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Abstract. Biclustering techniques have been widely used to identify
homogeneous subgroups within large data matrices, such as subsets of
genes similarly expressed across subsets of patients. Mining a max-sum
sub-matrix is a related but distinct problem for which one looks for
a (non-necessarily contiguous) rectangular sub-matrix with a maximal
sum of its entries. Le Van et al. [7] already illustrated its applicability
to gene expression analysis and addressed it with a constraint program-
ming (CP) approach combined with large neighborhood search (LNS).
In this work, we exhibit some key properties of this NP-hard problem
and define a bounding function such that larger problems can be solved
in reasonable time. The use of these properties results in an improved
CP-LNS implementation evaluated here. Two additional algorithms are
also proposed in order to exploit the highlighted characteristics of the
problem: a CP approach with a global constraint (CPGC) and a mixed
integer linear programming (MILP). Practical experiments conducted
both on synthetic and real gene expression data exhibit the character-
istics of these approaches and their relative benefits over the CP-LNS
method. Overall, the CPGC approach tends to be the fastest to produce
a good solution. Yet, the MILP formulation is arguably the easiest to
formulate and can also be competitive.

1 Introduction

Gene expression data is typically represented as a large matrix of gene expres-
sion levels across various samples. The study of such data is a valuable tool to
improve the understanding of the underlying biological processes. For example,
biomarker discovery aims at finding indicators of a disease or the physiologi-
cal state of patients. This problem can be addressed with clustering techniques
which perform a grouping of one dimension, either the rows or the columns of
the original matrix. Yet it is known that breast cancer, for example, exhibits dis-
tinct subtypes [12,13]. In other words, specific genes exhibit activation patterns
only in a specific group of patients. Biclustering techniques, or co-clustering,
identify specific subsets of rows and of columns which jointly form homogeneous
entries [9].

In the present work, we focus on a related but different mining task. One looks
in particular for subsets of rows and of columns with globally high values. In



the context of gene expression analysis, the objective is to find a subset of genes
which are relatively highly expressed among a subset of patients, even though
some entries might depart from this pattern. With several thousands genes and
hundreds of patients, we are mostly interested in the production of an algorithm
that can deal with large matrices. Formally, one looks for a rectangular, and non
necessarily contiguous, sub-matrix of a large matrix with a maximal sum of the
selected entries. An illustrative example is provided in Fig. 1. The sum of the
sub-matrix defined by the subset of rows {i1, i2, i4, i5} and the subset of columns
{j2, j4, j5, j6} is 27.3 and is maximum. It can not be increased by the addition
or the exclusion of any other row or column.

This max-sum sub-matrix problem is closely related to the maximal ranked
tile mining problem studied by Le Van et al. [7]. In the later case, prior to
the search of a sub-matrix, each matrix entry is replaced by its rank across its
particular row. In other words, the maximal ranked tile mining is equivalent to
the max-sum sub-matrix for which the matrix entries are discrete ranks along the
rows. Since the combinatorial optimization algorithms to solve such problems are
actually not specific to discrete entries we address here the slightly more general
setting of continuous entries.

Our main contributions are 1) the study of the max-sum sub-matrix prob-
lem while exhibiting some of its key properties and the definition of an upper
bound easy to compute in order to speed up the search for a solution; 2) the
implementation of two additional algorithms making use of these properties: a
CP approach with a global constraint (CPGC) and mixed integer linear pro-
gramming (MILP); 3) practical experiments conducted both on synthetic and
real gene expression data showing that the CP-LNS method can be largely out-
performed; 4) the study of the relative benefits of the proposed methods across
various problem instances.

2 Problem

2.1 Statement

Definition 1 (The Max-Sum Sub-Matrix Problem). Given a matrixM∈
IRm×n consisting of m rows and n columns, let R = {1, . . . ,m} and C =
{1, . . . , n} be index sets for rows and for columns respectively, find the max-sum
sub-matrix (I∗, J∗) , with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗, J∗) = argmax
I⊆R,J⊆C

f(I, J) = argmax
I⊆R,J⊆C

∑
i∈I,j∈J

Mi,j . (1)

The objective function f(I, J) is the sum of the entries of a sub-matrix (I, J).
The maximization term rewards, respectively penalizes, matrix entries with pos-
itive, respectively negative, values. One only considers matrices with positive
and negative entries. Otherwise the optimal solution is trivially identified.

This formulation implicitly assumes that there is a threshold equal to zero to
consider entries as potentially relevant or informative. A different threshold can



(a) Instance matrix (b) Max-sum sub-
matrix

(c) Threshold: 5.1 (d) Threshold: −5.5

Fig. 1: (a): Instance matrix. (b): Associated sub-matrix of maximal sum. (c) and
(d): Sub-matrix of maximal sum obtained for different thresholds applied on the
instance matrix.

be considered by subtracting some constant to all matrix entries. This allows to
control the size of the optimal sub-matrix. Figures 1c and 1d illustrates solutions
for a threshold of 5.1 and −5.5, respectively.

The max-sum sub-matrix problem is NP-hard from a simple reduction1 of
the Maximum edge Weight Biclique Problem (MWBP) [4].

2.2 Explicit Versus Implicit Search Space

For a defined subset of columns J , the objective function can be formulated as
f(I, J) =

∑
i∈I ri with ri being the contribution of the row i:

ri =
∑
j∈J
Mi,j . (2)

This is important as the actual search can be limited to one dimension
through independent computation of the contributions along the other dimen-
sion. Indeed, for any of the two dimensions being fixed, optimization along the
other dimension is straightforward since it amounts to select only the subset of
entries whose contribution is positive. For a fixed subset of columns J ⊆ C, the
subset of rows I∗J ⊆ R that maximizes the objective value is identified as:

I∗J = argmax
I⊆R

∑
i∈I,j∈J

Mi,j = {i ∈ R | ri ≥ 0} . (3)

In the gene expression analysis context, with order(s) of magnitude more
rows (the genes) than columns (the samples), one typically searches for a subset
of columns and selects the associated optimal subset of rows.

1 Essentially by considering the rows and columns of the matrix as the two sets of
nodes of a bipartite graph.



The search space of the max-sum sub-matrix problem contains 2|R|×2|C| fea-
sible solutions that are rectangular sub-matrices (I ⊆ R, J ⊆ C) of the original
matrix. Thanks to the independent contribution along one dimension, the num-
ber of feasible solutions to be explicitly evaluated is thus reduced to 2|C| × |R|.

2.3 Related Work

Biclustering techniques address the problem of finding sub-matrices that satisfy
some definition of homogeneity since entries grouped together into biclusters
typically have similar values. A comprehensive review can be found in [9]. There
is no assumption of homogeneity in the max-sum sub-matrix problem but rather
one looks for a rectangular sub-matrix with an overall maximal sum. The dif-
ference is illustrated in Fig. 1b where a highly negative entry −4.1 in (i4, j4) is
selected. This results from the sums of the selected entries in i4 and in j4 which
contribute positively to the maximal sum. In the biclustering context, any entry
that differs from entries of a bicluster or from entries in its row or its column is
not expected to be selected. Cohesive biclusters [14,15], with high average values,
are built by aggregating entries that are higher than a certain threshold such
that the average value of the bicluster is higher than a second threshold. Then
all entries must be higher than the first threshold while in the max-sum sub-
matrix problem there is no expected minimum value for an entry to be selected.
Biclustering approaches commonly identify multiple biclusters. Many algorithms
iteratively identify a single bicluster and subsequently mask it [3,9,16]. Yang et
al. [20] proposed a global alternative to these local optimal decisions. Designing
a dedicated approach to the identification of multiple sub-matrices of maximal
sum is part of our future research.

The maximum (contiguous) subarray problem introduced in [2] identifies a sub-
array of maximal sum from an array. For a one-dimensional array, this problem
can be solved in linear time by Kadane’s algorithm [2]. Cubic and sub-cubic time
complexity algorithms have been proposed in the two-dimensional case [2,18,19].
This problem is however simpler than the max-sum sub-matrix since the se-
lected sub-matrix is constrained to be formed of contiguous rows and contiguous
columns from the original matrix.

The maximum ranked tile mining problem has been introduced in [7]. As dis-
cussed in Sect. 1, this is a special case of the max-sum sub-matrix problem for
which the matrix entries are discrete ranks, corresponding to a permutation of
column indices on each row. While the discrete ranking is an important charac-
teristic of the maximum ranked tile mining problem, the associated constraint
programming solution does not require discrete entries nor benefit from it. In
this work, we present improved and new optimization approaches to solve the
problem with arbitrary continuous entries.

Subgroup discovery is a data mining technique which extracts classification rules
with respect to a target variable [1,6]. It departs from the standard learning of a



classifier as the extracted rules are not necessarily intended to cover all possible
instances. Besides, such technique focuses on the interpretability of the classifi-
cation rules rather than the generalization capability to classify new instances.
Mining a max-sum sub-matrix is somewhat similar to subgroup discovery but
there is no supervision by a specific target class variable. The hotspot detection
problem, which can be considered as a particular form of subgroup discovery,
aims at identifying subgroups that are unexpected with respect to some baseline
information [5]. In the max-sum sub-matrix problem, one does consider globally
high values without any baseline distribution of the data.

3 Optimization Approaches

3.1 Boolean Decision Vectors

The max-sum sub-matrix problem can be modeled with two vectors of boolean
decision variables: T = (T1, . . . , Tm) for the rows and U = (U1, . . . , Un) for the
columns with Ti ∈ {0, 1} and Uj ∈ {0, 1}. A sub-matrix (I, J) is defined by
I = {i ∈ R | Ti = 1} and J = {j ∈ C | Uj = 1}. The problem consists in
assigning a value to each variable of T and U . Let us denote by U1 = {j ∈
C | Uj = 1} the selected columns, U0 = {j ∈ C | Uj = 0} the unselected ones
and by U? = {j ∈ C | Uj = {0, 1}} the undecided ones.

3.2 Constraint Programming

Constraint Programming (CP) is a flexible programing paradigm that is capable
of solving optimization problems. As a declarative approach, it only requires to
model the problem and, by using existing solvers, let it search and find solu-
tions. A model is defined as a constraint satisfaction problem CSP = (V,D,C)
where V is the set of variables, D is their respective domains, and C is a set of
constraints defined over the variables. A feasible solution is an assignment of the
variables to values of their domains such that all constraints are satisfied.

Constraints are exploited to iteratively reduce the domains of variables. Such
constraint propagation reduces the number of variable assignments to consider.
Once all unfeasible values are removed from the domains of variables, the fix-
point of the propagation is reached. Then the solver selects a variable X ∈ V
that is unbound and recursively calls the solver while assigning a value to this
variable. Through exploration of a depth-first-search tree (DFS), the solver either
reaches a solution or backtracks when the domain of variables becomes empty.

Efficient backtracking is achieved through trailing, a state management strat-
egy that facilitates the restoration of the computation state to an earlier version,
effectively undoing changes that were imposed since then. The trail exposes two
methods: pushState and popState to respectively time-stamp the current state
and restore it. Its implementation is captured in terms of two simple stacks. The
first stack holds entries to undo, the second one holds the frame sizes stacked be-
tween two consecutive call to pushState. Trailing enables the design of reversible
objects defined on the trail.



In the rest of this section, the original model proposed by Le Van et al. [7]
(CP-LNS0) is presented, as well as an improved version (CP-LNS ). Then a new
constraint programming formulation is proposed (CPGC ).

In CP-LNS0, the tree reaches a leaf (or feasible solution) as soon as all rows
and columns variables are bound. Each row and each column is associated to a
reified constraint that ensures its selection if the sum of the entries along the
other selected dimensions (respectively columns or rows) is positive. The LNS
strategy is implemented as follows: after a given number of backtracking, the
constraints on half of the columns variables of the best solution found so far are
removed and the search restarts in another region. LNS may improve the time to
identify a good solution at the cost of losing the possibility to prove optimality
since the search is no longer complete.

In CP-LNS, by virtue of the implicit search space property (see Sect. 2.2), the
tree reaches a leaf as soon as all column variables are bound. The contribution of
all rows are computed afterwards. The objective function is computed as the sum
of positive rows contributions. Similarly to CP-LNS0, after some backtracking,
half of the constraints, here only on the columns variables, are relaxed and a
different region of the search space is explored.

CP-LNS0. The max-sum sub-matrix problem has been modeled in [7] as:

maximize
∑

i∈R,j∈C
Ti × Uj ×Mi,j , (4)

∀i ∈ R : Ti = 1⇔
∑
j∈C

Uj ×Mi,j ≥ 0 , (5)

∀j ∈ C : Uj = 1⇔
∑
i∈R

Ti ×Mi,j ≥ 0 . (6)

Expression (4) states the optimization problem. The set of redundant con-
straints (5) and (6) permits a stronger filtering during the search.

CP-LNS. We propose here an improved CP model obtaining the same filtering
as the original one but resulting in a lighter propagation of the constraints:

maximize
∑
i∈R

Ti × ri , (7)

∀i ∈ R : Ti = 1⇔ ri ≥ 0 . (8)

The objective is to maximize the sum of rows contributions which are formal-
ized as ri =

∑
j∈C Uj ×Mi,j . Each row with positive (respectively negative)

contribution is constrained in (8) to be selected (respectively unselected).
This improved model avoids the computation of the quite-heavy reified sum

constraints (6) and reduces the number of terms in the objective function. As
each product between variables in the objective is translated into a small bi-
nary constraint, reducing their number from |R|× |C| to |R| makes a significant
difference on the time spent to compute the fix-point in each node.



CP Global Constraint. We also propose to improve the model due to Le Van
et al. [7] by designing a novel algorithm encapsulated inside a global constraint
that captures the whole problem. The pseudo-code is given in Algorithm 1. The
call to the bounding and filtering procedures has been made explicit. In practice,
the lines 11 to 14 would be encapsulated in the global constraint triggered by
the fix-point algorithm. The key ingredients of our approach are:

– A feasible solution at each node of the search tree (evaluate()).
– An efficient bounding procedure (upperBound()).
– An efficient procedure to filter the domains (filter()).

A feasible solution at each node of the search tree. CP usually updates its feasible
solution and best so far lower bound in the leaf-node of the search tree, that is
when every variable of the problem is bound. One can observe that for the max-
sum sub-matrix problem, any partial assignment of the variables can be extended
implicitly as a complete solution for which the unbound variables would be set
to 0 (i.e. U? variables are considered unselected). There is thus no need to wait
that every variable is bound to evaluate the solution and possibly update the
best so far lower bound. The value of the objective function of the feasible
solution is computed in the evaluate() method as the sum of the positive rows
contributions of the partial solution (see (2) and (3) where U1 = J): f(I∗U1 , U1) =∑
i∈Rmax(0, ri).

An efficient bounding procedure. CP uses a branch and bound depth-first-search
to avoid the exploration of proven suboptimal solutions. The branch and bound
performances depend on the strength and efficiency of the procedure to compute
the upper bound. We design simple yet efficient bounding procedure for the max-
sum sub-matrix problem. Intuitively one computes an upper bound on the row
contribution of each row and sums up all the positive bounds on the rows. The
upper bound on the contribution of a row is the sum of the matrix entries in the
selected columns plus the sum of the positive entries in the unbound columns.
One simply computes the upper bound as:

g(P ) = g(U1, U0, U?) =
∑
i∈R

max(0, ri +
∑
j∈U?

max(0,Mi,j)) . (9)

The bound is admissible but not tight as it may optimistically evaluate the
objective (g(P ) ≥ f(P )). Indeed, it relies on a per-line relaxation of the problem,
each selecting a possibly different set of columns.

The upperBound() method is an implementation of the proposed upper
bound using reversible double to store the incremental modifications of the par-
tial contribution of the rows. Using a reversible sparse-set T for the row vari-
ables allows an efficient exclusion or inclusion of the rows through descent or
backtrack [17]. Indeed, as soon as the bound on the row contribution becomes
negative it should not be considered in the descendant nodes of the search tree.
The number of rows to consider goes from exactly |R| to at most |R|.



An efficient filtering procedure. The filter() method evaluates the upper
bound result for two one-step look-ahead scenarios: if column j would be se-
lected, this look-ahead upper bound is denoted ub∈j , or if j would not be selected,

denoted ub/∈j . Then, any column j with ub∈j ≤ best is discarded as inclusion of
the column can only lead to worst solution than the best so far. Similarly, any
column j with ub/∈j ≤ best is included. The time complexity for computing all

the look-ahead upper bounds is in O(|T | × |U?|). Indeed the look-ahead bound

of each line for each column can be obtained in O(1) from rub
i .

Algorithm 1: CP Global Constraint

1 best← −∞ // best so far objective
2 trail
3 r: array[m] rev-double // rows partial sums
4 T : rev-set ← {1, . . . , n} // candidate rows

5 Method dfs()

6 if U? 6= φ then

7 j ← select j ∈ U?

8 foreach v ∈ {0, 1} do
9 trail.pushState()

10 D(Uj)← v
11 best← max(best, evaluate())
12 ub← upperBound()
13 if ub > best then
14 filter()
15 dfs()

16 trail.popState()

17 Method evaluate(): double
// evaluate objective

18 for j ∈ U? do
19 if D(Uj) 6= {0, 1} then

20 U? ← U? \ j
21 if D(Uj) = 1 then
22 ri ← ri +Mi,j , ∀i ∈ T

23 return
∑

i∈T max(0, ri)

24 Method upperBound(): double
25 ub← 0
26 for i ∈ T do

27 rub
i ← ri +

∑
j∈U? max(0,Mi,j)

28 if rubi > 0 then ub← ub+ rub
i

29 else T ← T \ i // ri always ≤ 0

30 return ub

31 Method filter(): double
// remove impossible values

32 ub∈j ← 0 ∀j ∈ U?

33 ub/∈j ← 0 ∀j ∈ U?

34 for i ∈ T do

35 for j ∈ U? do
36 if Mi,j > 0 then

37 if rubi −Mi,j > 0 then

38 ub/∈j ← ub/∈j + rub
i −Mi,j

39 ub∈j ← ub∈j + rub
i

40 else

41 ub/∈j ← ub/∈j + rub
i

42 if rubi +Mi,j > 0 then

43 ub∈j ← ub∈j + rub
i +Mi,j

44 for j ∈ U? do
45 if ub∈j ≤ best then D(Uj)← 0

46 if ub/∈j ≤ best then D(Uj)← 1

3.3 Mixed Integer Linear Programming

Mixed Integer Linear Programming [10] involves the optimization of a linear
objective function, subject to linear constraints. Some or all of the variables are
required to be integer. A MILP solver explores a branch and bound tree using
linear-programming (LP) bounds at each node of the search tree.

It differs from a classical branch and bound as a LP relaxation, obtained by
removing all the integrality constraints of a node, is solved before branching.
The domain of all rows and columns variables changes from {0, 1} to [0, 1]. This
relaxed problem can be solved in polynomial time and the solution is an upper



bound on the objective value of the constrained problem. As an upper bound,
the LP relaxation solution can be used to prune out suboptimal solutions. If
any integer variable is associated to a fractional value in the LP relaxation, two
sub-problems are generated imposing restrictions on the domain of this variable.
When all integrality constraints are satisfied in the solution of a node, then it
corresponds to a feasible solution and the lower bound is possibly updated.

In an initial formulation, each entry of the matrix is associated to a decision
variable that takes the value 1 if and only if both rows and columns are selected.
The objective function is computed as the sum of the selected matrix entries.

Initial Model. The max-sum sub-matrix problem can be linearized as:

maximize
∑

i∈R,j∈C
Mi,j × xi,j , (10)

s.t. xi,j ≤ Ti, ∀i ∈ R,∀j ∈ C , (11)

xi,j ≤ Uj , ∀i ∈ R,∀j ∈ C , (12)

xi,j ≥ Ti + Uj − 1, ∀i ∈ R,∀j ∈ C . (13)

A binary decision variable is associated to each row Ti, to each column Uj
and to each matrix entry xi,j . The objective function is computed as the sum
of matrix entries whose decision variable is set to one. Equations (11) to (13)
enforce that variable xi,j = 1 if and only if Ti = 1 and Uj = 1. All these decisions
variables are relaxed to the interval [0, 1] in the MILP solver.

Improved Model. In our experiments, reported in Sect. 4, we consider an
improved and more compact MILP formulation. It relies on (3) where a row is
selected if its contribution is positive and unselected otherwise. For each row, a
variable r+

i is defined as the contribution of row i if it is positive and 0 otherwise.
The objective is to maximize the sum over these variables. This linear model also
uses “big M” constants. More specifically, (16) and (17) linearize r+

i = max(0, ri)
with ri being the sum of the selected entries of row i.

maximize
∑
i∈R

r+
i , (14)

s.t. ri =
∑
j∈C
Mi,j × Uj , ∀i ∈ R , (15)

r+
i ≤ Ti ×M+, ∀i ∈ R , (16)

r+
i ≤ ri + (1− Ti)×M−, ∀i ∈ R . (17)

If Ti = 1, r+
i ≤ ri + (1 − Ti) ×M− ≤ Ti ×M+, then r+

i ≤ ri. If Ti = 0,
r+
i ≤ Ti ×M+ ≤ ri + (1− Ti)×M−, then r+

i ≤ 0. From the maximization (14),
it appears that if ri ≥ 0, Ti must be bound to 1 and r+

i = ri. Otherwise, Ti
must be bound to 0 and r+

i = 0. This formulation is valid if and only if M+ ≥ ri
and M−+ ri ≥ 0. To avoid rounding errors and ill conditioned matrices, the big



M constants can be replaced by
∑
j∈C max(0,Mi,j) and −

∑
j∈C min(0,Mi,j),

respectively in (16) and (17).

4 Experiments

This section describes experiments conducted to assess the relative performances
of three algorithms to solve the max-sum sub-matrix problem. CP-LNS denotes
the improved version of the method CP-LNS0 proposed by Le Van [7]. The other
algorithms are original methods proposed in the present work: a constraint pro-
gramming with a global constraint (CPGC) and a mixed integer programming
(MILP) solution.

These algorithms are first compared on data matrices which are generated
in a controlled setting. Experiments on the breast cancer gene expression data
used in [7] are reported next. The main criterion to assess the performance of the
various methods is the computing time to solve a particular problem instance.
This is technically assessed through an any-time profile defined below.

All algorithms have been implemented in the Scala programming language
(2.11.4). Each run is executed with a single thread on a MacBook Pro (OS ver-
sion 10.10.5) laptop (Intel i7-2720 CPU @ 2.20-3.30GHz, 4GB RAM per run).
Constraint programming implementations are based on the latest version of Os-
caR [11] and MILP is based on the latest version of Gurobi (7.0.2). The code,
datasets and supplementary results are available at https://bitbucket.org/

vbranders/maxsumsubmatriximplementation.

4.1 Synthetic Data

We follow a similar protocol as in [7]. Synthetic data are generated by implanting
a sub-matrix (I, J) of interest in a larger matrix M = (R, C) made of m rows
and n columns. The implanted sub-matrix (I, J) forms a specific selection of
rows and columns chosen at random. For each row index (from 1 to m) and each
column index (from 1 to n) ofM, a binary variable is sampled from a Bernoulli
distribution B(p) and the associated row or column is included in the sub-matrix
(I, J) if B(p) = 1. Hence, I = {i ∈ R | B(p) = 1} and J = {j ∈ C | B(p) = 1}.
Next, the full matrix M is generated according to two normal distributions,
N (1, 1) whenever the particular entry belongs to the implanted sub-matrix, and
N (−3, 1) otherwise.

Such a generation protocol favors the occurrence of higher values in the
implanted sub-matrix and lower values elsewhere. Yet, given the standard de-
viations chosen equal to 1, both ranges of values may overlap. We note that,
as in [7], the implanted sub-matrix is not guaranteed to be an optimal solution
to the max-sum sub-matrix problem. This generation protocol looks however
realistic to define a rectangular (and not necessarily contiguous) sub-matrix of
interest in a larger matrix.

Problem instances are generated for various matrix sizes (m,n) and a varying
parameter p. As p increases, the size of the implanted sub-matrix is expected

https://bitbucket.org/vbranders/maxsumsubmatriximplementation
https://bitbucket.org/vbranders/maxsumsubmatriximplementation


to increase as well. In the gene expression analysis context, m can easily be two
orders of magnitude larger than n and the sub-matrix of interest is typically
small as compared to the full matrix. Such cases are included in the controlled
experiments reported below but a larger spectrum of problem instances is also
considered.

4.2 Gene Expression Data

The proposed case study concerns biomarker discovery for breast cancer sub-
types using heterogeneous molecular data types. For a biological analysis and
interpretation of the results, the reader is redirected to the work of [7]. The
pre-processed data provided by [7] consists of a matrix of m = 2, 211 rows and
n = 94 columns.

Matrix entries are first transformed to discrete ranks along each row. A given
threshold θ×n is then subtracted from each entry. As θ increases, the proportion
of positive entries decreases and, consequently, a smaller sub-matrix of interest
is expected to be found. Hence, the control parameter θ plays a similar role as
the parameter p (from Sect. 4.1) but in an opposite way.

4.3 Evaluation

One could assess algorithms performances through runtime or number of feasible
solutions. While the former may depend on implementation details, the latter
strongly depends on the time spent in each node. As an example, the large num-
ber of reified constraints in CP-LNS0 has a major impact on the time spent to
compute the fix-point in each node while the filtering is as strong as the filtering
of the CP-LNS model. While both should perform equally well in terms of the
number of feasible solutions, it was observed in preliminary experiments that
CP-LNS0 is significantly slower than CP-LNS (the interested reader may con-
sult https://bitbucket.org/vbranders/maxsumsubmatriximplementation).
We prefer the runtime comparisons as it is a more common approach and we
made sure to implement the algorithms in the most comparable fashion.

Any-Time Profile. In practice, an important criterion for the user is the time
required to solve an instance and the ability to find the best solution within a
given budget of time. Using any-time profiles, one can summarize these charac-
teristics. The idea behind any-time profiles is that an algorithm should produce
as high quality solution as possible at any moment of its running time [8]. It
directly provides a cumulative probability for a method to solve an arbitrary in-
stance after a given budget of time. In the max-sum sub-matrix problem, a high
solution quality corresponds to a sub-matrix of large sum. For each instance,
runs not completed in a maximum budget of time tmax are interrupted.

Definition 2 (Max-Sum Sub-Matrix Any-Time Profile). Let f(algo, inst, t)
be the objective value of the best solution found so far by an algorithm algo for

https://bitbucket.org/vbranders/maxsumsubmatriximplementation


an instance inst at time t. Let tmax be the maximum running time before inter-
rupting an algorithm. The any-time profile of an algorithm is the solution quality
Qalgo(t) computed on all instances as a function of the time:

Qalgo(t) =
1

|inst|
∑
inst

f(algo, inst, t)

f(algo∗inst, inst, tmax)
, (18)

with algo∗inst = argmax
algo

f(algo, inst, tmax).

4.4 Results

Figure 2 presents the any-time profile on 50 synthetic data with 10, 000 rows
and p = {0.05, 0.3, 0.7} for 100 columns (column 1) or 1, 000 columns (column
2) and the any-time profile on breast cancer gene expression data with 2, 211
rows, 94 columns and variable choices of θ (columns 3 and 4).

Synthetic Data. The CP-LNS method is clearly outperformed by the two other
methods. It can barely produce any solution within the allocated time budget.
The best approach is CPGC followed by MILP. The reported curves are stopped
whenever the proof of optimality is obtained or else the maximal running time
is reached. Hence, CPGC also exhibits best results whenever proving optimality
is possible in the allocated running time.

Gene Expression Data. Each curve corresponds here to the performance of
an algorithm on a single instance, the one obtained for a specific choice of θ. On
the whole spectrum of instances considered, the clear winner is CPGC. The most
interesting instances are those for which θ ≥ 0.9 since such settings correspond
to small sub-matrices which are more likely to illustrate an interesting biological
pattern. In such cases, the best approaches are CPGC and CP-LNS.

Summary. As expected by the size of the search tree, CP-LNS is sensible
to the size of the instance matrix producing barely no results on the larger
synthetic instances within the time budget. On the opposite, CPGC achieves the
best results. Indeed the model uses a dedicated global constraint with efficient
filtering through computation of an upper bound and fast update of the lower
bounds. The results of MILP are surprisingly good given its inability to express
specialized constraints such as these of CP. This is explained by the benefits of
the linear-programming relaxation to tighten the gap between the lower and the
upper bounds. The current major issue is related to the “big M” approach that
fails to guide the search in some settings on the gene expression data. When θ is
smaller, the “big M” constant M− is tighter. As a consequence, the result of the
LP relaxation as a higher chance to be a tighter bound. It follows a speed-up of
the search as it implies a more efficient pruning of the tree.
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Fig. 2: Any-time profiles of constraint programming with a global constraint
(CPGC), the CP method with large neighborhood search (CP-LNS) and mixed
integer linear programming (MILP).
Columns 1 and 2: reported curves correspond to the average solution quality
over all synthetic instances as a function of time (in seconds). Results are
computed on 50 synthetic instances with 10, 000 rows, 100 (column 1) or
1, 000 (column 2) columns, a variable p and a maximum running time of 20
(column 1) or 200 (column 2) seconds.
Columns 3 and 4: reported curves correspond to the solution quality over each
gene expression problem instance obtained for a specific θ as a function of
the time (in seconds). Results are computed on breast cancer gene expression
data with 2, 211 rows, 94 columns and various θ values for a maximum CPU
time of 1, 000 seconds.



5 Conclusions and Perspectives

We introduce the max-sum sub-matrix problem which consists in finding a (non
necessarily contiguous) rectangular sub-matrix in a large matrix whose sum is
maximal. This problem is originally motivated, in the context of gene expression
analysis, by the search of a subset of highly expressed genes in a specific subset,
to be found, of relevant samples exhibiting such a pattern. A close variant of
this problem, known as maximal ranked tile mining problem, has already been
studied and tackled with constrained programming (CP) combined with large
neighborhood search (LNS) [7].

We present here key properties of the max-sum sub-matrix problem to speed
up the search for a solution. This results in an improved CP-LNS implementa-
tion. We also propose two new algorithms to solve this problem. Experiments
reported both on synthetic data and the original gene expression data used in [7]
illustrate the benefits of our proposed methods. In particular, a CP approach
with a global constraint (CPGC) is the most effective one in a large spectrum of
problem instances. Overall, the CPGC method is also best at proving optimality
when such proof can be obtained within the allocated CPU time budget.

The second approach proposed here relies on mixed integer linear program-
ming (MILP). It is arguably the simplest to formulate and to address with a
standard solver for such problems. It is competitive with the other methods and
largely outperforms CP-LNS as well in our controlled experiments. It exhibits
however some performance degradation on some instances from gene expression
data, most likely as a consequence of the specific relaxation it is based on.

The max-sum sub-matrix mining problem could be extended to a supervised
classification setting. For example, in gene expression analysis, one typically
wants to find genes (rows) that allows to discriminate between two conditions. In
other words, the columns could be a priori labeled according to two conditions.
The objective can then be to identify a subset of rows that are maximally relevant
to discriminate between subsets of samples from different conditions. This could
be encoded in a larger matrix for which columns represent pairs of columns in
either conditions from the original matrix and the value stored is interpreted as
a distance value for a particular gene across both conditions.

The max-sum sub-matrix problem could also be applied to outlier detection
and/or biclustering. For example, using an appropriate data transformation,
entries that are close to the mean or to the median could be mapped to rela-
tively large positive entries. Similarly, entries far away from the mean would be
mapped to low values. Consequently a sub-matrix of maximal sum after such
transformation would correspond to subsets of rows and of columns exhibiting
similar entries. Explicit comparisons to existing biclustering algorithms could be
considered in such a setting.
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