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19.081, 81531-980, Curitiba, Paraná, Brazil (grapiglia@ufpr.br). This author was supported by
the National Council for Scientific and Technological Development (CNPq), Brazil, under grant
401288/2014-5.

†Center for Operations Research and Econometrics (CORE), Catholic University of Louvain
(UCL), 34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium (Yurii.Nesterov@uclouvain.be)
an National Research University Higher School of Economics (Moscow). This author was partially
supported by the National Council for Scientific and Technological Development (CNPq), Brazil,
grants 401288/2014-5, 314908/2014-5, and by RSF grant 17-11-01027.



G.N. Grapiglia and Yu. Nesterov 1

1. Introduction.

1.1. Motivation. Following the worst-case complexity analysis presented in [11]
for a cubic regularization of Newton method, several variants of this method have
been considered (see, for example, [1], [2], [4], [5] [7], [8]). Recently, in [6], regularized
Newton methods were proposed for unconstrained minimization of twice-differentiable
function with Hölder-continuous Hessians. Some of these methods are “universal”,
in the sense that they do not require the prior knowledge of the Hölder parameter
ν ∈ [0, 1] for the Hessian. When the objective is convex, it was shown that these
schemes take at most O

(
1

ϵ1/(1+ν)

)
iterations to reduce the functional residual below

a given precision ϵ > 0. These complexity results generalize the bound of O
(

1
ϵ1/2

)
iterations proved in [11] for the cubic regularization of Newton’s method, which is
applicable to functions with Lipschitz continuous Hessians (ν = 1). Generalizations
of these methods using high-order models were proposed in [3, 9].

As a natural step, in this paper we investigate the possibility of acceleration of
regularized Newton methods in the context of composite minimization [13]. That is,
we suppose that the objective is formed as a sum of two functions: one is a convex
twice differentiable with Hölder-continuous Hessian, and the other is a simple closed
convex function. For the case with known Hölder parameter ν ∈ [0, 1], we propose
methods with worst-case complexity of O

(
1

ϵ1/(2+ν)

)
iterations. These complexity re-

sults generalize the bound of O
(

1
ϵ1/3

)
proved by in [12] for the accelerated cubic

regularization of Newton’s method with ν = 1. For the general case, in which the ν
is not known, we propose a universal method that ensures the same precision in at
most O

(
1

ϵ2/[3(1+ν)]

)
iterations.

1.2. Contents. The paper is organized as follows. In Section 2, we define our
problem and derive the main inequalities related to the Hölder-continuity of the Hes-
sians of the first term in the objective. In Section 3, we present complexity results
for the accelerated schemes that require perfect knowledge of the Hölder parameter.
Finally, in Section 4, we present an accelerated universal second-order method and
establish its complexity bound for achieving small residual in the function value1.

1.3. Notations and Generalities. In what follows, we denote by E a finite-
dimensional real vector space, and by E∗ its dual space, composed by linear functions
on E. The value of function s ∈ E∗ at point x ∈ E is denoted by ⟨s, x⟩. Important
elements of the dual space are the gradients of a differentiable function f : E → R:

∇f(x) ∈ E∗, x ∈ E.

For operator A : E → E∗, denote by A∗ its adjoint operator defined by the identity

⟨Ax, y⟩ = ⟨A∗y, x⟩, x, y ∈ E.

Thus, A∗ : E → E∗. It is called self-adjoint if A = A∗. Important examples of such
operators are Hessians of a twice differentiable function f : E → R:

⟨∇2f(x)u, v⟩ = ⟨∇2f(x)v, u⟩, x, u, v ∈ E.

Operator B : E → E∗ is positive-definite if

⟨Bx, x⟩ > 0, x ∈ E \ {0},

1Sections 3 and 4 are independent. Thus, the reader interested in the universal scheme and its
implementation details can go directly to Section 4 right after reading Section 2.
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(notation B ≻ 0; we use notation B ≽ 0 if the above inequality is not strict). In
what follows, we fix some self-adjoint positive-definite operator B ≻ 0 for defining
Euclidean norms in the primal and dual spaces:

∥x∥ = ⟨Bx, x⟩1/2, x ∈ E, ∥s∥∗ = ⟨s,B−1s⟩1/2, s ∈ E∗.

In our analysis, we shall use some properties of uniformly convex functions.
Definition 1.1. Function f : E → R is called uniformly convex of degree p ≥ 2

if for some σp = σp(f) > 0 and all x, y ∈ E, θ ∈ [0, 1] we have

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y)− σpθ(1−θ)
p ∥y − x∥p.

Pair (p, σp) is called the pair of parameters of the uniformly convex function f .
Note that, adding such a function to an arbitrary convex function gives a uniformly
convex function with the same pair of parameters.

Next lemma gives a guarantee for the rate of growth of uniformly convex function.
Lemma 1.2. Let ψ : E → R be a uniformly convex function of degree p ≥ 2.

Denote x̄ = arg min
x∈domψ

ψ(x). Then,

ψ(y) ≥ ψ(x̄) +
σp

p ∥y − x̄∥p, ∀y ∈ E,

where (p, σp) is the pair of parameters of function ψ.
Proof. Given α ∈ (0, 1], we have

ψ(x̄) ≤ ψ((1− α)x̄+ αy)

≤ (1− α)ψ(x̄) + αψ(y)− σpα(1− α)

p
∥y − x̄∥p

and so

ψ(y) ≥ ψ(x̄) +
σp(1− α)

p
∥y − x̄∥p.

The conclusion follows by making α→ 0.
Lemma 1.3. For any h ∈ E, s ∈ E∗, p ≥ 2, and ω > 0, we have

⟨s, h⟩+ ω
p ∥h∥

p ≥ − (p−1)
p

(
1
ω

) 1
p−1 ∥s∥

p
p−1
∗ .

Proof. See Lemma 2 in [12].
The next lemma gives us some lower bounds for the rate of the growth of a

sequence satisfying certain conditions. It will be crucial for establishing the complexity
results for our accelerated schemes.

Lemma 1.4. Let α ∈ [0, 1), and suppose that {Bt}t≥0 is a sequence of nonnegative
numbers with Bt > 0, t ≥ 1, and

Bt+1 −Bt ≥ Bαt+1, ∀t ≥ 0.

Then, Bt ≥
[
(1− α)

(
B1−α

1

B1−α
1 +1

)α]1/(1−α)
(t− 1)

1
1−α for all t ≥ 2.
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Proof. Indeed, from the assumption on {Bt} we have

B1−α
t+1 ≥ (Bt +Bαt+1)

1−α.

Then, subtracting B1−α
t on both sides, we obtain

(1.1) B1−α
t+1 −B1−α

t ≥ (Bt +Bαt+1)
1−α −B1−α

t .

Since 0 < 1− α ≤ 1, function g(u) = u1−α is concave on (0,+∞). Therefore,

u1−α ≤ v1−α + (1− α)v−α(u− v), ∀u, v ∈ (0,+∞).

In particular, considering v = Bt +Bαt+1 and u = Bt, we get

B1−α
t ≤ (Bt +Bαt+1)

1−α + (1− α)(Bt +Bαt+1)
−α(−Bαt+1).

Hence,

(1.2) (Bt +Bαt+1)
1−α −B1−α

t ≥ (1− α)(Bt +Bαt+1)
−αBαt+1.

Combining (1.1) and (1.2) we obtain

B1−α
t+1 −B1−α

t ≥ (1− α)(Bt +Bαt+1)
−αBαt+1.

Thus, since sequence {Bt} is nondecreasing, it follows that

(1.3)

(B1−α
t+1 −B1−α

t )
1
α ≥ (1− α)

1
α Bt+1

(Bt+Bα
t+1)

≥ (1− α)
1
α Bt+1

(Bt+1+Bα
t+1)

= (1− α)
1
α 1

1+Bα−1
t+1

≥ (1− α)
1
α 1

1+Bα−1
1

,

where the the last inequality follows from the fact that Bt+1 ≥ B1 > 0. Therefore,

(1.4) B1−α
t+1 −B1−α

t ≥ (1− α)
(

B1−α
1

B1−α
1 +1

)α
, ∀t ≥ 1.

Finally, it follows from (1.4) that, for all t ≥ 2,

B1−α
t −B1−α

1 =
∑t−1
i=1[B

1−α
i+1 −B1−α

i ] ≥ (t− 1)(1− α)
(

B1−α
1

B1−α
1 +1

)α
,

and we conclude that Bt ≥
[
(1− α)

(
B1−α

1

B1−α
1 +1

)α] 1
1−α

(t− 1)
1

1−α .

Finally, we need the following lower bound on the size of subgradients of convex
functions.

Lemma 1.5. Let f̃ be a closed convex function attaining its minimum at some
point x∗ ∈ dom f̃ . Given ϵ > 0, let

R(ϵ) = max
x∈domφ

{
∥x− x∗∥ : f̃(x) ≤ f̃(x∗) + ϵ

}
.

If R(ϵ) < +∞, then ∥g̃∥∗ ≥ ϵ
R(ϵ) for all g̃ ∈ ∂f̃(x) with f̃(x) ≥ f̃(x∗) + ϵ.

Proof. Indeed, let f̃(x) ≥ f̃(x∗) + ϵ. Since

f̃(x) ≥ f̃(x) + ϵ > f̃(x∗),
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it follows from the Intermediate Value Theorem that there exists α ∈ (0, 1] such that

f̃(αx+ (1− α)x∗) = f̃(x∗) + ϵ.

Then, by the convexity of f̃ , we obtain

f̃(x∗) + ϵ ≤ αf̃(x) + (1− α)f̃(x∗),

which gives

ϵ

α
≤ f̃(x)− f̃(x∗).

On the other hand,

R(ϵ) ≥ ∥(αx+ (1− α)x∗)− x∗∥ = α∥x− x∗∥,

and so

1

α
≥ ∥x− x∗∥

R(ϵ)
.

Thus, if g̃ ∈ ∂f̃(x), it follows from the definition of subgradient, the Cauchy-Schwartz
inequality and the above inequalities, that

∥g̃∥∗∥x− x∗∥ ≥ f̃(x)− f̃(x∗) ≥ ϵ

R(ϵ)
∥x− x∗∥.

2. Problem statement and auxiliary results. In this paper we consider
methods for solving the following composite minimization problem:

(2.1) min
x∈E

{
f̃(x) ≡ f(x) + φ(x)

}
,

where f : E → R is a convex twice differentiable function and φ : E → R ∪ {+∞} is
a simple closed convex function. Our assumption on simplicity of φ means that all
subproblems appearing in our methods and involving this function are easily solvable.
We assume that there exists at least one optimal solution x∗ ∈ E for problem (2.1).

Let us characterize the level of smoothness of function f in problem (2.1) by the
system of Hölder constants

(2.2) Hf (ν) ≡ sup
x,y∈domφ

{
∥∇2f(x)−∇2f(y)∥

∥x−y∥ν : x ̸= y
}
, 0 ≤ ν ≤ 1.

It follows from (2.2) and from an integral form of the Mean-Value Theorem that
(2.3)∣∣∣f(y)− f(x)− ⟨∇f(x), y − x⟩ − 1

2 ⟨∇
2f(x)(y − x), y − x⟩

∣∣∣ ≤ Hf (ν)∥y−x∥2+ν

(1+ν)(2+ν)

and

(2.4) ∥∇f(y)−∇f(x)−∇2f(x)(y − x)∥ ≤ Hf (ν)∥y−x∥1+ν

1+ν .
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Let Hf (ν) < +∞ for some ν ∈ [0, 1]. Consider the following model of the objective

function f̃ around some point x ∈ E:

Q(x; y) = f(x) + ⟨∇f(x), y − x⟩+ 1
2 ⟨∇

2f(x)(y − x), y − x⟩,

Mν,H(x; y) = Q(x; y) + H∥y−x∥2+ν

(1+ν)(2+ν) + φ(y), y ∈ domφ,

where the parameter H > 0 is an estimate for the Hölder constant Hf (ν). Clearly, if
H ≥ Hf (ν), it follows from (2.3) that

(2.5) f̃(y) ≤Mν,H(x; y), y ∈ domφ.

This observation suggests computation of the point

(2.6) Tν,H(x) = arg min
y∈domφ

Mν,H(x; y).

Note that, point T = Tν,H(x) satisfies the following first-order optimality condition:

(2.7) ⟨∇f(x) +∇2f(x)(T − x) + H∥T−x∥ν

1+ν B(T − x), y − T ⟩+ φ(y) ≥ φ(T )

for all points y ∈ domφ. If we denote

(2.8) gφ(T ) = −
(
∇f(x) +∇2f(x)(T − x) + H∥T−x∥ν

1+ν B(T − x)
)
,

then by the above inequality we have

⟨−gφ(T ), y − T ⟩+ φ(y) ≥ φ(T ), ∀y ∈ domφ.

Hence, gφ(T ) ∈ ∂φ(T ). Moreover,

(2.9) ∇f(x) +∇2f(x)(T − x) + H∥T−x∥ν

1+ν B(T − x) + gφ(T ) = 0.

In what follows, we use

∇f̃(T ) ≡ ∇f(T ) + gφ(T ) ∈ ∂f̃(T ),

with gφ(T ) given by (2.8).
The following result ensures a descent condition and forms the basis for our back-

tracking strategies in the schemes where ν is known but Hf (ν) is unknown.
Lemma 2.1. Let x+ = Tν,H(x̄) for some x̄ ∈ domφ. If H ≥ (1 + ν)Hf (ν), then

⟨∇f̃(x+), x̄− x+⟩ ≥
(

1
2H

) 1
1+ν ∥∇f̃(x+)∥

2+ν
1+ν
∗ .

Proof. Denote r = ∥x+ − x̄∥. Then, by (2.4) we have

(2.10) ∥∇f(x+)−∇f(x̄)−∇2f(x̄)(x+ − x̄)∥2∗ ≤ Hf (ν)
2r2(1+ν)

(1+ν)2 .

On the other hand, by (2.9)

(2.11) ∇f(x̄) +∇2f(x̄)(x+ − x) + H
1+ν r

νB(x+ − x) + gφ(x+) = 0.
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Thus, combining (2.10) and (2.11), we get

Hf (ν)
2r2(1+ν)

(1+ν)2 ≥ ∥∇f(x+)−∇f(x̄)−∇2f(x̄)(x+ − x̄)∥2∗

= ∥∇f(x+) + gφ(x+) +
1

1+νHr
νB(x+ − x̄)∥2∗

= ∥∇f̃(x+) + 1
1+νHr

νB(x+ − x̄)∥2∗

= ∥∇f̃(x+)∥2∗ + 2
(1+ν)Hr

ν⟨∇f̃(x+), x+ − x̄⟩+ H2r2(1+ν)

(1+ν)2 .

Hence,

(2.12) ⟨∇f̃(x+), x̄− x+⟩ ≥ (1+ν)
2Hrν ∥∇f̃(x+)∥

2
∗ +

1
2(1+ν)H (H2 −Hf (ν)

2)r2+ν .

For ν = 0, this inequality leads to the desired relation. Let us assume that ν > 0.

Denote g = ∥∇f̃(x+)∥∗ and ∆2 = 1 −
(
Hf (ν)
H

)2
≥ ν(2+ν)

(1+ν)2 . Consider the right-hand

side of inequality (2.12) as a function of r:

h(r) = (1+ν)
2Hrν g

2 + H∆2r2+ν

2(1+ν) .

Let us find the optimal r∗ as a solution to the first-order optimality condition for
function h:

ν(1+ν)g2

Hr1+ν = (2+ν)H∆2r1+ν

1+ν .

Thus, r1+ν∗ = (1+ν)g
H∆

√
ν

2+ν . Consequently,

h(r∗) = r∗
2H

[
(1+ν)g2

r1+ν
∗

+
H2∆2r1+ν

∗
1+ν

]
= r∗

2H

[
(1 + ν)g2 H∆

(1+ν)g

√
2+ν
ν + H2∆2

1+ν
(1+ν)g
H∆

√
ν

2+ν

]
= (1+ν)g∆r∗√

ν(2+ν)
= (1+ν)g∆√

ν(2+ν)

[
(1+ν)g
H∆

√
ν

2+ν

] 1
1+ν

= (1+ν)g
2+ν
1+ν ∆

ν
1+ν√

ν(2+ν)

[
(1+ν)
H

√
ν

2+ν

] 1
1+ν

≥ (1+ν)g
2+ν
1+ν√

ν(2+ν)

[
(1+ν)
H

√
ν

2+ν

] 1
1+ν
(
ν(2+ν)
(1+ν)2

) ν
2(1+ν)

=
(

1
H

) 1
1+ν g

2+ν
1+ν

(1+ν)
2

1+ν

(2+ν)
1

1+ν
≥
(

1
2H

) 1
1+ν g

2+ν
1+ν .

The next lemma allows us to overestimate the objective function f̃ by a model
with cubic regularization, when H and ∥∇f̃(x+)∥ are sufficiently large. This provides
us with a basis for universal methods.
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Lemma 2.2. Let x+ = T1,H(x̄) for some x̄ ∈ E and H > 0. If for some δ > 0
and ν ∈ [0, 1] we have

(2.13) ∥∇f̃(x+)∥∗ ≥ δ and H ≥
[

CHf (ν)
(1+ν)(2+ν)

] 2
1+ν ( 1

δ

) 1−ν
1+ν ,

with constant C ≥ 6, then

(2.14) ∥x+ − x̄∥1−ν ≥ CHf (ν)

(1 + ν)(2 + ν)H

and, consequently,

(2.15) f̃(x+) ≤M1,H(x̄, x+).

Proof. For ν = 1 the statement is trivial. Assume that ν ∈ [0, 1). Denote
r = ∥x+ − x̄∥. Then, the first inequality in (2.13) and inequalities (2.4) and (2.9)
imply that

δ ≤ ∥∇f̃(x+)∥∗ = ∥∇f(x+) + gφ(x+)∥∗

≤ ∥∇f(x+)−∇f(x̄)−∇2f(x̄)(x+ − x̄)∥∗

+∥∇f(x̄) +∇2f(x̄)(x+ − x̄) + gφ(x+)∥∗

≤ Hf (ν)r
1+ν

1+ν + 1
2Hr

2 = r1+ν
[
Hf (ν)
1+ν + 1

2Hr
1−v
]
.

For the purpose of reaching a contradiction, assume that Hr1−ν <
CHf (ν)

(1+ν)(2+ν) . Then

δ < r1+ν
[
Hf (ν)
1+ν + 1

2
CHf (ν)

(1+ν)(2+ν)

]
= r1+ν

1+ν ·Hf (ν) ·
(
1 + C

2(2+ν)

)
<

Hf (ν)
1+ν

(
1 + C

2(2+ν)

) [
CHf (ν)

(1+ν)(2+ν)H

] 1+ν
1−ν

.

Since C ≥ 6, we have 1 + C
2(2+ν) ≤ C

2+ν . Therefore, δ <
[

CHf (ν)
(1+ν)(2+ν)

] 2
1−ν ( 1

H

) 1+ν
1−ν .

This contradicts the second inequality in (2.13). Therefore, (2.14) holds. Note that if
H satisfies the second inequality in (2.13), then H ≥ Hf (ν). Thus, combining (2.5)
and (2.14), we obtain (2.15):

f̃(x+) ≤ Q(x̄;x+) +
Hr2+ν

(1 + ν)(2 + ν)
+ φ(x+)

≤ Q(x̄;x+) +
Hr3

6
+ φ(x+)

=M1,H(x̄, x+).

Using Lemma 2.2, we can modify Lemma 2.1 in the following way.
Lemma 2.3. Let x+ = T1,H(x̄) for some x̄ ∈ E and H > 0. If for some δ > 0

and ν ∈ [0, 1] we have

∥∇f̃(x+)∥∗ ≥ δ and H ≥
[

12Hf (ν)
(1+ν)(2+ν)

] 2
1+ν ( 1

δ

) 1−ν
1+ν ,
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then

(2.16) ⟨∇f̃(x+), x̄− x+⟩ ≥
√

4
3H ∥∇f̃(x+)∥

3
2
∗ .

Proof. Denote r = ∥x+ − x̄∥. Then, by Lemma 2.2 (with C = 12),

(2.17) ∥∇f(x+)−∇f(x̄)−∇2f(x̄)(x+ − x)∥∗ ≤ Hf (ν)r
1+ν

1+ν ≤ H
4 r

2.

On the other hand, as x+ = T1,H(x̄) we have

(2.18) ∇f(x̄) +∇2f(x̄)(x+ − x) +
H

2
rB(x+ − x) + gφ(x+) = 0.

Thus, combining (2.17) and (2.18), we get

H2r4

16 ≥ ∥∇f(x+)−∇f(x̄)−∇2f(x̄)(x+ − x̄)∥2∗

= ∥∇f(x+) + gφ(x+) +
H
2 rB(x+ − x̄)∥2∗

= ∥∇f̃(x+) + H
2 rB(x+ − x̄)∥2∗

= ∥∇f̃(x+)∥2∗ +Hr⟨∇f̃(x+), x+ − x̄⟩+ H2r4

4 .

Hence, ⟨∇f̃(x+), x̄− x+⟩ ≥ g2

Hr +
3Hr3

16 , where g = ∥∇f̃(x+)∥∗. The minimum of the

right-hand side in the last inequality is attained at r2∗ = 4g
3H . Thus,

⟨∇f̃(x+), x̄− x+⟩ ≥ r∗

[
g2

Hr2∗
+

3Hr2∗
16

]
= r∗g

[
3
4 + 1

4

]
= r∗g.

3. Numerical Schemes for ν known. In this section we consider minimization
schemes to solve problem (2.1) when the Hölder parameter ν is not known. We
also assume that function φ( . ) is uniformly convex of degree p = 2 + ν and that
its convexity parameter σp = σp(φ) ≥ 0 is known2. In the spirit of estimating
sequences [10], our accelerated schemes update recursively sequence of points {xt}∞t=0

and functions {ψt(·)}∞t=0 in such a way that they satisfy the following relation

(3.1) Atf̃(xt) ≤ min
x∈E

ψt(x), ∀t ≥ 0,

where At =
∑t
i=0 at with {at}∞t=0 being positive stepsize parameters, and the esti-

mating functions being recursively updated as

ψt+1(x) = ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩]

with ψ0(x) = 1
2+ν ∥x − x0∥2+ν . Recall that from inequality (3.1) we conclude that

Atf̃(xt) ≤ Atf̃(x
∗) + 1

2∥x
∗ − x0∥2. Thus, the rate of growth of coefficients {At}∞t=0

defines the rate of convergence of the method.

2Note that σp = 0 implies only convexity of function φ.
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Let us start with a generic framework to deal with the case in which ν is not
known.

Algorithm 1. Accelerated RNM for known parameter ν

Initialization Choose x0 ∈ domφ and γ ≥ 1. Set v0 = x0 and A0 = 0.

Iteration t ≥ 0:

a) Find Mt ∈ (0, γHf (ν)), such that

(3.2) ⟨∇f̃(xt+1), yt − xt+1⟩ ≥
(

1
2Mt

) 1
1+ν ∥∇f̃(xt+1)∥

2+ν
1+ν
∗ ,

where

(3.3)

xt+1 = Tν,Mt
(yt) ≡ arg min

x∈domφ

{
f(yt) + ⟨∇f(yt), x− yt⟩

+
1

2
⟨∇2f(yt)(x− yt), x− yt⟩+ Mt∥x−yt∥2+ν

(1+ν)(2+ν) + φ(x)
}
,

and yt = (1 − αt)xt + αtvt, with αt = at
At+at

and coefficient at > 0
computed from the equation

(3.4) a2+νt =
(1+2νσpAt)

2Mt
(At + at)

1+ν .

b) Set

(3.5)

ψt+1(x) = ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)] ,

vt+1 = arg min
x∈domφ

ψt+1(x), At+1 = At + at.

The next result establishes the relationship between the estimating functions ψt(x)
and the objective function f̃(x). It will be crucial to prove global complexity rates
for Algorithm 1.

Lemma 3.1. For all t ≥ 0,

(3.6) ψt(x) ≤ Atf̃(x) +
1

(2+ν)∥x− x0∥2+ν , ∀x ∈ E.

Proof. Indeed, since A0 = 0, for all x ∈ E, we have

ψ0(x) = 1
(2+ν)∥x− x0∥2+ν = A0f̃(x) +

1
(2+ν)∥x− x0∥2+ν .

Thus, (3.6) is true for t = 0. Suppose that (3.6) is true for some t ≥ 0. Then, (3.5)
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and convexity of f imply that, for all x ∈ E,

ψt+1(x) = ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]

≤ ψt(x) + at [f(x) + φ(x)] = ψt(x) + atf̃(x)

≤ Atf̃(x) +
∥x−x0∥2+ν

(2+ν) + atf̃(x)

= (At + at)f̃(x) +
∥x−x0∥2+ν

(2+ν) = At+1f̃(x) +
∥x−x0∥2+ν

(2+ν) .

Thus, (3.6) is also true for t+ 1.
Now we are in position to prove that the sequences in Algorithm 1 satisfy (3.1).

By combining (3.1) with (3.6) we also obtain global complexity rates for Algorithm
1.

Theorem 3.2. Assume that Hf (ν) < +∞ for some ν ∈ [0, 1]. If sequence
{xt}∞t=0 is generated by Algorithm 1, then for all t ≥ 0 we have

(3.7) Atf̃(xt) ≤ ψ∗
t ≡ min

x∈E
ψt(x).

Moreover,

(3.8) At ≥


1

2γHf (ν)

[
1

(2+ν)

(
1
2

) 1+ν
2+ν

]2+ν
(t− 1)2+ν ∀t ≥ 2, if σp = 0,(

1
2γHf (ν)

)[
1 +

(
σp

8γHf (ν)

) 1
2+ν

]2(t−1)

∀t ≥ 0, if σp > 0.

Consequently, we have
(3.9)

f̃(xt)− f̃∗ ≤


(2γHf (ν))(4+2ν)1+ν∥x∗−x0∥2+ν

(t−1)2+ν ∀t ≥ 2, if σp = 0,

2γHf (ν)∥x∗−x0∥2+ν

(2+ν)

[
1 +

(
σp

8γHf (ν)

) 1
2+ν

]−2(t−1)

∀t ≥ 0, if σp > 0,

where f̃∗ = f̃(x∗) and x∗ is an optimal solution to the problem.
Proof. Let us prove relation (3.7) by induction over t. Since A0 = 0, for t = 0 it

is evident:

A0f̃(x0) = 0 = min
x∈E

ψ0(x).

Assume that (3.7) is true for some t ≥ 0. Note that, for any x ∈ E,

ψt(x) =
∑t−1
i=0 ai [f(xi+1) + ⟨∇f(xi+1), x− xi+1⟩+ φ(x)] + ∥x−x0∥

2+ν

2+ν

=
∑t−1
i=0 at [f(xi+1) + ⟨∇f(xi+1), x− xi+1⟩] +

∑t−1
i=0 atφ(x) +

∥x−x0∥
2+ν

2+ν

≡ ℓt(x) +Atφ(x) +
1

2+ν ∥x− x0∥2+ν , for all t ≥ 1.

Note that ℓt(x) is a linear function. Moreover, by Lemma 4 in [12], function Atφ(x)+
1

(2+ν)∥x−x0∥
2+ν is uniformly convex of degree p = 2+ν with parameter 2−ν +σpAt.
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Thus, ψt(x) is also a uniformly convex function of degree p = 2 + ν with parameter
2−ν + σpAt. Therefore, Lemma 1.2 and the induction assumption imply that

(3.10)

ψt(x) ≥ ψ∗
t +

(2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν

≥ Atf̃(xt) +
(2−ν+σpAt)

(2+ν) ∥x− vt∥2+ν .

Therefore,

ψ∗
t+1 = min

x∈domφ
{ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}

≥ min
x∈domφ

{Atf̃(xt) + (2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν

+at[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}

= min
x∈domφ

{Atf(xt) +Atφ(xt) +
(2−ν+σpAt)

(2+ν) ∥x− vt∥2+ν

+at[f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}.

Now, using the convexity and differentiability of f and the fact that gφ(xt+1) ∈
∂φ(xt+1) we obtain

f(xt) ≥ f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩,

φ(xt) ≥ φ(xt+1) + ⟨gφ(xt+1), xt − xt+1⟩,

and φ(x) ≥ φ(xt+1) + ⟨gφ(xt+1), x − xt+1⟩. Substituting these inequalities above, it
follows that

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) + ⟨∇f̃(xt+1), Atxt −Atxt+1⟩

+at⟨∇f̃(xt+1), x− xt+1⟩+ (2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν}.

Note that yt = (1 − αt)xt + αtvt =
At

At+1
xt +

at
At+1

vt. Hence, Atxt = At+1yt − atvt,

and

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) + ⟨∇f̃(xt+1), At+1yt − atvt −Atxt+1⟩

+at⟨∇f̃(xt+1), x− xt+1⟩+ (2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν}.

Further, At+1xt+1 = Atxt+1 + atxt+1. Hence,

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) +At+1⟨∇f̃(xt+1), yt − xt+1⟩

+at⟨∇f̃(xt+1), x− vt⟩+ (2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν}

≥ At+1f̃(xt+1) + min
x∈domφ

{At+1

(
1

2Mt

) 1
1+ν ∥∇f̃(xt+1)∥

2+ν
1+ν
∗

+at⟨∇f̃(xt+1), x− vt⟩+ (2−ν+σpAt)
(2+ν) ∥x− vt∥2+ν},
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where the last inequality is due to (3.2). Thus, to prove that (3.7) is true for t+1, it
is enough to show that

(3.11)

At+1

(
1

2Mt

) 1
1+ν ∥∇f̃(xt+1)∥

2+ν
1+ν
∗ + at⟨∇f̃(xt+1), x− vt⟩

+
(2−ν+σpAt)

(2+ν) ∥x− vt∥2+ν ≥ 0

for all x ∈ E. Using Lemma 1.3 with p = 2+ ν, s = at∇f̃(xt+1) and ω = 2−ν + σpAt,
we see that a sufficient condition for (3.11) is

At+1

(
1

2Mt

) 1
1+ν ∥∇f̃(xt+1)∥

2+ν
1+ν
∗ ≥ (1+ν)

(2+ν)

(
1

2−ν+σpAt

) 1
1+ν

a
2+ν
1+ν

t ∥∇f̃(xt+1)∥
2+ν
1+ν
∗ ,

that is,

(3.12) At+1

(
1

2Mt

) 1
1+ν ≥ (1+ν)

(2+ν)

(
1

2−ν+σpAt

) 1
1+ν

a
2+ν
1+ν

t ,

which is equivalent to

a2+νt ≤
(

2+ν
1+ν

)1+ν
(2−ν+σpAt)

2Mt
A1+ν
t+1 =

(
2+ν
1+ν

)1+ν
(2−ν+σpAt)

2Mt
(At + at)

1+ν .

Note that,
(

2+ν
1+ν

)1+ν
= 21+ν

(
1− ν

2(1+ν)

)1+ν
≥ 2ν . Therefore, by (3.4) we have

a2+νt =
(1+2νσpAt)

2Mt
(At + at)

1+ν ≤
(

2+ν
1+ν

)1+ν
(2−ν+σpAt)

2Mt
(At + at)

1+ν .

Thus (3.7) is true for t+ 1, completing the induction argument.
Let us now estimate the growth of the coefficients At. Recall that, by assumption,

0 < Mt ≤ γHf (ν), ∀t ≥ 0

for some constant γ ≥ 1. Thus, if σp = 0, it follows from (3.4) that a2+νt ≥
1

2γHf (ν)
(At + at)

1+ν . Hence,

(3.13) At+1 −At = at ≥
(

1
2γHf (ν)

) 1
2+ν

A
1+ν
2+ν

t+1 .

Now, denoting Bt = 2γHf (ν)At for all t ≥ 0, it follows from (3.13) that,

Bt+1 −Bt ≥ B
1+ν
2+ν

t+1 .

Then, by Lemma 1.4, with α = 1+ν
2+ν , we have

Bt ≥

( 1
2+ν

)(
B

1
2+ν
1

B
1

2+ν
1 +1

) 1+ν
2+ν

2+ν

(t− 1)2+ν ∀t ≥ 2.

Note that A1 ≥ 1
2γHf (ν)

. Thus, B1 ≥ 1 and consequently

Bt ≥
[

1
(2+ν)

(
1
2

) 1+ν
2+ν

]2+ν
(t− 1)2+ν .
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Therefore, for all t ≥ 2, At ≥ 1
2γHf (ν)

[
1

(2+ν)

(
1
2

) 1+ν
2+ν

]2+ν
(t− 1)2+ν .

On the other hand, if σp > 0, it follows from (3.4) that

(At+1 −At)
2+ν = a2+νt ≥ (1+2νσpAt)

2γHf (ν)
(At + at)

1+ν .

Thus,

2νσpAtA
1+ν
t+1 ≤ A1+ν

t+1 (1 + 2νσpAt) ≤ 2γHf (ν)(At+1 −At)
2+ν

= 2γHf (ν)
[
A

1
2
t+1 −A

1
2
t

]2+ν [
A

1
2
t+1 +A

1
2
t

]2+ν
≤ 23+νγHf (ν)A

2+ν
2

t+1

[
A

1
2
t+1 −A

1
2
t

]2+ν
.

Therefore, σpA
2+ν
2

t ≤ σpAtA
ν
2
t+1 ≤ 8γHf (ν)

[
A

1
2
t+1 −A

1
2
t

]2+ν
. Consequently,

(
σp

8γHf (ν)

) 1
2+ν

A
1
2
t ≤ A

1
2
t+1 −A

1
2
t .

Hence, At+1 ≥ At

[
1 +

(
σp

8γHf (ν)

) 1
2+ν

]2
. Since A1 ≥ 1

2γHf (ν)
, it follows that

At ≥
(

1
2γHf (ν)

)[
1 +

(
σp

8γHf (ν)

) 1
2+ν

]2(t−1)

,

and so, (3.8) holds.
Finally, by (3.7) and Lemma 3.1, for t ≥ 0, we have

Atf̃(xt) ≤ ψ∗
t ≤ Atf̃(x

∗) + 1
2+ν ∥x

∗ − x0∥2+ν .

Hence, At(f̃(xt) − f̃(x∗)) ≤ 1
2+ν ∥x

∗ − x0∥2+ν , and (3.9) follows immediately from
inequality (3.8).

Algorithm 1 can be equipped with an implementable stopping criterion. Assume
that 1

(2+ν)∥x
∗ − x0∥2+ν ≤ D and that the constant D is known. Denote

ℓt(y) =
t−1∑
i=0

ai [f(xi+1) + ⟨∇f(xi+1), x− xi+1⟩+ φ(y)]

and f̂t = min
y∈E

{
1
At
ℓt(y) :

1
(2+ν)∥y − x0∥2+ν ≤ D

}
. Then

f̃(xt) ≤ 1
At
ψ∗
t ≤ f̂t +

D
At

≤ f̃(x∗) + D
At
.

Thus, if D
At

≤ ϵ, then f̃(xt)− f̃(x∗) ≤ ϵ, and we can use inequality

f̃(xt)− f̂t ≤ ϵ

as a stopping criterion3.

3We emphasize that the use of this stopping criterion depends strongly on the knowledge of a good
upper bound D. Of course, if one takes D very large it is very likelly that 1

(2+ν)
∥x∗ − x0∥2+ν ≤ D

will be satisfied. However, with such a choice, the running time of the algorithm will be big.
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Note that the key point in Algorithm 1 is how to compute Mt such that

(3.14) 0 < Mt ≤ γHf (ν)

for some constant γ ≥ 1 independent of t, and for which condition (3.2) is satisfied.
Let us look now at possible strategies for finding such values.

3.1. Constant Hf (ν) is known. If we assume that Hf (ν) is known, then in
Algorithm 1 we can take

Mt =M ≡ (1 + ν)Hf (ν) for all t ≥ 0,

which gives (3.14) with γ = (1+ ν). Therefore, in view of the estimate (3.9), the cor-

responding scheme can find δ-solution of problem (2.1) in at most O(δ−
1

2+ν ) iterations
if σp = 0, and in at most O(log(δ−1)) if σp > 0.

Note that for σp = 0, the computation of at and At+1 in Algorithm 1 can be
simplified. Indeed, note that in this method the equation (3.4) can be replaced by
condition

a2+νt ≤ 1
2Mt

A1+ν
t+1 .

Denoting Bt = 2MtAt, we can see that the latter inequality is equivalent to the
following:

Bt+1 −Bt ≤ B
1+ν
2+ν

t+1 ⇐⇒ 1− Bt

Bt+1
≤
(

1
Bt+1

) 1
2+ν

.

It is clear that this inequality is valid for Bt =
(

t
2+ν

)2+ν
. Indeed, in this case

Bt

Bt+1
=

(
1− 1

t+1

)2+ν
≥ 1− 2+ν

t+1 = 1−
(

1
Bt+1

) 1
2+ν

.

Thus, we can take At =
1

2Mt

(
t

2+ν

)2+ν
and define at = At+1 −At.

Let us present now the corresponding version of Algorithm 1, which becomes a
generalization of scheme (4.8) in [12].
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Algorithm 2. Accelerated RNM with known Hf (ν) and σp = 0.

Initialization Choose x0 ∈ domφ. Set v0 = x0 and M = (1 + ν)Hf (ν).

Define At =
1

2M

(
t

2+ν

)2+ν
, t ≥ 0.

Iteration t ≥ 0:

a) Compute

(3.15)

xt+1 = Tν,M (yt) ≡ arg min
x∈domφ

{
f(yt) + ⟨∇f(yt), x− yt⟩

+
1

2
⟨∇2f(yt)(x− yt), x− yt⟩+ M∥x−yt∥2+ν

(1+ν)(2+ν) + φ(x)
}
,

where yt = vt +
At
At+1

(xt − vt).

b) Set

ψt+1(x) = ψt(x) + (At+1 −At) [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)] .

and

vt+1 = arg min
x∈domφ

ψt+1(x).

3.2. Adaptive estimate of Hf (ν). For real-life problems, usually we don’t
know the constantHf (ν). In this case, we can consider the following adaptive strategy
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for estimating the unknown constant Hf (ν).

Algorithm 3. Accelerated RNM with adaptive estimate of Hf (ν)

Initialization Choose x0 ∈ domφ and H0 ∈ (0, (1+ ν)Hf (ν)]. Set v0 = x0
and A0 = 0.

Iteration t ≥ 0:

a) Find the smallest integer it ≥ 0 such that

(3.16) ⟨∇f̃(xt+1,it), yt,it − xt+1,it⟩ ≥
(

1
2(2itHt)

) 1
1+ν ∥∇f̃(xt+1,it)∥

2+ν
1+ν
∗ .

where
(3.17)

xt+1 = Tν,2itHt
(yt) ≡ arg min

x∈domφ

{
f(yt,it) + ⟨∇f(yt,it), x− yt,it⟩

+
1

2
⟨∇2f(yt,it)(x− yt,it), x− yt,it⟩+

2itHt∥x−yt,it∥
2+ν

(1+ν)(2+ν) + φ(x)
}
,

and yt,it = (1−αt,it)xt+αt,itvt, with αt,it =
at,it

At+at,it
and coefficient at,it > 0

computed from the equation

(3.18) a2+νt,it
=

(1+2νσpAt)
2(2itHt)

(At + at,it)
1+ν

b) Set xt+1 = xt+1,it , yt = yt,it , at = at,it , αt = αt,it . Define At+1 = At+at,
Ht+1 = 2it−1Ht,

(3.19) ψt+1(x) = ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)] .

and

vt+1 = arg min
x∈domφ

ψt+1(x).

Remark 3.3. Although Hf (ν) appears in the Initialization step of Algorithm 3,
in practice it is not used. In fact, even without knowing Hf (ν), if we compute

H0 = ∥∇2f(x)−∇2f(y)∥

for x, y ∈ E with ∥x− y∥ = 1, then we have 0 < H0 ≤ Hf (ν) ≤ (1 + ν)Hf (ν).
The next result gives convergence rates for Algorithm 3.
Theorem 3.4. Assume that Hf (ν) < +∞. Then, the scaling coefficients in

Algorithm 3 satisfy condition

(3.20) 0 < 2itHt ≤ 2(1 + ν)Hf (ν), t ≥ 0.

Consequently, we have
(3.21)

f̃(xt)−f̃(x∗) ≤


4(1 + ν)Hf (ν)(4 + 2ν)1+ν∥x∗ − x0∥2+ν

(t− 1)2+ν
, ∀t ≥ 2 if σp = 0,

4(1 + ν)Hf (ν)∥x∗ − x0∥2+ν

(2 + ν)

[
1 +

(
σp

16(1 + ν)Hf (ν)

) 1
2+ν

]−2(t−1)

, ∀t ≥ 0 if σp > 0.
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Furthermore, the total numbers Nt of calls of oracle4 after t iterations of Algorithm
3 is bounded as follows:

(3.22) Nt ≤ 2t+ log2
2(1+ν)Hf (ν)

H0
.

Proof. The upper bound (3.20) follows from Lemma 2.1 and the backtracking
strategy of the algorithm. Therefore, the rate of convergence (3.21) can be obtained

by Theorem 3.2 with γ = 2(1+ν). Since it = log2
2Ht+1

Ht
, we get the upper bound (3.22)

for the total number of calls of oracle.

Remark 3.5. From Theorem 3.3 we see that Algorithm 3 has the same rates
of convergence as Algorithms 1 and 2, which use the exact value of the Hölder con-
stant Hf (ν). However, by (3.22), Algorithm 3 needs on average twice the number of
computations of the oracle per iteration.

4. Universal accelerated scheme. As we saw, Algorithms 1-3 require the
knowledge of the Hölder parameter ν. In this section we describe a universal scheme
that works for any ν ∈ [0, 1] without using it explicitly in the algorithm. The key
to this “universal property” is Lemma 2.3, which garantees that even if we use the
possible wrong value ν = 1 in our regularized model for f̃ , we still can obtain a descent
condition. Regarding the estimating functions, now we shall start from

ψ0(x) =
1

3
∥x− x0∥3.

Given an accuracy ϵ > 0, from Lemma 1.5 recall the function

(4.1) R(ϵ) = max
x∈domφ

{ ∥x− x∗∥ : f̃(x) ≤ f̃(x∗) + ϵ}.

4By calls of oracle we mean the joint computation of f(x), ∇f(x) and ∇2f(x).
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Let us assume that R(ϵ) < +∞. Denote γν(ϵ) =
[

12Hf (ν)
(1+ν)(2+ν)

] 2
1+ν
(
R(ϵ)
ϵ

) 1−ν
1+ν

.

Algorithm 4. Accelerated Universal CNM

Initialization Choose x0 ∈ domφ and 0 < H0 ≤ inf
ν∈[0,1]

γν(ϵ).

Set v0 = x0 and A0 = 0.

Iteration t ≥ 0:

a) Find the smallest integer it ≥ 0 such that

(4.2) ⟨∇f̃(xt+1,it), yt,it − xt+1,it⟩ ≥
(

4
3(2itHt)

) 1
2 ∥∇f̃(xt+1,it)∥

3
2
∗ .

where
(4.3)

xt+1,it = T1,2itHt
(yt) ≡ arg min

x∈domφ

{
f(yt,it) + ⟨∇f(yt,it), x− yt,it⟩

+
1

2
⟨∇2f(yt,it)(x− yt,it), x− yt,it⟩+

2itHt∥x−yt,it∥
3

6 + φ(x)
}
,

and yt,it = (1−αt,it)xt+αt,itvt, with αt,it =
at,it

At+at,it
and coefficient at,it > 0

computed from the equation

(4.4) a3t,it = 3
4(2itHt)

(At + at,it)
2,

b) Set xt+1 = xt+1,it , yt = yt,it , at = at,it . Define At+1 = At + at,
Ht+1 = 2it−1Ht,

(4.5) ψt+1(x) = ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)] .

and

vt+1 = arg min
x∈domφ

ψt+1(x).

To obtain convergence rates for Algorithm 4, we need the following corollary of Lemma
3.1.

Lemma 4.1. For all t ≥ 0 and x ∈ domφ, we have

(4.6) ψt(x) ≤ Atf̃(x) +
1
3∥x− x0∥3.

Proof. It can accomplished as the proof of Lemma 3.1 with ν = 1.
Theorem 4.2. Assume that Hf (ν) < +∞ for some ν ∈ [0, 1]. Let the sequence

{xt}Tt=0 be generated by Algorithm 4 and suppose that for i = 0, . . . , it and t = 0, . . . , T
we have:

(4.7) f̃(T1,2iHt
(yt,i))− f̃(x∗) ≥ ϵ

Then, for t = 2, . . . , T , we have Ht ≤ γν(ϵ) and

(4.8) f̃(xt)− f̃(x∗) ≤ 96γν(ϵ)∥x0−x∗∥3

(t−1)3 .
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Therefore,

(4.9) T ≤ 1 + 14
3 ∥x0 − x∗∥ inf

ν∈[0,1]

[
12Hf (ν)R(ϵ)

1−ν
2

(1+ν)(2+ν)ϵ

] 2
3(1+ν)

.

Proof. Firstly, let us prove that the sequence {xt}Tt=0 is well defined. In view
of Lemma 1.5, at any test point x of the algorithm the norm of the gradient is big
enough:

∥∇f̃(x)∥∗ ≥ ϵ
R(ϵ) .

Thus, by Lemma 2.3, the search procedure at each iteration of Algorithm 4 is finite. In
particular, we can guarantee that 2itHt ≤ 2γν(ϵ). Consequently, inequalityHt ≤ γν(ϵ)
can be justified by induction.

Now, let us prove by induction that

(4.10) Atf̃(xt) ≤ ψ∗
t ≡ min

x∈domφ
ψt(x).

For t = 0 this is evident: A0f̃(x0) = 0 = min
x∈domφ

ψ0(x). Assume that (4.10) is true

for some t ≥ 0. Note that, for any x ∈ domφ we have

ψt(x) =
∑t−1
i=0 ai [f(xi+1) + ⟨∇f(xi+1), x− xi+1⟩+ φ(x)] + 1

3∥x− x0∥3

= ℓt(x) +
1
3∥x− x0∥3

for all t = 1, . . . , T . Note that ℓt(x) is a linear function. Moreover, by Lemma 4 in [12],
1
3∥x − x0∥3 is a uniformly convex function of degree p = 3 with parameter σp = 1

2 .
Thus, ψt(x) is also a uniformly convex function of degree p = 3 with parameter
σp =

1
2 . Therefore, Lemma 1.2 and the induction assumption imply that

(4.11) ψt(x) ≥ ψ∗
t +

1
6∥x− vt∥3 ≥ Atf̃(xt) +

1
6∥x− vt∥3.

Therefore,

ψ∗
t+1 = min

x∈domφ
{ψt(x) + at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}

≥ min
x∈domφ

{Atf̃(xt) + 1
6∥x− vt∥3

+at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}

= min
x∈domφ

{Atf(xt) +Atφ(xt) +
1
6∥x− vt∥3

+at [f(xt+1) + ⟨∇f(xt+1), x− xt+1⟩+ φ(x)]}.

Now, using the convexity and differentiability of f and the fact that gφ(xt+1) ∈
∂φ(xt+1), we obtain

f(xt) ≥ f(xt+1) + ⟨∇f(xt+1), xt − xt+1⟩,

φ(xt) ≥ φ(xt+1) + ⟨gφ(xt+1), xt − xt+1⟩,

φ(x) ≥ φ(xt+1) + ⟨gφ(xt+1), x− xt+1⟩.
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Substituting these inequalities in the above relation, we get

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) + ⟨∇f̃(xt+1), Atxt −Atxt+1⟩

+at⟨∇f̃(xt+1), x− xt+1⟩+ 1
6∥x− vt∥3}.

Note that yt = (1−αt)xt+αtvt =
At

At+1
xt+

at
At+1

vt. Hence Atxt = At+1yt− atvt and

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) + ⟨∇f̃(xt+1), At+1yt − atvt −Atxt+1⟩

+at⟨∇f̃(xt+1), x− xt+1⟩+ 1
6∥x− vt∥3}.

Now, note that At+1xt+1 = Atxt+1 + atxt+1. Hence,

ψ∗
t+1 ≥ min

x∈domφ
{At+1f̃(xt+1) +At+1⟨∇f̃(xt+1), yt − xt+1⟩

+at⟨∇f̃(xt+1), x− vt⟩+ 1
6∥x− vt∥3}

≥ At+1f̃(xt+1) + min
x∈domφ

{At+1

(
2

3(2itHt)

) 1
2 ∥∇f̃(xt+1)∥

3
2
∗

+at⟨∇f̃(xt+1), x− vt⟩+ 1
6∥x− vt∥3},

where the last inequality is due to (4.2). Thus, for proving that (4.10) is true for t+1,
it is enough to show that for all x ∈ E we have

(4.12) At+1

(
2

3(2itHt)

) 1
2 ∥∇f̃(xt+1)∥

3
2
∗ + at⟨∇f̃(xt+1), x− vt⟩+ ∥x−vt∥

6

3
≥ 0.

Using Lemma 1.3 with p = 3, s = at∇f(xt+1), and ω = 1
2 , we see that necessary and

sufficient condition for (4.10) is

At+1

(
2

3(2itHt)

) 1
2 ∥∇f̃(xt+1)∥

3
2
∗ ≥ 2

√
2

3 a
3
2
t ∥∇f̃(xt+1)∥

3
2
∗ .

That is At+1

(
2

3(2itHt)

) 1
2 ≥ 2

√
2

3 a
3
2
t , which is equivalent to a3t ≤ 3

4(2itHt)
A2
t+1. There-

fore, (4.10) is true for t+ 1 due to (4.4), completing our proof by induction.
Let us now estimate the growth of the coefficients At. By (4.4) and the bound

2itHt ≤ 2γν(ϵ), we have

a3t = 3
4(2itHt)

A2
t+1 ≥ 3

8γν(ϵ)
A2
t+1.

Consequently,

(4.13) At+1 −At ≥
(

3
8γν(ϵ)

) 1
3

A
2
3
t+1.

Now, denoting Bt =
8
3γν(ϵ)At it follows from (4.13) that Bt+1 −Bt ≥ B

2
3
t+1 for t ≥ 0.

As A0 = 0, we have B0 = 0, which in the previous inequality implies that B1 ≥ 1.
Then, by Lemma 1.4, with α = 2/3, we have

Bt ≥
[
1
3

(
1
2

) 2
3

]3
(t− 1)3, t ≥ 1.
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Therefore, for all t ≥ 2, we have At ≥ 3
8γν(ϵ)

(t−1)3

108 = (t−1)3

288 . Recall that from Lemma

4.1 and (4.10) it follows that

Atf̃(xt) ≤ ψ∗
t ≤ Atf̃(x

∗) + 1
3∥x

∗ − x0∥3

Therefore, for t ≥ 2 we have

(4.14) f̃(xt)− f̃(x∗) ≤ 96γν(ϵ)∥x0−x∗∥3

(t−1)3 .

Finally, by (4.7) and (4.14) we have

ϵ ≤ f̃(xt)− f̃(x∗) ≤ 96γν(ϵ)∥x0−x∗∥3

(t−1)3 , t = 2, . . . , T.

Therefore,

(T − 1)3 ≤ 96
ϵ

[
12Hf (ν)

(1+ν)(2+ν)

] 2
1+ν
(
R(ϵ)
ϵ

) 1−ν
1+ν ∥x0 − x∗∥3

= 96
[

12Hf (ν)
(1+ν)(2+ν)

] 2
1+ν ( 1

ϵ

) 2
1+ν R(ϵ)

1−ν
1+ν ∥x0 − x∗∥3,

which implies (4.9). We can put inf there since the scheme of Algorithm 4 does not
depend on ν.

Remark 4.3. From Theorem 4.1 it follows that Algorithm 4 can find an ϵ-solution
of problem (2.1) in at most O

(
1

ϵ2/[3(1+ν)]

)
iterations, which is slightly worse than the

bound of O
(

1
ϵ1/(1+ν)

)
iterations obtained for Algorithms 1 to 3. This is a moderate

price to pay for the absence of perfect information about ν.
Corollary 4.4. Let function f̃ be uniformly convex of degree p with constant

σp > 0. Then the number of iterations in Algorithm 4 is bounded as follows:

(4.15) T ≤ 1 + 14
3 ∥x0 − x∗∥ inf

ν∈[0,1]

[
12Hf (ν)

(1+ν)(2+ν)

(
p
σp

) 1−ν
2p

] 2
3(1+ν) (

1
ϵ

) 2p+ν−1
3p(1+ν) .

Proof. Indeed, in view of Lemma 1.2, for any x ∈ domφ with f̃(x) − f̃(x∗) ≤ ϵ

we have ϵ ≥ σp

p ∥x − x∗∥p. Therefore, in this case R(ϵ) ≤
(
ϵp
σp

) 1
p

. It remains to use

the upper bound (4.9).

4.1. Computational Issues. For starting Algorithm 4, it is necessary to ensure
the initial condition

0 < H0 ≤ γ∗ν(ϵ)
def
= inf

ν∈[0,1]
γν(ϵ).

Usually this is not difficult since typically the values γν(ϵ) are big. However, we can
use a more sophisticated procedure.

Using (4.1), define D = R(f̃(x0) − f̃(x∗)) and γ̂ν(ϵ) =
[

12Hf (ν)
(1+ν)(2+ν)

] 2
1+ν (D

ϵ

) 1−ν
1+ν .

Let γ̂∗ν(ϵ)
def
= inf

ν∈[0,1]
γ̂ν(ϵ). This is an upper bound for γ∗ν(ϵ), which could be used in

the right-hand side of inequality (4.8). For that, we need to start Algorithm 4 with
H0 < γ̂∗ν(ϵ).
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Let us show how this can be done. Take a point y0 ̸= x0 such that f(y0) ≤ f(x0)
and ∇2f(y0) ̸= ∇2f(x0). Then, define

∆ = ∥∇2f(y0)−∇2f(x0)∥, r = ∥y0 − x0∥.

Now we can choose

H0 = min
ν∈[0,1]

[
12∆

(1+ν)(2+ν)rν

] 2
1+ν ( r

ϵ

) 1−ν
1+ν ≤ γ̂∗ν(ϵ).

Taking the logarithm of the objective function in this minimization problem, we get

1
1+ν

[
2 (ln(12∆)− ln(1 + ν)− ln(2 + ν)− ν ln r) + (1− ν) ln r

ϵ

]
.

This is a ratio of convex function and a positive linear function in ν. Thus, it is quasi-
convex and its global minimum can be easily approximated by bisection algorithm.

Finally, as in Algorithm 1, we can also consider a proper stopping criterion in
Algorithm 4. Denote

ℓt(y) =
∑t−1
i=0 at [f(xi+1) + ⟨∇f(xi+1), x− xi+1⟩+ φ(y)] .

Assume that, 1
3∥x

∗ − x0∥3 ≤ D and that constant D is known. Denote

f̂t = min
y∈domφ

{
1
At
ℓt(y) :

1
3∥y − x∗∥3 ≤ D

}
.

Then, as in Section 2, we can see that

f̃(xt) ≤ 1
At
ψ∗
t ≤ f̂t +

D
At

≤ f̃(x∗) + D
At
.

So, if At ≥ D
ϵ , then f̃(xt)− f̃(x∗) ≤ ϵ, and we can use inequality

f̃(xt)− f̂t ≤ ϵ

as a stopping criterion for Algorithm 4.

5. Conclusion. In this paper, we presented accelerated versions of the regu-
larized Newton methods for solving convex composite minimization problems, where
the second part of the objective is a simple closed convex function. We assume that
the Hessian of the smooth part of the objective is Hölder-continuous. For the case
in which the the Hölder parameter ν ∈ [0, 1] is known, we propose methods with
worst-case complexity of O

(
1

ϵ1/(2+ν)

)
iterations, generalizing the results in [12]. For

the general case, in which the ν is not known, we propose a universal method which
ensures the same precision in at most O

(
1

ϵ2/[3(1+ν)]

)
iterations.

Our problem setting includes, for example, piece-wise linear norms used in regu-
larization techniques and also the indicator function of a closed convex set, making
our schemes suitable for several applications (see, for example, [10, 13]).
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