ≥ Alt(d2) on E(v2).

All our previous considerations lead to Theorem 2.A.

Proof of Theorem 2.A. As explained in §2.3.2, it suffices to look at the

image of Ht(vt) in Aut(B(vt, 2)) to see if Γ is reducible or irreducible,

and this can be done with the method explained in §2.3.1. So (i) is clear.

For (ii), we saw in §2.3.4 that computing the labelled graph G
(t)
Γ gives

at most 4 possibilities for Ht, and in Propositions 2.3.9 and 2.3.10 that

choosing among the four groups could be done by solving two systems

whose unknowns belong to {−1, 1} and constructing a suitable m × 1

or 1 ×m rectangle. It is not hard to implement those algorithms on a

computer and they have a pretty good complexity. We do not go into a

detailed analysis of the complexity, but the slowest part of the algorithm

is probably to check the irreducibility of Γ by observing the action of

Ht(vt) on B(vt, 2) (which has dt(dt − 1) leaves).

We end this section with a particular case where Propositions 2.3.9

and 2.3.10 always give the same conclusion.

Corollary 2.3.11. Let Γ be a (d1, d2)-group as in Proposition 2.3.9. If
∏

r∈Y s
(2)
r (aj) = −1 for each j ∈ {1, . . . , d1}, then H2 = G(i)(Y, Y )∗ for

some legal coloring i of T2.

Proof. In Proposition 2.3.9, we have Σj = −1 for each j ∈ {1, . . . , d1}
and thus x1 = · · · = xd2 = 1 is a solution of (∗). Moreover, in Propo-

sition 2.3.10 we directly get Σj1 · · ·ΣjmΣj′1
· · ·Σj′m

= (−1)2m = 1 which

ends the proof.
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2.3.6 Illustration on an example

Let us illustrate the previous ideas on a concrete example. Let Γ be the

torsion-free (6, 6)-group corresponding to the 9 geometric squares drawn

in Figure 2.4. Our goal is to explain how H1 and H2 can be computed

in this particular case.

We start by computing the action of H2(v2) on B(v2, 1). The six ver-

tices in S(v2, 1) are b1(v2), b2(v2), b3(v2), b
−1
3 (v2), b

−1
2 (v2) and b

−1
1 (v2).

The six edges from v2 to these six vertices are labelled by the six black

symbols (with orientation) corresponding to the six generators b1, b2,

b3, b4 = b−1
3 , b5 = b−1

2 and b6 = b−1
1 . From the geometric squares, we

directly get the actions of a1, a2 and a3 on these six edges. We denote

them by the generators to which they correspond.

a1 : (b1)(b
−1
1 )(b2)(b

−1
2 )(b3 b

−1
3 )

a2 : (b1)(b
−1
1 b2 b3 b

−1
3 b−1

2 )

a3 : (b1 b
−1
2 b−1

3 b3 b2)(b
−1
1 )

One can easily check that these three permutations generate Sym(6).

As explained in §2.3.2, it then suffices to compute the action of H2(v2)

on B(v2, 2) and to use [BM00a, Proposition 3.3.2] to conclude that H2

is non-discrete and thus that Γ is irreducible.

Let us now find out which group H2 exactly is. As τ1 = 0, we can

compute the simplified labelled graph G̃
(2)
Γ and use Proposition 2.3.8.

We also compute G
(2)
Γ so as to illustrate Proposition 2.3.7 as well. The

two graphs we obtain are given in Figure 2.5.

From G̃
(2)
Γ (or G

(2)
Γ ) we can compute the values of s

(2)
k (aj) for j ∈

Figure 2.4: The geometric squares of a torsion-free (6, 6)-group.
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{1, 2, 3} and k ∈ Z≥0. For k ∈ {0, 1, 2, 3} we obtain:

s
(2)
0 s

(2)
1 s

(2)
2 s

(2)
3

a1 −1 +1 +1 +1

a2 +1 −1 −1 +1

a3 +1 −1 −1 +1

The map s(2):H2(v2) → (C2)
3:h 7→ (s

(2)
0 (h), s

(2)
1 (h), s

(2)
2 (h)) is not sur-

jective, so K(2) = 2. Moreover, we see that s(2)(H2(v2)) is equal to
{

(s0, s1, s2) ∈ (C2)
3
∣

∣

∣

∏

r∈{1,2} sr = 1
}

. Since α({0, 1}) = {1, 2} (by

Lemma 2.3.3), these values for K(2) and s(2)(H2(v2)) imply that H2

is one of G(i2)({1, 2}, {1, 2}), G(i2)({0, 1}∗, {0, 1}∗), G(i2)({0, 1}, {0, 1})∗
and G′

(i2)
({0, 1}, {0, 1})∗ for some legal coloring i2 of T2. But for each

j ∈ {1, 2, 3} we have
∏

r∈{0,1} s
(2)
r (aj) = −1, so Corollary 2.3.11 ensures

that H2 = G(i2)({0, 1}, {0, 1})∗ .
Let us do the same work for H1. The action of H1(v1) on B(v1, 1) is

given by the following permutations: they also generate Sym(6).

b1 : (a1 a
−1
1 )(a2 a3 a

−1
2 a−1

3 )

b2 : (a1 a
−1
1 )(a2 a3)(a

−1
2 a−1

3 )

b3 : (a1 a
−1
2 a−1

3 )(a−1
1 a3 a2)

As τ2 = 0, we can compute the simplified labelled graph G̃
(1)
Γ . It has

no edge, and exactly one of the three vertices is labelled by −1: the one
corresponding to {b2, b−1

2 }. The values of s
(1)
k (bj) for j ∈ {1, 2, 3} and

−1

−1 +1

+1

+1+1

−1 +1

+1

Figure 2.5: The labelled graphs G
(2)
Γ and G̃

(2)
Γ .
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k ∈ {0, 1, 2, 3} are therefore:

s
(1)
0 s

(1)
1 s

(1)
2 s

(1)
3

b1 +1 +1 +1 +1

b2 −1 +1 +1 +1

b3 +1 +1 +1 +1

The map s(1):H1(v1) → (C2)
2:h 7→ (s

(1)
0 (h), s

(1)
1 (h)) is not surjective,

so K(1) = 1. Also, s(1)(H1(v1)) =
{

(s0, s1) ∈ (C2)
2
∣

∣

∣

∏

r∈{1} sr = 1
}

.

Since α({0}) = {1}, we obtain that H1 must be one of G(i1)({1}, {1}),
G(i1)({0}∗, {0}∗), G(i1)({0}, {0})∗ and G′

(i1)
({0}, {0})∗ for some legal col-

oring i1 of T1. This time we do not have
∏

r∈{0} s
(1)
r (bj) = −1 for each

j ∈ {1, 2, 3}, so Corollary 2.3.11 cannot be used. We therefore need

Proposition 2.3.9. After looking carefully at the geometric squares, the

system (∗) in Proposition 2.3.9 is











x1x6 = −x2x3 = x3x5 = x4x2 = −x5x4 = x6x1 = 1

−x1x6 = x2x3 = x3x2 = x4x5 = x5x4 = −x6x1 = −1
x1x5 = x2x6 = −x3x2 = x4x1 = −x5x4 = x6x3 = 1

From x1x5 = x4x1 it follows that x4 = x5, but this contradicts x4x5 =

−1 so this system has no solution. Hence the groups G(i1)({0}, {0})∗ and

G′
(i1)

({0}, {0})∗ can be excluded. The system (∗∗) in Proposition 2.3.9

is exactly the same, but without the last equality on each line:











x1x6 = −x2x3 = x3x5 = x4x2 = −x5x4 = x6x1

−x1x6 = x2x3 = x3x2 = x4x5 = x5x4 = −x6x1
x1x5 = x2x6 = −x3x2 = x4x1 = −x5x4 = x6x3

A solution to this system is given by (1, 1, 1,−1,−1,−1), so we conclude

that H1 = G(i1)({0}∗, {0}∗).
We summarize our computations in the following lemma.

Lemma 2.3.12. Let Γ ≤ Aut(T1) × Aut(T2) be the torsion-free (6, 6)-

group defined by Figure 2.4. Then H1 = G(i1)({0}∗, {0}∗) and H2 =

G(i2)({0, 1}, {0, 1})∗ for some legal colorings i1 and i2 of T1 and T2.

Proof. See the discussion above.
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2.3.7 An inventory of possible projections

As already mentioned, we do not have any tool to check the irreducibility

of a (d1, d2)-group in full generality. With a computer it can be quickly

seen if, for some t ∈ {1, 2} the fixator of B(vt, 2) in Ht is trivial. Indeed,

sinceHt is transitive on vertices of Tt, it suffices to see whether the fixator

of B(vt, 2) also fixes B(vt, 3). We will therefore say in this section that

some (d1, d2)-group Γ is possibly irreducible if the fixator of B(vt, 2)

in Ht is non-trivial for each t ∈ {1, 2}.
We always consider (d1, d2)-groups up to equivalence (i.e. up to con-

jugation in Aut(T1 × T2)). For some values of d1 and d2, we could com-

pute the total number of torsion-free (d1, d2)-groups and the number of

(d1, d2)-groups with torsion (up to equivalence) by enumerating them all

(thanks to the GAP system). Some of these groups can be seen to be re-

ducible by simply showing that they are not possibly irreducible. Also,

when dt = 6 for some t ∈ {1, 2}, some (d1, d2)-groups can be proved

to be irreducible, as explained previously, when Ht(vt) ≥ Alt(dt). The

results we obtained are given in Table 2.1. The numbers in parentheses

correspond to (d1, d2)-groups with torsion but with τ1 = τ2 = 0 (i.e.

without generators of order 2). Indeed, for (d1, d2) ∈ {(4, 6), (6, 6)} the

number of (d1, d2)-groups is so big that we could not count them all

up to equivalence. Note that we actually know a bit more that what is

written in Table 2.1. For instance, we will see in §2.4.2 below that at

least 60 of the 23839 possibly irreducible (4, 5)-groups are irreducible.

Torsion-free With torsion
Irred. ? Red. Total Irred. ? Red. Total

(3, 3) - - - - 0 4 56 60
(3, 4) - - - - 0 59 664 723
(3, 5) - - - - 0 457 1986 2443
(3, 6) - - - - 204 3018 10529 13751

(4, 4) 0 2 50 52 0 686 2992 3678
(4, 5) - - - - 0 23839 34700 58539
(4, 6) 16 95 890 1001 (111) (433) (1840) (2384)

(6, 6) 8227 5409 18426 32062 (83581) (33565) (76037) (193083)

Table 2.1: (d1, d2)-groups up to equivalence.
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In the remainder of this section, we give tables with the possible pairs

of projections (H1,H2) that a possibly irreducible (d1, d2)-group can

have, for some values of d1 and d2. The idea is, for each (equivalence class

of) (d1, d2)-group, to check that it is possibly irreducible, to compute H1

and H2 (if possible) and to write in the table that there is a group with

these two projections. However, we only saw in the previous sections how

to determine Ht in the particular case where dt ≥ 6, Ht(vt) ≥ Alt(dt)

and Ht is non-discrete. In all other cases, we therefore only take note of

the local action Ht(vt) ≤ Sym(dt).

In order to make the rendering of the tables better, let us introduce

some notation. For groups in G′(i), we use the following abbreviations:

Notation Group

X G(i)(X,X)

X∗ G(i)(X,X)∗

X ′∗ G′
(i)(X,X)∗

X∗∗ G(i)(X
∗,X∗)

Now for the local actions Ht(vt) ≤ Sym(dt), we need to give names

to the conjugacy classes of subgroups of Sym(dt). We will only give

tables with dt ≤ 6, so we just need a notation for the conjugacy classes

of subgroups of Sym(6). Indeed, each conjugacy class of subgroups of

Sym(d) with d < 6 can also be seen as a conjugacy class in Sym(6) (by

assuming that the 6 − d other points are fixed). It can be computed

that Sym(6) has exactly 56 conjugacy classes of subgroups, and we give

them names according to Table 2.2. The first part of the name of a

conjugacy class is the order of a subgroup in that class, and we give

for each one a set of generators of some representative subgroup. The

classes of subgroups of Sym(3) (resp. Sym(4) and Sym(5)) are marked

with a Y in the first (resp. second and third) column of the table.

The results of our computations are given in Tables 2.3–2.15. Recall

that, when d1 = d2, two (d1, d2)-groups can be conjugate by an element

of Aut(T1 × T2) exchanging T1 and T2. Hence, a group with projections

(H1,H2) is also conjugate to a group with projections (H2,H1). For this

reason, each equivalence class of (d1, d2)-groups appears once or twice

in the table, depending on whether it is on the diagonal or not.
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Remark that, when d1 and d2 are fixed with d2 ≥ 6 even, we could

in advance give a co-finite subset of groups of G′(i) that cannot appear

as the closure of the projection of a (d1, d2)-group on T2. Indeed, the

labelled graph G
(2)
Γ has d1 vertices, it has a non-trivial automorphism as

explained in §2.3.4, and we also know that the degree of each vertex is

even (where a loop in a vertex is only counted once in the degree of that

vertex). Hence, one can simply go through all labelled graphs satisfying

these three properties and compute all groups G′(i) that correspond to

them. This gives a finite list of groups that covers all possible projections

on T2. If we are only interested in torsion-free (d1, d2)-groups, then the

task is even shorter as we can use the simplified labelled graphs that

have d1
2 vertices. Moreover, the degree of each vertex is also even and

loops cannot appear in that case.

Let us for instance consider the torsion-free (6, 6)-groups. We must

+1 +1

+1

G(i)({0}, {0})

−1 ±1

±1

G(i)({1}, {1}), G(i)({0}∗, {0}∗)
G(i)({0}, {0})∗, G′

(i)({0}, {0})∗

+1 +1

+1

G(i)({0}, {0})

−1 +1

+1

G(i)({0, 1}, {0, 1})∗

−1 −1

+1

G(i)({0, 1}, {0, 1})

−1 −1

−1

G(i)({0}, {0})∗

Figure 2.6: Possible projections for a torsion-free (6, 6)-group.
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observe all labelled graphs with 3 vertices, without any loop and such

that the degree of each vertex is even. If we do not consider the labels

then there are only two such graphs: the one without any edge and

the one with all three possible edges. For each of these two graphs we

can put between zero and three labels −1, so at the end we get eight

labelled graphs. The groups associated to those graphs are given in

Figure 2.6. Note that we could exclude some groups by making use of

Corollary 2.3.11. In total, we obtain only seven groups of G′(i) that could
possibly appear as a projection of a torsion-free (6, 6)-group. Our tables

below (which were found with a computer) show that all these seven

groups indeed arise, see Tables 2.12 and 2.13.

Proof of Theorem 2.B. See Tables 2.1, 2.12 and 2.13.
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3? 4? 5? Name Generators Isomorphic to

720.1 (1,2,4,5)(3,6), (2,4), (1,2)(3,4) Sym(6)
360.1 (1,2)(3,4), (1,2,4,5)(3,6) Alt(6)
120.2 (1,3,2,4), (1,6,5,2,4) PGL(2, 5) ∼= Sym(5)

Y 120.1 (2,5), (1,2)(3,4,5) Sym(5)
72.1 (2,3)(4,6,5), (1,4)(2,6,3,5) (Sym(3)× Sym(3)) ⋊C2

60.2 (1,2)(3,4), (1,3,4)(2,5,6) PSL(2, 5) ∼= Sym(5)
Y 60.1 (1,2)(3,4), (2,3,5) Alt(5)

48.2 (1,2)(3,6)(4,5), (1,3,4,2,5,6) C2 × Sym(4)
48.1 (1,2)(3,6,5), (1,2)(3,6,4,5) C2 × Sym(4)
36.3 (1,3)(5,6), (1,5,2,6)(3,4) (C3 ×C3)⋊C4

36.2 (2,3)(5,6), (1,3,2)(4,6) Sym(3)× Sym(3)
36.1 (1,3)(4,6), (1,6,3,5,2,4) Sym(3)× Sym(3)
24.6 (4,5,6), (1,2)(3,4,6,5) Sym(4)
24.5 (1,3,6)(2,5,4), (1,2)(3,4,5,6) Sym(4)

Y Y 24.4 (1,4,2), (1,2), (3,4) Sym(4)
24.3 (1,4,2,3), (1,6,2,5) Sym(4)
24.2 (1,5,4,2,6,3), (1,5,4)(2,6,3) C2 ×Alt(4)
24.1 (3,6,4), (1,2)(3,6,5) C2 ×Alt(4)

Y 20.1 (2,4,5,3), (1,5)(2,4) GA(1, 5) ∼= C5 ⋊C4

18.3 (5,6), (1,2,3)(4,5) C3 × Sym(3)
18.2 (1,4,2,5,3,6), (1,3,2)(4,5,6) C3 × Sym(3)
18.1 (1,2,3), (1,3)(5,6), (4,5,6) (C3 ×C3)⋊C2

16.1 (5,6), (3,6)(4,5), (1,2)(3,4) C2 ×D8

Y 12.4 (1,2)(3,4), (1,2)(3,5,4) C2 ×Sym(3) ∼= D12

12.3 (1,3)(4,6), (1,4)(2,6)(3,5) C2 ×Sym(3) ∼= D12

12.2 (1,5,3)(2,6,4), (1,2)(3,4) Alt(4)
Y Y 12.1 (1,4,2), (1,2)(3,4) Alt(4)

Y 10.1 (1,5)(2,4), (1,3)(4,5) D10

9.1 (1,2,3), (4,5,6) C3 ×C3

8.7 (3,6)(4,5), (1,2)(3,4) D8

8.6 (1,2), (3,4,5,6) C2 ×C4

Y Y 8.5 (1,2), (1,4,2,3) D8

8.4 (1,2)(3,4,5,6), (4,6) D8

8.3 (3,5,4,6), (1,2)(3,4) D8

8.2 (3,4)(5,6), (3,6)(4,5), (1,2) C2 ×C2 ×C2

8.1 (1,2), (3,4), (5,6) C2 ×C2 ×C2

6.6 (1,3)(4,6), (1,2,3)(4,5,6) Sym(3)
Y 6.5 (1,2), (3,4,5) C6

Y 6.4 (3,4,5), (1,2)(3,4) Sym(3)
6.3 (1,4,3,6,2,5) C6

Y Y Y 6.2 (1,2,3), (2,3) Sym(3)
6.1 (1,2,3)(4,5,6), (1,6)(2,5)(3,4) Sym(3)

Y 5.1 (1,3,5,2,4) C5

4.7 (1,2)(3,4,5,6) C4

Y Y 4.6 (1,3,2,4) C4

Y Y 4.5 (3,4), (1,2)(3,4) C2 ×C2

4.4 (3,4)(5,6), (1,2)(3,6)(4,5) C2 ×C2

4.3 (3,4)(5,6), (1,2) C2 ×C2

Y Y 4.2 (1,4)(2,3), (1,2)(3,4) C2 ×C2

4.1 (3,4)(5,6), (1,2)(3,4) C2 ×C2

3.2 (1,2,3)(4,5,6) C3

Y Y Y 3.1 (1,2,3) C3

Y Y 2.3 (1,2)(3,4) C2

2.2 (1,6)(2,5)(3,4) C2

Y Y Y 2.1 (1,2) C2

Y Y Y 1.1 1

Table 2.2: Conjugacy classes of subgroups of Sym(6).
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6.2 2.1

6.2 3 1
2.1 1 -

Table 2.3: Possibly irreducible (3, 3)-groups.

6.2 2.1

24.4 9 9
12.1 4 2
8.5 2 1
6.2 14 2
4.5 10 -
2.1 6 -

Table 2.4: Possibly irreducible (3, 4)-groups.

6.2 2.1

120.1 30 39
60.1 10 12
24.4 35 18
20.1 2 1
12.4 85 19
12.1 8 4
10.1 4 1
8.5 22 2
6.4 28 2
6.2 54 5
4.5 50 -
4.2 2 -
2.3 6 -
2.1 18 -

Table 2.5: Possibly irreducible (3, 5)-groups.



2.3. Projections on each factor 127

6.2 2.1

{0, 2}∗ 7 -
{2} 4 -

{0, 1}∗ 22 -
{0, 1} 3 -
{1}∗ 4 22
{1} 1 7
{0}∗∗ 2 -
{0}∗ 19 45
{0} 35 33

120.2 41 31
120.1 154 78
72.1 9 30
60.2 30 19
60.1 37 24
48.2 33 32
48.1 215 121
36.3 - 4
36.2 58 14
36.1 4 8
24.6 60 36
24.5 2 5
24.4 141 45
24.3 12 7
24.2 1 1
24.1 64 26
20.1 4 2
18.3 4 -
18.2 4 4
18.1 9 -
16.1 93 12
12.4 364 38
12.3 10 7
12.1 20 10
10.1 18 2
8.7 23 2
8.6 3 -
8.5 108 5
8.4 13 5
8.3 54 2
8.2 15 -
8.1 124 -
6.6 23 3
6.4 88 4
6.2 136 8
4.5 210 -
4.4 9 -
4.3 106 -
4.2 12 -
4.1 36 -
2.3 36 -
2.1 50 -

Table 2.6: Possibly irreducible (3, 6)-groups.
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24.4 12.1 8.5

24.4 1 - -
12.1 - - 1
8.5 - 1 -

Table 2.7: Possibly irreducible torsion-free (4, 4)-groups.

24.4 12.1 8.5 6.2 4.5 3.1 2.1

24.4 57 17 13 168 126 4 95
12.1 17 1 5 10 19 - 8
8.5 13 5 1 41 9 4 8
6.2 168 10 41 38 49 - 12
4.5 126 19 9 49 1 - -
3.1 4 - 4 - - - -
2.1 95 8 8 12 - - -

Table 2.8: Possibly irreducible (4, 4)-groups with torsion.

24.4 12.1 8.5 6.2 4.5 3.1 2.1

120.1 1833 64 81 1897 1436 - 1215
60.1 180 16 28 217 275 - 166
24.4 1739 49 301 781 679 4 190
20.1 28 2 2 13 21 - 9
12.4 2439 123 241 1431 613 - 192
12.1 122 2 48 20 84 - 16
10.1 36 2 2 30 18 - 7
8.5 480 38 109 269 50 4 16
6.5 66 1 16 - 4 - -
6.4 291 12 38 109 48 - 12
6.2 1496 36 277 300 181 - 30
4.6 4 - 6 - - - -
4.5 1879 80 117 255 3 - -
4.2 31 5 10 14 - - -
3.1 30 - 32 - - - -
2.3 128 9 6 12 - - -
2.1 592 20 35 36 - - -

Table 2.9: Possibly irreducible (4, 5)-groups.
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24.4 12.1 8.5 4.5

{1} 3 2 - 1
{0}∗ 2 - 3 1
{0} 2 - 2 -

120.2 5 - 2 1
72.1 1 - - -
60.2 4 - 3 1
48.2 5 2 1 4
48.1 2 - - -
36.3 - 1 2 1
36.2 3 1 3 1
24.6 2 - - -
24.5 - - - 1
24.4 5 - - -
24.3 3 1 1 2
24.1 - - 5 -
12.3 - 1 - 1
12.1 - - 6 -
9.1 2 - 2 -
8.7 1 1 - -
8.5 3 3 - -
8.4 - 2 - -
8.3 1 1 - -
6.6 4 2 1 1

Table 2.10: Possibly irreducible torsion-free (4, 6)-groups.
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24.4 12.1 8.5 4.5 2.1

{1}∗ 18 - 8 - -
{1} 11 2 4 - -
{0}∗∗ 1 1 - - -
{0}∗ 13 2 10 15 6
{0} 9 3 3 3 2

120.2 18 2 11 11 4
72.1 13 2 10 5 2
60.2 5 - 3 - -
48.2 11 - 5 - -
48.1 20 4 6 - -
36.3 15 - 7 6 2
36.1 2 - - - -
24.6 21 3 12 - -
24.5 2 - 1 - -
24.4 15 3 12 - -
24.3 3 1 2 - -
24.2 - - 2 - -
24.1 17 - 11 - -
18.2 6 1 6 - -
12.3 8 - 2 - -
12.2 - - 1 - -
12.1 8 - 4 - -
8.7 15 3 2 - -
8.6 7 - 1 - -
8.5 19 3 6 - -
8.4 24 4 6 - -
8.3 17 3 2 - -
4.7 4 - - - -
4.6 4 - 2 - -
4.4 2 - - - -
4.3 2 - - - -
4.1 2 - - - -

Table 2.11: Possibly irreducible (4, 6)-groups
with torsion and τ1 = τ2 = 0.



2.3.
P
ro
jection

s
on

each
factor

1
3
1

{0, 1}∗ {0, 1} {1} {0}∗∗ {0}′∗ {0}∗ {0} 120.2 72.1 60.2 48.2 48.1 36.3 36.2 36.1 24.6 24.5 24.4 24.3 24.2 24.1

{0, 1}∗ 80 125 218 19 13 145 103 71 9 28 128 - - 99 - - 13 - 29 - -
{0, 1} 125 68 193 16 15 127 95 67 42 22 102 - - 99 5 - 8 - 15 - -
{1} 218 193 210 19 14 277 185 115 28 44 31 158 2 70 - 48 4 170 12 - 108

{0}∗∗ 19 16 19 - 2 22 15 3 - 2 12 12 - 5 - 5 1 10 3 - -
{0}′∗ 13 15 14 2 2 7 6 9 5 3 6 - 2 5 - - - - 3 - -
{0}∗ 145 127 277 22 7 90 122 65 24 32 125 297 6 97 - 61 10 291 28 - 35
{0} 103 95 185 15 6 122 52 68 54 28 79 94 - 91 4 27 9 85 24 - 13

120.2 71 67 115 3 9 65 68 18 29 12 60 103 2 49 - 21 8 86 18 - 3
72.1 9 42 28 - 5 24 54 29 - 21 13 16 - 29 - 4 5 20 9 13 4
60.2 28 22 44 2 3 32 28 12 21 2 43 45 - 19 1 13 2 22 9 - 6
48.2 128 102 31 12 6 125 79 60 13 43 101 203 - 106 - 42 17 212 46 - 125
48.1 - - 158 12 - 297 94 103 16 45 203 37 - 26 2 19 23 70 36 2 -
36.3 - - 2 - 2 6 - 2 - - - - - - - - - - - - 12
36.2 99 99 70 5 5 97 91 49 29 19 106 26 - 16 4 10 16 12 24 20 12
36.1 - 5 - - - - 4 - - 1 - 2 - 4 - - - 4 1 - 2
24.6 - - 48 5 - 61 27 21 4 13 42 19 - 10 - 3 9 11 8 2 -
24.5 13 8 4 1 - 10 9 8 5 2 17 23 - 16 - 9 2 26 7 - 16
24.4 - - 170 10 - 291 85 86 20 22 212 70 - 12 4 11 26 19 32 - -
24.3 29 15 12 3 3 28 24 18 9 9 46 36 - 24 1 8 7 32 8 - 15
24.2 - - - - - - - - 13 - - 2 - 20 - 2 - - - - 2
24.1 - - 108 - - 35 13 3 4 6 125 - 12 12 2 - 16 - 15 2 -
18.3 - - 10 2 2 1 1 1 - 1 - - 1 - - - - - - - -
18.2 - 4 9 - 3 - 9 2 - - 7 4 - 6 - - 2 8 2 3 -
18.1 21 18 54 2 2 25 21 6 5 2 32 16 - 6 - 4 3 8 6 - 4
16.1 - - 67 - - 283 78 35 11 20 145 29 8 31 1 5 10 30 25 8 54
12.3 - 6 2 - 2 1 12 5 - 6 11 6 - 9 - - 2 12 5 - 16
12.2 - - - - - - - - 4 - - - - 2 - - - - - - -
12.1 - - 68 - - 28 12 2 8 2 130 - 4 4 2 - 14 - 16 - -
9.1 10 10 6 1 1 11 9 3 4 3 26 10 - 4 - 2 5 4 7 9 -
8.7 - - 14 - - 81 24 7 5 7 39 9 4 11 - 4 7 6 5 2 13
8.6 - - 18 - - 36 6 11 4 4 44 - 8 8 - - 7 - 6 3 -
8.5 - - 68 - - 429 139 55 33 19 254 30 8 25 2 18 35 18 41 - 48
8.4 - - - - - 54 57 19 - 15 7 - 8 12 - - 2 - 4 - 22
8.3 - - 35 - - 96 30 12 2 6 43 7 4 11 - 3 8 6 5 2 10
8.2 - - 2 - - 19 8 3 2 - 5 - 2 2 - - - - - 1 -
8.1 - - 68 - - 55 22 11 - 11 93 - 8 8 1 - 17 - 14 1 -
6.6 39 40 10 2 2 40 38 17 10 7 66 30 - 9 1 10 11 12 16 - 20
4.7 - - - - - 4 4 - - - - - - - - - - - - - -
4.6 - - 14 - - 46 14 10 8 2 57 - 4 4 - - 8 - 9 - -
4.5 - - 44 - - 72 16 12 8 4 136 - 4 4 - - 20 - 24 - -
4.4 - - - - - 5 7 2 - - 3 - 2 2 - - 1 - - - -
4.3 - - 48 - - 88 12 10 4 6 102 - 6 6 - - 18 - 14 1 -
4.2 - - - - - 30 12 4 4 - 10 - 2 2 - - 2 - - - -
4.1 - - 10 - - 16 2 4 2 2 34 - 2 2 - - 4 - 6 - -
2.3 - - 24 - - 27 9 6 4 2 71 - 2 2 - - 11 - 12 - -

Table 2.12: Possibly irreducible torsion-free (6, 6)-groups. (Part 1/2)
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18.3 18.2 18.1 16.1 12.3 12.2 12.1 9.1 8.7 8.6 8.5 8.4 8.3 8.2 8.1 6.6 4.7 4.6 4.5 4.4 4.3 4.2 4.1 2.3

{0, 1}∗ - - 21 - - - - 10 - - - - - - - 39 - - - - - - - -
{0, 1} - 4 18 - 6 - - 10 - - - - - - - 40 - - - - - - - -
{1} 10 9 54 67 2 - 68 6 14 18 68 - 35 2 68 10 - 14 44 - 48 - 10 24

{0}∗∗ 2 - 2 - - - - 1 - - - - - - - 2 - - - - - - - -
{0}′∗ 2 3 2 - 2 - - 1 - - - - - - - 2 - - - - - - - -
{0}∗ 1 - 25 283 1 - 28 11 81 36 429 54 96 19 55 40 4 46 72 5 88 30 16 27
{0} 1 9 21 78 12 - 12 9 24 6 139 57 30 8 22 38 4 14 16 7 12 12 2 9

120.2 1 2 6 35 5 - 2 3 7 11 55 19 12 3 11 17 - 10 12 2 10 4 4 6
72.1 - - 5 11 - 4 8 4 5 4 33 - 2 2 - 10 - 8 8 - 4 4 2 4
60.2 1 - 2 20 6 - 2 3 7 4 19 15 6 - 11 7 - 2 4 - 6 - 2 2
48.2 - 7 32 145 11 - 130 26 39 44 254 7 43 5 93 66 - 57 136 3 102 10 34 71
48.1 - 4 16 29 6 - - 10 9 - 30 - 7 - - 30 - - - - - - - -
36.3 1 - - 8 - - 4 - 4 8 8 8 4 2 8 - - 4 4 2 6 2 2 2
36.2 - 6 6 31 9 2 4 4 11 8 25 12 11 2 8 9 - 4 4 2 6 2 2 2
36.1 - - - 1 - - 2 - - - 2 - - - 1 1 - - - - - - - -
24.6 - - 4 5 - - - 2 4 - 18 - 3 - - 10 - - - - - - - -
24.5 - 2 3 10 2 - 14 5 7 7 35 2 8 - 17 11 - 8 20 1 18 2 4 11
24.4 - 8 8 30 12 - - 4 6 - 18 - 6 - - 12 - - - - - - - -
24.3 - 2 6 25 5 - 16 7 5 6 41 4 5 - 14 16 - 9 24 - 14 - 6 12
24.2 - 3 - 8 - - - 9 2 3 - - 2 1 1 - - - - - 1 - - -
24.1 - - 4 54 16 - - - 13 - 48 22 10 - - 20 - - - - - - - -
18.3 1 - - - - - - - - - - - - - - - - - - - - - - -
18.2 - - - 2 - 1 - - 1 - 8 - 1 - - 4 - - - - - - - -
18.1 - - - 6 3 - 2 - 2 - 6 5 2 - 1 3 - - - - - - - -
16.1 - 2 6 - 11 - 42 4 - - - - - - - 30 - - - - - - - -
12.3 - - 3 11 - - 14 2 3 2 26 - 4 1 9 6 - 4 12 - 8 2 4 6
12.2 - 1 - - - - - 1 - - - - - - - - - - - - - - - -
12.1 - - 2 42 14 - - - 6 - 18 12 6 - - 6 - - - - - - - -
9.1 - - - 4 2 1 - - 2 - 4 4 2 - - 2 - - - - - - - -
8.7 - 1 2 - 3 - 6 2 - - - - - - - 10 - - - - - - - -
8.6 - - - - 2 - - - - - - - - - - 8 - - - - - - - -
8.5 - 8 6 - 26 - 18 4 - - - - - - - 22 - - - - - - - -
8.4 - - 5 - - - 12 4 - - - - - - - 3 - - - - - - - -
8.3 - 1 2 - 4 - 6 2 - - - - - - - 10 - - - - - - - -
8.2 - - - - 1 - - - - - - - - - - 2 - - - - - - - -
8.1 - - 1 - 9 - - - - - - - - - - 7 - - - - - - - -
6.6 - 4 3 30 6 - 6 2 10 8 22 3 10 2 7 4 - 4 4 2 6 2 2 2
4.7 - - - - - - - - - - - - - - - - - - - - - - - -
4.6 - - - - 4 - - - - - - - - - - 4 - - - - - - - -
4.5 - - - - 12 - - - - - - - - - - 4 - - - - - - - -
4.4 - - - - - - - - - - - - - - - 2 - - - - - - - -
4.3 - - - - 8 - - - - - - - - - - 6 - - - - - - - -
4.2 - - - - 2 - - - - - - - - - - 2 - - - - - - - -
4.1 - - - - 4 - - - - - - - - - - 2 - - - - - - - -
2.3 - - - - 6 - - - - - - - - - - 2 - - - - - - - -

Table 2.13: Possibly irreducible torsion-free (6, 6)-groups. (Part 2/2)



2.3.
P
ro
jection

s
on

each
factor

1
3
3

{0, 2}∗ {0, 2} {2} {0, 1}∗ {0, 1} {1}∗∗ {1}∗ {1} {0}∗∗ {0}∗ {0} 120.2 72.1 60.2 48.2 48.1 36.3 36.1 24.6 24.5 24.4

{0, 2}∗ 190 330 764 267 361 69 - 603 61 465 538 179 579 - 150 - 22 47 - 2 -
{0, 2} 330 174 667 321 402 46 - 591 48 450 467 173 486 - 123 - 28 47 - 1 -
{2} 764 667 641 708 742 57 - 1167 82 898 723 344 859 - 28 - 289 53 - 2 -

{0, 1}∗ 267 321 708 191 377 62 - 596 70 564 479 250 507 29 352 - 76 45 - 26 -
{0, 1} 361 402 742 377 266 44 - 670 69 569 645 274 733 29 422 - 64 56 - 31 -
{1}∗∗ 69 46 57 62 44 5 - 47 4 48 71 13 61 - - - 22 - - - -
{1}∗ - - - - - - 76 69 9 181 32 17 85 - 5 4179 23 6 998 1 1424
{1} 603 591 1167 596 670 47 69 447 76 1004 777 374 581 92 134 2558 115 26 805 20 834

{0}∗∗ 61 48 82 70 69 4 9 76 5 70 90 30 71 5 15 102 14 - 19 2 22
{0}∗ 465 450 898 564 569 48 181 1004 70 521 705 347 972 28 308 6322 167 80 1694 31 1986
{0} 538 467 723 479 645 71 32 777 90 705 314 300 529 25 229 1632 110 39 407 14 620

120.2 179 173 344 250 274 13 17 374 30 347 300 70 358 12 142 1134 78 18 363 14 345
72.1 579 486 859 507 733 61 85 581 71 972 529 358 575 29 263 1183 193 53 397 20 409
60.2 - - - 29 29 - - 92 5 28 25 12 29 4 11 133 6 2 30 2 33
48.2 150 123 28 352 422 - 5 134 15 308 229 142 263 11 106 1199 36 17 390 22 435
48.1 - - - - - - 4179 2558 102 6322 1632 1134 1183 133 1199 2662 310 185 1136 114 1009
36.3 22 28 289 76 64 22 23 115 14 167 110 78 193 6 36 310 30 11 93 3 89
36.1 47 47 53 45 56 - 6 26 - 80 39 18 53 2 17 185 11 3 49 1 75
24.6 - - - - - - 998 805 19 1694 407 363 397 30 390 1136 93 49 127 33 231
24.5 2 1 2 26 31 - 1 20 2 31 14 14 20 2 22 114 3 1 33 3 43
24.4 - - - - - - 1424 834 22 1986 620 345 409 33 435 1009 89 75 231 43 107
24.3 3 2 2 40 55 - 1 32 5 48 31 27 25 2 24 156 3 1 51 6 74
24.2 - - - - - - - - - - - - 56 - - 12 8 - 12 - 117
24.1 - - - - - - - 928 42 751 200 141 130 - 190 602 15 23 112 25 126
18.2 60 41 - 19 26 - 2 68 5 95 48 50 94 2 41 96 22 2 34 11 27
16.1 - - - - - - 1122 1269 66 2805 625 525 465 53 553 1954 147 53 464 75 542
12.3 86 50 - 40 102 - 1 38 5 93 36 37 58 1 45 182 8 3 60 4 60
12.2 - - - - - - - - - - - - 3 - - 2 1 - 2 - 7
12.1 - - - - - - - 206 10 186 56 32 28 - 36 114 - 5 22 4 24
8.7 - - - - - - 270 276 25 749 169 122 105 14 156 369 37 16 82 23 102
8.6 - - - - - - 161 224 26 477 120 139 119 8 134 258 48 3 26 23 48
8.5 - - - - - - 704 560 40 1312 319 232 229 31 338 429 47 36 101 51 124
8.4 - - - - - - 822 484 20 1787 303 316 330 25 186 504 61 38 126 15 150
8.3 - - - - - - 284 446 25 851 194 138 127 15 156 443 36 18 91 20 118
8.2 - - - - - - - 106 10 121 34 31 20 2 34 72 10 - 8 5 16
8.1 - - - - - - - 227 4 1680 206 204 138 - 123 18 53 4 2 14 4
4.7 - - - - - - 62 - - 132 28 - 12 - 4 44 - - 4 - 8
4.6 - - - - - - 48 74 8 142 42 32 30 4 67 44 6 - 4 12 8
4.5 - - - - - - - - - 1598 202 170 120 - - - 44 - - - -
4.4 - - - - - - - 102 12 128 22 30 23 2 24 36 5 2 4 3 8
4.3 - - - - - - - 142 8 1401 200 192 118 - 79 36 58 2 4 10 8
4.2 - - - - - - - 64 8 51 15 14 10 2 28 - 2 - - 4 -
4.1 - - - - - - - 32 4 416 58 53 36 - 22 18 17 - 2 4 4
2.3 - - - - - - - - - 157 23 20 14 - - - 6 - - - -
2.1 - - - - - - - - - 245 37 29 21 - - - 8 - - - -

Table 2.14: Possibly irreducible (6, 6)-groups with torsion and τ1 = τ2 = 0. (Part 1/2)



1
3
4

2.
L
attices

in
p
ro
d
u
cts

of
trees

24.3 24.2 24.1 18.2 16.1 12.3 12.2 12.1 8.7 8.6 8.5 8.4 8.3 8.2 8.1 4.7 4.6 4.5 4.4 4.3 4.2 4.1 2.3 2.1

{0, 2}∗ 3 - - 60 - 86 - - - - - - - - - - - - - - - - - -
{0, 2} 2 - - 41 - 50 - - - - - - - - - - - - - - - - - -
{2} 2 - - - - - - - - - - - - - - - - - - - - - - -

{0, 1}∗ 40 - - 19 - 40 - - - - - - - - - - - - - - - - - -
{0, 1} 55 - - 26 - 102 - - - - - - - - - - - - - - - - - -
{1}∗∗ - - - - - - - - - - - - - - - - - - - - - - - -
{1}∗ 1 - - 2 1122 1 - - 270 161 704 822 284 - - 62 48 - - - - - - -
{1} 32 - 928 68 1269 38 - 206 276 224 560 484 446 106 227 - 74 - 102 142 64 32 - -

{0}∗∗ 5 - 42 5 66 5 - 10 25 26 40 20 25 10 4 - 8 - 12 8 8 4 - -
{0}∗ 48 - 751 95 2805 93 - 186 749 477 1312 1787 851 121 1680 132 142 1598 128 1401 51 416 157 245
{0} 31 - 200 48 625 36 - 56 169 120 319 303 194 34 206 28 42 202 22 200 15 58 23 37

120.2 27 - 141 50 525 37 - 32 122 139 232 316 138 31 204 - 32 170 30 192 14 53 20 29
72.1 25 56 130 94 465 58 3 28 105 119 229 330 127 20 138 12 30 120 23 118 10 36 14 21
60.2 2 - - 2 53 1 - - 14 8 31 25 15 2 - - 4 - 2 - 2 - - -
48.2 24 - 190 41 553 45 - 36 156 134 338 186 156 34 123 4 67 - 24 79 28 22 - -
48.1 156 12 602 96 1954 182 2 114 369 258 429 504 443 72 18 44 44 - 36 36 - 18 - -
36.3 3 8 15 22 147 8 1 - 37 48 47 61 36 10 53 - 6 44 5 58 2 17 6 8
36.1 1 - 23 2 53 3 - 5 16 3 36 38 18 - 4 - - - 2 2 - - - -
24.6 51 12 112 34 464 60 2 22 82 26 101 126 91 8 2 4 4 - 4 4 - 2 - -
24.5 6 - 25 11 75 4 - 4 23 23 51 15 20 5 14 - 12 - 3 10 4 4 - -
24.4 74 117 126 27 542 60 7 24 102 48 124 150 118 16 4 8 8 - 8 8 - 4 - -
24.3 5 - 46 15 82 6 - 8 26 22 53 26 24 6 24 - 9 - 4 16 6 4 - -
24.2 - - 6 10 54 - - - 11 10 44 22 13 3 1 - 15 - 2 1 - - - -
24.1 46 6 - 20 366 26 - - 71 - 78 104 74 - - - - - - - - - - -
18.2 15 10 20 10 38 8 - 5 15 - 26 44 15 - - - - - - - - - - -
16.1 82 54 366 38 148 67 6 58 34 32 108 95 46 - - - 16 - - - - - - -
12.3 6 - 26 8 67 5 - - 17 14 28 19 24 5 12 - 4 - 6 10 4 2 - -
12.2 - - - - 6 - - - 1 1 4 4 1 - - - 1 - - - - - - -
12.1 8 - - 5 58 - - - 14 - 12 18 14 - - - - - - - - - - -
8.7 26 11 71 15 34 17 1 14 3 4 14 12 6 - - - 2 - - - - - - -
8.6 22 10 - - 32 14 1 - 4 - 8 8 4 - - - - - - - - - - -
8.5 53 44 78 26 108 28 4 12 14 8 22 36 18 - - - 4 - - - - - - -
8.4 26 22 104 44 95 19 4 18 12 8 36 19 16 - - - 4 - - - - - - -
8.3 24 13 74 15 46 24 1 14 6 4 18 16 5 - - - 2 - - - - - - -
8.2 6 3 - - - 5 - - - - - - - - - - - - - - - - - -
8.1 24 1 - - - 12 - - - - - - - - - - - - - - - - - -
4.7 - - - - - - - - - - - - - - - - - - - - - - - -
4.6 9 15 - - 16 4 1 - 2 - 4 4 2 - - - - - - - - - - -
4.5 - - - - - - - - - - - - - - - - - - - - - - - -
4.4 4 2 - - - 6 - - - - - - - - - - - - - - - - - -
4.3 16 1 - - - 10 - - - - - - - - - - - - - - - - - -
4.2 6 - - - - 4 - - - - - - - - - - - - - - - - - -
4.1 4 - - - - 2 - - - - - - - - - - - - - - - - - -
2.3 - - - - - - - - - - - - - - - - - - - - - - - -
2.1 - - - - - - - - - - - - - - - - - - - - - - - -

Table 2.15: Possibly irreducible (6, 6)-groups with torsion and τ1 = τ2 = 0. (Part 2/2)
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2.4 Virtually simple (d1, d2)-groups

In [BM00b] and [Rat04] the authors constructed virtually simple torsion-

free (d1, d2)-groups for different values of (d1, d2), for instance (6, 16) and

(10, 10). More recently and with the same ideas, Bondarenko and Kivva

constructed two virtually simple torsion-free (8, 8)-groups in [BK17].

In this section we find a list of virtually simple (6, 6)-groups and

(4, 5)-groups. We also give a virtually simple (2n, 2n+1)-group for each

n ≥ 2. We then end with virtually simple (6, 4n)-groups with n ≥ 2

so that the projection on the 6-regular tree T1 Chabauty converges to

Aut(T1) when n goes to infinity.

2.4.1 Virtually simple (6, 6)-groups

The idea for constructing virtually simple (d1, d2)-groups is to use the

Normal Subgroup Theorem [BM00b, Theorem 4.1] due to Burger and

Mozes, stating that if Γ is a (d1, d2)-group with Ht being 2-transitive

on ∂Tt and [Ht : H
(∞)
t ] < ∞ for each t ∈ {1, 2}, then any non-trivial

normal subgroup of Γ has finite index (i.e. Γ is just-infinite). Bader

and Shalom later proved a generalization of that theorem in [BS06]. We

give below a statement which is a consequence of their result. We call

it the Normal Subgroup Theorem (NST) for future references. A tree is

thick if each of its vertices has at least 3 neighbors.

Theorem (Normal Subgroup Theorem, Bader–Shalom). Let T1 and T2

be two locally finite thick trees and let Γ ≤ Aut(T1) × Aut(T2) be a

cocompact lattice such that projt(Γ) is 2-transitive on ∂Tt for each t ∈
{1, 2}. Then Γ and all its finite index subgroups are just-infinite. In

particular, Γ is either residually finite or virtually simple.

Proof. By [BM00a, Proposition 3.1.2], all finite index subgroups of a

closed subgroup of Aut(Tt) acting 2-transitively on ∂Tt also acts 2-

transitively on ∂Tt. Up to replacing Γ by a finite index subgroup, we

can therefore just show that Γ is just-infinite.

This is a consequence of [BS06, Theorem 1.1], modulo the fact that

if H is a closed subgroup of Aut(T ) acting 2-transitively on ∂T (with

T being a locally finite thick tree), then H is just non-compact (i.e. it
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Figure 2.7: The torsion-free (4, 4)-group Γ4,4.

is non-compact and all its non-trivial normal subgroups are cocompact)

and H does not contain any non-trivial abelian normal subgroup. This

is an easy exercise: it suffices to remember that a non-trivial normal

subgroup of a 2-transitive group is transitive, and to use the character-

izations of the 2-transitivity on ∂T given in [BM00a, Lemma 3.1.1].

Let us now show that Γ is residually finite or virtually simple. As Γ

is just-infinite, Γ(∞) is trivial or has finite index in Γ. If Γ(∞) = 1 then Γ

is residually finite. On the contrary, if Γ(∞) has finite index in Γ then it

is also just-infinite. So any non-trivial normal subgroup N of Γ(∞) has

finite index in Γ(∞) and thus in Γ, hence N = Γ(∞). This means that

Γ(∞) is simple.

In this subsection, we first present a torsion-free (4, 4)-group Γ4,4

that is not residually finite. The NST does not directly apply to Γ4,4,

but the strategy is then to embed Γ4,4 in some other (d1, d2)-group Γ on

which the NST can be used. Then Γ cannot be residually finite because

it contains Γ4,4, and hence it must be virtually simple.

Let Γ4,4 be the torsion-free (4, 4)-group associated to the four squares

in Figure 2.7. The local action of Γ4,4 on T1 (resp. T2) is D8 (resp.

Alt(4)), and it is possibly irreducible: it appears in Table 2.7.

We show that Γ4,4 is non-residually finite. This was already proved

in [BK17, Theorem 15] and [CW17, Corollary 6.4] but we here prove

it by finding an explicit non-trivial element γ ∈ Γ
(∞)
4,4 . In other words

γ is a non-trivial element of Γ4,4 such that ϕ(γ) = 1 for any finite

quotient ϕ: Γ4,4 → Q. The ideas of this proof are due to Caprace and

are already written in [Cap17a, Remark 4.19] but we give here some

additional details.

Proposition 2.4.1. The group Γ4,4 is irreducible and not residually

finite. Moreover, [a31, a
4
2] and [a32, a

4
1] are non-trivial elements of Γ

(∞)
4,4 .
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Proof. Irreducibility has been proved in [JW09, Theorem 3], but it can

also be established by using [Wei79, Theorem 1.1]. Indeed, in our

situation the result of Weiss implies that, if Γ4,4 was reducible, then

Fixproj2(Γ4,4)(B(v2, 4)) would be trivial. So for proving irreducibility we

just need to find some element in Γ4,4 fixing B(v2, 4) but not B(v2, 5).

We claim that (a1a2)
81 is such an element. First, we can compute that

(a1a2)
3 fixes B(v2, 1). Then, for each vertex w at distance 1 from v2,

(a1a2)
3 can only act trivially or as a 3-cycle on the three neighbors of

w different from v2 (because the local action is Alt(4)). So (a1a2)
9 fixes

B(v2, 2). Continuing with the same argument, we obtain that (a1a2)
81

fixes B(v2, 4). Finally, the fact that (a1a2)
81 does not fix B(v2, 5) can be

proved by drawing a 162× 5 rectangle. This can be automatized with a

computer, and we get for instance that (a1a2)
81(b51(v2)) = b41b

−1
2 (v2).

The strategy to find a non-trivial element in Γ
(∞)
4,4 is to use that for

any groupG and any subgroupH ≤ G, the inclusion [CG(H),H ] ⊆ G(∞)

holds, where H is the profinite closure of H (see [Cap17a, Lemma 4.13]).

Here we take G = Γ4,4. For H we consider Ba1 = Γ4,4(v1, a1(v1)),

i.e. the fixator of a1(v1) in B = 〈b1, b2〉 = Γ4,4(v1). We claim that

a31 ∈ CΓ4,4(Ba1) and a
4
2 ∈ Ba1 . This will thus show that [a31, a

4
2] ∈ Γ

(∞)
4,4 .

Since B acts transitively on the four vertices adjacent to v1 in T1,

the subgroup Ba1 has index 4 in B. Using the Reidemeister–Schreier

method, we could find the following set of generators for Ba1 :

Ba1 =
〈

b1b2, b
−1
1 b2, b2b1b

2
2, b2b

−1
1 b22, b

4
2

〉

.

From the geometric squares, it can be checked that a31 centralizes Ba1 ,

i.e. a31 ∈ CΓ4,4(Ba1). This indeed directly follows from the equalities

b1a
3
1b

−1
1 = a32,

b−1
1 a31b1 = a32,

b2a
3
1b

−1
2 = a32,

b−1
2 a31b2 = a−3

2 .

Note also that Ba1 is contained in B(2), the index 2 subgroup of B

consisting of elements whose length is even (with respect to the gener-
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ators b1 and b2). Our next goal is to show that a22 ∈ B(2), and it will

then follow that a42 ∈ Ba1 as wanted.

Consider a finite quotient ϕ: Γ4,4 → Q. Since Γ4,4 is irreducible, the

projection proj1(Γ4,4(v1)) is infinite. Hence, the finite index subgroup

proj1(FixΓ4,4(B(v1, 1))∩B(2)∩kerϕ) is also infinite. Let γ be an element

of FixΓ4,4(B(v1, 1)) ∩ B(2) ∩ kerϕ such that proj1(γ) is non-trivial. In

T1, there is a vertex w 6= v1 such that γ fixes the path from v1 to w but

does not fix some neighbor z of w: γ(z) = z′ 6= z. Write w = h(v1) with

h ∈ 〈a1, a2〉, z = hx(v1) with x ∈ {a1, a−1
1 , a2, a

−1
2 } and z′ = hx′(v1)

with x′ ∈ {a1, a−1
1 , a2, a

−1
2 }, see Figure 2.8. Recall that proj1(Γ4,4(v1))

acts on the four neighbors of v1 as D8 acting on the four vertices of a

square (where a1(v1) and a
−1
1 (v1) correspond to opposite vertices of the

square). We thus have the same local action around w, and the fact

that γ fixes w and some neighbor of w while not fixing z implies that

x′ = x−1. On Figure 2.8 we see that hx−1γ′ = γhx for some γ′ ∈ B(2).

Using the fact that ϕ(γ) = 1, this implies that ϕ(γ′) = ϕ(x2). We

can summarize this by saying that, for each finite quotient ϕ: Γ4,4 →
Q, either ϕ(a21) ∈ ϕ(B(2)) or ϕ(a22) ∈ ϕ(B(2)) (∗). In fact, we can

even say that there exists k ∈ {1, 2} such that ϕ(a2k) ∈ ϕ(B(2)) for all

finite quotients ϕ: Γ4,4 → Q (∗∗). Indeed, if (∗∗) was not true then we

would have two finite quotients ϕ1: Γ4,4 → Q1 and ϕ2: Γ4,4 → Q2 with

ϕ1(a
2
1) 6∈ ϕ1(B

(2)) and ϕ2(a
2
2) 6∈ ϕ2(B

(2)), and the new finite quotient

(ϕ1×ϕ2): Γ4,4 → Q1×Q2 would give a contradiction with (∗). Now there

suffices to remark that Γ4,4 has an automorphism defined by a1 7→ a2,

a2 7→ a1, b1 7→ b−1
1 and b2 7→ b−1

2 . Therefore, (∗∗) even tells us that ϕ(a21)

h x′

γ

h x

γ′

b

(v1, v2)

b
(v1, γ(v2))

b

(w, v2)

b
(w, γ(v2))

b

(z′, v2)

b
(z′, γ(v2))

Figure 2.8: Illustration of Proposition 2.4.1.
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and ϕ(a22) both belong to ϕ(B(2)) for all finite quotients ϕ: Γ4,4 → Q. In

particular, we have a22 ∈ B(2) as wanted.

Remark that, thanks to the automorphism of Γ4,4 defined above, we

also obtain [a32, a
4
1] ∈ Γ

(∞)
4,4 .

Using GAP, we could search for (d1, d2)-groups Γ with d1, d2 ≥ 6,

containing Γ4,4 (in the sense that the four geometric squares defining Γ4,4

are part of the geometric squares defining Γ) and such that H1(v1) ≥
Alt(d1) and H2(v2) ≥ Alt(d2). We say that Γ satisfies (∗) if the above

conditions are true. Since Γ4,4 is irreducible, a group Γ satisfying (∗)
is also irreducible and Ht is 2-transitive on ∂Tt for each t ∈ {1, 2} (see

[BM00a, Propositions 3.3.1 and 3.3.2]). (We even know by Corollary 1.E′

thatHt belongs to G′(i) for some legal coloring i of Tt.) Thus Γ is virtually

simple, by the NST.

We could find torsion-free (6, 8)-groups and torsion-free (8, 6)-groups

satisfying (∗), by adding one (resp. two) horizontal generator(s), two

(resp. one) vertical generator(s) and 8 geometric squares to the ones of

Γ4,4. We could also show that there does not exist any torsion-free (6, 6)-

group satisfying (∗). However, there exist (6, 6)-groups (with torsion)

with (∗). In total, there are 160 equivalence classes of such groups.

We give all these groups in Tables 2.16–2.20, by giving the geometric

squares that must be added to the four geometric squares a1b1a
−1
2 b1,

a1b2a2b
−1
2 , a1b

−1
2 a−1

2 b−1
1 and a1b

−1
1 a−1

2 b2 defining Γ4,4. We call them

Γ6,6,1, . . . ,Γ6,6,160. Some remarks follow about these groups:

• The index of the simple subgroup Γ
(∞)
6,6,k of Γ6,6,k can be com-

puted by using the fact that [a31, a
4
2] ∈ Γ

(∞)
4,4 ≤ Γ

(∞)
6,6,k (see Propo-

sition 2.4.1). Indeed, let Q be the group obtained by adding the

relator [a31, a
4
2] to the presentation of Γ6,6,k. Then the kernel of the

projection Γ6,6,k → Q is the smallest normal subgroup of Γ6,6,k

containing [a31, a
4
2], i.e. it must be Γ

(∞)
6,6,k. Hence, we just need to

compute (with GAP) the order of the finite group Q obtained as

above and this gives us the index of Γ
(∞)
6,6,k in Γ6,6,k. As written in

the tables, for all groups Γ6,6,k with k ∈ {1, . . . , 160} \ {104, 116},
we obtain that |Q| = 4. As [Γ6,6,k : Γ+

6,6,k] = 4, this implies that
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Γ
(∞)
6,6,k = Γ+

6,6,k i.e. Γ+
6,6,k is the simple subgroup of finite index in

Γ6,6,k. For Γ6,6,104 and Γ6,6,116, we get |Q| = 12. More precisely,

Q ∼= (C2)
2 ×C3. So Γ

(∞)
6,6,k is a subgroup of index 3 of Γ+

6,6,k when

k ∈ {104, 116}.

• The groups H1 = proj1(Γ6,6,k) and H2 = proj2(Γ6,6,k) are given,

using the notation of §2.3.7. As explained above, we could compute

that Γ6,6,k

/

Γ
(∞)
6,6,k

∼= (C2)
2 or (C2)

2×C3 for each k ∈ {1, . . . , 160}.
This explains why H1 and H2 never take the form X∗∗ or X ′∗ for

some X ⊂f Z≥0: recall that [G(i)(X
∗,X∗) : G+

(i)(X,X)] = 8 and

G′
(i)(X,X)∗

/

G+
(i)(X,X) ∼= C4.

• For the last column, recall that XΓ+
6,6,k

is a (d1, d2)-complex, as

defined in Definition 2.2.2. We write Aut(XΓ+
6,6,k

) for the set

of automorphisms of that complex that do not exchange hori-

zontal and vertical edges. We already know by hypothesis that

Aut(XΓ+
6,6,k

) ≥ C2×C2, and we computed the number of auto-

morphisms of XΓ+
6,6,k

that fix the four vertices v00, v10, v11 and v01.

As written in the tables, for each k ∈ {1, . . . , 160} we could observe

that there is at most one non-trivial such automorphism, so that

Aut(XΓ+
6,6,k

) ∼= C2×C2 or C2×C2×C2.

– If Aut(XΓ+
6,6,k

) ∼= C2×C2, then there is exactly one good

C2×C2-action on XΓ+
6,6,k

, so this means that Γ6,6,k is the

only (6, 6)-group whose type-preserving subgroup is Γ+
6,6,k.

– If Aut(XΓ+
6,6,k

) ∼= C2×C2×C2, then there are four good

C2×C2-actions on XΓ+
6,6,k

. This leads to four (6, 6)-groups

whose type-preserving subgroup is Γ+
6,6,k. For each such k we

could compute the three new (6, 6)-groups containing Γ+
6,6,k,

but it directly appears that they have much more torsion, i.e.

their τ1 and τ2 satisfy τ1 + τ2 ≥ 4. In particular, none of the

new groups obtained in that way is equivalent to some Γ6,6,k′.

From this discussion it follows that all Γ+
6,6,k are pairwise non-

conjugate in Aut(T1 × T2). By [BMZ09, Corollary 1.1.22], this

also means that they are all pairwise non-isomorphic.
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We summarize some of those results in the next theorem.

Theorem 2.4.2 (Theorem 2.C (i)). Let Γ6,6,k (k ∈ {1, . . . , 160}) be one

of the (6, 6)-groups given by Tables 2.16–2.20.

• If k 6∈ {104, 116}, then Γ+
6,6,k is simple.

• If k ∈ {104, 116}, then Γ+
6,6,k has a simple subgroup of index 3.

Moreover, all simple groups Γ
(∞)
6,6,k are pairwise non-isomorphic. In par-

ticular, the groups Γ6,6,k are pairwise non commensurable.

Proof. See the discussion above. Note that Γ
(∞)
6,6,k 6∼= Γ

(∞)
6,6,k′ for each

k ∈ {1, . . . , 160} \ {104, 116} and each k′ ∈ {104, 116}, see [BMZ09,

Theorem 1.4.1]. We also have Γ
(∞)
6,6,104 6∼= Γ

(∞)
6,6,116. Indeed, they are not

conjugate in Aut(T1 × T2) since proj2(Γ
(∞)
6,6,104) 6∼= projt(Γ

(∞)
6,6,116) for each

t ∈ {1, 2} (see Table 2.19).

Proof of Corollary 2.D (i). This group is Γ6,6,2, see Table 2.16.
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Name τ1 τ2 Squares: a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a

−1
2 b

−1
1 , a1b

−1
1 a

−1
2 b2 + H1 H2 [Γ : Γ(∞)] Aut(X

Γ+ )

Γ6,6,1 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {0} {0}∗ 4 C2 ×C2

Γ6,6,2 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {0} {1} 4 C2 ×C2

Γ6,6,3 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 {0} {2} 4 C2 ×C2

Γ6,6,4 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 {0} {2} 4 C2 ×C2

Γ6,6,5 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
3 , a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,6 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b

−1
3 a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,7 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b3, a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,8 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b3a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,9 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,10 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b3a3b

−1
1 {0}∗ {0}∗ 4 C2 ×C2 ×C2

Γ6,6,11 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {0}∗ {1} 4 C2 ×C2 ×C2

Γ6,6,12 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b3a3b

−1
1 {0}∗ {1} 4 C2 ×C2 ×C2

Γ6,6,13 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {0}∗ {2} 4 C2 ×C2 ×C2

Γ6,6,14 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b2, a3b3a3b

−1
1 {0}∗ {2} 4 C2 ×C2 ×C2

Γ6,6,15 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b3, a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {0}∗ {2} 4 C2 ×C2 ×C2

Γ6,6,16 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a

−1
3 b2, a3b3a3b

−1
1 {0}∗ {2} 4 C2 ×C2 ×C2

Γ6,6,17 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
3 , a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {0}∗ {0, 2} 4 C2 ×C2 ×C2

Γ6,6,18 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a

−1
3 b2, a3b

−1
3 a3b

−1
1 {0}∗ {0, 2} 4 C2 ×C2 ×C2

Γ6,6,19 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {0}∗ {0, 2} 4 C2 ×C2 ×C2

Γ6,6,20 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b2, a3b3a3b

−1
1 {0}∗ {0, 2} 4 C2 ×C2 ×C2

Γ6,6,21 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {1} {0}∗ 4 C2 ×C2

Γ6,6,22 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
3 , a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,23 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a3b

−1
2 , a3b

−1
3 a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,24 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b3, a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,25 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a3b

−1
2 , a3b3a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,26 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,27 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
2 , a3b3a3b

−1
1 {1} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,28 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {1} {1} 4 C2 ×C2

Γ6,6,29 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {1} 4 C2 ×C2 ×C2

Γ6,6,30 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
2 , a3b3a3b

−1
1 {1} {1} 4 C2 ×C2 ×C2

Γ6,6,31 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {2} 4 C2 ×C2

Γ6,6,32 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {2} 4 C2 ×C2 ×C2

Table 2.16: Some virtually simple (6, 6)-groups. (Part 1/5)
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Name τ1 τ2 Squares: a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a

−1
2 b

−1
1 , a1b

−1
1 a

−1
2 b2 + H1 H2 [Γ : Γ(∞)] Aut(X

Γ+ )

Γ6,6,33 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b2, a3b3a3b

−1
1 , a3b

−1
2 a3b

−1
2 {1} {2} 4 C2 ×C2 ×C2

Γ6,6,34 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {2} 4 C2 ×C2

Γ6,6,35 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b3, a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {2} 4 C2 ×C2 ×C2

Γ6,6,36 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a3b2, a3b3a3b

−1
1 , a3b

−1
2 a3b

−1
2 {1} {2} 4 C2 ×C2 ×C2

Γ6,6,37 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
3 , a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {0, 2} 4 C2 ×C2 ×C2

Γ6,6,38 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a3b2, a3b

−1
3 a3b

−1
1 , a3b

−1
2 a3b

−1
2 {1} {0, 2} 4 C2 ×C2 ×C2

Γ6,6,39 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {1} {0, 2} 4 C2 ×C2 ×C2

Γ6,6,40 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b2, a3b3a3b

−1
1 , a3b

−1
2 a3b

−1
2 {1} {0, 2} 4 C2 ×C2 ×C2

Γ6,6,41 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
2 , a3b2a3b

−1
3 , a3b

−1
1 a3b

−1
1 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,42 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a3b

−1
1 , a3b

−1
3 a3b

−1
2 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,43 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b

−1
2 , a3b2a3b3, a3b

−1
1 a3b

−1
1 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,44 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a3b

−1
1 , a3b3a3b

−1
2 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,45 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b3, a3b

−1
1 a3b

−1
1 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,46 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
1 , a3b3a3b

−1
2 {0, 1} {0}∗ 4 C2 ×C2

Γ6,6,47 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b3, a3b

−1
1 a3b

−1
1 {0, 1} {1} 4 C2 ×C2

Γ6,6,48 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
1 , a3b3a3b

−1
2 {0, 1} {1} 4 C2 ×C2

Γ6,6,49 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b2, a3b3a3b

−1
1 {0, 1}∗ {0}∗ 4 C2 ×C2

Γ6,6,50 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 1}∗ {0}∗ 4 C2 ×C2

Γ6,6,51 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b2, a3b3a3b

−1
1 {0, 1}∗ {1} 4 C2 ×C2

Γ6,6,52 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 1}∗ {1} 4 C2 ×C2

Γ6,6,53 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,54 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,55 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
2 , a3b3a3b

−1
1 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,56 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b3a3b

−1
1 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,57 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
1 , a3b2a3b

−1
3 , a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,58 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a

−1
3 b

−1
1 , a3b2a3b

−1
3 , a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,59 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,60 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a

−1
3 b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,61 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,62 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {0}∗ 4 C2 ×C2

Γ6,6,63 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,64 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {1} 4 C2 ×C2 ×C2

Table 2.17: Some virtually simple (6, 6)-groups. (Part 2/5)
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Name τ1 τ2 Squares: a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a

−1
2 b

−1
1 , a1b

−1
1 a

−1
2 b2 + H1 H2 [Γ : Γ(∞)] Aut(X

Γ+ )

Γ6,6,65 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
2 , a3b3a3b

−1
1 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,66 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b

−1
2 , a3b3a3b

−1
1 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,67 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {1} 4 C2 ×C2

Γ6,6,68 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b

−1
1 , a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {1} 4 C2 ×C2

Γ6,6,69 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,70 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,71 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b2, a3b3a3b

−1
1 , a3b

−1
2 a3b

−1
2 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,72 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b2, a3b3a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,73 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2

Γ6,6,74 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {2} 4 C2 ×C2

Γ6,6,75 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b2, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,76 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a

−1
3 b2, a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,77 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b2, a3b3a3b

−1
1 , a3b

−1
2 a3b

−1
2 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,78 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a

−1
3 b2, a3b3a3b

−1
1 {2} {2} 4 C2 ×C2 ×C2

Γ6,6,79 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {2} 4 C2 ×C2

Γ6,6,80 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a

−1
3 b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {2} 4 C2 ×C2

Γ6,6,81 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b1, a3b2a3b

−1
3 , a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {0, 2} 4 C2 ×C2

Γ6,6,82 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a

−1
3 b1, a3b2a3b

−1
3 , a3b

−1
2 a3b

−1
2 {2} {0, 2} 4 C2 ×C2

Γ6,6,83 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 , a3b

−1
1 a3b

−1
1 {2} {0, 2} 4 C2 ×C2

Γ6,6,84 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a

−1
3 b1, a3b2a3b3, a3b

−1
2 a3b

−1
2 {2} {0, 2} 4 C2 ×C2

Γ6,6,85 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
2 , a3b2a3b2, a3b

−1
3 a3b

−1
1 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,86 0 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3a3b3, a3b1a3b

−1
3 , a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,87 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b

−1
2 , a3b2a3b2, a3b3a3b

−1
1 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,88 0 0 a1b3a1b3, a1b
−1
3 a3b

−1
3 , a2b3a

−1
2 b3, a3b1a3b3, a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,89 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b2, a3b3a3b

−1
1 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,90 0 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 2} {0}∗ 4 C2 ×C2

Γ6,6,91 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b2, a3b3a3b

−1
1 {0, 2} {1} 4 C2 ×C2

Γ6,6,92 0 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b3, a3b2a3b

−1
1 , a3b

−1
2 a3b

−1
2 {0, 2} {1} 4 C2 ×C2

Γ6,6,93 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b3, a3b

−1
1 a3b

−1
1 {0, 2}∗ {0}∗ 4 C2 ×C2

Γ6,6,94 0 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
1 , a3b3a3b

−1
2 {0, 2}∗ {0}∗ 4 C2 ×C2

Γ6,6,95 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b

−1
2 , a3b2a3b3, a3b

−1
1 a3b

−1
1 {0, 2}∗ {1} 4 C2 ×C2

Γ6,6,96 0 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 a3b

−1
3 , a3b1a3b1, a3b2a3b

−1
1 , a3b3a3b

−1
2 {0, 2}∗ {1} 4 C2 ×C2

Table 2.18: Some virtually simple (6, 6)-groups. (Part 3/5)
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Name τ1 τ2 Squares: a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a

−1
2 b

−1
1 , a1b

−1
1 a

−1
2 b2 + H1 H2 [Γ : Γ(∞)] Aut(X

Γ+ )

Γ6,6,97 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,98 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b1, A3b2A4b2, A4b1A4b3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,99 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,100 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b1, A3b2A4b2, A4b1A4b3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,101 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,102 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b3 {0} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,103 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,104 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {1} 12 C2 ×C2 ×C2

Γ6,6,105 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,106 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,107 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,108 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,109 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,110 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,111 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,112 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {1} 4 C2 ×C2 ×C2

Γ6,6,113 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {0, 1} 4 C2 ×C2 ×C2

Γ6,6,114 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {0, 1} 4 C2 ×C2 ×C2

Γ6,6,115 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {0} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,116 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {0} {1, 2} 12 C2 ×C2 ×C2

Γ6,6,117 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {0} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,118 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {0} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,119 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,120 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,121 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {0, 1, 2} 4 C2 ×C2 ×C2

Γ6,6,122 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {0, 1, 2} 4 C2 ×C2 ×C2

Γ6,6,123 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {0} {0, 1, 2} 4 C2 ×C2 ×C2

Γ6,6,124 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {0} {0, 1, 2} 4 C2 ×C2 ×C2

Γ6,6,125 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {0} {2, 3} 4 C2 ×C2 ×C2

Γ6,6,126 2 0 a1b3a1b3, a1b
−1
3 a2b

−1
3 , a2b3A3b3, A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {0} {2, 3} 4 C2 ×C2 ×C2

Γ6,6,127 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {0} {2, 3} 4 C2 ×C2 ×C2

Γ6,6,128 2 0 a1b3a1b3, a1b
−1
3 a

−1
2 b

−1
3 , a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {0} {2, 3} 4 C2 ×C2 ×C2

Table 2.19: Some virtually simple (6, 6)-groups. (Part 4/5)
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Name τ1 τ2 Squares: a1b1a
−1
2 b1, a1b2a2b

−1
2 , a1b

−1
2 a

−1
2 b

−1
1 , a1b

−1
1 a

−1
2 b2 + H1 H2 [Γ : Γ(∞)] Aut(X

Γ+ )

Γ6,6,129 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b2, A4b2A4b

−1
3 {0}∗ {0}∗ 4 C2 ×C2

Γ6,6,130 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b

−1
2 , A3b

−1
1 A4b1, A4b2A4b

−1
3 {0}∗ {1} 4 C2 ×C2

Γ6,6,131 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b2, A4b2A4b

−1
3 {0}∗ {1} 4 C2 ×C2

Γ6,6,132 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b

−1
2 , A3b

−1
1 A4b1, A4b2A4b

−1
3 {0}∗ {1} 4 C2 ×C2

Γ6,6,133 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b2, A3b

−1
1 A4b1, A4b2A4b

−1
3 {0}∗ {0, 1} 4 C2 ×C2

Γ6,6,134 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b

−1
2 , A4b2A4b

−1
3 {0}∗ {1, 2} 4 C2 ×C2

Γ6,6,135 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b2, A3b

−1
1 A4b1, A4b2A4b

−1
3 {0}∗ {1, 2} 4 C2 ×C2

Γ6,6,136 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b

−1
2 , A4b2A4b

−1
3 {0}∗ {1, 2} 4 C2 ×C2

Γ6,6,137 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,138 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b3 {2} {0}∗ 4 C2 ×C2 ×C2

Γ6,6,139 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A4b1, A3b2A3b2, A4b2A4b

−1
3 {2} {0}∗ 4 C2 ×C2

Γ6,6,140 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,141 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,142 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b

−1
3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,143 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b2, A4b1A4b3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,144 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b

−1
2 , A3b

−1
1 A4b1, A4b2A4b

−1
3 {2} {1} 4 C2 ×C2

Γ6,6,145 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b2, A4b2A4b

−1
3 {2} {1} 4 C2 ×C2

Γ6,6,146 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,147 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {2} {1} 4 C2 ×C2 ×C2

Γ6,6,148 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A4b

−1
1 , A3b2A3b

−1
2 , A3b

−1
1 A4b1, A4b2A4b

−1
3 {2} {1} 4 C2 ×C2

Γ6,6,149 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {2} {0, 1} 4 C2 ×C2 ×C2

Γ6,6,150 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {2} {0, 1} 4 C2 ×C2 ×C2

Γ6,6,151 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b

−1
1 , A3b2A3b2, A3b

−1
1 A4b1, A4b2A4b

−1
3 {2} {0, 1} 4 C2 ×C2

Γ6,6,152 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,153 2 0 a1b3a1b
−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,154 2 0 a1b3a
−1
1 b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A4b1, A3b2A3b

−1
2 , A4b2A4b

−1
3 {2} {1, 2} 4 C2 ×C2

Γ6,6,155 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b

−1
3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,156 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b

−1
1 , A3b2A4b2, A4b1A4b3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,157 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b

−1
3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,158 2 0 a1b3a1b3, a1b
−1
3 a1b

−1
3 , a2b3a2b3, a2b

−1
3 A3b

−1
3 , A3b1A3b1, A3b2A4b

−1
2 , A3b

−1
2 A4b2, A4b1A4b3 {2} {1, 2} 4 C2 ×C2 ×C2

Γ6,6,159 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A4b

−1
1 , A3b2A3b2, A3b

−1
1 A4b1, A4b2A4b

−1
3 {2} {1, 2} 4 C2 ×C2

Γ6,6,160 2 0 a1b3a1b3, a1b
−1
3 A3b

−1
3 , a2b3a

−1
2 b3, A3b1A4b1, A3b2A3b

−1
2 , A4b2A4b

−1
3 {2} {1, 2} 4 C2 ×C2

Table 2.20: Some virtually simple (6, 6)-groups. (Part 5/5)
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2.4.2 Virtually simple (4, 5)-groups

In this subsection we use the same strategy as above so as to discover vir-

tually simple (4, 5)-groups. The NST however requires the closures of the

projections to be boundary-2-transitive. In the previous section we were

dealing with 6-regular trees, so [BM00a, Propositions 3.3.1 and 3.3.2]

could be used to ensure the 2-transitivity on the boundary. For 4-regular

and 5-regular trees, those results do not apply. We will therefore need

the following theorem, due to Trofimov.

Theorem 2.4.3 (Trofimov). Let X be a connected (q+1)-regular graph

with q ≥ 2 a prime power and let G ≤ Aut(X) be vertex-transitive.

Let v ∈ V (X) and suppose that G(v) contains PSL(2, q) (acting on the

projective line over Fq) as a normal subgroup. If G is non-discrete,

then X is the (q + 1)-regular tree and the closure G ≤ Aut(X) of G is

2-transitive on ∂X.

Proof. See [Tro07, Proposition 3.1 and Example 3.2]. Note that the

original statement only mentions that X is the (q + 1)-regular tree.

However, the proof consists in showing that G is transitive on paths of

length ℓ of X for each ℓ ≥ 1. This assertion implies that X is a tree,

but also that G is 2-transitive on ∂X.

In §2.4.1 we started with a non-residually finite torsion-free (4, 4)-

group. This time we start with a non-residually finite (3, 3)-group. Let

Γ3,3 be the (3, 3)-group associated to the six squares in Figure 2.9. The

local action of Γ3,3 on T1 (resp. T2) is Sym(3) (resp. C2). In the next

result, with the same ideas as for Proposition 2.4.1, we show that Γ3,3

is irreducible and not residually finite. Note that we could have used

[CW17, Corollary 6.4] for the non-residual finiteness, but once again we

wanted an explicit non-trivial element of Γ
(∞)
3,3 .

Figure 2.9: The (3, 3)-group Γ3,3.
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Proposition 2.4.4. The group Γ3,3 is irreducible and not residually

finite. Moreover, [B2(B1B3)
2B2, B1B3] or [B2(B1B3)

2B2, B1B3A2] is a

non-trivial element of Γ
(∞)
3,3 .

Proof. By [Wei79, Theorems 1.1 and 1.4], Γ3,3 is irreducible if and only

if Fixproj1(Γ3,3)(B(v1, 3)) is non-trivial. We first remark that (B1B2)
2

fixes B(v1, 1). Hence, (B1B2)
4 fixes B(v1, 2) and (B1B2)

8 fixes B(v1, 3).

Moreover, (B1B2)
8 does not fix B(v1, 4) as (B1B2)

8(A2A3A1A3(v1)) =

A2A3A1A2(v1) (this can be seen by drawing a 4× 16 rectangle). So Γ3,3

is irreducible.

We now want a non-trivial element in Γ
(∞)
3,3 . Recall from [Cap17a,

Lemma 4.13] that [CG(H),H ] ⊆ G(∞)] for any subgroup H of a group

G. We take G = Γ3,3 and H = 〈A1, A3, A2A1A2, A2A3A2〉. Note that H
is a subgroup of 〈A1, A2, A3〉 = Γ3,3(v2). Actually, Γ3,3(v2) acts simply

transitively on the vertices of T1 andH has two orbits of vertices in T1, so

its index in Γ3,3(v2) is 2. It is also quick to check that B2(B1B3)
2B2 ∈

CΓ3,3(H). We now claim that B1B3 ∈ Γ3,3(v2). As A2 6∈ H and H

is an index 2 subgroup of Γ3,3(v2), it will follow that B1B3 ∈ H or

B1B3A2 ∈ H.

We show that B1B3 ∈ Γ3,3(v2) by mimicking the proof of Proposi-

tion 2.4.1, which was illustrated on Figure 2.8. Consider a finite quotient

ϕ: Γ3,3 → Q. Since Γ3,3 is irreducible, the projection proj2(Γ3,3(v2)) is

infinite. Hence, its finite index subgroup proj2(FixΓ3,3(B(v2, 1))∩ kerϕ)
is also infinite. Let γ be an element of FixΓ3,3(B(v2, 1)) ∩ kerϕ such

that proj2(γ) is non-trivial. In T2, there is a vertex w 6= v2 such that

γ fixes the path from v2 to w but does not fix some neighbor z of w:

γ(z) = z′ 6= z. Write w = h(v2) with h ∈ 〈B1, B2, B3〉, z = hx(v2)

with x ∈ {B1, B2, B3} and z′ = hx′(v2) with x′ ∈ {B1, B2, B3}. Recall

that proj2(Γ3,3(v2)) acts on the three neighbors of v2 as C2: the only

non-trivial permutation induced on these three vertices is the transpo-

sition (B1(v2) B3(v2)). We thus have the same local action around w,

and the fact that γ fixes w and some neighbor of w while not fixing z

implies that {x, x′} = {B1, B3}. Then we get that γhx = hx′γ′ for some

γ′ ∈ Γ3,3(v2). As ϕ(γ) = 1, this implies that ϕ(x′−1x) ∈ ϕ(Γ3,3(v2)).

Either x′−1x or its inverse is equal to B1B3, so ϕ(B1B3) ∈ ϕ(Γ3,3(v2)).
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This is true for all finite quotients ϕ: Γ3,3 → Q, so B1B3 ∈ Γ3,3(v2).

The same proof can actually show that [B2(B1B3)
2B2, (B1B3)

2] is

always a non-trivial element of Γ
(∞)
3,3 . But this element has length 20

and our computer could hardly deal with it. Instead, the elements

[B2(B1B3)
2B2, B1B3] and

[B2(B1B3)
2B2, B1B3A2] = B2(B1B3)

2B2B1B3B2(B1B3)
2B2B3B1

given by Proposition 2.4.4 have length 16, which is slightly better.

Using GAP we could search for (4, 5)-groups Γ containing Γ3,3 or the

mirror of Γ3,3 (i.e. {(g1, g2) ∈ Aut(T1)×Aut(T2) | (g2, g1) ∈ Γ3,3}), and
such that H1(v1)DPSL(2, 3) ∼= Alt(4) and H2(v2)DPSL(2, 4) ∼= Alt(5).

We say that Γ satisfies (∗∗) if the above conditions are true. Since Γ3,3

is irreducible, a group Γ satisfying (∗∗) is also irreducible and Ht is 2-

transitive on ∂Tt for each t ∈ {1, 2} by Theorem 2.4.3. Thus the NST

applies and Γ is virtually simple.

There are 60 equivalence classes of (4, 5)-groups satisfying (∗∗), all
with τ1 = 4 and τ2 = 5 (i.e. with 9 generators, each of order 2). We give

in Tables 2.21–2.22 a group in each class: call them Γ4,5,1, . . . ,Γ4,5,60.

Note that Γ4,5,1, . . . ,Γ4,5,28 contain Γ3,3 while Γ4,5,29, . . . ,Γ4,5,60 contain

its mirror. We can make some remarks similar to those in §2.4.1:

• The index of the simple subgroup Γ
(∞)
4,5,k of Γ4,5,k can be com-

puted by using the fact that r1 = [B2(B1B3)
2B2, B1B3] or r2 =

[B2(B1B3)
2B2, B1B3A2] belongs to Γ

(∞)
3,3 (see Proposition 2.4.4).

Indeed, if Q1 (resp. Q2) is the group obtained by adding the rela-

tor r1 (resp. r2) to the presentation of Γ4,5,k, then [Γ4,5,k : Γ
(∞)
4,5,k] =

max(|Q1|, |Q2|). (For k ≥ 29 we must actually consider the mir-

rors of r1 and r2). The indices that we obtain are written in the

tables. When the index is 4 we have Γ
(∞)
4,5,k = Γ+

4,5,k, and when it

is 8 we have that Γ
(∞)
4,5,k is an index 2 subgroup of Γ+

4,5,k.

• For each k ∈ {1, . . . , 60} we get Aut(XΓ+
4,5,k

) ∼= C2×C2, so Γ4,5,k

is the only (4, 5)-group whose type-preserving subgroup is Γ+
4,5,k.

Therefore all Γ+
4,5,k are pairwise non-conjugate in Aut(T1×T2) (and

thus pairwise non-isomorphic by [BMZ09, Corollary 1.1.22]).
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Theorem 2.4.5 (Theorem 2.C (ii)). Let Γ4,5,k (k ∈ {1, . . . , 60}) be one

of the (4, 5)-groups given by Tables 2.21–2.22.

• If k ∈ {1, . . . , 32} ∪ {39, . . . , 54}, then Γ+
4,5,k is simple.

• If k ∈ {33, . . . , 38}∪{55, . . . , 60}, then Γ+
4,5,k has a simple subgroup

of index 2.

Moreover, all groups Γ+
4,5,k are pairwise non-isomorphic.

Proof. See the discussion above.

Corollary 2.4.6. For each k ∈ {1, . . . , 32} ∪ {39, . . . , 54}, there exist

two injections F11 →֒ F3 of free groups such that the simple group Γ+
4,5,k

is isomorphic to the amalgamated free product F3 ∗F11 F3.

Proof. Recall that Γ4,5,k(v2) = 〈A1, A2, A3, A4〉, where A1, A2, A3 and

A4 are order 2 elements sending v1 to its four neighbours in T1. Hence,

the index 2 subgroup G = Γ+
4,5,k(v2) is a free group of rank 3, on the

3 generators A1A2, A1A3 and A1A4. If v′2 is a vertex adjacent to v2 in

T2, then G
′ = Γ+

4,5,k(v
′
2) is also isomorphic to F3. Moreover, these two

point stabilizers G and G′ generate Γ+
4,5,k so that Γ+

4,5,k = G ∗G∩G′ G′

(see [Ser77, Theorem 6]). The subgroup G ∩ G′ has index 5 in both G

and G′, so G∩G′ is free of rank 1+5(3−1) = 11 by the Nielsen–Schreier

formula.

Proof of Corollary 2.D (ii). This is the presentation of Γ+
4,5,9 (see Fig-

ure 2.10). In order to find this presentation, we write x1 = A1A2,

x2 = A1A3 and x3 = A1A4 so that G = Γ+
4,5,9(v2) is freely generated by

44

4

55 45

4

4

4

4

4

Figure 2.10: The (4, 5)-group Γ4,5,9.
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x1, x2 and x3. In the same manner, the stabilizer G′ = Γ+
4,5,9(B1(v2)) of

the vertex B1(v2) (which is adjacent to v2 in T2) is freely generated by

y1 = B1A1A2B1, y2 = B1A1A3B1 and y3 = B1A1A4B1. The subgroup

G ∩ G′ of G has index 5 in G, and the Reidemeister–Schreier method

can be used to find 11 generators of this subgroup (which is isomorphic

to F11). After some computations we came up with the 11 elements of

G = 〈x1, x2, x3〉 written on the left-hand sides of the 11 relations of the

presentation given in the statement. Those 11 elements also belong to

G′ = 〈y1, y2, y3〉, and it then suffices to write them in terms of the yi’s.

For instance, for x22 ∈ G we have

x22 = (A1A3)
2

= B1(B1(A1A3)
2B1)B1

= B1(A1A3A2A3)B1

= B1(A1A3A2A1A1A3)B1

= B1(X2X
−1
1 X2)B1

= y2y
−1
1 y2

The geometric squares defining Γ4,5,9 have been used to find the equality

B1(A1A3)
2B1 = A1A3A2A3.
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Name Squares: A1B1A1B1, A1B2A1B2, A1B3A2B3, A2B1A2B1, A2B2A3B2, A3B1A3B3 + H1(v1) H2(v2) [Γ : Γ(∞)] Aut(XΓ+ )

Γ4,5,1 A1B4A1B4, A1B5A1B5, A2B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,2 A1B4A1B4, A1B5A1B5, A2B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,3 A1B4A1B4, A1B5A3B5, A2B4A2B5, A3B4A4B4, A4B1A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,4 A1B4A1B4, A1B5A3B5, A2B4A2B5, A3B4A4B4, A4B1A4B5, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,5 A1B4A1B4, A1B5A4B5, A2B4A2B5, A3B4A3B4, A3B5A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,6 A1B4A1B4, A1B5A4B5, A2B4A2B5, A3B4A3B4, A3B5A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,7 A1B4A1B4, A1B5A4B5, A2B4A2B5, A3B4A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,8 A1B4A1B4, A1B5A4B5, A2B4A2B5, A3B4A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,9 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,10 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,11 A1B4A3B4, A1B5A4B5, A2B4A2B5, A3B5A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,12 A1B4A3B4, A1B5A4B5, A2B4A2B5, A3B5A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,13 A1B4A1B5, A2B4A2B4, A2B5A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,14 A1B4A1B5, A2B4A2B4, A2B5A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,15 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,16 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B5, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,17 A1B4A1B5, A2B4A2B4, A2B5A4B5, A3B4A3B4, A3B5A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,18 A1B4A1B5, A2B4A2B4, A2B5A4B5, A3B4A3B4, A3B5A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,19 A1B4A1B5, A2B4A2B4, A2B5A4B5, A3B4A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,20 A1B4A1B5, A2B4A2B4, A2B5A4B5, A3B4A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,21 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,22 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,23 A1B4A1B5, A2B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,24 A1B4A1B5, A2B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,25 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,26 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,27 A1B4A3B5, A2B4A2B4, A2B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,28 A1B4A3B5, A2B4A2B4, A2B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Table 2.21: Some virtually simple (4, 5)-groups containing Γ3,3.
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Name Squares: A1B1A1B1, A1B2A1B2, A1B3A3B3, A2B1A2B1, A2B2A2B3, A3B1A3B2 + H1(v1) H2(v2) [Γ : Γ(∞)] Aut(XΓ+ )

Γ4,5,29 A1B4A1B4, A1B5A2B5, A2B4A4B4, A3B4A3B5, A4B1A4B1, A4B2A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,30 A1B4A1B4, A1B5A2B5, A2B4A4B4, A3B4A3B5, A4B1A4B1, A4B2A4B5, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,31 A1B4A1B4, A1B5A2B5, A2B4A4B4, A3B4A3B5, A4B1A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,32 A1B4A1B4, A1B5A2B5, A2B4A4B4, A3B4A3B5, A4B1A4B3, A4B2A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,33 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B1, A4B2A4B2, A4B3A4B4 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,34 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B1, A4B2A4B4, A4B3A4B3 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,35 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Alt(5) 8 C2 ×C2

Γ4,5,36 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B3, A4B2A4B4 Sym(4) Alt(5) 8 C2 ×C2

Γ4,5,37 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B4, A4B2A4B2, A4B3A4B3 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,38 A1B4A1B4, A1B5A4B5, A2B4A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Alt(5) 8 C2 ×C2

Γ4,5,39 A1B4A2B4, A1B5A4B5, A2B5A2B5, A3B4A3B5, A4B1A4B1, A4B2A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,40 A1B4A2B4, A1B5A4B5, A2B5A2B5, A3B4A3B5, A4B1A4B1, A4B2A4B4, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,41 A1B4A2B4, A1B5A4B5, A2B5A2B5, A3B4A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,42 A1B4A2B4, A1B5A4B5, A2B5A2B5, A3B4A3B5, A4B1A4B3, A4B2A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,43 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B1, A4B2A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,44 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B1, A4B2A4B5, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,45 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B2, A4B3A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,46 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B3, A4B2A4B5 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,47 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B5, A4B2A4B2, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,48 A1B4A1B5, A2B4A2B4, A2B5A3B5, A3B4A4B4, A4B1A4B5, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,49 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B1, A4B2A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,50 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B1, A4B2A4B4, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,51 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,52 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B3, A4B2A4B4 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,53 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B4, A4B2A4B2, A4B3A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,54 A1B4A1B5, A2B4A3B4, A2B5A4B5, A3B5A3B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 4 C2 ×C2

Γ4,5,55 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B1, A4B2A4B2, A4B3A4B4 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,56 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B1, A4B2A4B4, A4B3A4B3 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,57 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B2, A4B3A4B4 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,58 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B3, A4B2A4B4 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,59 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B2, A4B3A4B3 Sym(4) Sym(5) 8 C2 ×C2

Γ4,5,60 A1B4A2B5, A3B4A3B4, A3B5A4B5, A4B1A4B4, A4B2A4B3 Sym(4) Sym(5) 8 C2 ×C2

Table 2.22: Some virtually simple (4, 5)-groups containing the mirror of Γ3,3.
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2.4.3 Virtually simple (2n, 2n+ 1)-groups (n ≥ 2)

In §2.4.2 we gave a list of virtually simple (4, 5)-groups Γ4,5,k. We now

construct for each n ≥ 2 a virtually simple (2n, 2n+1)-group. For n = 2

we take Γ4,5 = Γ4,5,9, see Table 2.21 and Figure 2.10. For n ≥ 3 we

define Γ2n,2n+1 as the (2n, 2n + 1)-group whose geometric squares are:

(1) the 11 geometric squares of Γ4,5;

(2) the 3 geometric squares A2rB2r+1A1B2r, A2r−1B2rA2r−1B1 and

A2r−1B2r+1A2B2r+1 for each 3 ≤ r ≤ n, see Figure 2.11;

(3) all geometric squares AjBkAjBk with j ∈ {1, . . . , 2n} and k ∈
{1, . . . , 2n+1} such that the corner (Aj , Bk) does not already appear

in a geometric square of (1) or (2).

2r

2r + 12r

2r − 1

2r − 1

2r

2r − 1

2r + 12r + 1

Figure 2.11: Additional squares in Γ2n,2n+1.

Theorem 2.4.7 (Theorem 2.E). For each n ≥ 2, Γ2n,2n+1 is a virtu-

ally simple (2n, 2n + 1)-group with H1(v1) ∼= Sym(2n) and H2(v2) ∼=
Sym(2n + 1) and such that Γ2n,2n+1

/

Γ
(∞)
2n,2n+1

∼= (C2)
n. Moreover, if

n ≥ 3, then there is a legal coloring i of T1 such that

• H1 = G(i)({4}, {4}) if n is even;

• H1 = G(i)({0, 2, 3}, {0, 2, 3}) if n is odd.

Proof. The group H1(v1) is generated by the following 2n+ 1 permuta-

tions, which clearly generate Sym(2n):

B1 : ()

B2 : (A2 A3)

B3 : (A1 A2)
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B4 : (A2 A3)

B5 : (A1 A4)(A2 A3)

B2r (3 ≤ r ≤ n) : (A1 A2r)

B2r+1 (3 ≤ r ≤ n) : (A1 A2r)(A2 A2r−1)

For H2(v2) we have the 2n permutations

A1 : (B6 B7)(B8 B9) . . . (B2n B2n+1)

A2 : (B4 B5)

A3 : (B1 B3)(B4 B5)

A4 : (B1 B2)(B3 B4)

A2r−1 (3 ≤ r ≤ n) : (B1 B2r)

A2r (3 ≤ r ≤ n) : (B2r B2r+1)

The permutations A2, A3, A4 generate Sym(5), and we then get by in-

duction that the permutations A2, . . . , A2r generate Sym(2r+1) for each

3 ≤ r ≤ n. In particular, we have H2(v2) ∼= Sym(2n + 1).

We already know that Γ4,5 is virtually simple. For n ≥ 3, by [BM00a,

Proposition 3.3.2] the groups H1 and H2 are boundary-2-transitive.

Moreover Γ2n,2n+1 contains Γ4,5 so it is irreducible and non-residually

finite. The NST then implies that Γ2n,2n+1 is virtually simple.

We now compute Γ2n,2n+1

/

Γ
(∞)
2n,2n+1

. Recall from Proposition 2.4.4

that r1 = [B2(B1B3)
2B2, B1B3] or r2 = [B2(B1B3)

2B2, B1B3A2] be-

longs to Γ
(∞)
3,3 (and thus to Γ

(∞)
2n,2n+1). We have by Theorem 2.4.5 that

Γ4,5

/

Γ
(∞)
4,5
∼= (C2)

2, so r1 and r2 both belong to Γ
(∞)
4,5 ≤ Γ

(∞)
2n,2n+1. The

quotient Γ2n,2n+1

/

Γ
(∞)
2n,2n+1

is therefore isomorphic to the finite group

Qn obtained by adding the relator r1 to the presentation of Γ2n,2n+1.

We write Aj (resp. Bk) instead of Aj (resp. Bk) for the generators of

Qn. The relators of Q2
∼= (C2)

2 all appear in the presentation of Qn, so

the subgroup

〈A1, A2, A3, A4, B1, B2, B3, B4, B5〉 ≤ Qn

is isomorphic to (C2)
2 (with A1 = A2 = A3 = A4 and B1 = B2 =
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B3 = B4 = B5). Moreover, for each 5 ≤ j ≤ 2n there exists a geometric

square in the definition of Γ2n,2n+1 of the form AjBkAjBk for some

1 ≤ k ≤ 5. Similarly, for each 6 ≤ k ≤ 2n+1 there is a geometric square

of the form AjBkAjBk for some 1 ≤ j ≤ 4. We thus deduce that B1

commutes with Aj for each 1 ≤ j ≤ 2n and that A1 commutes with Bk

for each 1 ≤ k ≤ 2n + 1. From the geometric square A2r−1B2rA2r−1B1

we therefore get that B2r = B1 for each 3 ≤ r ≤ n, and from the

geometric square A2r−1B2r+1A2B2r+1 we get that A2r−1 = A1 for each

3 ≤ r ≤ n. The relators of Qn then directly give AjBk = BkAj for all

1 ≤ j ≤ 2n and 1 ≤ k ≤ 2n + 1, except when j ≥ 6 is even and k =

j+1. In that particular case, we can however remark from the geometric

square A2rB2r+1A1B2r that A2rB2r+1 = B1A1 for each 3 ≤ r ≤ n. As

(A2rB2r+1)
−1 = B2r+1A2r and (B1A1)

−1 = A1B1 = B1A1, we also

obtain A2rB2r+1 = B2r+1A2r. Using those equalities, the presentation

of Qn can be reduced to

〈

A1, A6, A8, . . . , A2n,

B1, B7, B9, . . . , B2n+1

∣

∣

∣

∣

∣

∣

∣

A
2
j for all j, B

2
k for all k,

AjBkAjBk for all j and k,

A2rB2r+1A1B1 for each 3 ≤ r ≤ n

〉

One easily checks from the relators that all Aj pairwise commute and all

Bk pairwise commute, so that Qn is an abelian finite group. Each relator

A2rB2r+1A1B1 can then be used to erase B2r+1 from the presentation,

and we are left with the generators A1, A6, A8, . . . , A2n, B1 and no other

relator than the commutators. So Qn
∼= (C2)

n as wanted.

When n ≥ 3, the groupH1 can be computed thanks to the algorithms

developed in §2.3. We do not give the details here, but it can be seen

when computing the graph G
(1)
Γ2n,2n+1

that the result will only depend on

the parity of n. So it suffices to proceed for n = 3 and n = 4.

2.4.4 Virtually simple (6, 4n)-groups (n ≥ 2)

Let T1 be the 6-regular tree and T
(n)
2 be the 4n-regular tree for n ≥ 2.

In this section we describe a sequence (Γ6,4n)n≥2 of groups, with Γ6,4n

being a (6, 4n)-group, such that proj1(Γ6,4n)→ Aut(T1) in the Chabauty

topology of Aut(T1) when n→∞.
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2n 2n2n

2j2j − 1 2j2j − 1 2j2j − 1

j ∈ {2, . . . , n}

2j + 12j 2j + 12j 2j + 12j

j ∈ {2, . . . , n− 1}

Figure 2.12: The torsion-free (6, 4n)-group Γ6,4n.

Theorem 2.4.8 (Theorem 2.F). Let n ≥ 2 be an integer and let Γ6,4n be

the torsion-free (6, 4n)-group associated to the geometric squares in Fig-

ure 2.12. Then Γ6,4n is virtually simple, proj1(Γ6,4n) = G(i1)({n}, {n})
for some legal coloring i1 of T1 and proj2(Γ6,4n) = G(i2)({0}, {0}) for

some legal coloring i2 of T
(n)
2 .

Proof. One easily checks that the geometric squares given in Figure 2.12

indeed define a torsion-free (6, 4n)-group. The first four squares corre-

spond to Γ4,4 (see §2.4.1), so that Γ4,4 ≤ Γ6,4n. In particular, Γ6,4n is

irreducible and non-residually finite. If we show that H1(v1) ≥ Alt(6)

and H2(v2) ≥ Alt(4n) (where Ht = projt(Γ6,4n)), then it will follow

from the NST and [BM00a, Propositions 3.3.1 and 3.3.2] that Γ6,4n is

virtually simple.

The group H1(v1) is generated by the following permutations.

b1 : (a1 a2)(a
−1
1 a−1

2 )(a3)(a
−1
3 )

b2 : (a1 a2 a
−1
1 a−1

2 )(a3)(a
−1
3 )

b3 : (a1 a3 a
−1
1 )(a2)(a

−1
2 )(a−1

3 )
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b2j : (a1 a
−1
1 a−1

3 )(a2 a3 a
−1
2 ) (j ∈ {2, . . . , n− 1})

b2j+1 : (a1 a3 a
−1
1 )(a2 a

−1
2 a−1

3 ) (j ∈ {2, . . . , n− 1})
b2n : (a1 a

−1
1 a−1

3 )(a2)(a
−1
2 )(a3)

The permutations induced by b1, b2, b3 and b2n generate Sym(6), so

H1(v1) = Sym(6). For H2(v2) we get:

a1 : (b1 b
−1
1 b−1

2 )(b2)(b3 b4)(b
−1
3 b−1

4 ) . . . (b2n−1 b2n)(b
−1
2n−1 b

−1
2n )

a2 : (b1 b2 b
−1
1 )(b−1

2 )(b3 b
−1
3 )(b2n b

−1
2n )

(b4 b5)(b
−1
4 b−1

5 ) . . . (b2n−2 b2n−1)(b
−1
2n−2 b

−1
2n−1)

a3 : (b2n b2n−1 . . . b2 b1)(b
−1
2n b−1

2n−1 . . . b−1
2 b−1

1 )

We observe that a21 and a22 induce the permutations (b1 b
−1
2 b−1

1 ) and

(b1 b
−1
1 b2) respectively, which generate Alt({b1, b−1

1 , b2, b
−1
2 }). Conju-

gating this alternating group by several powers of a3, we obtain all

Alt({bj , b−1
j , bj+1, b

−1
j+1}) with j ∈ {1, . . . , 2n − 1}. These alternating

groups together generate Alt(2n). As the permutations induced by a1,

a2 and a3 are all even, we get H2(v2) = Alt(2n). This already implies

that H2 = G(i2)({0}, {0}) for some legal coloring i2 of T
(n)
2 .

There remains to compute H1, using the algorithms developed in

§2.3. The simplified labelled graph G̃
(1)
Γ6,4n

is a cycle with only one label

−1, see Figure 2.13. From this graph and via Proposition 2.3.8, we can

compute the values of s
(1)
k (bj) for j ∈ {1, . . . , 2n} and k ∈ Z≥0:

s
(1)
0 s

(1)
1 s

(1)
2 . . . s

(1)
n−1 s

(1)
n

b2 −1 +1 +1 . . . +1 +1

b3 +1 −1 +1 . . . +1 +1
...

bn+1 +1 +1 +1 . . . −1 +1

bn+2 +1 +1 +1 . . . +1 +1

bn+3 +1 +1 +1 . . . −1 +1
...

b2n +1 +1 −1 . . . +1 +1

b1 +1 −1 +1 . . . +1 +1
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2n

+1

+1

−1
+1

4

+1

Figure 2.13: The simplified labelled graph G̃
(1)
Γ6,4n

.

From these values we deduce that K(1) = n and

s(1)(H1(v1)) = {(s0, . . . , sn) ∈ (C2)
n+1 | sn = 1}.

Hence, the four groups that can be isomorphic to H1 are G(i1)({n}, {n}),
G(i1)(Y, Y )∗, G′

(i1)
(Y, Y )∗ andG(i1)(Y

∗, Y ∗) where α(Y ) = {n}. We have

Y = {1, 3, . . . , n− 1} if n is even and Y = {0, 2, . . . , n− 1} if n is odd.

Now let us see which of the four groups is the good one, thanks

to Proposition 2.3.9. The very first equality in both systems (∗) and

(∗∗) comes from the first and third geometric squares defining Γ6,4n and

is x1x2Σ4n = x2x1Σ4n−1, where Σ4n =
∏

r∈Y s
(1)
r (b−1

1 ) and Σ4n−1 =
∏

r∈Y s
(1)
r (b−1

2 ). But from the table above we can compute that Σ4n 6=
Σ4n−1 in any case, so (∗) and (∗∗) have no solution. Hence H1 =

G(i1)({n}, {n}) for some legal coloring i1 of T1.

Proof of Corollary 2.G. Define Γ6,4n ≤ Aut(T )×Aut(T
(n)
2 ) for n ≥ 2 as

in Theorem 2.4.8. Given v2 ∈ V (T
(n)
2 ), the group F = proj1(Γ6,4n(v2)) ≤

Aut(T ) is torsion-free and acts simply transitively on the vertices of

Aut(T ): it is thus conjugate to F3 in Aut(T ). Moreover, the full pro-

jection proj1(Γ6,4n) ≤ Aut(T ) commensurates F . Indeed, if γ ∈ Γ6,4n

then γΓ6,4n(v2)γ
−1 = Γ6,4n(γ(v2)) so Γ6,4n(v2) ∩ γΓ6,4n(v2)γ

−1 is noth-

ing else than the fixator of v2 and γ(v2) in Γ6,4n. This is a finite index

subgroup of Γ6,4n(v2) and Γ6,4n(γ(v2)) as wanted. Hence, the closure of

the commensurator of F3 in Aut(T ) contains G(i(n))({n}, {n}) for some

legal coloring i(n) of T (see Theorem 2.4.8). The conclusion follows from
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the fact that
⋃

n≥2G(i(n))({n}, {n}) is dense in Aut(T ).

2.5 About products of three trees

We conclude the chapter with the proof of Theorem 2.H.

Proof of Theorem 2.H. Suppose that such a group Γ exists. Let us con-

sider Γ(v3), the fixator of v3 in T3. The group Γ′ = proj1,2(Γ(v3)) ≤
Aut(T1) × Aut(T2) acts simply transitively on the vertices of T1 × T2,
i.e. it is a (6, 6)-group. By hypothesis, proj1,3(Γ) is dense in H1×H3, so

proj1,3(Γ(v3)) is dense in H1 ×H3(v3) (because H3(v3) is open in H3).

Taking images under the continuous map proj1, we get that proj1(Γ(v3))

is dense in H1, i.e. proj1(Γ
′) = H1. Similarly, we have proj2(Γ

′) = H2.

We deduce in particular that Γ′ is an irreducible (6, 6)-group whose local

actions on T1 and T2 contain Alt(6). The last hypothesis also implies

that the values τ1 and τ2 associated to Γ′ are both equal to zero.

As can be read from Tables 2.12 and 2.14, there are 23225 equivalence

classes of irreducible (6, 6)-groups with τ1 = τ2 = 0 andH1(v1),H2(v2) ≥
Alt(6). We indeed have 2240 such groups that are torsion-free and 20985

such groups with torsion.

There remains to prove that none of those 23225 groups can be equal

to Γ′. Let γ be an element of Γ(v3). It induces a permutation of the

six neighbors of v3. Since all elements of Sym(6) have order ≤ 6, there

exists o ∈ {4, 5, 6} such that γo fixes B(v3, 1) in T3. If Qγo is the group

obtained by adding the relation γo = 1 to the presentation of Γ(v3) ∼= Γ′,

then we have a natural surjection Qγo → H3(v3). Now recall that, if γo is

non-trivial, then Qγo is a finite group by the Normal Subgroup Theorem.

Also, H3(v3) is isomorphic to Alt(6) or Sym(6) by hypothesis. Hence,

for each of the 23225 groups mentioned above and for each generator

g ∈ {a1, a2, a3, b1, b2, b3} we can compute (with GAP) the groups Qgo

for each o ∈ {4, 5, 6} and check if one of these three finite groups surjects

onto Alt(6) or Sym(6). If the answer is no for one of the six generators,

then that group can be excluded.

We could check this condition on all 23225 groups, and the answer

is clear: none of them satisfies the condition.



Chapter 3

A lattice in a residually

non-Desarguesian

Ã2-building

In Chapter 2 we studied groups acting simply transitively on the ver-

tices of a product of two trees. Another related subject concerns groups

acting simply transitively on the vertices of an Ã2-building. There is a

strong similarity between the lattices appearing in these two contexts.

In fact both belong to the formal framework of polygonal presentations

introduced in [Vdo02]. They do not, however, enjoy the same qualita-

tive properties (e.g. QI-rigidity, Kazhdan’s Property (T)). Groups acting

simply transitively on the vertices of an Ã2-building are also hard to con-

struct in general. The main achievement of this chapter, whose content

has been published in [Rad17b], is the construction of a locally exotic

Ã2-building admitting such a lattice.

3.1 Main results

A (thick) Ã2-building is a simply connected simplicial complex of di-

mension 2 such that all simplicial spheres of radius 1 around vertices are

isomorphic to the incidence graph of a projective plane. These projective

planes are called the residue planes of the Ã2-building.

161
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The vertex set V (∆) of an Ã2-building ∆ can be partitioned as

V (∆) = V0(∆) ⊔ V1(∆)⊔ V2(∆), so that each triangle of ∆ has a vertex

of each type (where a vertex of type t is a vertex in Vt(∆)). An element

g ∈ Aut(∆) is called type-rotating if its induced action σ on the set

of types {0, 1, 2} satisfies σ(t) = t+ c mod 3 for some c ∈ {0, 1, 2}.
Our main motivation is to prove the following result.

Theorem 3.A. There exist an Ã2-building ∆ and a group Γ ≤ Aut(∆)

satisfying the following properties:

(1) All residue planes of ∆ are isomorphic to the Hughes plane of or-

der 9.1

(2) The group Γ acts simply transitively on the set of vertices of ∆.

(3) All elements of Γ are type-rotating.

(4) The index 3 subgroup Γ+ of Γ consisting of the type-preserving au-

tomorphisms is torsion-free.

(5) The derived subgroup [Γ,Γ] of Γ is perfect and Γ
/

[Γ,Γ] ∼= C2×C3.

(6) There exists an infinite family {∆n
0}n of disjoint isomorphic sub-

buildings of ∆ whose residue planes are isomorphic to PG(2, 3) and

such that each vertex of ∆ is contained in one sub-building ∆n
0 .

(7) The stabilizer of a vertex in Aut(∆) has order 96, i.e. [Aut(∆) : Γ] =

96. In particular, Aut(∆) equipped with the topology of pointwise

convergence is discrete.

Moreover, as any unimodular locally compact group acting contin-

uously, properly and cocompactly on an Ã2-building, Γ satisfies Kazh-

dan’s Property (T) (see [BdlHV08, Theorem 5.7.7]). Groups with Prop-

erty (T) are deeply studied in [BdlHV08].

1The Hughes plane of order 9 was actually first constructed by O. Veblen and
J. Maclagan-Wedderburn in 1907, see [VMW07]. This was the first discovered finite
non-Desarguesian projective plane, and the role of D. Hughes in [Hug57] has been
to generalize their construction to get an infinite family of finite non-Desarguesian
planes (with order p2n for p an odd prime).
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The tools that we develop in the discussion toward Theorem 3.A

also leads us to the following side result about groups acting simply

transitively on the vertices of a thick Ã2-building. Given a projective

plane Π with point set P and line set L, a correlation (or duality)

δ of Π is a pair of bijections δP :P → L and δL:L → P that preserve

incidence, i.e. such that p ∈ ℓ if and only if δP (p) ∋ δL(ℓ). It is then

customary to also call δP :P → L a correlation (and δL is uniquely

determined by δP ).

Proposition 3.B. Let ∆ be a thick Ã2-building and let Γ ≤ Aut(∆) be

a group of type-rotating automorphisms of ∆ acting simply transitively

on V (∆). Let P (resp. L) be the set of neighbors of type 1 (resp. 2) of

a fixed vertex v0 ∈ V0(∆), and denote by Π the residue plane at v0 (with

P and L as sets of points and lines). Let λ:P → L be the bijection such

that, for each x ∈ P , the unique element of Γ sending v0 to x ∈ P sends

λ(x) ∈ L to v0. Then λ is not a correlation of Π.

3.2 Previous work on the subject

In [CMSZ93a], Cartwright, Mantero, Steger and Zappa were interested

in groups acting simply transitively on the vertices of an Ã2-building.

We will make great use of their work and give in this section the essential

definitions and results.

3.2.1 P-L correspondences and triangle presentations

We start with the following definition from [CMSZ93a].

Definition 3.2.1. Let P and L be the sets of points and lines respec-

tively in a projective plane Π. A bijection λ:P → L is called a P-L

correspondence in Π. A subset T ⊆ P 3 is then called a triangle

presentation compatible with λ if the two following conditions hold:

1. For all x, y ∈ P , there exists z ∈ P such that (x, y, z) ∈ T if and

only if y ∈ λ(x) in Π. In this case, z is unique.

2. If (x, y, z) ∈ T , then (y, z, x) ∈ T .
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Example 3.2.2. The projective plane PG(2, 2) can be defined by P =

L = Z /7Z with line x ∈ L being adjacent to the points x+1, x+2 and

x+ 4 in P . Consider the P-L correspondence λ:P → L:x ∈ P 7→ x ∈ L
in Π. Then

T := {(x, x + 1, x+ 3), (x + 1, x+ 3, x), (x + 3, x, x+ 1) | x ∈ P}

is a triangle presentation compatible with λ. Indeed, (ii) is obviously

satisfied and, for x, y ∈ P , it is apparent that there exists (a unique)

z ∈ P such that (x, y, z) ∈ T if and only if y ∈ {x + 1, x + 2, x + 4},
which is exactly the set of points on the line λ(x).

Now suppose we have a thick Ã2-building ∆ and a group Γ ≤ Aut(∆)

of type-rotating automorphisms of ∆ acting simply transitively on V (∆).

In this context, the following theorem shows how one can associate to Γ

a P-L correspondence and a triangle presentation compatible with it.

Theorem 3.2.3 (Cartwright–Mantero–Steger–Zappa). Let ∆ be a thick

Ã2-building and let Γ ≤ Aut(∆) be a group of type-rotating automor-

phisms of ∆ acting simply transitively on V (∆). Let P (resp. L) be the

set of neighbors of type 1 (resp. 2) of a fixed vertex v0 ∈ V0(∆), and

denote by Π the residue plane at v0 (with P and L as sets of points and

lines). For each x ∈ P , let gx be the unique element of Γ such that

gx(v0) = x. Let λ:P → L be the P-L correspondence in Π defined by

λ(x) = g−1
x (v0) for each x ∈ P . Then there exists a triangle presentation

T compatible with λ such that Γ has the following presentation:

Γ = 〈{gx}x∈P | gxgygz = 1 for each (x, y, z) ∈ T 〉.

Proof. See [CMSZ93a, Theorem 3.1].

What makes triangle presentations really interesting is the fact that

a reciprocal result exists. Given a projective plane Π, a P-L correspon-

dence λ:P → L in Π and a triangle presentation compatible with λ,

one can construct an Ã2-building ∆ locally isomorphic to Π and a group

acting simply transitively on V (∆).
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Theorem 3.2.4 (Cartwright–Mantero–Steger–Zappa). Let P and L be

the sets of points and lines in a projective plane Π, let λ:P → L be a

P-L correspondence in Π and let T be a triangle presentation compatible

with λ. Define

ΓT := 〈{ax}x∈P | axayaz = 1 for each (x, y, z) ∈ T 〉,

where {ax}x∈P are distinct letters. Then there exists an Ã2-building ∆T

whose residue planes are isomorphic to Π and such that ΓT acts simply

transitively on V (∆T ), by type-rotating automorphisms.

Proof. See [CMSZ93a, Theorem 3.4], or §3.2.2 below.

Example 3.2.5. From Example 3.2.2 and Theorem 3.2.4, we get an Ã2-

building ∆ whose residue planes are isomorphic to PG(2, 2) and a group

acting simply transitively on the set of vertices of ∆. The building ∆

is actually the Bruhat–Tits building associated to PGL(3,F2((X))) (see

[CMSZ93b, §4] and [CMSZ93a, Theorem 4.1]).

3.2.2 Building associated to a triangle presentation

In [CMSZ93a, Theorem 3.4], the authors gave an explicit construction

of the Ã2-building ∆T associated to a triangle presentation T (see The-

orem 3.2.4 above). In this section we show a geometric way to construct

∆T and ΓT . The following discussion can also be seen as an alternative

proof of Theorem 3.2.4.

Following [Kan86], an Ã2-SCAB is a connected chamber system of

rank 3 whose residues of rank 2 are generalized 3-gons (i.e. incidence

graphs of projective planes). We will always think of an Ã2-SCAB as a

set of triangles, representing the chambers, glued together so that two

chambers are adjacent if and only if they share an edge.

Suppose we are given a P-L correspondence λ:P → L in a projective

plane Π and a triangle presentation T compatible with λ. Let us first

define a finite Ã2-SCAB CT as follows. Consider three vertices v1, v2,

v3: those will be the only vertices of CT . Then, for each x ∈ P , put an
edge ex between v1 and v2, an edge e′x between v2 and v3 and an edge

e′′x between v3 and v1. Finally, for each (x, y, z) ∈ T , attach a triangle to
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the three edges ex, e
′
y and e′′z . One readily checks that the definition of

a triangle presentation ensures that the three rank 2 residues of CT are

incidence graphs of the projective plane Π, and hence that CT is indeed

an Ã2-SCAB. Note that CT is not a simplicial complex in the usual sense

as all simplices of dimension 2 have the same three vertices.

We then consider the universal covering Ã2-SCAB C̃T of CT , as
defined in [Kan86, Definition B.3.3, Proposition B.3.4]. This universal

covering C̃T is a simply connected simplicial complex of dimension 2

whose simplicial spheres of radius 1 are isomorphic to the incidence

graph of Π, so it is an Ã2-building (see [Kan86, Theorem B.3.8] for a

more rigorous proof of this fact). We therefore set ∆T := C̃T . Moreover,

because of (2) in Definition 3.2.1, there is an automorphism α ∈ Aut(CT )
sending ex to e′x, e

′
x to e′′x and e′′x to ex for each x ∈ P . In other

words, there is a natural action of the group C3 of order 3 on CT . This
automorphism group C3 then lifts to an automorphism group C̃3 of

∆T (see [Kan86, Corollary B.3.7]), and C̃3 acts simply transitively on

the set of vertices of ∆T (and by type-rotating automorphisms). The

group ΓT can thus be taken to be C̃3. The presentation of ΓT given in

Theorem 3.2.4 can finally be found by observing that the 1-skeleton of

∆T is a Cayley graph for ΓT .

3.3 The strategy

A way to construct an Ã2-building with non-Desarguesian residues and

admitting a lattice is, in view of Theorem 3.2.4, to consider a non-

Desarguesian projective plane Π and to find a P-L correspondence in

Π and a triangle presentation compatible with it. The smallest non-

Desarguesian projective planes are the Hughes plane of order 9, the Hall

plane of order 9 and the dual of the Hall plane. The Hughes plane is

self-dual, so there exist some natural P-L correspondences in it: the

correlations. For this reason, we decided to work on the Hughes plane

of order 9. It will appear later that correlations do not actually admit a

triangle presentation (see Proposition 3.B), but they will still be helpful

in our search for a suitable P-L correspondence.

For any Desarguesian projective plane, Cartwright–Mantero–Steger–
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Zappa gave in [CMSZ93a, §4] an explicit formula for one P-L correspon-

dence admitting a triangle presentation. Of course, they use the finite

field from which the projective plane is constructed, and it is not clear

how to find a similar formula for a particular non-Desarguesian projec-

tive plane.

Since we are searching for purely combinatorial objects, the use of

a computer could be considered. In [CMSZ93b], the authors used a

computer to find all triangle presentations in the projective planes of

order 2 and 3. The number of points in these projective planes being

not too large (i.e. 7 and 13), they could do a brute-force computation.

However, already for order 3 they needed to use some symmetries of the

problem so as to reduce the search space. Even if computers are now

more powerful than in the 1990s, such a method would still be far too

slow for a projective plane of order 9.

The key point is that we are not searching for all triangle presenta-

tions in the Hughes plane: we only want to find one. In this section, we

describe our strategy in order to do so.

3.3.1 The graph associated to a P-L correspondence

In the context of triangle presentations, it is natural to associate a partic-

ular graph to each P-L correspondence λ:P → L of a projective plane Π.

Definition 3.3.1. Let λ:P → L be a P-L correspondence in a projective

plane Π. The graph Gλ associated to λ is the directed graph with

vertex set V (Gλ) := P and edge set E(Gλ) := {(x, y) ∈ P 2 | y ∈ λ(x)}.

For λ, admitting a triangle presentation can now be rephrased as a

condition on its associated graph Gλ. In order to state this reformula-

tion, we first define what we will call a triangle in a directed graph.

Definition 3.3.2. Let G be a directed graph. A set {e1, e2, e3} of edges
in G such that the destination vertex of e1 (resp. e2 and e3) is the origin

vertex of e2 (resp. e3 and e1) is called a triangle. If two of the three

edges e1, e2 and e3 are equal, then they are all equal. In this case, the

triangle contains only one edge and is also called a loop.

The next definition will also be convenient.
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Definition 3.3.3. Let λ:P → L be a P-L correspondence in a projective

plane Π. A triple (x, y, z) ∈ P 3 is called λ-admissible if y ∈ λ(x),

z ∈ λ(y) and x ∈ λ(z).

By definition, a triangle presentation compatible with λ only contains

λ-admissible triples. Thanks to these definitions, there is now an obvious

bijection between triangles of Gλ and (triples of) λ-admissible triples.

Indeed, for x, y, z ∈ P , (x, y, z) is λ-admissible if and only if there is a

triangle {e1, e2, e3} in Gλ with x, y and z being the origins of e1, e2 and

e3 respectively. Note that the triangle {e1, e2, e3} then corresponds to

the three λ-admissible triples (x, y, z), (y, z, x) and (z, x, y) (which are

equal when x = y = z, i.e. when e1 = e2 = e3 or equivalently when the

triangle is a loop).

This observation directly gives us the next result.

Lemma 3.3.4. Let λ:P → L be a P-L correspondence in a projective

plane Π. There exists a triangle presentation compatible with λ if and

only if there exists a partition of E(Gλ) into triangles.

Proof. Via the above bijection, a partition of E(Gλ) into triangles ex-

actly corresponds to a triangle presentation compatible with λ.

3.3.2 The score of a P-L correspondence

Most P-L correspondences λ in a projective plane do not admit a triangle

presentation, i.e. the set of edges E(Gλ) of the graph Gλ can generally

not be partitioned into triangles. We would still like to measure if a

correspondence λ is “far from admitting” a triangle presentation or not.

We therefore introduce the notion of a triangle partial presentation com-

patible with λ.

Definition 3.3.5. Let λ:P → L be a P-L correspondence in a projective

plane Π. A subset T ⊆ P 3 is called a triangle partial presentation

compatible with λ if the two following conditions hold:

(1) For all x, y ∈ P , if there exists z ∈ P such that (x, y, z) ∈ T then

y ∈ λ(x) and z is unique.

(2) If (x, y, z) ∈ T , then (y, z, x) ∈ T .
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We directly have the following.

Lemma 3.3.6. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q. A subset T ⊆ P 3 is a triangle presentation compat-

ible with λ if and only if it is a triangle partial presentation compatible

with λ and |T | = (q + 1)(q2 + q + 1).

Proof. This is clear from the definitions, since there are exactly (q +

1)(q2 + q + 1) pairs (x, y) ∈ P 2 with y ∈ λ(x).

We now define the score of a P-L correspondence as follows.

Definition 3.3.7. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q. The score S(λ) of λ is the greatest possible size of

a triangle partial presentation compatible with λ.

Thanks to the bijection between triangles of Gλ and (triples of) λ-

admissible triples (see §3.3.1), we can restate this definition in the fol-

lowing terms.

Definition 3.3.8. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q. The score S(λ) of λ is the maximal number of edges

of Gλ that can be covered with disjoint triangles.

A P-L correspondence then admits a triangle presentation if and only

if its score reaches the maximal theoretical value (q + 1)(q2 + q + 1).

Lemma 3.3.9. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q. There exists a triangle presentation compatible with

λ if and only if S(λ) = (q + 1)(q2 + q + 1).

Proof. This follows from Lemma 3.3.6.

3.3.3 Scores of correlations

When λ:P → L, L → P is a correlation of a (self-dual) projective

plane Π of order q, there is an explicit formula for the score of the P-L

correspondence λ:P → L.
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Proposition 3.3.10. Let λ:P → L, L → P be a correlation in a pro-

jective plane Π of order q. Let a(λ) be the number of points p ∈ P such

that λ3(p) ∋ p and let b(λ) be the number of points p ∈ P such that

λ3(p) ∋ p and λ6(p) = p. Then

S(λ) = (q + 1)(q2 + q + 1)− (2q − 3) · a(λ)− b(λ).

Proof. For fixed x, y ∈ P with y ∈ λ(x) (i.e. (x, y) is an edge of Gλ),

a point z ∈ P is such that (x, y, z) is λ-admissible if and only if z ∈
λ(y)∩ λ−1(x). We call the edge (x, y) unpopular if λ(y) 6= λ−1(x) and

popular if λ(y) = λ−1(x). This means that an unpopular edge of Gλ

is contained in exactly one triangle while a popular edge is contained in

exactly (q + 1) triangles.

(i) There are exactly a(λ) popular edges in Gλ.

Proof: By definition, (x, y) is popular if y = λ−2(x), so a vertex x ∈
P is the origin of a (unique) popular edge if and only if λ−2(x) ∈
λ(x), i.e. x ∈ λ3(x). There are exactly a(λ) such x and hence a(λ)

popular edges.

(ii) There are exactly (q+1)(q2 + q+1)+ q · a(λ) λ-admissible triples.

Proof: By (i), there are (q+1)(q2+q+1)−a(λ) unpopular edges and
a(λ) popular edges in Gλ. As each unpopular edge (resp. popular

edge) is the beginning of one (resp. (q + 1)) λ-admissible triple(s),

we get

[(q + 1)(q2 + q + 1)− a(λ)] · 1 + a(λ) · (q + 1)

λ-admissible triples.

(iii) There are exactly (q + 1) · a(λ) λ-admissible triples (x, y, z) with

(x, y) popular (resp. (y, z) popular, (z, x) popular).

Proof: There are a(λ) popular edges by (i), each one being the

beginning of (q + 1) λ-admissible triples.

(iv) There are exactly a(λ) λ-admissible triples (x, y, z) with (x, y) and

(y, z) popular (resp. (y, z) and (z, x) popular, (z, x) and (x, y) pop-

ular).



3.3. The strategy 171

Proof: If (x, y, z) is λ-admissible with (x, y) and (y, z) popular,

then y = λ−2(x), z = λ−2(y) and x ∈ λ3(x). Moreover, these

conditions are sufficient to be λ-admissible with (x, y) and (y, z)

popular. Since there are a(λ) points x such that x ∈ λ3(x), there
are exactly a(λ) such triples.

(v) There are exactly b(λ) λ-admissible triples (x, y, z) with (x, y),

(y, z) and (z, x) popular.

Proof: Such triples satisfy x ∈ λ3(x), y = λ−2(x), z = λ−2(y) and

x = λ−2(z), so in particular x = λ6(x). Moreover, if x ∈ λ3(x)

and x = λ6(x), then (x, λ−2(x), λ−4(x)) is λ-admissible with three

popular edges, so there are exactly b(λ) such triples.

(vi) There are exactly (q+1)(q2+ q+1)− 2q · a(λ)− b(λ) λ-admissible

triples (x, y, z) with (x, y), (y, z) and (z, x) unpopular.

Proof: By the inclusion-exclusion principle, the number of such

triples is

[(q + 1)(q2 + q + 1) + q · a(λ)]− 3(q + 1) · a(λ) + 3 · a(λ)− b(λ).

We now prove that S(λ) ≤ (q+1)(q2+q+1)−(2q−3)·a(λ)−b(λ). Let T
be a triangle partial presentation with |T | = S(λ), i.e. a set of disjoint

triangles of Gλ covering S(λ) edges. By maximality, all λ-admissible

triples (i.e. triangles) (x, y, z) with (x, y), (y, z) and (z, x) unpopular are

in T (because each of these 3 edges is only covered by this particular

triangle). By (vi), this means we already have (q + 1)(q2 + q + 1)− 2q ·
a(λ) − b(λ) triples in T . The other triangles in T all contain at least

one popular edge. There are a(λ) popular edges (by (i)), so we obtain

S(λ) ≤ (q + 1)(q2 + q + 1)− 2q · a(λ)− b(λ) + 3 · a(λ).

Let us now show that S(λ) ≥ (q+1)(q2+q+1)−(2q−3) ·a(λ)−b(λ),
by covering that number of edges of Gλ with disjoint triangles. We first

cover exactly (q + 1)(q2 + q + 1) − 2q · a(λ) − b(λ) edges of Gλ thanks

to the triangles only containing unpopular edges. By definition of an

unpopular edge, these triangles are all disjoint. Now, for each popular
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edge (x, y), there are (q+1) values of z such that (x, y, z) is λ-admissible.

Among these (q + 1) ≥ 3 values for z, choose z0 different from λ−2(y)

and λ2(x). In this way, (y, z0) and (z0, x) are unpopular. We then add

the triangle (x, y, z0) to our covering. This triangle is not a loop since

(x, y) is popular and (y, z) is unpopular, so it covers three new edges.

Doing so for each popular edge (x, y), we cover 3 · a(λ) new edges and

get

S(λ) ≥ (q + 1)(q2 + q + 1)− 2q · a(λ)− b(λ) + 3 · a(λ).

It follows from Proposition 3.3.10 that a correlation λ admits a tri-

angle presentation if and only if λ3 sends no point to an adjacent line.

However, the following elegant result of Devillers, Parkinson and Van

Maldeghem shows that this never happens.

Theorem 3.3.11 (Devillers–Parkinson–Van Maldeghem). Let λ:P →
L, L → P be a correlation in a finite projective plane Π. Then there

exists p ∈ P such that p ∈ λ(p).

Proof. See [DPVM13, Proposition 5.4]. The case of polarities (i.e. cor-

relations that are involutions) goes back to [Bae46].

Corollary 3.3.12 (Proposition 3.B). Let λ:P → L, L→ P be a corre-

lation in a finite projective plane Π. Then there is no triangle presenta-

tion compatible with λ:P → L.

Proof. Applying Theorem 3.3.11 to the correlation λ3, we get a(λ) > 0

and hence S(λ) < (q+1)(q2+q+1) by Proposition 3.3.10. The conclusion

then follows from Lemma 3.3.9.

Remark 3.3.13. In the semifield plane of order 16 and with kernel

GF(4), we could observe a correlation λ such that a(λ) = b(λ) = 1.

This means that there is exactly one point p of the plane such that

p ∈ λ3(p). The score of this correlation λ is thus S(λ) = 4611, the

maximal theoretical score being (16 + 1)(162 + 16 + 1) = 4641.

3.3.4 Estimated score for a general P-L correspondence

It does not seem possible to get a general formula for the score of all

P-L correspondences. One can however obtain (good) lower bounds
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for the score, simply by trying to cover the most possible edges of Gλ

with triangles. There are different algorithms that could be used. Our

principal goal being to know whether E(Gλ) admits a partition into

triangles, we should design an algorithm that will find such a partition

when it exists. The idea is simple: if an edge of Gλ is not yet covered

and if there is only one triangle containing this edge and disjoint from

the already chosen ones, then this triangle must be part of the (possible)

partition. Our algorithm to cover as many edges as we can in Gλ is thus

the following:

While there exists e ∈ E(Gλ) such that there is a unique triangle

t in Gλ containing e, choose this triangle t, remove the edge(s) of

t from Gλ and start again this procedure. If, at the end, there

is no more triangles in Gλ, then we say that the score-algorithm

succeeds and that the estimated score s(λ) of λ is the number

of edges that are covered by the chosen triangles. Otherwise, there

still are triangles in Gλ but all edges are contained in 0 or at least

2 triangles. In this case, we say that the score-algorithm fails. For

a pseudo-code, see Algorithm 1.

One should note that the value of s(λ) (and whether the score-

algorithm succeeds or not) may depend on the choice made for e ∈ E(Gλ)

at each step. We will still talk about the estimated score s(λ) of λ, as-

suming that an order is fixed once and for all on the set E(Gλ) for

each λ.

Lemma 3.3.14. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q. Assume that the score-algorithm succeeds. Then

s(λ) ≤ S(λ) and, if S(λ) = (q + 1)(q2 + q + 1), then s(λ) = S(λ).

Proof. See discussion above.

When the score-algorithm fails, it cannot conclude whether there

exists a partition of E(Gλ) into triangles. Actually, we never encountered

a P-L correspondence for which the algorithm fails for the Hughes plane

of order 9. We therefore did not need to treat this particular case.

Note however that, for a Desarguesian plane, we are aware of some P-L
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Algorithm 1: Computing the estimated score s(λ) of λ.

1 score← 0;
2 edgesInOneTriangle← true;
3 while edgesInOneTriangle do

4 edgesInOneTriangle← false;
5 for e in E(Gλ) do
6 if e is contained in exactly one triangle t of Gλ then

7 edgesInOneTriangle← true;
8 remove the edge(s) of t from E(Gλ);
9 if t is a loop then

10 score← score+ 1;
11 else

12 score← score+ 3;

13 if there still are triangles in Gλ then

14 return FAIL
15 else

16 return score

correspondences for which the algorithm fails and that indeed admit a

triangle presentation, so this case should not in general be forgotten.

3.3.5 Scores in the Hughes plane of order 9

By Corollary 3.3.12, we know that a correlation never reaches the score

of (q + 1)(q2 + q + 1). A naive approach to find a P-L correspondence

of the Hughes plane of order 9 with a score of (9 + 1)(92 + 9+ 1) = 910

is to simply evaluate s(λ) for a lot of random correspondences λ and to

cross one’s fingers. This idea is however not successful at all. Indeed, we

computed the estimated score of 100000 random P-L correspondences

and got, on average, an estimated score of 486.6 (with a standard devi-

ation of 17.3). The best estimated score we could observe was only 561,

very far from 910.

Compared with these pretty low values, the formula given by Propo-

sition 3.3.10 for correlations seems to give better scores. In the Hughes

plane of order 9, there are 33696 correlations. Their scores, computed

thanks to Proposition 3.3.10, are given in Table 3.1. Note that, as soon as
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# of concerned λ a(λ) b(λ) S(λ) s(λ) (mean)

6318 4 4 846 846.00
4212 10 2 758 757.97
6318 10 10 750 750.00
4212 16 0 670 669.92
6318 16 16 654 654.00
6318 22 22 558 558.00

Table 3.1: Scores of the correlations of the Hughes plane of order 9.

two correlations λ and λ′ are conjugate (in the sense that λ = αλ′α−1 for

some automorphism α of the plane), we have a(λ) = a(λ′), b(λ) = b(λ′)

and S(λ) = S(λ′). (Actually, Gλ and Gλ′ are isomorphic.)

We also computed the estimated scores of all these correlations: they

are also given in Table 3.1. They show that, at least for correlations, the

estimated score is almost always equal to the real score. As expected,

correlations have higher estimated scores than random P-L correspon-

dences: they reach 846. This fact will be helpful for our final strategy to

find a correspondence with score 910, described in the next subsection.

3.3.6 Improving a P-L correspondence

In order to find a P-L correspondence with a score greater than what

we already obtained, it is natural to try to slightly modify a P-L cor-

respondence with a high score. The smallest change we can make is to

swap the images of two points. The next lemma shows that the score

function is somewhat continuous.

Lemma 3.3.15. Let λ:P → L be a P-L correspondence in a projective

plane Π of order q and let a, b ∈ P . Define λa,b:P → L by λa,b(x) :=

λ(x) for all x ∈ P \ {a, b}, λa,b(a) := λ(b) and λa,b(b) := λ(a). Then

|S(λa,b)− S(λ)| ≤ 6(q + 1).

Proof. The graph Gλa,b
can be obtained from Gλ by deleting the edges

having a or b as origin and replacing them by other edges. In total,

2(q+1) edges are deleted and 2(q+1) edges are added. Since a triangle

contains at most 3 edges, we deduce that |S(λa,b)−S(λ)| ≤ 6(q+1).
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In Lemma 3.3.15, it is even reasonable to think that |S(λa,b)−S(λ)|
will often be much smaller than 6(q+1). In other words, the score should

not vary too much when replacing λ by λa,b, and we can in general hope

to have S(λa,b) > S(λ) for some a, b ∈ P .
Based on this observation, our idea is simple. Start with a correlation

λ, whose score is known to be higher than for a random correspondence

(see §3.3.5). For all distinct a, b ∈ P , consider λa,b (as defined above)

and compute its estimated score s(λa,b). Then choose ã, b̃ ∈ P such that

s(λ
ã,b̃

) = max{s(λa,b) | a, b ∈ P}. Now replace λ by λ
ã,b̃

and start this

procedure again! We just need to keep track of the correspondences we

already tried so as to avoid being blocked in a local maximum of the

score function. This idea is explained in Algorithm 2. If after some time

the algorithm does not seem able to produce a score of 910, then we stop

it and start it again from another correlation.

This procedure is pretty slow: with our implementation, one step

(i.e. computing s(λa,b) for all a, b ∈ P so as to find ã and b̃) takes ∼1.25
seconds. For this reason and because we could still not reach 910, we

decided not to try all possible pairs a, b ∈ P . Instead, we can observe

which points seem to be the worst, where the badness of p ∈ P is the

number of edges containing p in Gλ that were not covered by a triangle

in Algorithm 1. Then, it is natural to only try the pairs a, b ∈ P where

Algorithm 2: Finding a P-L correspondence λ with s(λ) = 910.

1 λ← some correlation of the Hughes plane;
2 while s(λ) < 910 do

3 visited[λ]← true;
4 bestA← −1; bestB← −1;
5 bestScore← −1;
6 for a in P and b in P do

7 if visited[λa,b] = false and s(λa,b) > bestScore then

8 bestScore← s(λa,b);
9 bestA← a;

10 bestB← b;

11 λ← λbestA,bestB;

12 return λ;
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a is one of the worst points (for instance the 5 worst points) and b is

arbitrary. Obviously, with this change Algorithm 2 does not visit the

same correspondences as before, but it has the advantage that a step

only takes ∼0.13 seconds.

After three weeks of slight changes in the algorithm (e.g. the def-

inition of a bad point, the number of worst points we consider, the

condition under which we stop and start with another correlation, etc),

the computer eventually shouted (at least wrote) victory. The starting

correlation had a score equal to 750, and the evolution of the estimated

score until 910 is shown in Figure 3.1.

Remark 3.3.16. The last change we made to the algorithm before it

could solve the problem was actually mistaken! Whereas we wanted to

speed up the computation of the five worst points, we made an error

in the implementation of that idea resulting in the fact that the five

computed points were actually not the worst ones. This mistake still

led us to the discovery of a (valid) P-L correspondence λ with a score of

910. The funny part of the story is that if we correct this implementation
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Figure 3.1: Evolution of the estimated score with Algorithm 2.
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error and start the algorithm with the same correlation, then it misses

the correspondence λ.

3.4 The building and its lattice

In this section, we first give the description of the building and the lattice

that we discovered. We then give various properties of these objects (i.e.

we prove (4), (5), (6) and (7) in Theorem 3.A).

3.4.1 Description

The structure of the Hughes plane of order 9 is given in Table 3.2 (in Ap-

pendix 3.I) and comes from [Moo]. Points and lines are numbered from 0

to 90 (let us call them p0, . . . , p90 and ℓ0, . . . , ℓ90), and the nth row (with

0 ≤ n ≤ 90) gives the indices of the 10 points incident to ℓn. The reader

may be skeptical that the structure of incidence Π defined by these point-

line incidences is indeed the Hughes plane, but this is not so hard to ver-

ify by analyzing its properties. It is at least really easy to implement a

program checking that Π satisfies the axioms of a projective plane. Also,

Π has a projective subplane that is isomorphic to the Fano plane: con-

sider for instance the 7 points {p0, p2, p9, p17, p18, p38, p41} and 7 lines

{ℓ0, ℓ1, ℓ2, ℓ31, ℓ34, ℓ64, ℓ87}. This implies that Π is non-Desarguesian,

since the only Desarguesian projective planes containing the Fano plane

are those whose order is a power of 2. Moreover, our computations show

that Π is self-dual (since there exist correlations), so it can only be the

Hughes plane (see, for instance, [LKT91]).

Relative to this numbering of points and lines, the P-L correspon-

dence λ:P → L that we found is given in Table 3.3 (in Appendix 3.II).

For the image of p10x+y by λ, one should look at the intersection of rows

x and y. The triangle presentation T compatible with λ is then given in

Table 3.4. In this table, the appearance of (x, y, z) means that (x, y, z),

(y, z, x) and (z, x, y) all belong to T . There are, in Table 3.4, 298 triples

(x, y, z) with x, y, z not all equal and 16 triples (x, x, x), which means

that T contains 298 · 3 + 16 = 910 elements as required. While a com-

puter helped to find T , it can once again be checked by hand (or with
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a trivial program) that T is indeed a triangle presentation compatible

with λ. Indeed, one only needs to check that for each (x, y, z) ∈ T , the
line λ(x) contains y and there exists no z′ 6= z such that (x, y, z′) ∈ T .
This suffices to show that T is a triangle presentation compatible with

λ, since |T | = 910.

It follows from Theorem 3.2.4 that the building ∆T and the group

ΓT ≤ Aut(∆T ) satisfy (1), (2) and (3) in Theorem 3.A. In the next four

subsections we prove (4), (5), (6) and (7).

3.4.2 Torsion in ΓT

The group ΓT has elements of order 3: when (x, x, x) ∈ T for some

x ∈ P , we have the relation a3x = 1 in the presentation of ΓT . How-

ever, the subgroup Γ+
T of ΓT consisting of the type-preserving auto-

morphisms is torsion-free. Indeed, let γ be a torsion element of Γ+
T ,

say of order n. If v0 is a fixed vertex of ∆T , then γ stabilizes the set

{v0, γ(v0), γ2(v0), . . . , γn−1(v0)}. By [BH99, Corollary 2.8 (1)], γ must

fix a point of ∆T , i.e. it stabilizes a simplex of ∆T . Since γ preserves

the types, it fixes this simplex pointwise and thus fixes its vertices. But

Γ+
T acts freely on the set of vertices of ∆T , so γ = 1.

3.4.3 A perfect subgroup of ΓT

Clearly, Γ+
T is a normal subgroup of index 3 of ΓT . We find that ΓT

also has a subgroup of index 2. Indeed, if we define A ⊂ P by A =

ℓ3 ∪ ℓ11 ∪ ℓ62 ∪ ℓ64 ∪ ℓ87, then one can check that for each (x, y, z) ∈ T ,
either one or three of the points x, y, z belong to A. Equivalently, either

none or two of the points x, y, z belong to P \A. Hence, there is a well-

defined group homomorphism f : ΓT → C2 defined on the generators

{ax}x∈P by f(ax) := 0 if x ∈ A and f(ax) := 1 if x 6∈ A. The kernel

ker(f) of f is then a subgroup of index 2 of ΓT .

The intersection Γ+
T ∩ker(f) of these two subgroups is thus a normal

subgroup of index 6 of ΓT (with ΓT

/

Γ+
T ∩ ker(f) ∼= C2 × C3). We

checked using the GAP system that Γ+
T ∩ ker(f) is a perfect group, so

that [ΓT ,ΓT ] = Γ+
T ∩ ker(f).
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3.4.4 Partition of ∆T into sub-buildings

ABaer subplane of a projective plane Π is a proper projective subplane

Π0 of Π with the property that every point of Π is incident to at least

one line of Π0 and every line of Π is incident to at least one point

of Π0. Let us take for Π the Hughes plane of order 9. Then Π has a

(Desarguesian) Baer subplane Π0 of order 3, which has the property that

all automorphisms and all correlations of Π preserve Π0 (see [Dem68,

5.4.1]). With respect to our numbering of the points and lines of the

Hughes plane (see Table 3.2), the sets of points and lines of Π0 are

P0 := {pn | n ∈ {9, 17, 20, 33, 38, 42, 43, 46, 47, 56, 59, 64, 70}}

and

L0 := {ℓn | n ∈ {3, 11, 22, 34, 46, 53, 62, 64, 70, 79, 84, 87, 89}}

(see the numbers in bold in Table 3.2).

What is surprising is that our P-L correspondence λ also preserves

Π0. This is indeed clear from Table 3.3. Even better, if we call λ0 the

restriction of λ to P0, then the triangle presentation T can be restricted

to a triangle presentation T0 compatible with λ0. In other terms, for

each (x, y, z) ∈ T , if x ∈ P0 and y ∈ P0 then z ∈ P0. This can also be

simply observed by inspecting Table 3.4. The author does not know any

theoretical reason why these properties are true (and whether they must

be true for any P-L correspondence admitting a triangle presentation).

This observation has different consequences. First, we have a P-L

correspondence λ0 in the Desarguesian projective plane Π0 of order 3,

and a triangle presentation T0 compatible with it. Theorem 3.2.4 thus

gives an Ã2-building ∆T0 whose projective plane at each vertex is iso-

morphic to Π0 and a group ΓT0 acting simply transitively on V (∆T0).

The triangle presentations in the projective plane of order 3 have all

been given by Cartwright–Mantero–Steger–Zappa in [CMSZ93b], so T0
must be one of their list. It turns out that T0 is equivalent (as de-

fined in [CMSZ93b, §2]) to their triangle presentation numbered 14.1

(see [CMSZ93b, Appendix B]; one such equivalence takes the pn, in the
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order listed in the definition of P0, to 12, 2, 5, 0, 8, 11, 10, 3, 1, 9, 6, 4 and

7, respectively). In particular, this means by [CMSZ93b, §8] that ∆T0

is a non-linear building, i.e. is not the building of PGL(3,K) for some

local field K.

The group ΓT0 and the building ∆T0 also appear as subgroups and

sub-buildings of ΓT and ∆T , respectively. With the notation of §3.2.2,
there is a clear embedding e: CT0 →֒ CT . Now ∆T0 and ∆T are the

universal coverings of CT0 and CT respectively, so by fixing some ver-

tices v0 ∈ V (∆T0) and v ∈ V (∆T ) such that p(v) = e(p0(v0)) (where

p:∆T → CT and p0:∆T0 → CT0 are the natural projections), we get

an embedding ẽ:∆T0 →֒ ∆T with ẽ(v0) = v. We can then see ΓT0 as

the subgroup of ΓT such that ΓT0(v) is exactly the set of vertices of

ẽ(∆T0). Moreover, for each g ∈ ΓT the set gΓT0(v) ⊂ V (∆T ) is also the

0-skeleton of a building isomorphic to ∆T0 . This means that the vertices

of ∆T are partitioned into sub-buildings isomorphic to ∆T0 (where each

sub-building corresponds to a left coset of ΓT0 in ΓT ).

One should note that these sub-buildings that are isomorphic to ∆T0

cover all the vertices of ∆T , but this is not true for edges and chambers

(i.e. triangles): some edges (and chambers) of ∆T do not belong to any

of the sub-buildings.

3.4.5 Automorphism group of ∆T

The automorphism group Aut(∆T ) of ∆T contains ΓT , which acts sim-

ply transitively on the vertices of the building. In order to know whether

Aut(∆T ) is substantially larger than ΓT , we should try to see what the

stabilizer of a vertex in Aut(∆T ) looks like. This can be done by mak-

ing use of the GAP system. I am very thankful to Tim Steger, who had

done the same work for triangle presentations in the projective plane of

order 3, and who gave me all his source codes and a great deal of advice.

Let v be a vertex of ∆T . In the next discussion, XT will denote the

sub-building of ∆T containing v and isomorphic to ∆T0 (see §3.4.4). We

have the following facts.

(i) Any automorphism of ∆T fixing v preserves the sub-building XT .

Explanation: For a vertex x contained in XT , there are 2 ·91 = 182
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vertices adjacent to x in ∆T , and exactly 2·13 = 26 of them belong

to XT . Those 26 vertices are characterized by the fact that, in

the local Hughes plane Π associated to x, they correspond to the

13 points and 13 lines of the Baer subplane Π0 of Π. Hence, if

α ∈ Aut(∆T ) is such that α(x) = y with x, y belonging toXT , then

α must send the 26 neighbors of x in XT to the 26 neighbors of y in

XT because all automorphisms and correlations of Π preserve Π0.

Starting with x = v, we obtain step by step that any automorphism

of ∆T fixing v must stabilize XT .

(ii) There are 16 automorphisms of XT stabilizing v.

Explanation: This was previously done by Steger with GAP.

(iii) For each x ∈ V (∆T ), the only automorphism of the ball of radius 2

centered at x that pointwise stabilizes the ball of radius 1 is the

trivial automorphism.

Explanation: This was proved with GAP. As was pointed out to

me by H. Van Maldeghem, this can also be proved by hand. One

just needs to see the ball of radius 2 as a projective Hjelmslev plane

of level 2 (see §4.2) and to use the properties of the Hughes plane

of order 9.

Point (iii) implies that the pointwise stabilizer of a ball of radius 1

in Aut(∆T ) is trivial, and hence that an automorphism of ∆T is com-

pletely determined by its action on the ball of radius 1 centered at v.

In particular, the stabilizer of v in Aut(∆T ) is finite and Aut(∆T ) is

discrete (for the topology of pointwise convergence).

(iv) There are 6 automorphisms of Π that pointwise stabilize Π0.

Explanation: This can be checked with a computer, but one can

also see [Lün76, Corollary 5] or [Ros58] for a more theoretical

approach.

The first four points imply that there are at most 16 · 6 = 96 au-

tomorphisms of ∆T stabilizing v. Denote by G1 the set of the 96 au-

tomorphisms of the ball of radius 1 centered at v that could maybe be

extended to automorphisms of the whole building.
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(v) Each automorphism in G1 can be extended to an automorphism

of the ball of radius 2 centered at v.

Explanation: This was proved with GAP.

Now denote by G2 the set of these extended automorphisms.

(vi) Each automorphism in G2 can be extended to ∆T .

Explanation: This could be checked with a clever GAP program

written by Steger.

These steps actually gave us the explicit description of the 96 au-

tomorphisms of ∆T fixing v. Six of them pointwise stabilize the sub-

building XT . The file describing these automorphisms is pretty big so

we do not append it to this text.
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3.I The Hughes plane of order 9

0 : 0 1 2 3 4 5 6 7 8 9
1 : 0 10 11 12 13 14 15 16 17 18
2 : 0 19 34 35 36 37 38 39 40 41
3 : 0 20 27 42 55 56 57 58 59 60
4 : 0 21 33 48 54 61 76 78 89 90
5 : 0 22 30 43 49 63 68 72 79 80
6 : 0 23 28 44 50 69 70 77 81 82
7 : 0 24 29 45 51 64 73 74 83 84
8 : 0 25 31 46 52 62 67 75 85 86
9 : 0 26 32 47 53 65 66 71 87 88
10 : 1 10 19 20 21 22 23 24 25 26
11 : 1 11 34 42 43 44 45 46 47 48
12 : 1 12 28 35 55 61 62 63 64 65
13 : 1 13 31 41 54 56 74 80 82 88
14 : 1 14 33 36 50 58 68 73 85 87
15 : 1 15 29 37 52 59 71 76 79 81
16 : 1 16 27 38 51 66 72 77 86 89
17 : 1 17 32 39 49 57 69 75 78 83
18 : 1 18 30 40 53 60 67 70 84 90
19 : 2 10 35 42 49 50 51 52 53 54
20 : 3 10 29 34 56 61 66 67 68 69
21 : 4 10 31 38 48 57 63 81 84 87
22 : 5 10 33 40 47 59 64 72 75 82
23 : 6 10 28 41 43 58 71 83 86 90
24 : 7 10 27 37 45 65 70 78 80 85
25 : 8 10 30 39 46 55 73 76 77 88
26 : 9 10 32 36 44 60 62 74 79 89
27 : 2 11 19 27 28 29 30 31 32 33
28 : 2 13 21 34 57 62 70 71 72 73
29 : 2 14 22 37 48 60 64 69 86 88
30 : 2 12 24 39 47 58 67 80 81 89
31 : 2 18 20 41 45 61 75 77 79 87
32 : 2 16 26 40 44 56 63 76 83 85
33 : 2 15 25 36 43 55 66 78 82 84
34 : 2 17 23 38 46 59 65 68 74 90
35 : 4 11 22 35 58 66 70 74 75 76
36 : 5 11 21 39 50 56 65 79 84 86
37 : 3 11 26 36 52 57 64 77 80 90
38 : 6 11 20 40 51 62 68 78 81 88
39 : 9 11 23 37 54 55 67 72 83 87
40 : 8 11 24 38 49 60 61 71 82 85
41 : 7 11 25 41 53 59 63 69 73 89
42 : 5 14 19 42 63 67 71 74 77 78
43 : 4 13 19 47 51 55 69 79 85 90
44 : 3 16 19 43 54 60 65 73 75 81
45 : 9 12 19 45 53 57 68 76 82 86

46 : 6 15 19 46 49 56 64 70 87 89
47 : 7 17 19 44 52 58 61 72 84 88
48 : 8 18 19 48 50 59 62 66 80 83
49 : 5 18 23 29 35 43 57 85 88 89
50 : 3 13 24 30 35 44 59 78 86 87
51 : 8 14 25 32 35 45 56 72 81 90
52 : 7 15 21 31 35 47 60 68 77 83
53 : 9 16 20 33 35 46 69 71 80 84
54 : 6 17 26 27 35 48 67 73 79 82
55 : 4 14 20 30 34 52 65 82 83 89
56 : 5 17 25 28 34 51 60 76 80 87
57 : 6 12 22 32 34 54 59 77 84 85
58 : 9 15 24 27 34 50 63 75 88 90
59 : 8 16 23 31 34 53 58 64 78 79
60 : 7 18 26 33 34 49 55 74 81 86
61 : 4 15 23 32 40 42 61 73 80 86
62 : 3 12 25 33 38 42 70 79 83 88
63 : 8 13 26 28 37 42 68 75 84 89
64 : 9 17 21 30 41 42 64 66 81 85
65 : 7 16 22 29 39 42 62 82 87 90
66 : 6 18 24 31 36 42 65 69 72 76
67 : 4 12 26 29 41 46 50 60 72 78
68 : 4 16 21 28 36 45 49 59 67 88
69 : 4 18 25 27 39 44 54 64 68 71
70 : 4 17 24 33 37 43 53 56 62 77
71 : 5 13 22 27 36 46 53 61 81 83
72 : 5 12 20 31 37 44 49 66 73 90
73 : 5 15 26 30 38 45 54 58 62 69
74 : 5 16 24 32 41 48 52 55 68 70
75 : 3 14 23 27 41 47 49 62 76 84
76 : 3 18 21 32 37 46 51 58 63 82
77 : 3 17 22 31 40 45 50 55 71 89
78 : 3 15 20 28 39 48 53 72 74 85
79 : 7 13 20 32 38 43 50 64 67 76
80 : 9 13 25 29 40 48 49 58 65 77
81 : 6 13 23 33 39 45 52 60 63 66
82 : 6 14 21 29 38 44 53 55 75 80
83 : 7 14 24 28 40 46 54 57 66 79
84 : 9 14 26 31 39 43 51 59 61 70

85 : 8 12 21 27 40 43 52 69 74 87
86 : 7 12 23 30 36 48 51 56 71 75
87 : 9 18 22 28 38 47 52 56 73 78
88 : 8 15 22 33 41 44 51 57 65 67
89 : 8 17 20 29 36 47 54 63 70 86
90 : 6 16 25 30 37 47 50 57 61 74

Table 3.2: Incidence relation of the Hughes plane of order 9, from [Moo].
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3.II The triangle presentation

λ 0 1 2 3 4 5 6 7 8 9
0 20 0 44 75 78 77 50 76 37 3
1 54 39 30 8 88 68 18 34 65 57
2 70 82 42 23 38 90 81 13 61 69
3 73 4 83 22 58 28 59 55 64 60
4 56 2 87 84 26 45 53 11 80 41
5 25 14 63 72 7 32 62 86 51 46
6 36 27 31 29 79 33 16 71 85 24
7 89 35 17 19 5 47 67 10 66 43
8 6 21 1 52 74 40 12 48 9 15
9 49

Table 3.3: P-L correspondence λ.

(0,3,41) (0,10,82) (0,29,54) (0,34,9) (0,56,88) (0,61,31) (0,66,1)
(0,67,13) (0,68,74) (0,69,80) (1,1,1) (1,2,16) (1,3,47) (1,4,72)
(1,5,89) (1,6,86) (1,7,51) (1,8,77) (1,9,27) (2,3,62) (2,19,12)
(2,43,61) (2,54,73) (2,60,65) (2,65,55) (2,73,35) (2,75,17) (2,81,63)
(3,3,3) (3,14,8) (3,23,6) (3,27,56) (3,49,7) (3,76,4) (3,84,5)

(4,15,28) (4,20,37) (4,28,15) (4,39,81) (4,48,29) (4,53,20) (4,74,79)
(4,85,71) (5,17,90) (5,22,67) (5,31,33) (5,40,60) (5,45,53) (5,50,30)
(5,55,40) (5,71,22) (6,13,25) (6,24,78) (6,30,26) (6,35,21) (6,44,10)
(6,59,19) (6,78,24) (6,87,59) (7,18,39) (7,21,75) (7,32,57) (7,37,83)
(7,46,69) (7,58,32) (7,63,64) (7,82,18) (8,11,87) (8,26,52) (8,36,58)
(8,52,68) (8,57,36) (8,64,50) (8,80,70) (8,90,85) (9,20,43) (9,42,38)
(9,55,44) (9,56,42) (9,57,48) (9,58,45) (9,59,46) (9,60,11) (10,17,23)
(10,26,33) (10,27,82) (10,35,73) (10,48,77) (10,67,81) (10,73,50) (10,79,69)
(11,11,11) (11,23,71) (11,37,82) (11,54,24) (11,55,85) (11,67,61) (11,72,49)
(11,83,47) (12,12,12) (12,24,68) (12,39,86) (12,47,45) (12,58,56) (12,67,53)
(12,80,82) (12,81,57) (12,89,76) (13,31,48) (13,46,35) (13,52,26) (13,62,79)
(13,67,27) (13,75,52) (13,85,82) (13,86,64) (14,15,21) (14,22,63) (14,33,82)
(14,41,37) (14,44,32) (14,51,58) (14,57,51) (14,65,43) (14,67,22) (15,16,30)
(15,36,34) (15,45,82) (15,49,59) (15,59,89) (15,67,83) (15,88,65) (16,18,82)
(16,40,25) (16,53,66) (16,60,84) (16,67,46) (16,70,36) (16,84,55) (16,90,18)
(17,17,38) (17,46,20) (17,59,70) (17,65,82) (17,68,40) (17,74,72) (18,22,42)
(18,29,39) (18,42,78) (18,62,87) (18,87,62) (18,90,29) (19,22,77) (19,32,79)
(19,34,75) (19,54,45) (19,59,87) (19,77,22) (19,84,41) (19,85,61) (20,24,62)
(20,33,64) (20,53,37) (20,56,70) (20,62,77) (20,77,24) (21,21,38) (21,29,68)
(21,44,60) (21,53,31) (21,55,83) (21,80,77) (22,71,74) (22,74,63) (22,78,42)
(23,28,80) (23,41,36) (23,43,26) (23,58,90) (23,83,77) (23,86,28) (23,90,57)
(24,40,34) (24,51,85) (24,81,84) (24,88,32) (25,25,25) (25,30,58) (25,37,65)
(25,47,48) (25,50,77) (25,57,56) (25,61,29) (25,74,49) (26,39,55) (26,45,76)
(26,60,39) (26,63,88) (26,66,77) (27,31,61) (27,41,34) (27,54,29) (27,74,68)
(27,80,69) (27,88,66) (28,32,40) (28,40,80) (28,42,52) (28,61,32) (28,73,42)
(28,86,61) (29,44,89) (29,64,76) (29,71,70) (30,30,38) (30,45,57) (30,54,74)
(30,62,61) (30,69,37) (31,54,83) (31,76,78) (31,78,36) (31,89,81) (31,90,43)
(32,46,84) (32,54,64) (32,66,72) (33,33,33) (33,40,51) (33,47,46) (33,59,56)
(33,72,39) (33,75,61) (34,34,34) (34,50,39) (34,63,37) (34,88,47) (34,90,35)
(35,57,71) (35,62,41) (35,70,86) (35,71,58) (35,72,83) (36,53,44) (36,64,67)
(36,78,65) (36,79,51) (37,52,89) (37,89,52) (38,41,41) (38,42,56) (38,64,64)
(38,66,66) (38,81,81) (38,85,85) (39,49,41) (39,74,43) (40,76,41) (40,87,48)
(42,47,47) (42,73,52) (43,43,43) (43,51,68) (43,59,64) (43,70,47) (44,44,44)
(44,62,75) (44,74,80) (44,79,47) (45,45,45) (45,68,69) (45,86,62) (46,46,46)
(46,71,76) (46,80,50) (48,48,48) (48,49,63) (48,58,81) (48,65,84) (49,53,73)
(49,69,85) (49,73,53) (49,89,59) (50,55,76) (50,73,51) (50,76,60) (50,88,87)
(51,73,54) (51,87,66) (52,75,84) (52,84,68) (53,90,88) (54,84,70) (55,56,79)
(55,63,86) (56,83,60) (57,75,72) (58,72,75) (60,79,85) (60,86,63) (63,69,70)
(65,66,86) (65,78,69) (66,89,71) (68,87,83) (69,78,72) (70,70,70) (71,75,88)
(72,78,76) (79,79,79) (79,90,89) (80,81,87) (83,83,83) (88,88,88)

Table 3.4: Triangle presentation T compatible with λ.





Chapter 4

A discreteness criterion for

the automorphism group of

an Ã2-building

In Chapter 3 we built a residually non-Desarguesian Ã2-building with

a cocompact lattice. Thanks to a computer we could prove that the

automorphism group of that building was discrete. Whether or not the

automorphism group of a particular Ã2-building is discrete is a subtle

question in general. In this chapter, we give sufficient conditions on an

Ã2-building ensuring that its automorphism group is discrete.

4.1 Main results

Throughout this chapter, ∆ is a locally finite thick Ã2-building. The

simplices of dimension 2 in ∆ (i.e. triangles) are the chambers of ∆, and

those of dimension 1 (i.e. edges) are the panels of ∆. As before a vertex

of ∆ is a simplex of dimension 0. Recall from the previous chapter that

there are three types of vertices: V (∆) = V0(∆) ⊔ V1(∆) ⊔ V2(∆). We

also define the type of a panel in ∆ as {a, b} where a, b ∈ {0, 1, 2} are

the types of the two vertices of the panel. Thus each chamber has one

vertex of each type (0, 1 and 2) and one panel of each type ({0, 1}, {1, 2}
and {0, 2}). (Note that what we call type here is generally called cotype

187
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in the literature.)

As in the previous chapter, Aut(∆) denotes the full automorphism

group of ∆ (as a simplicial complex). We then write Aut(∆)+ for the

subgroup of Aut(∆) consisting of the automorphisms that preserve the

types. It is clear that [Aut(∆) : Aut(∆)+] ≤ 6, so that the locally

compact group Aut(∆) (equipped with the topology of pointwise con-

vergence) is non-discrete if and only if Aut(∆)+ is non-discrete.

The goal of this chapter is to provide sufficient conditions under

which an exotic (i.e. non Bruhat–Tits) Ã2-building has a discrete au-

tomorphism group. Our main result is the following.

Theorem 4.A. Let ∆ be a locally finite thick Ã2-building and suppose

that Aut(∆)+ is transitive on panels of each type. Then either:

(a) ∆ is Bruhat–Tits; or

(b) Aut(∆) is discrete.

In the text we actually state and prove Theorem 4.A′ which is a more

precise version of Theorem 4.A. The same will be true for our other main

results: alternative statements can be found in the text.

In the next result, panel-transitivity is replaced by the weaker hy-

pothesis of vertex-transitivity. As explained in the introduction, that

condition alone is not sufficient for the conclusion of Theorem 4.A to

hold: additional assumptions are required.

Theorem 4.B. Let ∆ be a locally finite thick Ã2-building. Suppose

that Aut(∆) is transitive on vertices and unimodular, that Aut(∆)+ is

transitive on vertices of each type, and that ∆ has thickness p + 1 for

some prime p. Then either:

(a) ∆ is Bruhat–Tits; or

(b) Aut(∆) is discrete.

The following result is of different nature but is somewhat comple-

mentary to Theorems 4.A and 4.B. Indeed, it gives a local condition

under which an Ã2-building is ensured to be exotic.
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Theorem 4.C. Let ∆ be a locally finite thick Ã2-building, let x0, x1 be

two adjacent vertices in ∆ and let C be the set of chambers adjacent to

both x0 and x1. For each j ∈ {0, 1}, let Gj ≤ Sym(C) be the image of

Aut(Πxj
)(x1−j) in Sym(C), where Πxj

is the projective plane at xj. If

G0 6= G1, then ∆ is exotic.

We apologize that the condition is indeed that the groups G0 and

G1 do not coincide as subgroups of Sym(C). In particular they might

very well be isomorphic.

Our theorems can be applied in the context of Singer cyclic lattices.

Recall that a Singer cyclic lattice is a group Γ ≤ Aut(∆) acting

simply transitively on the panels of each type of an Ã2-building ∆ and

such that each vertex stabilizer in Γ is cyclic. It is called exotic if ∆

is exotic, and the parameter of Γ is the order of the local projective

planes in ∆.

Corollary 4.D. For each q ≥ 2, there are at most
(

q(q2−1)
3

)2
isomor-

phism classes of non-exotic Singer cyclic lattices with parameter q.

Combined with the fact that the total number of Singer cyclic lattices

with parameter q grows super-exponentially (see [Wit17, Theorem B]),

we obtain the following.

Corollary 4.E. Almost all Singer cyclic lattices are exotic in the fol-

lowing sense:

lim
q→∞

|{exotic Singer cyclic lattices with parameter q}/∼|
|{Singer cyclic lattices with parameter q}/∼| = 1,

where q ranges over prime powers and ∼ is the isomorphism relation.

4.2 Projective Hjelmslev planes

This section gives the definition and first properties of projective Hjelm-

slev planes, which will be of central importance in the whole chap-

ter. It is largely inspired from the work of Van Maldeghem and Van

Steen [VMVS98].
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Given a vertex O in ∆ and a natural number n ≥ 1, we define the

geometry nH(O) as follows. The geometry 1H(O) is just the residue of O,

which is a projective plane. So the points of 1H(O) are certain vertices of

∆ adjacent to O, and similarly for the lines of 1H(O). Now for n ≥ 1, the

points (resp. lines) of nH(O) are the sequences (v1, . . . , vn) of vertices

of ∆, where v1 is a point (resp. a line) of 1H(O) and {vi−1, vi+1} is a

pair of non-incident point and line in 1H(vi) (where v0 := O). We will

sometimes identify an element (v1, . . . , vn) of
nH(O) with the vertex vn

of ∆ (the other vertices v1, . . . , vn−1 being uniquely determined by vn).

A point (p1, . . . , pn) of nH(O) is incident with a line (ℓ1, . . . , ℓn) if all

vertices O, p1, . . . , pn, ℓ1, . . . , ℓn are contained in a common apartment

and if p1 and ℓ1 are adjacent in ∆. This geometry nH(O) is called a

projective Hjelmslev plane of level n. When the vertex O has no

real importance, we write nH instead of nH(O). The point set (resp. line

set) of nH is then nP (resp. nL), while incidence is denoted by nI.

For i ≤ n, the natural morphism from nH to iH is denoted by iπ.

If P,Q ∈ nP satisfy iπ(P ) = iπ(Q) for some 0 < i ≤ n, then we call

P and Q i-neighboring. For i = 1 we just say that P and Q are

neighboring. Similarly for lines. Also, if P ∈ nP and ℓ ∈ nL are such

that iπ(P ) iI iπ(L) for some 0 < i ≤ n then we say that P is i-near ℓ.

Once again, P is near L when i = 1.

A collineation α of nH is, as usual, a bijection from nP to itself

and a bijection from nL to itself that preserve nI. It is not hard to see

that all i-neighboring relations are determined by the geometry of nH,

so that every collineation α of nH induces in iH a unique collineation

α⋆i . When acting on elements of iH, α⋆i will sometimes be replaced by

α, so as to simplify the notation. For a fixed vertex O in ∆, the group

of all collineations of nH(O) that are induced from an automorphism

in Aut(∆)+ fixing O will be denoted by nΨ(O). When α ∈ nΨ(O) is

induced by g ∈ Aut(∆)+, it will be convenient to talk about the action

of α (instead of g) on ∆.

Given P ∈ nP and ℓ ∈ nL with P nI ℓ, an elation of nH with axis ℓ

and center P is a collineation of nH fixing all points incident with ℓ and

fixing all lines incident with P . As the next lemma shows, an elation

also fixes additional points and lines.
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Lemma 4.2.1. Let α be an elation of nH (n ≥ 2) with axis ℓ and center

P . Then α fixes all points (resp. lines) of nH that are (n−1)-neighboring
P (resp. ℓ).

Proof. See [VMVS98, Lemma 5].

A 1h-collineation α of nH is an elation of nH such that α⋆n−1 is

trivial. (All elations of 1H are 1h-collineations.) By definition, an ela-

tion α with axis ℓ and center P fixes all points incident with ℓ and all

lines incident with P . The following lemma states that when α is a
1h-collineation, it also fixes the points near ℓ and the lines near P .

Lemma 4.2.2. Let α be a 1h-collineation of nH with axis ℓ and center

P . Then α fixes all points (resp. lines) of nH that are near ℓ (resp. P ).

Proof. See [VMVS98, Lemma 14].

We then get the following result as a direct consequence.

Lemma 4.2.3. Let α be a 1h-collineation of nH with axis ℓ and center

P . Then for each ℓ′ ∈ nL neighboring ℓ and each P ′ ∈ nP neighboring

P , α is also a 1h-collineation with axis ℓ′ and center P ′.

Proof. By Lemma 4.2.2, α fixes all points (resp. lines) of nH that are

near ℓ (resp. P ). Given P ′ neighboring P and ℓ′ neighboring ℓ, this is

equivalent to saying that α fixes all points (resp. lines) that are near ℓ′

(resp. P ′). In particular, α fixes all points (resp. lines) incident with ℓ′

(resp. P ′), which means that α is an elation (and thus a 1h-collineation)

with axis ℓ′ and center P ′.

The following lemma also comes from [VMVS98]. For n = 1, this is

a particular case of a well-known result of Tits [Tit74, Theorem 4.1.1].

Lemma 4.2.4. Let α be a non-trivial 1h-collineation of nH with axis ℓ

and center P . Then α does not fix any point (resp. line) of nH that is

not near ℓ (resp. P ).

Proof. See [VMVS98, Lemma 16 (iv)].

From this lemma we can easily deduce the more general next result.
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Lemma 4.2.5. Let α be a non-trivial elation of nH with axis ℓ and

center P . Then α does not fix any point (resp. line) of nH that is not

near ℓ (resp. P ). In particular, if m ∈ nL is incident with P but not

neighboring ℓ, then the group of all elations with axis ℓ and center P

acts freely on the points incident with m but not neighboring P .

Proof. Let us prove it by induction on n. For n = 1, this is equivalent

to Lemma 4.2.4. Now assume the assertion is proved in n−1H and let

α be a non-trivial elation of nH with axis ℓ and center P . It is clear

that α⋆n−1 is an elation of n−1H, with axis n−1π(ℓ) and center n−1π(P ).

If α⋆n−1 is trivial then α is a 1h-collineation of nH and we can directly

apply Lemma 4.2.4 to conclude. If on the contrary α⋆n−1 is not trivial

then it is a non-trivial elation of n−1H and the result follows from the

induction hypothesis.

We now explain what it means for nH to be Moufang. First fix

P ∈ nP and ℓ ∈ nL with P nI ℓ. Given m ∈ nL incident with P but

not neighboring ℓ, we say that nH is (P, ℓ)-transitive if the group of all

elations with axis ℓ and center P acts transitively on the points incident

with m but not neighboring P . In view of Lemma 4.2.5, this condition

does not depend on the choice form and the action is then automatically

simply transitive. When nH is (P, ℓ)-transitive for all P ∈ nP and all

ℓ ∈ nL with P nI ℓ, we say that nH is Moufang. For n = 1, this

definition is equivalent to the definition of a Moufang projective plane.

Given n ≥ 1 we say that ∆ is n-Moufang if nH(O) is Moufang

for each vertex O in ∆. Being n-Moufang is clearly weaker than being

(n+1)-Moufang. As the next lemma shows, if ∆ is n-Moufang for each

n ≥ 1 then the projective plane ∆∞ at infinity of ∆ is Moufang. This

is equivalent to saying that ∆ is Bruhat–Tits, see [Wei08, Chapter 28].

The proof of this lemma essentially comes from [VMVS99, §5].

Lemma 4.2.6. Suppose that ∆ is n-Moufang for each n ≥ 1. Then the

projective plane ∆∞ is Moufang, i.e. ∆ is Bruhat–Tits.

Proof. Consider ℓ∞ and m∞ two lines in ∆∞, and denote by P∞ the

point of ∆∞ incident to ℓ∞ and m∞. We want to show that ∆∞ is

(P∞, ℓ∞)-transitive, i.e. that the group of all elations of ∆∞ with axis
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ℓ∞ and center P∞ acts transitively on the points incident with m∞ but

different from P∞. Consider Q∞ and R∞ two points incident with m∞,

different from P∞. Let A∞ be some apartment in ∆∞ containing ℓ∞,

P∞,m∞ and Q∞. There exists an apartement A in ∆ whose apartement

at infinity is A∞. Now choose a vertex O in A so that the two open

rays from O to P∞ and R∞ are disjoint. For each n ≥ 1, nH(O) is

Moufang, so there exists an elation αn of nH(O) with axis nπ(ℓ∞) and

center nπ(P∞), sending nπ(Q∞) to nπ(R∞) (where nπ(x∞) is the point

or line of nH(O) represented by the ray from O to x∞). Lemma 4.2.5

implies that α⋆k
n = αk for each 1 ≤ k ≤ n. We can thus consider the

inverse limit α of the sequence (αn), which is an elation of ∆∞ with axis

ℓ∞ and center P∞, sending Q∞ to R∞.

Finally, for our future needs we give a name to some vertices of ∆.

Given P ∈ nP(O) and ℓ ∈ nL(O) with P nI ℓ (where O is a vertex of ∆),

the consecutive vertices of the geodesic from P to ℓ in ∆ are denoted by

P = v0(P, ℓ), v1(P, ℓ), . . . , vn(P, ℓ) = ℓ.

4.3 Panel-transitive Ã2-buildings

Given n ≥ 1, we say that Aut(∆) (or Aut(∆)+) is n-discrete if there

exists a vertex O in ∆ such that the only element of Aut(∆) fixing O

and acting trivially on nH(O) is the identity. Being n-discrete is clearly

stronger than being (n+1)-discrete. Then Aut(∆) (or Aut(∆)+) is non-

n-discrete if for each vertex O in ∆ there exists a non-trivial element

of Aut(∆) fixing O and acting trivially on nH(O). Remark that Aut(∆)

is non-discrete if and only if it is non-n-discrete for all n ≥ 1. In this

section we prove Theorem 4.A′ which is thus a more precise version of

Theorem 4.A (in view of Lemma 4.2.6).

Theorem 4.A′. Let ∆ be a locally finite thick Ã2-building and suppose

that Aut(∆)+ is transitive on panels of each type. Then for each n ≥ 1,

at least one of the following assertions holds:

(a) ∆ is n-Moufang, or

(b) Aut(∆) is (6n+ 2)-discrete.
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In the proof, we assume that Aut(∆)+ is transitive on panels of each

type and non-(6n+2)-discrete, and aim to show that nH(O) is Moufang

for each vertex O in ∆.

4.3.1 Constructing 1h-collineations

In this first subsection, we observe that the non-(n + 3)-discreteness of

Aut(∆) together with its transitivity on vertices of each type implies the

existence of non-trivial 1h-collineations in nΨ(O) for each vertex O in ∆.

We start with an easy result valid in any Ã2-building ∆.

Lemma 4.3.1. Let v0, . . . , vk (k ≥ 1) be consecutive vertices of a wall

of ∆. Consider vertices w0, . . . , wk−1 with wi adjacent to vi, vi+1 and

wi−1 (if i ≥ 1) for each i ∈ {0, . . . , k − 1}. Similarly, consider vertices

w′
0, . . . , w

′
k−1 with w′

i adjacent to vi, vi+1 and w′
i−1 (if i ≥ 1) for each

i ∈ {0, . . . , k − 1}. If g ∈ Aut(∆)+ fixes v0, . . . , vk and if g(w0) = w′
0,

then g(wi) = w′
i for each i ∈ {0, . . . , k − 1}.

Proof. For each i ∈ {1, . . . , k − 1}, the fact that g fixes vi−1, vi and

vi+1 clearly implies that g sends wi−1 to w′
i−1 if and only if g sends wi

to w′
i (see Figure 4.1 for an illustration). The conclusion then follows

immediately.

bv0 bv1 b vk−1 b vk

b
w0 b

wk−1

b
w′
0

b
w′
k−1

Figure 4.1: Illustration of Lemma 4.3.1.

This enables us to show the following.

Lemma 4.3.2. Let O be a vertex of ∆ and let α ∈ nΨ(O) (n ≥ 2) be

a non-trivial collineation such that α⋆n−1 is trivial. Then there exists

P ∈ nP(O) and ℓ ∈ nL(O) with P nI ℓ and such that α does not fix

v1(P, ℓ), v2(P, ℓ), . . . , vn−1(P, ℓ).
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Proof. For any P ∈ nP(O) and ℓ ∈ nL(O) with P nI ℓ we know by

Lemma 4.3.1 that either all vertices v1(P, ℓ), . . . , vn−1(P, ℓ) are fixed by

α or none of them is fixed by α (because α⋆n−1 is trivial).

We therefore proceed by contradiction, assuming that for all such P

and ℓ, all the vertices v1(P, ℓ), . . . , vn−1(P, ℓ) are fixed by α. We show

that, in this case, α is trivial (which gives the contradiction).

Consider any point P ∈ nP(O) and choose two lines ℓ, ℓ′ ∈ nL(O)

incident with P and such that ℓ and ℓ′ are not neighboring. Then α

fixes v1(P, ℓ), v1(P, ℓ
′) and n−1π(P ), so it must fix P . This can be done

for any choice of a point P ∈ nP(O), and similarly for any choice of a

line ℓ ∈ nL(O), so α is trivial.

Proposition 4.3.3. Let n ≥ 1 and suppose that Aut(∆) is non-(n+3)-

discrete and transitive on vertices of each type. Then for each vertex O

in ∆, there exists a non-trivial 1h-collineation in nΨ(O).

Proof. In view of the transitivity of Aut(∆) on vertices of each type, it

suffices to find three vertices O0, O1, O2 of types 0, 1 and 2 such that
nΨ(Oi) contains a non-trivial 1h-collineation for each i ∈ {0, 1, 2}.

Fix some vertex O in ∆. The non-(n + 3)-discreteness of Aut(∆)

implies that there exists N ≥ n + 4 such that NΨ(O) contains a non-

trivial collineation α with α⋆N−1 trivial. By Lemma 4.3.2, there exists

P ∈ NP(O) and ℓ ∈ NL(O) with P NI ℓ and such that none of the ver-

tices v1(P, ℓ), . . . , vN−1(P, ℓ) is fixed by α. Now write X = N−nπ(P ) and

Y = N−nπ(ℓ) (see Figure 4.2). As N − n ≥ 4, the geodesic from X to Y

b O

bX bO0 bO1 bO2 b Y

bP b ℓ

N − n

n

Figure 4.2: Illustration of Proposition 4.3.3.
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in ∆ contains at least three vertices different from X and Y . Since three

consecutive vertices in such a configuration always have the three differ-

ent types, there exist O0, O1 andO2 with types 0, 1 and 2 and strictly be-

tweenX and Y . For each i ∈ {0, 1, 2}, the action induced by α on nH(Oi)

is non-trivial, because α acts non-trivially on v1(P, ℓ), . . . , vN−1(P, ℓ).

There remains to check that it is a 1h-collineation of nH(Oi), but this is

a consequence of the fact that α⋆N−1 is trivial.

The previous proposition shows the existence of a non-trivial 1h-

collineation in nΨ(O), in some circumstances. We already know some

properties of such collineations (see Lemma 4.2.4), but the next lemma

is more precise.

Lemma 4.3.4. Let O be a vertex of ∆ and consider P ∈ nP(O) and

ℓ ∈ nL(O) with P nI ℓ (n ≥ 2). Let also Q ∈ nP(O) be a point not near

ℓ and o ∈ nL(O) be a line not near P , such that Q nI o.

(i) Let α ∈ nΨ(O) be a non-trivial 1h-collineation with axis ℓ and center

P . Then α does not fix vi(Q, o), for any i ∈ {0, 1, . . . , n}.

(ii) Denote by m ∈ nL(O) the line incident with P and Q. Suppose that

the group G of all 1h-collineations in nΨ(O) with axis ℓ and center P

acts transitively on the set of points (n−1)-neighboring Q and inci-

dent with m. Then, for each i ∈ {0, . . . , n− 2}, G acts transitively

on the set of chambers of ∆ having vertices vi(
n−1π(Q), n−1π(o))

and vi+1(
n−1π(Q), n−1π(o)) but not vi(

n−2π(Q), n−2π(o)).

Proof. Let α ∈ nΨ(O) be a 1h-collineation with axis ℓ and center P . Let

also m ∈ nL(O) be the line incident with P and Q (see Figure 4.3). We

know by definition of an elation that α fixes m, and the fact that α⋆n−1

is trivial implies that it also fixes n−1π(Q). Hence, from Lemma 4.3.1

applied to the segment from n−1π(m) to n−1π(Q), we get that α fixes

v1(Q,m). Assertions (i) and (ii) then follow thanks to another appli-

cation of Lemma 4.3.1 to the segment with vertices v1(Q,m), n−1π(Q),

v1(
n−1π(Q), n−1π(o)), . . . , n−1π(o). (Recall, for (i), that when α is non-

trivial it does not fix Q nor o by Lemma 4.2.4.)
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b O

bQ

bm

b o

bP b ℓ

bv1(Q,m)

Figure 4.3: Illustration of Lemma 4.3.4.

4.3.2 From panel-transitivity to chamber-transitivity

In this subsection, we prove that if Aut(∆)+ is non-4-discrete and tran-

sitive on panels of each type, then Aut(∆)+ is transitive on chambers.

We start by the following easy lemma, valid in any projective Hjelmslev

plane of level 1 (i.e. any projective plane).

Lemma 4.3.5. Let α be a non-trivial elation of 1H with axis ℓ and

center P . Let m ∈ 1L be incident with P but different from ℓ. Then

the permutation induced by α on the set of q points incident with m but

different from P is a product of k ≥ 1 disjoint cycles of the same length

c ≥ 2, where k · c = q. Moreover, k and c do not depend on m.

Proof. Let σ be the permutation induced by α on this set of q points.

By Lemma 4.2.4, σ has no fixed point. Now it suffices to prove that

two cycles in the cycle decomposition of σ always have the same length.

Suppose for a contradiction that there are two cycles of different lengths

c1 < c2. Then αc1 is an elation of 1H which is non-trivial (because σc1

is non-trivial) and σc1 has fixed points, which contradicts Lemma 4.2.4.

So all k cycles in the cycle decomposition must have the same length

c ≥ 2, and of course k · c = q. Note that k and c do not depend on m,

otherwise we would once again get a power of α that is non-trivial but

has forbidden fixed points.
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Proposition 4.3.6. Suppose that Aut(∆)+ is non-4-discrete and tran-

sitive on panels of each type. Then Aut(∆)+ is chamber-transitive.

Proof. Let us assume for a contradiction that Aut(∆)+ is not chamber-

transitive. Then we can color the chambers of ∆ in blue and red so

that each color is used at least once and two chambers with different

colors do not belong to the same orbit. (For instance, color one orbit

of chambers in blue and all other orbits in red.) For each type t ∈
{{0, 1}, {1, 2}, {0, 2}}, the transitivity on t-panels implies that there exist

bt and rt such that all t-panels are adjacent to bt blue chambers and rt

red chambers. Note that bt ≥ 1 and rt ≥ 1, otherwise all chambers of

∆ would be the same color. In ∆, all panels have the same number of

chambers, say 1 + q, so bt + rt = 1 + q for each t.

We first claim that b{0,1} = b{1,2} = b{0,2} (and r{0,1} = r{1,2} =

r{0,2}). Indeed, take t, t
′ ∈ {{0, 1}, {1, 2}, {0, 2}} with t 6= t′ and consider

a vertex v of type t∩ t′ in ∆. The number of blue chambers adjacent to

v (i.e. in the residue corresponding to v) is equal to pt ·bt, where pt is the
number of t-panels adjacent to v. Since the residue associated to v is a

projective plane of order q, we have pt = q2+q+1 and the number of blue

chambers adjacent to v is (q2+q+1) ·bt. But for the same reason with t′

instead of t, this number is also equal to (q2+ q+1) · bt′ . So bt = bt′ and

rt = rt′ . In the following we therefore write b = b{0,1} = b{1,2} = b{0,2}

and r = r{0,1} = r{1,2} = r{0,2}. Recall that b+ r = 1 + q.

Now consider a vertex O in ∆ and a non-trivial elation α in 1Ψ(O),

whose existence is ensured by Proposition 4.3.3. Let P ∈ 1P(O) and ℓ ∈
1L(O) be the center and axis of the elation α. Considerm ∈ 1L(O) a line

incident with P but different from ℓ. By Lemma 4.3.5, the permutation

induced by α on the set of q points incident with m but different from P

is a product of k ≥ 1 cycles of length c ≥ 2, with k ·c = q. If the chamber

with vertices O, P and m is blue, then this implies that b ≡ 1 (mod c)

and r ≡ 0 (mod c). If it is red, then r ≡ 1 (mod c) and b ≡ 0 (mod c).

But c does not depend on m, so this reasoning is valid for any choice of

m. As b cannot be congruent to both 0 and 1 modulo c (because c ≥ 2),

this means that all the chambers with vertices O, P and some m 6= ℓ

have the same color. We can assume that this common color is blue, so
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that b ≡ 1 (mod c) and r ≡ 0 (mod c). In particular we have r ≥ c ≥ 2,

but this is a contradiction with the fact that there is at most one red

chamber adjacent to the panel defined by O and P .

Remark 4.3.7. The non-4-discreteness in Proposition 4.3.6 can be re-

placed by non-2-discreteness. Indeed, in the proof we only need a non-

trivial elation in 1Ψ(O) for some vertex O (of any type), and Propo-

sition 4.3.3 with n + 1 instead of n + 3 indeed gives a non-trivial 1h-

collineation in nΨ(O) for a vertex O whose type is not controlled.

A similar remark can be done for many of our following results: we

often assume that Aut(∆) is non-f(n)-discrete for some linear function

f of n, but we never claim that our choice for f is optimal. In particular,

the value 6n + 2 appearing in Theorem 4.A′ can certainly be replaced

by a smaller value with some more effort.

4.3.3 From chamber-transitivity to 1-Moufangness

The following theorem is due to Kantor [Kan87] and concerns finite

projective planes with a collineation group transitive on incident point-

line pairs. It will be helpful to get local information about Aut(∆).

Theorem 4.3.8 (Kantor, 1987). Let Π be a projective plane of order q,

and let F be a collineation group of Π transitive on incident point-line

pairs. Then either

(a) Π is Desarguesian and F ≥ PSL(3, q), or

(b) F is a Frobenius group of odd order (q2+q+1)(q+1), and q2+q+1

is prime.

Proof. See [Kan87, Theorem A].

Corollary 4.3.9. Suppose that Aut(∆)+ is non-4-discrete and chamber-

transitive. Then for each vertex O in ∆, the projective plane 1H(O) is

Desarguesian and 1Ψ(O) ≥ PSL(3, q), where q + 1 is the number of

chambers in each panel of ∆. In particular, 1H(O) is Moufang and
1Ψ(O) contains all elations of 1H(O).



200 4. A discreteness criterion for Ã2-buildings

Proof. For any vertex O in ∆, 1H(O) is a projective plane of order q.

The chamber-transitivity of ∆ directly implies that 1Ψ(O) is transitive

on incident point-line pairs of 1H(O). Hence, by Theorem 4.3.8, either
1H(O) is Desarguesian and 1Ψ(O) ≥ PSL(3, q), or |1Ψ(O)| = (q2 + q +

1)(q+1). We only need to show that the latter is impossible. Note that

there are exactly (q2 + q + 1)(q + 1) incident point-line pairs in 1H(O),

so the equality |1Ψ(O)| = (q2+ q+1)(q+1) would imply that the action

of 1Ψ(O) on these point-line pairs is free. However, by Proposition 4.3.3,

there exists a non-trivial elation in 1Ψ(O). So the action is not free and

the statement stands proved.

Note that, for a finite projective plane Π (say of order q), being

Desarguesian is equivalent to being Moufang. Also, in this case, the

group generated by all elations of Π is called the little projective group

and is exactly PSL(3, q).

4.3.4 From chamber-transitivity to Bruhat–Titsness

We have seen with Corollary 4.3.9 that all 1H(O) are Moufang when

Aut(∆)+ is chamber-transitive and non-4-discrete. Our next goal is to

show, for each n ≥ 2, that all nH(O) are Moufang when Aut(∆)+ is

chamber-transitive and non-(6n+ 2)-discrete.

We start with the next easy corollary of Proposition 4.3.3.

Lemma 4.3.10. Let n ≥ 1 and suppose that Aut(∆)+ is non-(n + 3)-

discrete and chamber-transitive. Then for each vertex O in ∆, each point

P ∈ nP(O) and each line ℓ ∈ nL(O) with P nI ℓ, there exists a non-trivial
1h-collineation in nΨ(O) with axis ℓ and center P .

Proof. By Proposition 4.3.3, there exists a non-trivial 1h-collineation α ∈
nΨ(O), say with axis ℓ′ ∈ nL(O) and center P ′ ∈ nP(O). Let c (resp. c′)

be the chamber of ∆ with vertices O, 1π(ℓ) and 1π(P ) (resp. O, 1π(ℓ′) and
1π(P ′)). Since Aut(∆)+ is chamber-transitive, there exists g ∈ Aut(∆)+

such that g(c) = c′. Then g−1αg is a non-trivial 1h-collineation, and by

Lemma 4.2.3 it has axis ℓ and center P .

Lemma 4.3.11. Let n ≥ 2 and let 1 ≤ k < n. In the following, O is a

vertex of ∆, P is a point in nP(O) and ℓ is a line in nL(O) with P nI ℓ,
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Q is a point in nP(O) not near ℓ, and m ∈ nL(O) is the line incident

with P and Q.

(i) Suppose that for any O, P and ℓ, there exists a non-trivial 1h-

collineation in 2n+kΨ(O) with axis ℓ and center P . Then for any

O, P and ℓ, there exists an elation α ∈ nΨ(O) with axis ℓ and

center P such that α⋆k−1 is trivial but α⋆k is non-trivial.

(ii) Suppose that for any O, P , ℓ and Q, the group of all 1h-collineations

in 2n+kΨ(O) with axis ℓ and center P acts transitively on the set

of points (2n + k − 1)-neighboring Q and incident with m. Then

for any O, P , ℓ and Q, the group of all elations α ∈ nΨ(O) with

axis ℓ and center P and with α⋆k−1 trivial is transitive on the set

of points in kP(O) that are (k− 1)-neighboring kπ(Q) and incident

with kπ(m).

Proof. Fix O, ℓ and P and let A be an appartment of ∆ containing

them (seen as vertices of ∆). In A, we denote by O′ the reflection of O

over the line through ℓ and P (see Figure 4.4). Also, P ′ (resp. ℓ′) is the

vertex of A at distance 2n+ k from O′ such that O′ lies on the segment

from ℓ to P ′ (resp. from P to ℓ′).

We first prove (i). By hypothesis, there exists a non-trivial 1h-

collineation β ∈ 2n+kΨ(O′) with axis ℓ′ and center P ′. We now consider

the element α ∈ nΨ(O) induced by β. The fact that β⋆2n+k−1 is trivial

implies that α⋆k−1 is trivial. Also, it is clear from Lemma 4.3.4 (i) ap-

plied to β that α⋆k is non-trivial. There remains to show that α is an

elation of nH(O) with axis ℓ and center P , i.e. that α fixes all points

incident with ℓ and all lines incident with P . This is actually also a

consequence from the fact that β⋆2n+k−1 (even β⋆2n) is trivial. Indeed,

all points incident with ℓ (and all lines incident with P ) in nH(O) corre-

spond to vertices of ∆ that are contained in 2nH(O′) (more precisely in

the convex hull of the vertices of ∆ associated to 2nP(O′) and 2nL(O′)).

The reasoning is the same for (ii). Take Q ∈ nP(O) a point not near

ℓ and denote by m ∈ nL(O) the line incident with P and Q. Here also,

we see Q and m as vertices of ∆ and we can even assume that they

belong to A. Let Q′ be the vertex of A at distance 2n + k from O′, in
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Figure 4.4: Illustration of Lemma 4.3.11.

the direction of P and m. If m′ ∈ 2n+kL(O′) is the line incident with P ′

and Q′ in 2n+kH(O′), then the hypothesis states that the group of all 1h-

collineations in 2n+kΨ(O′) with axis ℓ′ and center P ′ acts transitively on

the set of points (2n+k−1)-neighboring Q′ and incident with m′. Using

Lemma 4.3.4 (ii) and as for (i), we obtain that the group of all elations

α ∈ nΨ(O) with axis ℓ and center P with α⋆k−1 trivial is transitive on the

set of points in kP(O) that are (k − 1)-neighboring kπ(Q) and incident

with kπ(m).

The key result of this section is then the following.

Proposition 4.3.12. Let n ≥ 1 and suppose that Aut(∆)+ is non-

(2n + 4)-discrete and chamber-transitive. Let O be a vertex in ∆ and

consider a point P ∈ nP(O) and a line ℓ ∈ nL(O) with P nI ℓ. Let
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Q ∈ nP(O) be a point not near ℓ and denote by m ∈ nL(O) the line

incident with P and Q. Then the group of all 1h-collineations in nΨ(O)

with axis ℓ and center P acts transitively on the set of points (n − 1)-

neighboring Q and incident with m.

Proof. We introduce the three following assertions, all depending on

N ≥ 1 (actually N ≥ 2 for (CN )). Remark that (An) is exactly what

we need to prove.

(AN ) Let O be a vertex in ∆. Let P ∈ NP(O) and ℓ ∈ NL(O) be such

that P NI ℓ, let Q ∈ NP(O) be a point not near ℓ and denote by m

the line incident with P and Q. The group of all 1h-collineations

in NΨ(O) with axis ℓ and center P acts transitively on the set of

points (N − 1)-neighboring Q and incident with m.

(BN ) Let i, j, k be the three types of panels in some order and let f be the

word ijkijkijk. . . of length 2N . Let (c0, c1, . . . , c2N ) be a gallery

of type f in ∆ (i.e. for each 1 ≤ s ≤ 2N , the chambers cs−1 and

cs are adjacent and their common panel has type given by the sth

letter of f). Then for any two chambers d and d′ adjacent to both

c0 and c1 (but different from them), there exists an automorphism

of ∆ fixing c0, c1, . . . , c2N and sending d to d′.

(CN ) Let O be a vertex in ∆. Let P ∈ NP(O) and ℓ ∈ NL(O) be such

that P NI ℓ, let Q ∈ NP(O) be a point near ℓ but not neighboring

P , and let m, o ∈ NL(O) be two lines near Q but not neighboring

ℓ. There exist a point P ′ ∈ NP(O) (N − 1)-neighboring P , a line

ℓ′ ∈ NL(O) neighboring ℓ (with P ′ NI ℓ′) and an elation in NΨ(O)

with axis ℓ′ and center P ′ sending 1π(m) to 1π(o).

Note that (A1) is given by Corollary 4.3.9. It also follows from this

corollary that (B1) is true. Indeed, if O is the vertex of ∆ adjacent to c0,

c1 and c2 (as defined in (B1)), then having 1Ψ(O) ≥ PSL(3, q) implies

the existence of an automorphism fixing c0, c1, c2 and sending d to d′.

We now show three different relations between (AN ), (BN ) and (CN ).

Claim 1. (BN−1) + (CN )⇒ (AN ) for each 2 ≤ N ≤ n.
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Proof of the claim: Let O, P , ℓ, Q and m be as in (AN ). Let also

R ∈ NP(O) be a point (N − 1)-neighboring Q and incident with m (see

Figure 4.5). We want to prove that there exists some 1h-collineation in
NΨ(O) with axis ℓ and center P , sending Q to R.

From Lemma 4.3.10 we know that there exists a non-trivial 1h-

collineation α ∈ NΨ(O) with axis ℓ and center P . (Note that Aut(∆) is

non-(N +3)-discrete because N +3 ≤ n+3 ≤ 2n+2.) By Lemma 4.2.4,

α sends Q to some S 6= R. We know from (BN−1) that there exists

β ∈ Aut(∆)+ fixing Q, O and 1π(m) and sending S to R. Then βαβ−1

sends Q to R (as desired) and is a 1h-collineation with axis ℓ′ and center

P ′, with 1π(P ′) 1I 1π(m). Now there are two different cases:

• If 1π(ℓ′) = 1π(ℓ), then also 1π(P ′) = 1π(P ), and hence βαβ−1 is a
1h-collineation with axis ℓ and center P in view of Lemma 4.2.3.

• If 1π(ℓ′) 6= 1π(ℓ), then denote by T ∈ NP(O) the point incident

with ℓ and ℓ′ and by o ∈ NL(O) the line incident with Q and T .

By (CN ), there exist a point Q′ ∈ NP(O) (N − 1)-neighboring Q,

a line o′ ∈ NL(O) neighboring o (with Q′ NI o′) and an elation

γ ∈ NΨ(O) with axis o′ and center Q′ sending 1π(ℓ′) to 1π(ℓ). Note

that γ fixes Q and R by Lemma 4.2.1. Thus γ(βαβ−1)γ−1 is a
1h-collineation with axis ℓ and center P , and it sends Q to R.

(Remark that this argument is valid when 1π(P ′) = 1π(P ), even

b Obm

b
P

b
ℓ

b T

bobQ

b

P ′
b
ℓ′

b
1π(m)

bR
bS

Figure 4.5: Illustration of Proposition 4.3.12, Claim 1.
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though Figure 4.5 does not represent that case.) �

Claim 2. (BN−1) + (AN )⇒ (BN ) for each N ≥ 2.

Proof of the claim: Let i, j, k, w, (c0, c1, . . . , c2N ), d and d′ be as in (BN ).

We need an automorphism of ∆ fixing c0, . . . , c2N and sending d to d′.

By (BN−1), we already have some g ∈ Aut(∆)+ fixing c0, . . . , c2N−2

and sending d to d′. Denote by c′2N−1 the image of c2N−1 by g. Now

taking O, P , ℓ and Q as in Figure 4.6a, we can apply (AN ) to get an

element h ∈ Aut(∆)+ fixing c0, . . . , c2N−2 as well as d and d
′ and sending

c′2N−1 to c2N−1. So hg sends d to d′ and fixes c0, . . . , c2N−1. Now we can

use the same method one step further: if c′2N denotes the image of c2N

by hg, then we can find thanks to (AN ) (see Figure 4.6b) an element h′

fixing c0, . . . , c2N−1, d and d′ and sending c′2N to c2N . The element h′hg

then fixes c0, . . . , c2N and sends d to d′. �

bO

b
P

b
ℓ

dd′ c0

c1
c2

bQ
c2N−1 c′2N−1

(a) From c2N−1 to c′2N−1.

bO

b
ℓ

b
P

d
d′

c0

c1

c2
c3

bQ
c2Nc′2N

(b) From c2N to c′2N .

Figure 4.6: Illustration of Proposition 4.3.12, Claim 2.

Claim 3. (BN−1)⇒ (CN ) for each 2 ≤ N ≤ n.

Proof of the claim: Let O, P , ℓ, Q, m and o be as in (CN ). We must

find an elation in NΨ(O) sending 1π(m) to 1π(o), with axis ℓ′ and center

P ′ where ℓ′ is neighboring ℓ and P ′ is (N − 1)-neighboring P .
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bO
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b 1π(ℓ)

bN−1π(P )

Figure 4.7: Illustration of Proposition 4.3.12, Claim 3.

By Lemma 4.3.10 (with 2N + 1) and Lemma 4.3.11 (i) (with N),

there exists an elation α ∈ NΨ(O) with axis ℓ and center P and such

that α⋆1 is non-trivial. In view of Lemma 4.2.4 (applied in 1H(O)), if

p denotes the image of m by α, then 1π(p) 6= 1π(m). By (BN−1), there

exists g ∈ Aut(∆)+ fixing N−1π(P ), 1π(ℓ) and 1π(m) and sending 1π(p)

to 1π(o) (see Figure 4.7). Then gαg−1 is an elation with axis g(ℓ) and

center g(P ) which sends 1π(m) to 1π(o). Since g(ℓ) is neighboring ℓ and

g(P ) is (N − 1)-neighboring P , we are done. �

Claims 1 and 3 together imply that (BN−1) ⇒ (AN ) for each 2 ≤
N ≤ n (∗), so that Claim 2 then reads as (BN−1) ⇒ (BN ) for each

2 ≤ N ≤ n. From (B1) we therefore get (BN ) for all 1 ≤ N ≤ n, and

hence (AN ) is true for all 2 ≤ N ≤ n by (∗). (Remember that (A1) was

already true.)

Proof of Theorem 4.A′. Suppose that Aut(∆) is non-(6n + 2)-discrete.

By Proposition 4.3.6, Aut(∆)+ is chamber-transitive (because 6n+2 ≥
4). We want to prove that nH(O) is Moufang for each vertex O in ∆.

Consider P ∈ nP(O) and ℓ ∈ nL(O) with P nI ℓ. We need to show

that nH(O) is (P, ℓ)-transitive. Let m ∈ nL(O) be incident with P but

not neighboring ℓ and let Q,R ∈ nP(O) be incident with m but not

neighboring P . We must find an elation of nH(O) with axis ℓ and center

P sending Q to R. We actually show by induction on k that, for each



4.4. Vertex-transitive Ã2-buildings 207

0 ≤ k ≤ n, there exists an elation with axis ℓ and center P sending kπ(Q)

to kπ(R). For k = 0 we can take the identity (because 0π(Q) = 0π(R) = O

by convention). Now consider 1 ≤ k ≤ n and assume that this is true

for k− 1. Thus there is an elation α with axis ℓ and center P such that

α(k−1π(Q)) = k−1π(R). Denote by Q′ the image of Q by α. Then Q′

is (k − 1)-neighboring R and incident with m, and it suffices to find an

elation with axis ℓ and center P sending kπ(Q′) to kπ(R) in . For k = n,

such an elation exists by Proposition 4.3.12, and for k < n we need this

same proposition (with 2n+ k) together with Lemma 4.3.11 (ii). (Note

for Proposition 4.3.12 that 2(2n+ k) + 4 ≤ 6n+2 when k ≤ n+1.)

4.4 Vertex-transitive Ã2-buildings

The goal of this section is to prove Theorem 4.B′ below.

Theorem 4.B′. Let ∆ be a locally finite thick Ã2-building. Suppose

that Aut(∆) is transitive on vertices and unimodular, that Aut(∆)+ is

transitive on vertices of each type, and that ∆ has thickness p+1 for some

prime p. Then for each n ≥ 1, at least one of the following assertions

holds:

(a) ∆ is n-Moufang, or

(b) Aut(∆) is (6n+ 2)-discrete.

We will once again suppose that Aut(∆) is non-(6n + 2)-discrete

and, under the hypotheses of Theorem 4.B′, prove that Aut(∆)+ must

be transitive on panels of each type. The conclusion will then follow

from Theorem 4.A′.

4.4.1 About finite projective planes

We begin with several lemmas concerning finite projective planes. They

will become useful later in the section. The first lemma is classical.

Lemma 4.4.1. Let Π be a finite projective plane and F be a collineation

group of Π. Then F is transitive on points of Π if and only if F is

transitive on lines of Π.
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Proof. It is actually true that, for any collineation group F of a finite

projective plane Π, F has as many point orbits as line orbits, see [HP73,

Theorem 13.4].

The following lemma is also classical but, because of the lack in

finding a suitable reference, we give its proof here.

Lemma 4.4.2. Let Π be a finite projective plane of prime order and

F be a collineation group of Π. Suppose that F contains a non-trivial

elation. Then either F is transitive on points of Π or F fixes a point or

a line of Π.

Proof. We color the points of Π according to their orbit under the action

of F . Let us suppose that F is not transitive on points of Π, i.e. that

there are at least 2 colors. Let us denote by P and ℓ the center and axis

of a non-trivial elation α in F . By Lemma 4.3.5 and since Π has prime

order, for each line o incident to P and different from ℓ, the elation α is

transitive on points incident to o and different from P . Thus, for each

such o, all points incident to o and different from P have the same color

(∗). Now let us distinguish several cases:

• If P has a color that no other point has, then P is fixed by F .

• Otherwise, and if the only points with the same color as P are

incident to ℓ, then ℓ is fixed by F .

b

b

P

P ′

m

ℓ

Figure 4.8: Illustration of Lemma 4.4.2.
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• Now assume that there exists a point P ′ not incident to ℓ but with

the same color as P . This means that there exists β ∈ F with

β(P ) = P ′. Denote by m the line through P and P ′, and write

ℓ′ = β(ℓ). Note that, in view of (∗), for each line o′ incident to P ′

and different from ℓ′, all points incident to o′ and different from

P ′ have the same color (∗∗). See Figure 4.8 for an illustration.

– If ℓ′ = m, we deduce from (∗), (∗∗) and the fact that β(ℓ) = ℓ′

that all points have the same color, which is a contradiction.

– If ℓ′ 6= m, then we obtain from (∗) and (∗∗) that all points

incident to m have the same color, say c1, and that all points

not incident to m but different from Q = ℓ∩ ℓ′ have the same

color, say c2. We write c3 for the color of Q. If c3 6= c1, c2,

then Q is the only point with color c3 so it is fixed by F . If

c3 = c2, then c1 6= c2 (because there are at least two colors),

and m is fixed by F . Finally, if c3 = c1, then c1 6= c2 and

there should exist γ ∈ F with γ(P ) = Q. But this gives a

contradiction with the coloring.

We conclude with a third lemma about finite projective planes of

prime order which can be applied in some really precise situation.

Lemma 4.4.3. Let Π be a finite projective plane of prime order and

F be a collineation group of Π. Suppose that F contains a non-trivial

elation and that F fixes exactly one point Q and one line m, with Q

not incident to m. Then F is transitive on points incident to m and

transitive on points not incident to m but different from Q.

Proof. Let α be a non-trivial elation in F , say with axis ℓ and center P .

From Lemma 4.2.4, we deduce that Q is incident to ℓ (and different from

P ) and thatm is incident to P (and different from ℓ), see Figure 4.9. We

color the points of Π according to their orbit (under the action of F ).

By Lemma 4.3.5 and since Π has prime order, for each line o incident

to P and different from ℓ, all points incident to o and different from P

have the same color (∗). Now by hypothesis, P is not fixed by F . Thus

there exists β ∈ F with β(P ) = P ′ 6= P . Moreover, P ′ is incident to

m since m is fixed by F (and hence by β). As Q is fixed by F , we also
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b b

b

P Q

P ′

m

ℓ

ℓ′

Figure 4.9: Illustration of Lemma 4.4.3.

have β(ℓ) = ℓ′ where ℓ′ is the line incident to P ′ and Q. So by (∗), we
get that for each line o′ incident to P ′ and different from ℓ′, all points

incident to o′ and different from P ′ have the same color (∗∗). From (∗)
and (∗∗) we deduce that there are exactly three colors: one for Q, one

for the points incident to m and one for all other points.

4.4.2 From vertex-transitivity to panel-transitivity

We start this subsection with two easy lemmas.

Lemma 4.4.4. Suppose that Aut(∆)+ is transitive on vertices of each

type but not transitive on panels of each type. Then for each vertex O

in ∆, 1Ψ(O) is not transitive on 1P(O) (resp. 1L(O)).

Proof. Suppose for a contradiction that 1Ψ(O) is transitive on 1P(O)

for some vertex O in ∆, say of type 1. By Lemma 4.4.1, 1Ψ(O) is also

transitive on 1L(O). Since Aut(∆)+ is transitive on vertices of each type,

this implies that Aut(∆)+ is transitive on panels of type {0, 1} and of

type {0, 2} of ∆. Now if we consider a vertex O′ of type 1, then we

know that the stabilizer of O′ in Aut(∆)+ is transitive on panels of type

{0, 1} adjacent to O′. By Lemma 4.4.1, it is also transitive on panels of

type {1, 2} adjacent to O′. It follows that Aut(∆)+ is also transitive on

panels of type {1, 2}, which contradicts the hypothesis.

Lemma 4.4.5. Suppose that Aut(∆) is transitive on vertices and uni-

modular. If v and w are two vertices in ∆ such that the stabilizer
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Aut(∆)+(v) of v in Aut(∆)+ fixes w, then Aut(∆)+(v) = Aut(∆)+(w).

Proof. We have Aut(∆)+(v) ⊆ Aut(∆)+(w) by hypothesis. Take g ∈
Aut(∆) such that g(v) = w. Since Aut(∆) is unimodular, the Haar

measure µ of Aut(∆) satisfies µ(Aut(∆)+(v)) = µ(gAut(∆)+(v)g−1) =

µ(Aut(∆)+(w)). So Aut(∆)+(v) = Aut(∆)+(w).

Proposition 4.4.6. Suppose that Aut(∆) is transitive on vertices, non-

6-discrete and unimodular, that Aut(∆)+ is transitive on vertices of each

type, and that ∆ has thickness p + 1 for some prime p. Then Aut(∆)+

is transitive on panels of each type.

Proof. Let us assume for a contradiction that Aut(∆)+ is not transitive

on panels of each type. By Lemma 4.4.4, this implies that 1Ψ(v) is not

transitive on 1P(v) (and on 1L(v)) for each vertex v in ∆. In view of

Lemmas 4.4.2 and 4.4.5, for each such v there exists w adjacent to v in

∆ such that Aut(∆)+(v) = Aut(∆)+(w). From now on, we color in red

all panels (i.e. edges) [v,w] in ∆ such that Aut(∆)+(v) = Aut(∆)+(w).

We have just seen that each vertex is adjacent to at least one red edge.

Claim 1. Let v,w, x, y be vertices in ∆, placed as shown below.

(i) If [v,w] and [v, x] are red, then [w, x] is red.

(ii) If [v,w] and [v, y] are red, then [v, x] is red.

b
v

b
w

b xby

Proof of the claim: The claim follows from the definition of a red edge:

(i) Having [v,w] and [v, x] red means that Aut(∆)+(v) = Aut(∆)0(w)

and Aut(∆)+(v) = Aut(∆)+(x), so Aut(∆)+(w) = Aut(∆)+(x)

and [w, x] is red.

(ii) Having [v,w] and [v, y] red means that Aut(∆)+(v) = Aut(∆)+(w)

and Aut(∆)+(v) = Aut(∆)+(y). In particular, this implies that

Aut(∆)+(v) fixes x. By Lemma 4.4.5, this gives us Aut(∆)+(v) =

Aut(∆)+(x) so that [v, x] is red. �
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Claim 2. Let v be a vertex in ∆ and let α be a non-trivial elation of
1H(v), with axis ℓ and center P . Then all vertices w adjacent to v with

[v,w] red are incident to P or ℓ.

Proof of the claim: This follows from Lemma 4.2.4. �

Claim 3. For each vertex v in ∆, there exist two vertices w, x adjacent

to v and opposite in 1H(v) such that [v,w] and [v, x] are red.

Proof of the claim: By Lemmas 4.4.2 and 4.4.5, there is at least one red

edge adjacent to any vertex. Since Aut(∆) is transitive on vertices, each

vertex is adjacent to the same number of red edges. This number cannot

be exactly one, because then there would be an issue with the types of

the red panels (because Aut(∆)+ is transitive on vertices of each type).

So each vertex is adjacent to at least two red edges.

We want to show that, for each vertex v, there exists w, x adjacent

to v and opposite in 1H(v) such that [v,w] and [v, x] are red. If this

situation occurs at one vertex v, then it occurs at any vertex v in view

of the vertex-transitivity. So we assume for a contradiction that this

situation does not appear anywhere.

First assume that, for some vertex v, there exist two vertices w, y

adjacent to v, with the same type and such that [v,w] and [v, y] are red.

Then the edge [v, x] between w and y must also be red, as well as [w, x]

b
v

b
w

b
x

b
y

b y′

b

P
b
ℓ

Figure 4.10: Illustration of Proposition 4.4.6, Claim 3.
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and [x, y] (by Claim 1). But there must also be two red edges of the

same type adjacent to w. In all cases, we find (via Claim 1) two opposite

red edges adjacent to a same vertex. So two such red edges [v,w] and

[v, x] cannot exist, and the only remaining possibility is to have, for each

vertex v in ∆, exactly two red edges adjacent to v, of different types and

incident in 1H(v) (∗).
We now show that this situation is impossible. Let us consider some

non-trivial 1h-collineation α in 3H(v), which exists by Proposition 4.3.3.

Denote by P and ℓ its center and axis. Let w, x be two vertices adjacent

to v in ∆, placed as in Figure 4.10. Now for each vertex y adjacent to

both w and x but different from v, α induces an elation of 1H(y) with

axis x and center w. Observing (∗) and Claim 2 at y, we deduce that

at least one of the edges [y,w] and [y, x] is red. This observation is true

for any choice of y. If p ≥ 3, there are at least three such vertices y and

we get two red edges [w, y] and [w, y′] (or [x, y] and [x, y′]) with y and

y′ of the same type, which contradicts (∗). In the particular case where

p = 2, we can also get a contradiction. First, if we denote by y and y′

the two vertices adjacent to w and x and different from v, then the only

way to not have a contradiction is to have [w, y] and [x, y′] red (or [w, y′]

and [x, y] red). Now consider x′ a vertex adjacent to v and w, different

from x and not adjacent to 1π(P ). Then with the same argument as

above we get two vertices t and t′ adjacent to w and x′ and such that

[w, t] and [x, t′] are red. This gives a contradiction with (∗) at w: the

two edges [w, y] and [w, t] are red but y and t have the same type. �

Claim 4. For each vertex v in ∆, there are exactly two red edges adjacent

to v, and they are opposite in 1H(v).

Proof of the claim: For each vertex v in ∆, we have two red edges

adjacent to v and opposite in 1H(v), by Claim 3. Now assume that

some (and hence any) vertex is adjacent to a third red edge.

For some vertex v, we consider some non-trivial 1h-collineation α in
3H(v), with axis ℓ and center P . Let w, x be two vertices adjacent to v

in ∆, placed as in Figure 4.11. Given a vertex y adjacent to both w and

x but different from v, α induces an elation of 1H(y) with axis x and

center w. Applying Claims 2 and 3 at y, we obtain two red edges [y, s]
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Figure 4.11: Illustration of Proposition 4.4.6, Claim 4.

and [y, t], with s adjacent to w and t adjacent to x, see Figure 4.11. We

assumed that there is a third red edge [y, r] adjacent to y. By Claim 2,

r must be adjacent to w or x. Via Claim 1, this implies that all edges

[y,w], [y, x], [s,w], [w, x] and [x, t] are red. Now we can do the same

reasoning with another vertex y adjacent to w and x but different from

v. This gives us two vertices s′ and t′ with [y′, s′], [y′, t′], [y′, w], [y′, x],

[s′, w] and [x, t′] red. In particular, we get that the three edges [w, s],

[w, x] and [w, s′] are red, with s, x and s′ having the same type. In view

of Claim 2, since there exists a non-trivial elation of 1H(w), these three

edges should be incident to a common edge. This is not the case, so we

have our contradiction. �

Claim 5. For each vertex v in ∆, there is a red bi-infinite geodesic

through v.

Proof of the claim: This follows directly from Claim 4. �

Claim 6. Let v,w, x, y, z be vertices in ∆ placed as shown below. If

[v,w] and [v, x] are red, then [y, z] is red.
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w
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Proof of the claim: Consider some non-trivial 1h-collineation α of 2H(v)

given by Proposition 4.3.3 and denote by P and ℓ its center and axis.

Assume without loss of generality that the vertex 1π(P ) (resp. 1π(ℓ)) has

the same type as x (resp. w). Recall from Claims 4 and 5 that there is

a red bi-infinite geodesic through w, v and x. We deduce that w cannot

be opposite to 1π(P ) in 1H(v), because then α would fix a line not near

P , contradicting Lemma 4.2.4. So w must be adjacent to 1π(P ). In the

same way, we deduce that x must be adjacent to 1π(ℓ). Moreover, since

Aut(∆)+(v) fixes w and x and is transitive on points adjacent to v and

w (by Lemma 4.4.3), we can assume without loss of generality that y

and z are different from 1π(P ) and 1π(ℓ), as in Figure 4.12.

We now prove that [y, z] is red. By the previous claims, there is a

(unique) vertex s adjacent to y and with the same type as z such that

[y, s] is red. Our goal is to show that s = z. First observe that s cannot

be opposite to v in 1H(y) (as s1 in Figure 4.12). Indeed, if this was the

case, then it would mean that α fixes s, a point of 2H(v) not near P .

This is impossible by Lemma 4.2.4. So s is adjacent to v.

Of course we cannot have s = w since [w, v] and [w, y] cannot be

both red. In order to show that s = z, there remains to show that s

is adjacent to x. We proceed by contradiction, assuming that s is not

adjacent to x (as s2 in Figure 4.12). We thus have a red edge [y, s] with y

and s adjacent to v, y adjacent to w but s not adjacent to x. In the case

where p ≥ 3, the contradiction will come from Lemma 4.4.3. Indeed, if

we denote by Y the set of vertices adjacent to v and w, and by S the set

b
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Figure 4.12: Illustration of Proposition 4.4.6, Claim 6.
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of vertices with the same type as s, adjacent to v and not adjacent to

x, then Lemma 4.4.3 tells us that Aut(∆)+(v) is transitive on Y and on

S. But |Y | = p+ 1 and |S| = p2 − 1, so if p ≥ 3 then having a red edge

[y, s] from a vertex in Y to a vertex in S implies that each vertex in Y

has more than one red edge going to a vertex in S. This is impossible,

as s is the only vertex of that type with [y, s] red.

Let us now consider the last case p = 2. We continue our proof by

contradiction, assuming that s 6= z. This time we have |Y | = 3 = |S|,
and each vertex in Y is adjacent to a unique vertex in S. This gives us

three red edges. If we do the same reasoning around z instead of y, then

we denote by Z the set of vertices adjacent to v and x, by S′ the set of

vertices with the same type as y, adjacent to v and not adjacent to w,

and we get three other red edges, each one connecting a vertex of Z and

a vertex of S′. In total, we got six red edges connecting neighbors of v.

Now since Aut(∆) is transitive on vertices, this whole situation around

v also occurs around w. If we denote by a the vertex adjacent to w such

that [w, a] is red (with a 6= v), this means that [y, b] is red, where b is

the unique vertex adjacent to w and y, different from v and not adjacent

to a (see Figure 4.13). But then, around y, we have [y, b] and [y, s] red,

while [w, v] is also red. This situation is different from the one around

v, so we get our contradiction. �
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Figure 4.13: Illustration of Proposition 4.4.6, Claim 6.

We now find a new contradiction. This will show that our hypotheses

were wrong since the beginning, i.e. that Aut(∆)+ must be transitive on

panels of each type.

Fix a vertex v in ∆ and consider a non-trivial 1h-collineation α of
2H(v) given by Proposition 4.3.3, say with axis ℓ and center P . We

choose a vertex w adjacent to v and 1π(P ) but different from 1π(ℓ) and

a vertex x adjacent to w and v but different from 1π(P ), as shown in
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Figure 4.14: Illustration of Proposition 4.4.6.

Figure 4.14. The 1h-collineation α induces a non-trivial elation of 1H(x)

with axis v and center w. By Claim 2, this implies that the two red

edges adjacent to x (given by Claim 4) are incident to w and v in 1H(x).

Hence, we conclude via Claim 6 that [v,w] is also red. However, this

reasoning could be done for any choice of w. So if w′ is another vertex

adjacent to v and 1π(P ) but different from 1π(ℓ), then we also get that

[v,w′] is red. This gives a contradiction with Claim 4.

Theorem 4.B′ now follows immediately.

Proof of Theorem 4.B′. See Proposition 4.4.6 and Theorem 4.A′.

4.5 A sufficient condition for exoticity

In this section we prove Theorem 4.C′, which gives a sufficient condition

under which an Ã2-building is not 2-Moufang (and in particular exotic).

Theorem 4.C′. Let ∆ be a locally finite thick Ã2-building, let x0, x1 be

two adjacent vertices in ∆ and let C be the set of chambers adjacent to

both x0 and x1. For each j ∈ {0, 1}, let Gj ≤ Sym(C) be the image of

Aut(1H(xj))(x1−j) in Sym(C). If G0 6= G1, then ∆ is not 2-Moufang.

Proof. Say that ∆ has thickness q + 1, i.e. |C| = q + 1. Then 1H(x0)

and 1H(x1) are projective planes of order q. If one of them is non-

Desarguesian then ∆ is not 1-Moufang (in particular not 2-Moufang),

so we can assume that q is a prime power and that they are both Desar-

guesian. The full automorphism group of the Desarguesian projective

plane of order q is PΓL(3, q), and the stabilizer of a line acts on the set
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of points incident to it as PΓL(2, q) acting on the projective line over Fq.

So for each t ∈ {0, 1}, the image Gt ≤ Sym(C) of Aut(1H(xj))(x1−j) in

Sym(C) is conjugate to PΓL(2, q) in Sym(C). Let us now suppose for a

contradiction that ∆ is 2-Moufang.

The subgroup G0 of Aut(1H(x0)) generated by all elations of 1H(x0)

(i.e. the little projective group of 1H(x0)) is isomorphic to PSL(3, q).

The image G′
0 ≤ Sym(C) of G0(x1) in Sym(C) is thus conjugate to

PGL(2, q) (acting on the projective line over Fq) in Sym(C). Now the

fact that 2H(x0) is Moufang implies that each elation of 1H(x0) is the

restriction of an elation of 2H(x0). We thus deduce that the image of

Aut(2H(x0))(x1) in Sym(C) contains G′
0, while being contained in G0

and G1. But G0
∼= PΓL(2, q) has only one subgroup that is conjugate

to PGL(2, q) in Sym(C), and it is the normalizer of that subgroup, so

G0 = NSym(C)(G
′
0). The same is true for G1, so G1 = NSym(C)(G

′
0) =

G0. This contradicts the hypothesis.

4.6 Singer cyclic lattices

Let us now focus on Singer cyclic lattices, i.e. groups Γ ≤ Aut(∆) act-

ing simply transitively on the panels of each type of an Ã2-building

∆ and with the additional property that vertex-stabilizers are cyclic.

These lattices have been deeply studied by Essert and Witzel in [Ess13]

and [Wit17]. The notion of a difference matrix was defined in the latter

reference. For our purpose, we present another way of understanding

the relation between difference matrices and Singer cyclic lattices.

A difference set with parameter q is a subset D = {d1, . . . , dq+1} of
Z/(q2+q+1)Z such that, for each x ∈ Z/(q2+q+1)Z with x 6= 0, there

exists a unique ordered pair (d, d′) ∈ D2 satisfying x = d − d′. Given

such a difference set D with parameter q, we can construct a projective

plane ΠD of order q as follows. The point set P and line set L of ΠD are

simply P = L = Z/(q2 + q+1)Z, and the incidence relation R ⊆ L×P
is given by

R = {(x, x + d) | x ∈ L, d ∈ D}.

It is an easy task to check that this defines a projective plane of order q.
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Define a difference vector with parameter q as a vertical vector

v = (d1, . . . , dq+1)
T where {d1, . . . , dq+1} is a difference set. To such a

difference vector v, we associate a labelled projective plane of order q. A

labelled projective plane is a projective plane whose flags are labelled

by {1, . . . , q+1}, i.e. with a map ℓ:R→ {1, . . . , q+1}. Given a difference

vector v, we take the projective plane ΠD associated to the difference

set D inherent to v, and we label its flags by defining ℓ(x, x+dj) = j for

each x ∈ L and each j ∈ {1, . . . , q + 1}. Note that we need a difference

vector (and not only a difference set) for this map to be well defined.

We call Πv this labelled projective plane associated to v.

Now a difference matrix with parameter q is a matrix with q + 1

lines and 3 columns, such that each of the three columns is a difference

vector with parameter q. Let us writeM = (v0, v1, v2) for such a matrix,

where v0, v1 and v2 are difference vectors. To a difference matrix M , we

associate a labelled Ã2-building, i.e. an Ã2-building whose chambers

are labelled by {1, . . . , q + 1}. Note that at each vertex of a labelled

Ã2-building, we see a labelled projective plane. (At a vertex of type

t ∈ {0, 1, 2}, we consider vertices of type t+1 mod 3 as points and those

of type t + 2 mod 3 as lines). The labelled Ã2-building ∆M associated

to the difference matrix M = (v0, v1, v2) is then defined as the unique

one whose labelled projective plane at each vertex of type t is Πvt (for

each t ∈ {0, 1, 2}). This building can be constructed recursively with the

method of [Ron86]: the labellings of the projective planes exactly tells us

how two adjacent projective planes must be glued in the building. More-

over, we can define ΓM ≤ Aut(∆M ) as the group of all type-preserving

automorphisms of ∆M preserving the labellings. It is a direct fact that

ΓM acts simply transitively on the panels of each type of ∆M and that

vertex stabilizers in ΓM are cyclic (of order q2+q+1). So ΓM is a Singer

cyclic lattice. Conversely, given a Singer cyclic lattice Γ ≤ Aut(∆) we

can label the chambers of ∆ according to their orbit under the action

of Γ and get a (not necessarily unique) difference matrix M such that

Γ = ΓM and ∆ = ∆M .

Two Singer cyclic lattices Γ ≤ Aut(∆) and Γ′ ≤ Aut(∆′) are iso-

morphic if there exists an isomorphism from ∆ to ∆′ conjugating Γ

to Γ′. This is actually equivalent to saying that Γ and Γ′ are isomor-
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phic as groups (see [Wit17, Proposition 3.7]). Two difference matri-

ces M and M ′ are then said to be equivalent if ΓM ≤ Aut(∆M ) and

ΓM ′ ≤ Aut(∆M ′) are isomorphic. This equivalence relation on difference

matrices was deeply studied in [Wit17]. In order to prove Corollary 4.D

we do not need to really study the notion of equivalent difference matri-

ces. We will however need the following basic results which can also be

found in [Wit17]. A difference set D (resp. difference vector v) is called

Desarguesian if ΠD (resp. Πv) is Desarguesian. A difference matrix

M = (v0, v1, v2) is called Desarguesian if v0, v1 and v2 are Desargue-

sian. Note that there exist Desarguesian difference sets with parameter

q for each prime power q, see [Sin38] or [Wit17, Theorem 2.2].

Lemma 4.6.1. Let q = pη, with p prime and η ≥ 1.

(i) Let M be a difference matrix with parameter q and let M ′ be a

difference matrix obtained by permuting the q+1 lines of M . Then

M and M ′ are equivalent.

(ii) Let M = (v0, v1, v2) be a difference matrix with parameter q, and

let g0, g1, g2 ∈ AGL(1,Z/(q2 + q + 1)Z). Then M is equivalent to

M ′ = (g0(v0), g1(v1), g2(v2)), where gt acts on the difference vector

vt componentwise.

(iii) Let D be a Desarguesian difference set with parameter q. The

stabilizer of D in AGL(1,Z/(q2 + q + 1)Z) has order 3η.

(iv) Let D be a Desarguesian difference set and M be a Desarguesian

difference matrix (both with parameter q). Then M is equivalent

to a difference matrix whose columns are equal to D as a set.

Proof.

(i) Permuting the lines of a difference matrix M = (v0, v1, v2) simply

permutes the labels in the three labelled projective planes Πv0 ,

Πv1 and Πv2 simultaneously. So the labelled Ã2-buildings ∆M and

∆M ′ are equal, up to permuting the labels. In particular, ΓM ≤
Aut(∆M ) and ΓM ′ ≤ Aut(∆M ′) are isomorphic.
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(ii) When g ∈ AGL(1,Z/(q2 + q + 1)Z) and v is a difference vector

with parameter q, the labelled projective planes Πv and Πg(v) are

isomorphic. Replacing a column vt by gt(vt) thus does not change

the Singer cyclic lattice.

(iii) See [Ber53] or [Wit17, Lemma 4.5].

(iv) This follows from (ii) and the fact that AGL(1,Z/(q2 + q + 1)Z)

is transitive on the Desarguesian difference sets with parameter q,

see [Ber53].

We can now prove Corollary 4.D′ below.

Corollary 4.D′. For each q ≥ 2, there are at most
(

q(q2−1)
3

)2
isomor-

phism classes of Singer cyclic lattices Γ ≤ Aut(∆) with parameter q such

that ∆ is 2-Moufang.

Proof. If q is not a prime power then the claim is obvious: an Ã2-

building with thickness q+1 is never 1-Moufang when q is not a prime.

We now assume that q = pη and fix some Desarguesian difference set

D = {d1, . . . , dq+1} with parameter q. We need an upper bound on the

number of equivalence classes of difference matrices M with parameter

q such that ∆M is 2-Moufang. Let M be such a difference matrix,

in particular M is Desarguesian. Up to replacing M by an equivalent

matrix, we can assume that each column of M is equal to D as a set

(by Lemma 4.6.1 (iv)). Moreover, up to permuting the lines of M (see

Lemma 4.6.1 (i)), we can assume that the first column of M is exactly

(d1, . . . , dq+1)
T . So we look at matrices in

M =























M =













d1 dα1(1) dα2(1)

d2 dα1(2) dα2(2)
...

...
...

dq+1 dα1(q+1) dα2(q+1)













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α1, α2 ∈ Sym(q + 1),

∆M is 2-Moufang























.

Let M ∈ M and write M = (v0, v1, v2). In the Desarguesian projective

plane Πvt , a point is incident to q+1 lines, and the q+1 flags they form

have q + 1 different labels. The action of the point stabilizer on these

q + 1 flags thus gives a subgroup Gt of Sym(q + 1) which is conjugate
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to PΓL(2, q). This subgroup Gt ≤ Sym(q + 1) does not depend on the

chosen point because the subgroup of Aut(Πvt) preserving the labels is

transitive on points. The correlation of Πvt defined by x ∈ P 7→ −x ∈
L, x ∈ L 7→ −x ∈ P also preserves the labels so the stabilizer of a

line in Πvt also gives birth to the same group Gt ≤ Sym(q + 1). We

can moreover observe that G1 = α−1
1 G0α1 and G2 = α−1

2 G0α2, where

α1, α2 ∈ Sym(q+1) behave as in the definition ofM. In ∆M , if xt and xt′

are two adjacent vertices of type t and t′ respectively, then the chambers

adjacent to xt and xt′ have the q + 1 different labels, and Theorem 4.C′

exactly tells us that ∆M is not 2-Moufang when Gt 6= Gt′ . Here we

suppose that ∆M is 2-Moufang, so we deduce that G0 = G1 = G2. As

PΓL(2, q) is its own normalizer in Sym(q + 1), we obtain that α1, α2 ∈
G0. In particular, we have |M| ≤ |PΓL(2, q)|2 = (q(q2 − 1)η)2. But

Lemma 4.6.1 (ii),(iii) implies that each matrix inM is equivalent to at

least (3η)2 matrices inM, so |M/∼| ≤
(

q(q2−1)
3

)2
(where ∼ denotes the

equivalence relation). This concludes the proof.

Proof of Corollary 4.E. By [Wit17, Theorem B], the number of isomor-

phism classes of Singer cyclic lattices with parameter q = pη is bounded

below by A(q) = 1
162η3 ((q + 1)! )2. Moreover, by Corollary 4.D at most

B(q) =
(

q(q2−1)
3

)2
of them are non-exotic. The conclusion follows from

the fact that B(q)
A(q) → 0 when q goes to infinity.
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