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Abstract

The current requirement of wafers of larger and larger size and extremely

high quality (with respect to impurity, defect and shape control, etc.) for the

semiconductor industry, together with the requirement of cost-effective wafers

with long carrier lifetimes for the solar market, have made the design of the

crystal growth furnace and the whole growth system a very challenging task.

Global numerical simulation of bulk crystal growth becomes an indispensable

and powerful tool to design, predict and optimize the crystal growth process.

Based on more than 20 years of R&D experience on crystal growth modeling

at the CESAME research center of UCL, the main objective of this thesis aims

at developing a new generation of software products, in order to obtain a fully

automatic simulator predicting the entire Czochralski process while handling

correctly the switches between the different growth stages (including poly-crystal

melting, seeding, conical growth, shouldering, body growth, tail-end stage and

after growth cooling).

To achieve this goal, new efficient, robust and high-quality automatic un-

structured mesh generation algorithms with enough flexibility for any complex

geometry were implemented, including a 1D mesh generator by global grade-

adaptive method, a 2D initial triangulation algorithm by improved sweep line

technique and an automatic 2D shape-quality unstructured mesh generator by

modified incremental Delaunay refinement technique.

The convection problem in Czochralski crystal growth represents one of the

biggest challenges of crystal growth modeling. In this thesis, a Finite Element

Navier-Stokes solver based on unstructured meshes was firstly developed and

validated by solving the well-known 2D lid-driven cavity flow problem at different

Reynolds numbers. Then, enhanced turbulence models based on the classical



mixing-length or k−l model improved by an appropriate treatment of the mixing-

length boundary layers, together with a generic transformation method to avoid

negative k when solving the turbulent kinetic energy equation by the Newton-

Raphson iterative method were introduced and implemented.

In practice, gas convection exerts an important effect on the global heat

transfer and oxygen concentration both in the silicon melt and the silicon crys-

tal in modern Czochralski crystal growth processes. Therefore, laminar and

turbulent mathematical models governing the gas convection, thermal distribu-

tion and oxygen concentration were developed, and Finite Element numerical

methods to solve these governing equations on unstructured meshes were in-

vestigated. In order to analyze the gas effects on the silicon melt flow, oxygen

distribution and global heater transfer, appropriate numerical approaches to

capture the wall shear stress exerted by the gas flow and experienced by the

silicon melt were implemented and analyzed.

Finally, a series of numerical experiments devoted to investigate the in-

dustrial Czochralski crystal growth process under various growth conditions are

presented based on all the developments implemented. Comparisons of the sim-

ulation results with literature and available experimental observations are also

presented, and conclusions are drawn based on these simulation results and

observations.
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Chapter 1

Introduction

1.1 Preliminary remarks

The whole industrial world currently relies critically on bulk-grown crystals

of a variety of materials. These industries range from information technol-

ogy (IT) based on silicon, through radiofrequency applications using gallium

arsenide, etc., to telecommunications and lighting based on III-V compounds,

to infrared imaging based on cadmium mercury telluride, and to high-energy

physics and medical imaging using scintillator materials. Of which, silicon is the

most important semiconductor material. Silicon based systems on “chips” form

the basis of the huge information technology industry [(Capper 2005)]. Nowa-

days, almost all large-scale integration (LSI) chips are fabricated on silicon

wafers except the high-speed and optical devices fabricated on III-V compound

semiconductor crystals [(Hibiya and Hoshikawa 2005)].

The Silicon crystal growth technology has rapidly advanced during the past

decades. One of its striking features has been the diameter race which was

driven by the demand for cost reduction in the device industry [(von Ammon

2004)]. Currently silicon wafer size has been converted from 200mm to 300mm

in diameter. However, the current transition from 200mm to 300mm wafers has

been slower and more painful than expected and there are strong indications

that this almost periodic increase of crystal diameter will considerably slow

down in the future because of the dramatically rising costs of crystal growth

processes and device manufacturing equipments. The 300mm wafer is expected

to stay for at least one decade and the transition from 300mm to 450mm wafer

probably will take place around 2012∼2014 [(Hibiya and Hoshikawa 2005)] or

even later.

1.2 Czochralski bulk crystal growth

The development of the silicon crystal growth technology has been driven by

two major challenges, i.e. the demand for larger wafer diameters, as previously
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mentioned, and the need to improve the bulk quality of the crystals. The

Czochralski method has proven to be the most suitable to follow this rapid

development. It is estimated that more than 20,000 tons of bulk crystals are

produced per year, while 50% of them are semiconductor silicon crystals, of

which 98% are produced by the Czochralski method, and the remaining silicon

crystals are manufactured by Floating Zone method, which is mainly used to

grow high purity silicon for power and high-frequency electronic devices.

The Czochralski single crystal growth method was originally developed by

Jan Czochralski [(Czochralski 1918)], while modern Czochralski crystal growing

systems are more or less still the same as what was developed for industrial

applications by Teal and Little in the 1950’s [(Hurle 1993)]. Figure (1.1) shows

a large Czochralski crystal growth apparatus and a diameter of 400mm single

silicon crystal ingot with weight 438kg and body length 1,100mm produced

by [(Shiraishi et al. 2001) in 2001. The Czochralski silicon crystal growth

process consists of several basic steps as follows. First, a precise amount of

polycrystalline silicon is charged in a silica crucible, and the growth chamber

is then back-filled with low pressure, high purity Argon or Nitrogen gas (in

order to protect the growth system and the silicon at high temperature). After

silicon is molten by a graphite heater, the single crystal is grown gradually

with a controlled shape from the silicon melt contained in the quartz crucible.

Generally, a sequence of crystal-growth process steps, like seeding, necking,

shouldering, body growing, etc., are performed to grow anticipated size, high

quality crystals (dislocation-free with low concentration of point defects and

appropriate level of oxygen concentration, etc.). Moreover, different kinds of

magnetic fields are widely employed in nowadays crystal growth systems to

improve the quality and oxygen distribution in the crystal.

1.3 Computer Modeling of Bulk Crystal Growth

The extremely high quality requirements of silicon wafers as well as the crys-

tal purity, defect and shape control requests, and the demand for large-size

wafers, have made the design of the furnace and the whole crystal growth

system a very challenging task, and full collaborations between chemical and

process engineers, thermodynamicists, hydrodynamists, electrical and mechan-

ical/machine engineers, material scientists, numerical specialists, physicists and

crystallographers are absolutely necessary because of the multidisciplinary na-

ture of the crystal growth technology [(Scheel 1998)]. The complex chemical

and physical theories involved in crystal growth render the understanding of the
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(a) A Czochralski crystal puller with magnet

(b) A 400mm silicon crystal ingot

Figure 1.1: A Czochralski puller and silicon ingot [(Shiraishi et al. 2001)]
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growth phenomena and of the interaction between the many factors influencing

the final product quality, a very complicated task. However, to perform any

extensive experiments in the hostile crystal growth environment with high tem-

perature, opaque materials and high purity requirements, etc., is proved to be

time consuming and extremely expensive. Therefore, numerical modeling and

simulation has become an essential and indispensable tool for understanding,

developing and optimizing the crystal growth processes and equipments.

The primary objectives of numerical simulation of bulk crystal growth are

first to estimate the various processing conditions, such as heater power, pull

rate, crystal and crucible rotation rates and magnetic field intensity, and then

to predict the evolution of the temperature field taking all furnace constituents

into account, to calculate the evolution of the melt/gas flows, and to determine

the shapes of meniscus and crystal/melt interfaces, etc.. All such kind of pro-

cessing parameters, as well as the evolutions of the temperature field, melt/gas

convection and growth interfaces will provide a better understanding of the

various factors which may affect the quality of the crystal during the growth

process. The ultimate goal of numerical modeling is to control and optimize

the growth processes.

At the present time, crystal growth numerical modeling is based on intro-

ducing some basic hypotheses to approximate and simplify the growth pro-

cesses. For example, the temporal behavior of the crystal growth system is ap-

proximated by the quasi-steady assumption. Another well-known and widely

used assumption is that the crystal growth system is perfectly axisymmetri-

cal. These two important assumptions have proved to be highly successful in

the past decades both in academic researches and in industrial applications,

although experiments show that the temperature field, as well as the melt con-

vection are far from axisymmetrical and that there exists complex interactions

between the melt driving forces. Hence the real melt flow has proved to be

three-dimensional, oscillatory and turbulent due to the size of modern crystal

growth systems, and to the temporal behavior of these crystal growth systems.

The numerical modeling approach at CESAME was initiated in the early

eighties by Crochet and co-workers using the finite element technique [(Crochet

et al. 1983a)][(Crochet et al. 1989)], while Dupret and co-workers have been

extending and developing these methods for decades to simulate the melt

convection and global heat transfer in Czochralski, Bridgman, Floating zone

and VGF crystal growth processes [(Dupret et al. 1990)][(Dupret and Van

den Bogaert 1994)]. The bases of the global quasi-steady model, which in-

cludes axisymmetric, diffuse radiative heat transfer [(Dupret et al. 1990)] be-

tween the furnace gray surfaces, were introduced by Wouters in the mid-
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eighties [(Wouters 1985)]. The development of the global model was pur-

sued by Ryckmans who implemented laminar melt convection in the global

heat transfer and applied it to the Czochralski growth of germanium and the

Vertical Bridgman Growth of indium phosphide [(Ryckmans 1989)], and by

Nicodeme, who extended the model to take into account the particularities of

Liquid Encapsulated Czochralski furnaces, and developed thermo-elastic and

visco-plastic models to compute the thermally induced stress field responsi-

ble of dislocation generation inside the growing crystal [(Nicodème 1990)].

Furthermore, laminar flow computations and the development of a simpli-

fied approach to take into account laminar melt flow effects during dynamic

global simulations were performed by Lecomte [(Lecomte et al. 1992)]. More-

over a global dynamic Czochralski heat transfer model taking into account

the heat capacity and the geometrical evolution of the puller constituents

was developed by Van den Bogaert [(Van den Bogaert 1993)][(Van den Bo-

gaert and Dupret 1997a)][(Van den Bogaert and Dupret 1997b)]. Finally As-

saker [(Assaker et al. 1997)][(Assaker 1998)] extended the global quasi-steady

and dynamical heat transfer algorithm by introducing two axisymmetric eddy-

viscosity turbulence models for melt convection possibly taking the effect of

axial or cusp magnetic fields into account. The related commercialized soft-

ware products, such as FEMAG-CZ/FEMAG-FZ/FEMAG-VGF, are currently

used by major crystal growth companies around the world.

1.4 Challenges of modeling and simulation of

Bulk Crystal Growth

Most crystal growth processes involve a large number of coupled physical phe-

nomena and require to master the related theories, such as, heat transfer by

conduction, convection and radiation; mass transfer by convection and diffu-

sion; fluid dynamics with combined effect of natural and forced convection;

multi-phase surface dynamics; chemical reactions in the solid and molten sili-

con; point defects dynamics and thermomechanics, etc.. For all such kinds of

physical behaviors, coupling with the continually deforming melt/crystal ge-

ometry, leads to a set of highly nonlinear, time-dependent partial differential

equations governing the growth process to be solved. Considering the fact that

these physical phenomena occur over a vast range of time scales and length

scales, a numerical model that includes all these physical phenomena is far

beyond the capabilities of today’s computers. Even if the computing capac-

ity were available, the existing state of theory remains inadequate to build a
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comprehensive, realistic and usable model to predict the whole crystal growth

process [(Yeckel and Derby 2005)].

One essential challenge comes from the overall furnace deforming geome-

try and the associated high-quality automatic mesh generation issues both for

quasi-steady and time-dependent simulations. These issues play an essential

role in numerical simulation of bulk crystal growth. Indeed, not only do several

constituents (crucible, pedestal, crystal, and pulling rod) move, but also do

crystal and melt continually change shape. In particular, the solid is very small

during seeding and subsequently becomes larger and larger, while the melt vol-

ume decreases and often takes a particular shape during tail-end stage. Various

moving and deforming interfaces delimiting the melt and the crystal must hence

be computed for the process dynamic simulation, and very complex problems

of numerical geometry are thereby posed. Therefore efficient, automatic mesh

generation algorithms with enough flexibility to control and optimize the mesh

shape, size and density for complex deforming geometries have to be developed.

Also if the geometrical changes become too important when switching to a sub-

sequent growth stage, an automatic remeshing procedure has to be performed

in order to provide optimal mesh shapes.

However, the biggest challenge for the numerical simulation of Czochralski

single crystal growth comes from melt convection modeling. Indeed melt con-

vection strongly affects the various mixing mechanisms in many growth systems,

thereby affecting the growth rate, melt/crystal interface shape, chemical com-

position of the crystal and subsequent defect formation. Therefore the accurate

simulation of heat transfer, oxygen segregation and the formation of crystal de-

fects in large-size Czochralski growth systems highly relies on the accuracy of

turbulent convection modeling in the silicon melt. However, with nearly two

decades of development, melt convection simulation remains one of the most

difficult challenges to overcome in the crystal growth modeling research com-

munity, and probably will continue to be one of the most active research topics

in the next decades. First of all, from the aspect of physics, the flow of the

molten semiconductor in a Czochralski crucible is dauntingly complicated due

to a complex combination of natural and forced convection. Natural convection

is attributed to the buoyancy and capillary forces acting in the melt and on its

interface. The buoyancy and capillary forces are due to the melt density and

surface tension dependence upon temperature and solute concentration. On the

other hand, the forced convection due to crystal and/or crucible rotation rates

(in order to grow axisymmetric cylindrical crystals) strongly complicates the

melt flow pattern. Finally the shear stress exerted on the melt/gas (meniscus)

interface due to gas convection also plays an important role on the melt flow
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pattern. The combination of all the above driving forces leads to a complex

three-dimensional and time dependent flow structure. Ample evidence shows

that the melt flow driven by the above mentioned forces is at least chaotic and

mostly probably turbulent [(Lipchin and Brown 1999)], even for those growth

systems with relatively small-scale crucibles [(Kim and Langlois 1991)]. From

the viewpoint of modeling and numerical algorithms, turbulence proves to be

the most difficult problem of fluid mechanics and it is notoriously difficult

to develop an accurate tractable turbulent mathematical model because of its

random, multi-dimensional and time-dependent nature. There are no prospects

of a simple analytic theory [(Lipchin and Brown 1999)]. Although the basic

equations that describe turbulence are well-known and simple, however the so-

lutions are incredibly complex and the computer power needed to find these

solutions would transcends an imaginable computer if direct simulations were

to be performed.

Let us mention that there are other challenges today which still have not

yet been well solved, such as the fully time-dependent 3D global modeling

with continuously deforming geometries, the theory and modeling of defect

generation, the radiation modeling of participating media, etc..

1.5 Thesis structure

The main objective of this thesis aims at developing the next generation of

the FEMAG-CZ software product, a fully automatic simulator predicting the

entire Czochralski process while handling correctly the switches between the

different growth stages, including poly-crystal melting, seeding, conical growth,

shouldering, body growth, tail-end stage and after growth cooling, although

most of the developments in this thesis are directly or with minor adaptations

applicable to other crystal growth processes, such as Vertical Bridgman (VB)

and Floating Zone (FZ) process.

However, in the previous FEMAG-1 software generation, structured quadri-

lateral meshes were used, and the resulting requirement of intensive interactions

from the users made it hard for fully automatic time-dependent simulations.

Other big disadvantages of structured quadrilateral meshes are found in the

difficulty of handling complex geometries with holes, and in the lack of flexi-

bility to control the mesh density (boundary or internal node spacing). There-

fore, new efficient and high-quality automatic unstructured mesh generation

algorithms with enough flexibility for complex deforming geometries had to be

implemented firstly, which will be the main topic of our chapter 2. In this chap-

ter, we will firstly introduce a general strategy of unstructured mesh generation
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for quasi-steady and dynamic simulations of bulk crystal growth processes, and

then we will focus on 2D shape-quality unstructured mesh generation by a mod-

ified incremental Delaunay refinement algorithm and a grade-adaptive 1D mesh

generation on fixed geometries. Finally we will close this chapter by presenting

the associated 1D and 2D mesh deformation techniques for quasi-steady and

dynamic simulations.

In chapter 3, we will focus on the convection problem in Czochralski crys-

tal growth processes, one of the biggest challenges in crystal growth model-

ing. In this chapter, we will first describe the origin of the melt flow features

in Czochralski crystal growth systems, then detail the governing equations,

boundary conditions and numerical methods both for the laminar, turbulent

mixing-length, and turbulent k − l models. In order to validate our FEM

based, unstructured Navier-Stokes solver, benchmark testings on the 2D lid-

driven cavity problem will be performed at different Reynolds numbers, and

comparisons of our solutions with other highly accurate results obtained by the

FEM or other numerical methods will also be given. Moreover, an enhanced

turbulent mixing-length model based on the existing mixing-length model im-

proved by an appropriate treatment of the mixing-length boundary layers will

be introduced. Finally, a generic transformation method to avoid negative k

when solving the turbulent kinetic energy equation by the Newton-Raphson it-

erative method will be introduced, and numerical experiments and comparisons

of different transformation schemes, such as the
√
k scheme and log k scheme,

will be presented and discussed.

In chapter 4, we will firstly address the modeling of gas convection and

oxygen transport issues in Czochralski silicon single crystal growth processes.

Two ways to capture the shear stress experienced by the melt flow due to gas

convection, by the direct method and the Lagrange Multipliers method will

also be presented, and the results obtained from these two methods will also

be discussed.

The main purpose of chapter 5 will be to investigate the numerical applica-

tions of all the developments presented in the previous chapters to industrial

Czochralski crystal growth using the FEMAG quasi-steady global simulation

technique. Therefore, the FEMAG global modeling concepts and techniques

will be summarized firstly in chapter 5, and then we will focus on industrial

applications to Czochralski silicon growth processes by means of turbulent

mixing-length, enhanced mixing-length and k − l models without taking gas

convection into account. Finally, in order to fully analyze the effect of inert

argon gas convection on the Czochralski growth process, a series of numeri-

cal experiments taking gas convection into account are performed with varied
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growth conditions and operating parameters, and comparison of the simula-

tion results (such as the heater power, temperature difference in the silicon

melt etc.) with literature and available experimental observations are also pre-

sented, while the influences of gas convection on the global heat transfer, melt

convection, interface position and oxygen concentration in the silicon melt at

different operating conditions are detailed and the appropriate conclusions are

drawn.





Chapter 2

Mesh Generation for Bulk Crystal
Growth Processes

2.1 Introduction

M
eshing can be defined as the process of breaking up a complex physical

domain into smaller and simpler pieces (elements) in order to facilitate

further numerical processing[1]. This technique can be used for a wide range of

applications, such as computational geometry, computer graphics, solid model-

ing, geographic information systems (GIS), robotics, and others. The principal

application of interest is the Finite Element Method (FEM). For example, in

the FEM world, a physical domain is decomposed into elements, typically tri-

angles in 2D applications or tetrahedra in 3D applications. Partial differential

equations (PDEs) representing some physical phenomena, such as heat trans-

fer or fluid convection, can then be approximated by using functions that are

piecewise polynomial within each element.

According to the type of mesh generated, there are two major kinds of

meshes: structured and unstructured. Structured meshes, which are commonly

called “grids”, offer certain advantages over unstructured meshes. Firstly, they

are simpler and also more convenient for use with the simpler finite difference

method (FDM) or finite volume method (FVM). Also, because of the ease of

determining each node neighbors, even the FEM method on structured meshes

is often simpler and faster than on unstructured meshes. Furthermore, the reg-

ular topology of structured meshes makes their use straightforward for parallel

computation [(Schewchuk 1997)]. However, the big disadvantage of structured

meshes is their lack of flexibility when fitting complex and irregular domains,

whereas unstructured meshes can be flexibly tailored to any domain shape.

And there are cases in which using unstructured meshes is preferable or even

indispensable. For example, in Science and Engineering area, several physi-

cal phenomena with sharp feature changes are modeled by PDEs defined on

irregularly shaped domains and then need dynamic adaptive, anisotropic un-

structured meshes to capture these sharp changes with acceptable accuracy,
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time and memory requirements. Although unstructured mesh generation is

a relatively new field, it is gaining increasing popularity in diverse fields and

tremendous progress has been made in the last decade.

In this chapter, we will firstly introduce the general strategy we have se-

lected for unstructured mesh generation in order to perform quasi-steady and

dynamic simulations of bulk crystal growth processes. We will then focus on 2D

shape-quality unstructured mesh generation as based on a modified incremen-

tal refinement algorithm and a grade-adaptive 1D boundary mesh generation.

Furthermore, 1D and 2D mesh deformation techniques for quasi-steady and

dynamic simulations will also be addressed, and application examples of our

method to bulk single crystal growth processes will be presented as well. Fi-

nally, the possibility to extend our algorithm to surface mesh generation will

be shortly discussed.

2.2 Mesh generation strategy for crystal growth

Numerical modeling of Czochralski silicon growth requires to develop suitable

dynamic geometrical algorithms in order to accurately represent the various –

moving or not – constituents of the furnace, together with computing the evolu-

tion of the different deforming system interfaces (solidification front, melt/gas

interface with crystal/melt and crucible/melt menisci, and crystal wall).

The objective of launching the FEMAG-2 software generation was to pro-

vide a fully automatic simulator predicting the entire Czochralski process while

handling correctly the switches between the different growth stages, including

poly-crystal melting, seeding, conical growth, shouldering, body growth, tail-

end stage and after growth cooling. The difficulty to overcome resulted from

the important evolution of the system geometry during growth. Indeed, not

only do several constituents (crucible, pedestal, crystal, and pulling rod) move,

but also do crystal and melt continually change shape. In particular, the solid is

very small during seeding and subsequently becomes larger and larger, while the

melt volume decreases and often takes a particular shape during tail-end stage.

Various moving and deforming interfaces delimiting the melt and the crystal

must hence be computed for the process dynamic simulation, and very complex

problems of numerical geometry are thereby posed. Therefore, new powerful

geometrical methods were developed to allow easy calculation of the system

free surfaces, through a single mathematical formulation, valid for all possible

configurations, and new efficient and automatic unstructured mesh generation

algorithms with high flexibility were implemented in order to perform easy

time-dependent simulations even for stages of the process where important ge-
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ometrical changes occur (note that structured quadrilateral meshes were used

in the previous FEMAG-1 software generation).

FEMAG-2 simulations can be quasi-steady or time-dependent. For each

growth stage the so-called quasi-steady problem can be solved on a fixed geom-

etry (except the shape of melt/crystal interface), which means that geometrical

calculations are completely separated from field calculations. The decoupled

iterative strategy adopted to perform FEMAG-2 quasi-steady simulations can

be summarized as follows :

❶ The global heat transfer is solved in the overall furnace by assuming given

melt flow and geometry – the latter being defined by crystal and crucible

vertical positions, and by the shapes of crystal/melt, crystal/gas, and

melt/gas interfaces;

❷ The non-isothermal melt flow is solved assuming given geometry and ther-

mal conditions along the melt boundary;

❸ The geometry is updated using the results obtained in steps ❶ and ❷.

This sequence of operations is iteratively repeated until convergence is achieved,

and hence a coupled solution is provided by this decoupled scheme. In case of

dynamic simulations, the procedure is subdivided in two principal steps. First,

the melt flow is calculated at several stages of the growth by means of quasi-

steady simulations. Secondly, interpolation between these quasi-steady results

provides the melt flow at every time step of the dynamic simulation. At each

time step, calculations are iteratively performed in a similar way as in the quasi-

steady case (without however melt flow calculations since flow interpolation is

applied). Recently, however, a new numerical technique was implemented to

calculate the melt flow at each time step.

Unstructured Finite Element meshes are initially generated to cover each

constituent, or “macro-element”, of the global furnace (viz. the crystal, the

melt, the crucible, the heater, the insulator, the pedestal..., all the 1D radia-

tive enclosures, and the 1D external steel shell). This initial mesh generation

procedure is illustrated in Figure (2.1). Subsequently, the global mesh is au-

tomatically deformed for each iteration of the quasi-steady calculations and

at each time step of the dynamic simulations. This operation is based on us-

ing a 1D mesh adaptor and a 2D mesh conditioner to optimize the deformed

mesh while keeping mesh topology consistency. In addition, re-meshing is per-

formed only if geometrical changes become too important when switching to a

subsequent growth stage.
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Figure 2.1: Initial mesh generation procedures.

2.3 Unstructured 2D mesh generation

Triangles (in 2D space) and tetrahedra (in 3D space) are by far the most

common forms of elements for unstructured mesh generation while most tech-

niques currently in use can fit into one of the following three main categories

[(Owen 1998)]: ❶ Octree technique, ❷ Delaunay technique, and ❸ Advancing

Front technique, of which, the Delaunay method is the most popular tech-

nique employed in the mesh generation community. The unstructured mesh

generation process using the Delaunay criterion is also referred to as Delaunay

Triangulation. The latter has the property that the circumcircle or circum-

sphere of every element (triangle or tetrahedron) doesn’t contain any node of

the triangulation (refer to Figure 2.2) besides the element vertices while it

maximizes the minimum angle and minimizes the maximum circumcircle or

circumsphere of all the elements. There are many Delaunay triangulation al-

gorithms, for example, the divide-and-conquer algorithm proposed by Lee and
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Figure 2.2: Delaunay criterion

Schachter [(D.T.Lee and B.J.Schachter 1980)], the plane-sweep algorithm pre-

sented by Fortune [(Fortune 1987)] and the incremental insertion algorithm

proposed by Lawson [(Lawson 1977)]. Fortune[(Fortune and Wyk 1993)], Su

and Drysdale [(Su and Drysdale 1995)] and Shewchuk [(Shewchuk 1996b)] have

presented experimental comparisons of a number of these algorithms. Among

them, the incremental insertion algorithm performs poorly since most of its

time is spent on point location. On the other hand, the incremental insertion

algorithm is simple to understand and implement and is more competitive than

other algorithms in most practical applications.

In this section, we will present a modified incremental insertion algorithm

based on the algorithm proposed by Ruppert [(Ruppert 1995)]. However, im-

portant differences between our implementation and the one by Ruppert and

others can be highlighted as follows [(Wu et al. 2003)]:

1. Unlike the implementation by Ruppert, splitting the encroached bound-

ary line segments is ignored during the triangulation process in order

to keep boundary consistency (as required by FEMAG-2 software con-

straints).

2. An innovative triangle-based data structure is proposed for the incremen-

tal Delaunay refinement process. Based on this elegant data structure,

a new, simple but efficient, linear point location algorithm is presented.

The main advantage of our point location algorithm is that the asso-

ciated time complexity is independent of the mesh size. Furthermore,

a so called “split and flip” generic algorithm to construct the updated
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Delaunay triangulation is proposed and implemented.

3. Similarly, as in the Triangle code developed by Schewchuk, a splay-tree

sorting/searching algorithm is used to quickly locate the “bad triangles”,

while two sorting keys are employed in our implementation for differ-

ent refinement stages, as associated to the triangle minimum angle and

maximum area constraints.

4. Three methods are used to control the mesh shape quality and density: 1D

boundary mesh density, minimum angle and maximum area-scale control.

The 1D boundary mesh density plays a prominent role to keep mesh

quality, mesh density and boundary consistency in our algorithm. The

second criterion relies on the minimum element angle, which is commonly

used by unstructured triangulation codes. The third one is the maximum

area-scale criterion, which is extremely useful when triangulating flow

boundary layers (with expected large variations in triangle size).

Before addressing the implementation detail of our algorithm, let us first

summarize the basic steps of the Delaunay triangulation process: an initial

triangulation for a given input geometry is firstly generated, then all these

initial triangles are transformed into Delaunay triangles (without Steiner point

insertion) by means of flipping operations, and finally all these triangles are

refined by applying given criteria (minimum angle, maximum area scale, etc.).

These basic procedures are depicted in Figure 2.3. It should be noted that:

❶ The input data for our 2D mesh generation module are simple polygons

with a sequence of given points oriented in the counter-clockwise sense,

whereas the boundary points of holes if any are oriented in the clockwise

sense,

❷ Steiner points are only inserted in the Delaunay refinement process.

2.3.1 Data structure

The efficiency of a mesh generator rests on the efficiency of the triangulation

algorithm and the data structures it employs [(Shewchuk 1996b)]. In our in-

cremental Delaunay refinement algorithm, a triangular data structure is used

for each triangle. In this structure, each triangle contains three pointers to

vertices, three pointers to edges, three pointers to neighboring triangles, and

one pointer to its circumcircle (see Figure 2.4). In order to improve efficiency,
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(a) Input Boundary Mesh (b) Initial Triangulation

(c) Delaunay Transformation (d) Delaunay Refinement

Figure 2.3: Basic steps of Delaunay Triangulation

the circumcircle is calculated only when necessary. Furthermore, for each tri-

angle, ∠A is always its largest angle, and ∠C is always its smallest angle. This

also means that Length(BC) ≥ Length(AC) ≥ Length(AB) for all the triangles

constructed. We will explain later why this property is extremely important

for our refinement algorithm. However, it should be noted that the triangles

of the final mesh may not satisfy this rule since the vertices of all triangles are

eventually reordered in counterclockwise orientation for numerical purpose.

Very similar to the Triangle program developed by Shewchuk, our mesh

generator also uses a splay tree data structure to store all the generated trian-

gles, while two ordering/searching keys are employed for different refinement

stages. A splay tree is a kind of self-adjusting balanced binary search tree. It
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Figure 2.4: Data structure for single triangle.

for each triangle, ∠A ≥ ∠B ≥ ∠C

guarantees that those frequently accessed items are located near the top of the

tree by rotations. All splay tree operations run in O(log n) time on average.

Particularly for our refinement process, only searching the triangles with mini-

mum angle (or maximum area) is needed, so the average time efficiency will not

be so bad compared with an AVL tree, but more space efficient. However, since

the splay tree ordering/searching keys may be equivalent for different inserted

triangles, slightly decreasing or increasing these keys will be needed when a

new triangle with duplicated key is inserted into the splay tree.

2.3.2 Initial triangulation

As previously mentioned, the input data are a simple polygon with a sequence

of given points oriented in the counter-clockwise sense, whereas the boundary

points of holes are oriented in the clockwise sense. This initial triangulation

problem is also called the polygon triangulation problem, which can be stated

as follows: for a sequence of n given points, find n − 3 diagonals that par-

tition this polygon into n − 2 triangles (for a polygon with m holes, the to-

tal number of triangles will be (n − 2) + 2 ∗ m). Polygon triangulation is a

classic problem in computational geometry with great appeal for nearly one

century, and it has received widespread interest over the last two decades.

The first simple polygon triangulation “algorithm” was proposed by Lennes

[(Lennes 1911)] in 1911 via recursive diagonal insertion with O(n2) expected

running time [(O’Rourke 2000)]. In 1975, Meisters [(Meisters 1975)] presented

an O(n3) algorithm based on the ear-cutting method. Garey et al [(Garey
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et al. 1978)] were the first to publish an O(n log n) algorithm via polygon de-

composition and sweeping in 1978. Four years later another algorithm with the

same complexity was presented by Chazelle [(Chazelle and Incerpi 1984)] us-

ing the divide-and-conquer technique. Later, Hertel and Mehlhorn [(Hertel and

Mehlhorn 1983)] presented their O(n+r log r) algorithm in 1983, where r is the

number of reflex vertices, and Tarjan et al [(L.J. Guibas et al. 1987)][(Tarjan

and Wyk 1988)][(Kirkpatrick et al. 1990)] proposed an O(n log logn) algorithm

via “involved” data structures. In 1988, Toussaint [(Toussaint 1991)] proposed

an O(n(1 + t0)) algorithm using the sleeve searching method, where t0 is the

number of “free triangles” in the output triangulation. In 1993, ElGindy, Ev-

erett and Toussaint [(ElGindy et al. 1993)] found that Meister’s algorithm can

be performed in O(n2) time with the “prune and search” technique, Kong, Ev-

erett and Toussaint [(Kong et al. 1990)] also implemented an O(kn) algorithm

by Graham’s scan method, where k − 1 is the number of concave vertices in

the polygon. A breakthrough in polygon triangulation algorithms was made

by Chazelle [(Chazelle 1991)] in 1990, whose algorithm showed that a nearly

linear-time polygon triangulation can be reached through randomized trapezoi-

dation techniques. However, since the original algorithm is quite complicated

and very difficult to implement, several improvements of this method were pub-

lished by Seidel [(Seidel 1991)] and Amato [(Amato et al. 2000)] in 1991 and

2000 respectively. “Is there a deterministic, linear-time polygon triangulation

algorithm significantly simpler than that of Chazelle?” is still an open problem

in the computational geometry community.

There are at least three popular polygon triangulation algorithms: the re-

cursive ear cutting algorithm as improved by Toussaint [(Toussaint 1991)] with

O(kn) time complexity, where k is the number of concave vertices of the poly-

gon; the sweep line algorithm presented by Garey [(Garey et al. 1978)] and the

incremental randomized algorithm by Seidel [(Seidel 1991)] and Amato [(Amato

et al. 2000)], both with O(n log n) time complexity. Among them, the recursive

ear cutting algorithm has the worst performance and also exhibits difficulties in

the handling of polygon with holes, although it is very easy to implement com-

pared with other complicated algorithms. On the other hand, the incremental

randomized algorithm has better performance, but the improved algorithm pre-

sented by Amato [(Amato et al. 2000)] is very difficult to implement. The first

linear algorithm proposed by Chazelle [(Chazelle 1991)] is extremely difficult

and no implementation of this algorithm was reported up to now according

to the author’s knowledge. The sweep line algorithm is easier to implement

when compared with Chazelle’s linear algorithm and has gained popularity in

nowadays applications due to its efficiency, robustness and capability to handle
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polygons with holes.

In this subsection, we will first briefly review the three popular simple poly-

gon triangulation algorithms addressed here above, and then we will focus on

the sweep line algorithm improvements and implementation. Finally, we will

finish this subsection by comparing our implementation with other major pop-

ular codes available from the web. Before reviewing the three popular polygon

triangulation algorithms, several basic definitions and theories have to be in-

troduced.

2.3.1. Definition. A simple polygon P is a polygon with no pair of non-

consecutive intersecting edges.

A simple polygon P can be represented by n consecutive points v1, v2,...,vn
oriented in the counterclockwise or clockwise sense. These points are called the

vertices of polygon P . Then (v1, v2), (v2, v3), ..., (vn, v1) are n line segments,

called the edges of polygon P . Every simple polygon (without holes) with

n vertices (n ≥ 4) may be partitioned into n − 2 triangles by adding n − 3

diagonals. This conclusion was proved by Meisters [(Meisters 1975)]. To proof

this statement, Meisters introduced the concept of ears of a simple polygon as

follows.

2.3.2. Definition. A vertex vi of a simple polygon P is called an ear if the

line segment (vi−1, vi+1) that bridges vi is a diagonal.

The so called Two-Ears Theorem states that every simple polygon has at

least two non-overlapping ears, except triangles.

The above definition and theorems imply that a straightforward algorithm

to triangulate a simple polygon consists in searching and cutting off the ears

of the polygon until the left polygon is a triangle. In this algorithm, all the

vertices of polygon P are stored in a circular doubly-linked list. The algorithm

starts at vertex v2 and checks whether the previous vertex v1 is an ear. If this

is not the case, the current vertex is moved forward. If the previous vertex is an

ear, it is cut off and removed from the polygon. The current vertex is not moved

forward in this case except if it is the vertex following v0 in order to prevent v0
from being cut off. The algorithm stops when it reaches v0. This algorithm has

a worst O(n2) running time complexity and its real running time complexity

is O(kn), where k is the number of concave vertices of the polygon. If the

polygon has few concave vertices the time complexity becomes nearly linear.

If all the vertices of a simple polygon P are convex, then this polygon can be

triangulated in O(1) time complexity. Actually, a simple polygon without any
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concave vertex can be triangulated by simply drawing a diagonal from a given

vertex vi to all the other vertices that are not neighbors of vi.

Certain classes of polygons can be triangulated easily, for example, the con-

vex polygons. The question arises whether it is possible that a simple polygon

can be partitioned into convex polygons. Answering this question is not a easy

task. The first algorithm for finding an optimal polygon convex partitioning

with diagonals was due to Greene [(Greene 1983)] with O(n4) time complexity

and was subsequently improved to O(n3 logn) by Keil [(Keil 1985)]. However,

both of these algorithms are not efficient enough for triangulation. Neverthe-

less, another class of polygons that can be easily triangulated in linear time is

the class of monotone polygons.

2.3.3. Definition. A simple polygon is called monotone with respect to a

line l if for any line l′ perpendicular to l the intersection of the polygon with

l′ is connected. A polygon that is monotone with respect to the y-axis is called

y-monotone.

We have to pay special attention to vertices with equal y-coordinates. One

way to avoid this problem consists in slightly rotating the whole polygon in the

clockwise direction with respect to the coordinate system. However, a more

reasonable way to solve this problem is obtained by defining the below and

above notions as follows:

2.3.4. Definition. a vertex p is below another vertex q if py < qy or py = qy
and px > qx, and p is above q if py > qy or py = qy and px < qx.

2.3.5. Definition. An interior cusp of a polygon is a vertex v whose adja-

cent vertices are either both at or above, or both at or below, v.

2.3.1. Lemma. If a polygon P has no interior cusp, then it is monotone.

2.3.2. Lemma. A strictly y-monotone polygon with n vertices can be triangu-

lated in linear time.

To overcome the poor performance of the recursive ear-cutting algorithm

and handle polygons with holes, the trapezoidal decomposition algorithm was

proposed by Seidel [(Seidel 1991)] and the sweep line algorithm was presented

and improved by by Garey et al [(Garey et al. 1978)] respectively. Both the

trapezoidal decomposition algorithm and the sweep line algorithm are based

on the fact that all simple polygons can be partitioned into monotone parts,

which can be triangulated efficiently in linear time. The difference between

these two algorithms is the way the polygons are decomposed. The former



22 2. Mesh Generation for Bulk Crystal Growth Processes

algorithm employs a horizontal or vertical trapezoidation line through every

vertex of the polygon to decompose the polygon into trapezoids, and then

introduces diagonals to remove the interior cusps. On the contrary, in the

sweep line algorithm, the diagonals are immediately introduced at all turn

vertices (defined here below) when a horizontal or vertical line sweeps through

the polygon.

In the sweep line algorithm, all the literature distinguishes five types of

vertices in order to decompose the polygon into monotone pieces. Four of these

types are turn vertices: the start vertices, the split vertices, the end

vertices, and the merge vertices. The vertices that are not turn vertices are

regular vertices. These types of vertices are defined as follows:

2.3.6. Definition. A vertex v is a start vertex if its two neighbors lie below

it and the interior angle at v is lower than 180o; if the interior angle is higher

than 180o, then v is a split vertex. A vertex is an end vertex if its two

neighbors lie above it and the interior angle at v is lower than 180o; if the

interior angle is higher than 180o then v is a merge vertex.

Theory [(de Berg et al. 2000)] shows that a polygon is y-monotone if it has

no split vertices or merge vertices. Therefore, the goal of the y-monotone de-

composition is to get rid of the polygon split and merge vertices by adding

a diagonal going upwards from each split vertex and a diagonal going down-

wards from each merge vertex. More specifically, for each split vertex v, a

diagonal is inserted from it to the lowest vertex above it. On the contrary,

for each merge vertex, a diagonal is inserted to the highest vertex below it.

This lowest/highest vertex is often called the helper of direct left edge ei, or

simply helper(ei), where ei is the direct left edge of vertex vi. Mark et al and

O’Rourke fully summarized the sweep line algorithm in [(de Berg et al. 2000)]

and in [(O’Rourke 2000)] respectively and this issue will not be addressed here.

However, there is a big disadvantage in the current algorithm: for each regular

vertex vi, we still have to know whether the interior of the polygon lies to the

right or to the left of vi when the sweeping line reaches the regular vertex vi.

This means that additional computations and storage space to correctly han-

dle all regular vertices are needed. To improve the efficiency and decrease the

storage space, we classify the regular vertices into regular down vertices

and regular up vertices as follows (see Figure 2.5):

2.3.7. Definition. A regular down vertex is a regular vertex whose previ-

ous neighbor vertex v−i lies above it, while the next neighbor v+
i lies below it. On

the contrary, a regular up vertex is a regular vertex whose previous neighbor

v−i lies below it, while the next neighbor v+
i lies above it.
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Figure 2.5: Six types of vertices: Start Vertex (5,7,14), End Vertex (1,3,11),

Split Vertex (2,10,12), Merge Vertex (6,9,13),

Regular Up Vertex (4), and Regular Down Vertex (8).

This classification is based on the fact that for a polygon oriented in the

counter-clockwise direction (with holes in the clockwise direction), the interior

of the polygon is always located to the left of the regular up vertices, and to the

right of the regular down vertices. Therefore any additional computation and

storage space for such kind of situation is not needed anymore when handling

a regular vertex.

When the sweeping line reaches vertex vi, a basic operation is to find the

edge located to the left of this vertex. Therefore, the edges of the polygon

intersecting the sweep line are stored in a dynamic splay tree, and the sort-

ing/searching keys are the x coordinates of the intersections. Note that all the

sorting/searching keys of the edges in the splay tree have to be dynamically

updated at each event vertex. Once a diagonal is inserted, an auxiliary diagonal

is inserted at the same time in the opposite direction (note that polygon edges

and diagonals are directed line segments in our algorithm) for monotone piece

searching purpose only. All the monotone pieces can be easily constructed

using these auxiliary diagonals since each diagonal is always shared by two

adjacent monotone polygons. Finally, all the constructed monotone polygons

can be triangulated in linear time by the algorithm described in [(de Berg

et al. 2000)][(O’Rourke 2000)]. It should be noted that correct calculation of

the interior angle of a vertex v is extremely important for the robustness of the

sweep line algorithm, hence the arbitrary precision floating-point arithmetics

and fast robust geometry predicates from Shewchuk [(Shewchuk 1996a)] are



24 2. Mesh Generation for Bulk Crystal Growth Processes

1

2
3

4

5

6

7

8

9

10

11

12

1314

hole

(a) Monotone polygons obtained by adding diagonals
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(b) Final triangulation

Figure 2.6: Sweep line algorithm

used to ensure the robustness of our implementation. Figure 2.7 and Figure

2.8 show polygons with/without holes and the associated shadowed monotone

pieces, polygon triangulation and polygon Delaunay triangulation, respectively.

Practical experience and numerical experiments show that our initial trian-

gulation code 1 implemented using the sweep line algorithm is efficient and ro-

bust due to our algorithm improvements and well-designed data structures, and

1Poly2tri, one of the fastest robust simple polygon triangulation code open to public and

using the sweep line algorithm, is now used by some academic projects from Europe and

North American. Poly2tri is available in C++, Java on Linux/Unix and Microsoft Windows

platforms from http://www.mema.ucl.ac.be/∼wu/Poly2Tri/poly2tri.html
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(a) Input polygon with holes (b) Shadowed monotone polygons

(c) Initial triangulation (d) Delaunay triangulation

Figure 2.7: Sweep line algorithm for polygon with holes

the use of exact floating-point arithmetic predicates. Comparisons with other

popular triangulation codes like “Triangle” as developed by Jonathan with

divide-and-conquer, incremental and sweep line algorithms [(Shewchuk 1996b)],

“FIST” as developed by Held with “fancy” ear-clipping algorithm [(Held 2001)],

and “triangulation” as implemented by Narkhede and Manocha using Seidel’s

incremental randomize algorithm [(Narkhede and Manocha 1995)] are presented

in Table 2.3.2. Our primary comparisons show that our implementation is very

competitive and tends to be faster than several other above mentioned popular

codes. However, the performance of our implementation is extremely poor com-

pared with FIST and Triangle for those random polygons that zig-zag widely.

The reason is simple: to triangulate such kinds of polygons, the size of the splay

tree (to locate the direct left edge of an event vertex) is very much larger than

for “smoother” polygons with small edges, and hence most of the time is spent
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(a) Input polygon without hole (b) Shadowed monotone polygons

(c) Initial triangulation (d) Delaunay triangulation

Figure 2.8: Sweep line algorithm for polygon without hole

on splay tree transversing and search-key updating. However, in practice, our

high-quality 1D mesh generator can always guarantee that the input polygons

(generated from 1D boundary meshes) are “smooth” enough for our real Finite

Element applications.
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857 0.007(s) 0.003(s) 0.008(s) 0.005(s) 0.015(s) 0.006(s) 0.005(s)

6937 0.086(s) 0.040(s) 0.094(s) 0.113(s) 0.773(s) 0.136(s) 0.133(s)

10366 0.139(s) 0.063(s) 0.159(s) 0.155(s) 1.480(s) 0.173(s) 0.166(s)

20670 0.285(s) 0.135(s) 0.445(s) 0.286(s) 5.554(s) 0.329(s) 0.307(s)

68372 1.065(s) 0.601(s) 1.875(s) 0.747(s) 95.251(s) 0.959(s) 0.797(s)

103079 1.614(s) 0.785(s) 5.173(s) 1.153(s) 179.331(s) 1.458(s) 1.264(s)

573440∗ failed 7.487(s) 55.641(s) 8.451(s) >2.7(h) 8.596(s) 9.008(s)

1048576∗ failed 13.942(s) 155,725(s) 14.682(s) >2.7(h) 17.300(s) 18.482(s)

1756160∗ failed 32.177(s) 132.725(s) 22.629(s) >2.7(h) 32.208(s) 29.517(s)

32768∗ failed 24.795(s) 5.216(s) 1.692(s) 1.410(s) 1.967(s) 1.451(s)

Table 2.1: Running time comparisons with other popular triangulation codes.

Platform: Mandrake Linux 10.1 with Intel PIII 1.2GHZ Mobile processor, 512M SDRAM and

compiled by gcc 3.4.1 with -O2 option. The last four polygonal raw data (30∼120 Megabytes)

gcc 3.4.1 with -O2 option. The last four polygonal raw data (30∼120 Megabytes) marked by

“*” are four different random polygons contributed by Prof. Martin Held.
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2.3.3 Incremental Delaunay refinement algorithm

The initial mesh generation algorithms reviewed in the previous subsection are

not suitable for the Finite Element Method (FEM), since in many applications

the numerical stability and convergence are strongly affected by the element

shapes, and excessively “long and skinny” elements can lead to undesirable

behavior. Delaunay refinement algorithms were developed to offer a shape

guarantee on the generated elements, such as to provide non-obtuse triangles,

or all triangles with a bounded aspect ratio. The aspect ratio of a triangle is

the highest ratio of its edge length divided by the associated altitude. A fairly

general measure of a triangle shape is given by its minimum angle α, since this

gives a π − 2α bound to its maximum angle and guarantees an aspect ratio

between 1/ sinα and 2/ sinα. Compared with other refinement techniques, the

Delaunay refinement method is arguably the most popular method due to its

theoretical guarantee and practical performance.

The incremental Delaunay refinement algorithm inserts one Steiner point

at a time while maintaining a Delaunay triangulation until all triangles meet

the imposed constraints on element quality and size. The basic idea of Rup-

pert’s Delaunay refinement algorithm is to make local improvements by insert-

ing Steiner points at the circumcircle of skinny triangles while maintaining the

Delaunay property. Moreover, if the inserted Steiner point encroaches upon

any input boundary segment, then the boundary segment will be split at its

diametral circle center. However unlike in Ruppert’s algorithm, splitting the

encroached boundary segments is ignored during the refinement process in our

algorithm. This comes from two reasons. Firstly, the thermal, stress and flow

calculations of the different furnace components (or “macro-elements”) are de-

coupled in our Finite Element model, and hence we need to separately gener-

ate unstructured meshes for the different crystal growth furnace components.

Moreover, at some stage of the algorithm, coupling the whole system is needed.

Therefore, avoiding to split the boundary line segments is necessary in order

to keep the boundary consistency of these components. Secondly, we need a

better approach to exactly control the mesh density along the boundaries (in

particular in order to well-handle the melt boundary layers). This issue will be

addressed in the next subsection.

When a Steiner point is inserted, a good way to maintain the Delaunay prop-

erty is to use the “delete and build” algorithm introduced by Bowyer/Waston

[(Bowyer 1981)][(Waston 1981)]. In the Bowyer/Waston algorithm, each tri-

angle whose circumcircle encloses the new inserted Steiner point is no longer

“Delaunay” and hence should be deleted. All the other triangles remain Delau-



2.3. Unstructured 2D mesh generation 29

(a) Initial triangulation (b) Point location and insertion

(c) Building polygon hole (d) Triangulation with new added triangles

Figure 2.9: Waston’s “delete-and-build” algorithm

nay and are left undisturbed. The set of deleted triangles forms a “polygonal

hole” in the triangulation. New triangles are then inserted by connecting each

vertex of this polygon to the newly created vertex with a new edge. This

algorithm is illustrated in Figure 2.9.

Compared with Bowyer/Waston’s “delete and build” algorithm, a so called

“split and flip” algorithm has been proposed and implemented. In our “split

and flip” algorithm, building the “polygonal hole” is not necessary. However,

a Steiner point is inserted at the bad triangle circumcircle center and the tri-

angle which contains this Steiner point is simply removed and split while three

new triangles are inserted into the Delaunay triangulation. Finally, any set of

triangles which break the Delaunay criterion will be transformed into Delaunay

triangles by flipping operations. This “split and flip” algorithm is illustrated in

Figure 2.10. The highest advantage of this algorithm is that a simple generic

refinement algorithm can be implemented by different refinement criteria.
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(a) Initial triangulation (b) Point location and insertion

(c) Triangle splitting (d) flipped triangulation

Figure 2.10: Our “split-and-flip” algorithm

Function Refinement by Criterion(given criterion)

found bad triangle=true;

while(found bad triangle)

{
if(triangle T that doesn’t meet given criterion is found)

{
Search the triangle T ′ which encloses the circumcircle center O of T ;

Remove triangle T ′;

Split T ′ by O and add new split triangles T ′

1 ,T ′

2 ,T ′

3 ;

Validate new inserted triangles T ′

1 ,T ′

2 ,T ′

3

} else found bad triangle=false;

}
End

According to our refinement criterion, there are four kinds of bad triangles:

1. Needle, a triangle with very small minimum angle but whose circumcircle

center is located inside itself, see Figure 2.11(a).
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(a) Needle
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O

(b) Degenerate Needle

A B

C

O

(c) Cap

A B

C

O

(d) Well-shaped triangle with large area

Figure 2.11: Three Categories of bad triangles and a good one with large area

2. Degenerate needle, Figure 2.11(b) can be viewed as a degenerate case

of Figure 2.11(a), where the circumcircle center is located at the triangle

edge unoccasionally.

3. Cap, a triangle with very large maximum angle, and whose circumcircle

center is located outside the triangle itself, see Figure 2.11(c).

4. Large area triangle, Figure 2.11(d) is a well-shaped triangle but with

very large area. Such kinds of triangles with a relatively large area some-

times should also be avoided in numerical simulations for accuracy rea-

sons, although they are not bad triangles according to the shape quality

criterion.

All kinds of above described bad triangles should be removed during the

Delaunay refinement process in order to generate shape and size quality trian-
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(d) Delaunay transformation by flipping

Figure 2.12: Typical point query and refinement process

gles. Figures 2.11(a) and 2.11(c) are easy to handle cases during a Delaunay

refinement process based on our “split and flip” algorithm. Bad triangles like

in Figure 2.11(b) should be carefully handled since their circumcircle center is

located unoccasionally on their edge. Using our “split and flip” algorithm will

immediately let the triangulation process fail since a degenerate triangle with

three collinear vertices will be generated. In practical implementations, a slight

deviation of the circumcircle center can avoid such kind of failure.

However for bad triangles like in Figure 2.11(d), we need to find where the

circumcircle center is located. This is a so-called point location problem, which

is a key issue for the incremental Delaunay refinement algorithm. Generalized

point location algorithms such as the “bucketing” algorithm due to Asano et al

[(Asano et al. 1985)] achieve optimal logarithmic time complexity and require

some extra processing, additional storage and complicated data structures. On

the other hand, the algorithms based on trapezoidal maps firstly have to com-

pute the trapezoidal map in O(nlogn) expected time and then do query for

each point in O(logn) expected time. Finally, the randomized algorithm by

P.Mucke et al [(Mucke et al. 1996)] presents a popular technique with O(n1/3)
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time complexity for each query without using any additional preprocessing time

and storage space, but as a bonus, it cannot be easily implemented. Here, we

propose the first linear point location algorithm specifically developed for the

incremental Delaunay refinement process without using any additional prepro-

cessing, storage space and complicated data structures, while being easy to

implement at the same time. In this algorithm, each query can be performed

in a constant time and the time complexity for this query is independent of the

mesh size. The basic idea of our algorithm is quite the same as the one from

P.Mucke et al. However the big difference is that we do not need to generate a

randomized “good” starting point while the query begins immediately from the

bad triangle found. The target triangle can be found step by step by walking

across the largest edges of the adjacent triangles. A typical point query and

refinement process is illustrated in Figure 2.12. The point location problem can

be easily solved on the basis of the triangular data structure and the following

lemmas.

2.3.3. Lemma. For a Delaunay triangulation DT , let T be a skinny triangle

with maximum angle larger than 90o, T ′

1 be the adjacent triangle along the

largest edge of T , and T ′

2 be the adjacent triangle along the largest edge of T ′

1 ,

while O and O′

1 are the circumcircle centers of triangles T and T ′

1 respectively.

Then the following theorems hold:

❶ If the circumcircle center O of T is located outside triangle T ′

1 , the maximum

angle of T ′

1 is larger than 90o.

❷ If the circumcircle center O of T is located outside triangle T ′

2 , the circum-

circle center O′

1 of T ′

1 is also located outside triangle T ′

2 .

❸ If O is located outside triangle T ′

2 , the maximum angle of T ′

2 is also larger

than 90o.

Proof : To proof the first conclusion, let △CDE be the skinny triangle T with

maximum angle ∠CDE larger than 90o and the adjacent triangle T ′

1 on the

largest edge CE be △BCE, see Figure 2.13(a). Connect line segment EO and

extend it until it intersects the circumcircle of T at E′, and then connect C with

E′, connect line segment CO and extend it until it intersects the circumcircle

of T at C′, and finally connect E with C′. Since O is located outside △BCE
while △CDE and △BCE are Delaunay triangles, so the only possible locations

of point B are the shadow regions illustrated in Figure 2.13(a). Then either

∠BCE > ∠ECE′ = 90o or ∠BEC > ∠CEC′ = 90o. It should be noted

that the inverse of this conclusion is not valid. In Figure 2.13(b) for example,

△BCE is a triangle whose maximum angle ∠BCE is larger than 90o, whereas

the circumcircle center of △CDE is located inside △BCE.
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Figure 2.13: If O outside triangle T ′, the maximum angle of T ′ > 90o

B

C

D

E

F

O
O′

T

T ′

1

M

M ′

N
N ′

Figure 2.14: If O′ outside △BEF , so does O

To proof the second conclusion, see Figure 2.14. Connect line segment EO
and extend it until it intersects the circumcircle of T at M , and then connect

line segment EO′ and extend it until it intersects he circumcircle of T ′

1 at M ′.

The line segment BF intersects EM and EM ′ at N and N ′ respectively. Since

the maximum number of intersections of two circumcircles is two, C and E
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are two such known intersections while B is located outside the circumcircle of

triangle T , and hence EM ′ > EM , which means that the circumcircle radius

of triangle T ′

1 is larger than that of triangle T . Also ∠NEC < ∠N ′EC <

∠MCE = 90O, and hence NE > N ′E. Since O is located outside triangle T ′

2

while OE < O′E, then O′ is located outside triangle T ′

2 (△BEF ).

The third conclusion can be derived from the two previous ones: since O
is located outside triangle T ′

2 , we know that O′ is also located outside triangle

T ′

2 . Since ∠BCE is larger than 90o, we can immediately conclude that ∠BEF

is larger than 90o according to the first conclusion.

2.3.4. Lemma. For a Delaunay triangulation DT without holes, assume that T
is a skinny triangle with its maximum angle larger than 90o, T ′

1 is the adjacent

triangle along the largest edge of T , T ′

2 is the adjacent triangle along the largest

edge of T ′

1 , and so on. If the triangle T ′

n encloses the circumcircle center O of

T , then there always exists a shortest path from T to its circumcircle center O
as obtained by walking across the largest edges of T , T ′

1 , T ′

2 ..., T ′

n.

Proof: We first have to prove the existence of this path. Actually, the cor-

responding dual graph DG(T ) of the Delaunay triangulation DT is a planar,

undirected and connected graph. Therefore, there always exists a path from

any site Pi to site Pj in DG(T ). The fact that the path walking across the

largest edges is the shortest path can be proved by induction, but this is very

complicated and will not be detailed here.

Finally, to determine the time complexity of the algorithm, we have the

following lemma:

2.3.5. Lemma. For a Delaunay triangulation DT with minimum angle α for

a domain without holes, if α and β are the minimum and maximum angles of

triangle T and β > 90o, then the length n of the shortest searching path to

the circumcircle center of T (as obtained by walking across the largest adjacent

triangles of the triangulation) is bounded by the following equation:

1 ≤ n ≤ ⌊β − 90o

α
+ 1⌋ (2.1)

Proof: Based on our previous lemmas, we know that, if a triangle T has

a maximum angle β larger than 90o, then its circumcircle center O will lie

outside T . It is straightforward to show that there always exists adjacent

triangles whose minimum angle is larger than α on the longest edge of T and

which enclose O. Now let us see the worst case illustrated in Figure (2.15).

Assume that the minimum angle α of DT is ∠ECD and that the maximum
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Figure 2.15: Point location searching path: the worst-case

angle β of the skinny triangle △CDE is ∠CDE. Draw a parallel line to CD

from E, which intersects the circumcircle of △CDE at B, and then extend EB

and EC. If B lies in the shadow region, then the minimum angle of DT will

be smaller than α and the worst skinny triangle will be △BCE, not △CDE.

If B lies on the extension of line segment EB or below the shadow region, then

△BCE or its adjacent triangles will be closer to the circumcircle center O.

Do the same from B, F ..., until a triangle is found which encloses O. This is

the longest searching path (as obtained by walking across the largest adjacent

triangles of the triangulation) from △CDE to O. If the circumcircle center O
lies inside the nth triangle, it is easy to show that for the (n−1)th triangle, the

maximum angle will be β − (n− 1)α, in such a way that

{

β − nα < 90o

β − (n− 1)α > 90o

that is,
β − 90o

α
< n <

β − 90o

α
+ 1 (2.2)

or

n = ⌊β − 90o

α
+ 1⌋ (2.3)
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(a) Initial triangulation (b) Initial Delaunay triangulation

(c) After 1st Steiner point insertion (d) After 2nd Steiner point insertion

Figure 2.16: Delaunay refinement process

The above lemma shows that the point location problem can be efficiently

solved on the basis of our previously introduced triangle-based data structure

and splay-tree searching/sorting algorithms. For example, letting α = 12.5o,

β = 150o, then the length of the shortest searching path in the worst case is

n = ⌊(150 − 90)/12.50 + 1⌋ = 5, which means that for this skinny triangle, only

6 incircle testings are needed in the worst case. As another example, letting

α = 30.5o, then β ≤ 119o, and n = ⌊(119 − 90)/30.50 + 1⌋ = 1. Comparing

these two examples, we can see that in the beginning of the refinement process,

our point location algorithm is normally slow due to a very small minimum

angle. However, the algorithm is much faster after several refinement iterations.
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Let us also average some testing examples and draw some average conclu-

sions. The first example is a circle with 128 boundary points. Figure 2.16(a) is

the initial triangulation without Delaunay transformation and Figure 2.16(b)

is the initial Delaunay triangulation as obtained by flipping operations. In the

first iteration, a very bad triangle with minimum angle 1.40621o and maximum

angle 177.188o is found. The worst-case searching time for this triangle is 64

with our theory. Our practical testing shows that it took 7 incircle testings

to locate the triangle which encloses the circumcircle center. Figure 2.16(c)

is the mesh after insertion of the first Steiner point. However, in the second

iteration, it only took 1 test to find the target triangle. Figure 2.16(d) is the

mesh obtained after the second Steiner point has been inserted. Our numerical

testings have also shown that after completion of the refinement iterations, it

took around 1 or 2 incircle testings to locate the target triangles while the aver-

age testing time per Steiner point is around 2.0. Our other numerous practical

numerical testings and experiments have shown that 1 or 2 incircle testings in

average are enough for each inserted Steiner point throughout the refinement

process.

There are two main advantages in our algorithm. Firstly, the running time

complexity of the point location algorithm is independent of the mesh size,

which means that it is an ideal algorithm for large-scale mesh generation. Sec-

ondly, our point location method does not need any additional storage space

and complicated data structure. Therefore our method is easy to implement

and to adapt to other mesh generation codes using triangle-based data struc-

ture and Delaunay incremental refinement algorithm. If additional storage

space is used to save the maximum angle of each triangle, the algorithm can

be further improved since for those triangles with maximum angle smaller than

90o, we will immediately know that the bad triangle is the target triangle and

hence no incircle testing will be necessary. Figure(2.17) compares the total

number of incircle testings between our algorithm and the one proposed by

P.Mucke with O(n4/3) time complexity as implemented by Schewchuk in Tri-

angle [(Shewchuk 1996b)].

2.4 Grade-adaptive 1D boundary mesh genera-

tion

As previously addressed, boundary segment splitting is not performed in our

incremental refinement algorithm. This comes from two reasons. Firstly, ther-

mal, stress and flow simulations for the different macro-elements are decoupled
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Figure 2.17: Comparison of Point Location algorithms:
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in FEMAG software in such way that the unstructured meshes associated with

different crystal growth furnace components are generated separately. However,

at some stage, coupling the whole system is needed. In order to keep boundary

consistency of the various components, it is necessary to ignore the boundary

segment splitting operations during the mesh refinement process. Secondly, we

need a better approach to exactly control the mesh density along all boundaries

(to well control the boundary layers meshing) in single crystal growth processes.

Because of the above-described reasons, obtaining a high quality 1D bound-

ary mesh with grade-adaptive density will play a prominent role to keep final

2D mesh quality and density, especially for large graded meshes arising either

from geometric or physical considerations. Boundary mesh generation is also

important for other mesh generation algorithms which preserve the boundary

mesh and use them to generate new elements inside the domain. For example,

the advancing front method requires a well-sized boundary mesh to generate

high quality final elements.

In the FEMAG-2 software generation, special computer-aided geometrical
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design techniques have been developed to define the furnace component shapes.

For example, in Czochralski single crystal growth, the crucible shape is of-

ten defined by surfaces of different curvatures, including conical, spherical and

toroidal zones. Therefore, it is generally impossible to represent such surfaces

by means of analytical functions, while a simple piecewise linear curve approxi-

mation is not appropriate in view of the computational problems resulting from

the flow behavior in the melt domain. However, Bézier curves [(Farin 1998)]

represent a well-known tool in computational geometry, as having a simple for-

mulation, which is also easy to implement and powerful enough to represent

complex shapes. We have based all our FEMAG-2 developments on the use

of cubic rational Bézier curves [(Farin 1998)], which are parametric 2D curves

defined in the projective 3D space by a weighted sum of 4 control points, with

the weights equal to Bernstein polynomials:

Q(t) =
3
∑

i=0

PiBi,3(t)

= (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3 (2.4)

where P0, P1, P2, P3 are 4 control points, 0 ≤ t ≤ 1 and i = 0, 1, 2, 3.

In FEMAG-2, rational Bézier curves form segments of “multi-curves”[11],

and the resulting computational objects are used for the definition of the macro-

element mesh boundaries, with the possibility of building complex dynamic

models with deforming shapes and topological changes. In particular, these

objects can efficiently support 1-D meshes, as used to form the boundaries of

the 2-D finite element meshes of the system macro-elements.

A general simple method to generate grade-adaptive 1D meshes for such

kinds of “multi-curves” consists in discretizing the curves with a given density

(for example, the number of nodes per unit length) taking their curvature into

account, in such as way that the density function σ is expressed as:

σ = σ(k, k′, ρ) (2.5)

where k is the given density, ρ the curvature and k′ a curvature impact factor.

Therefore the total number of nodes U on each “multi-curve” can be found
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from the following relation:

U =

∫ n

0

σ(t)
√

x′(t)2 + y′(t)2dt

=
n−1
∑

i=0

(

∫ i+1

i

σ(t)
√

x′(t)2 + y′(t)2dt)

=
n−1
∑

i=0

ui (2.6)

and where n is the number of Bézier curves on the “multi-curve” and ui is the

number of nodes on the ith Bézier curve. Assuming that the jth discretized

point is located on the mth Bézier curve, in order to locate this point on the

“multi-curve”, the unknown tj should be determined as follows:

j · U/⌊U⌋ =

∫ tj

0

σ(t)
√

x′(t)2 + y′(t)2dt

=

m−1
∑

i=0

ui +

∫ tj

m

σ(t)
√

x′(t)2 + y′(t)2dt) (2.7)

where j = 1, 2, ..., ⌊U⌋ − 1. The above nonlinear equation is an inverse inte-

gration problem, which can be solved by Newton-Raphson method for each

unknown tj .

Based on equation (2.5), we can define the density function as follows:

σ =
k + k′ρ2

1 + k′′ρ2
(2.8)

It is clear that the density function σ is bounded by [k, k′/k′′] (if k < k′/k′′) or

[k′/k′′, k] (if k′/k′′ < k), since

lim
ρ→∞

σ =
k′

k′′
= k̂ (2.9)

and

lim
ρ→0

σ = k (2.10)

Therefore, k is the density at low curvature, and k̂ the density at high curvature.

Since more discretization intervals (points) are needed in order to better fit

high-curved boundaries, we have k < k′/k′′. Equation (2.8) can be rewritten

as follows:

σ =
k + k′ρ2

1 + k′′ρ2
= k̂ − k̂ − k

1 + ρ2/k2
∗

(2.11)
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(a) “local” 1D mesh (b) “global” 1D mesh

(c) “local” 1D mesh close-up (d) “global” 1D mesh close-up

(e) Old 2D mesh (f) New 2D mesh

Figure 2.18: Comparison of “local” and “global” 1D mesh

and correspondent 2D mesh



2.5. Mesh deformation for quasi-steady and time-dependent simulations 43

where k∗ =
√

1/k′′, gives the curvature providing the average density (k+k̂)/2.

However, the density function defined in equation (2.8) is a “local” function

which does not take the adjacent multi-curves into account. When there are

very large curvature or mesh density changes from one multi-curve to the adja-

cent multi-curves, very bad 1D meshes with sharp mesh gradient changes will

be generated, and hence very skinny triangles will be constructed during the 2D

mesh generation and refinement process, see Figure 2.18(a) and Figure 2.18(e).

To solve this problem, a new “global” density function has been introduced as

follows:

σ′ =

k +
k̂ρ2

k2
∗

+
1

k2
∗

2
∑

i=1

(σimax
d2
i

)

1 +
ρ2

k2
∗

+
1

k2
∗

2
∑

i=1

( 1

d2
i

)

(2.12)

where σ1
max = max(σ1

1 , σ
1
2 , ...σ

1
p), σ

2
max = max(σ2

1 , σ
2
2 , ...σ

2
q ), representing the

maximum densities at the two extremities, and where p and q are the two multi-

curve endpoint degrees of freedom and d1 and d2 are the distances to these two

endpoints respectively. The 1D mesh generated by the new “global” density

function and the corresponding 2D mesh are illustrated in Figure 2.18(b) and

Figure 2.18(f). Comparing the 1D and 2D mesh generated by means of the

“local” density function with the meshes generated by means of the “global”

density function, the quality of the meshes generated with our new method is

significantly improved.

2.5 Mesh deformation for quasi-steady and time-

dependent simulations

During the crystal growth process, the geometry of the melt and crystal are

continuously moving and deforming. For example, the crystal solid is very

small during seeding and subsequently becomes larger and larger, while the

melt volume decreases and often takes a particular shape during tail-end stage.

Various moving and deforming interfaces delimiting the melt/crystal and the

melt/gas (meniscus) boundary must hence be computed, and the technique

to deform the melt and crystal meshes for dynamic simulations has to be de-

veloped. Notice that even in quasi-steady simulations, the interface between

the melt and crystal is continuously deforming during the global iterations,

although the assembled melt and crystal geometry as a whole is fixed.
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(a) Initial melt/crystal mesh (b) Deformed melt/crystal mesh

Figure 2.19: Mesh deformation due to solidification front change

(a) Initial global mesh (b) Deformed global mesh

Figure 2.20: Global mesh deformation for time-dependent simulation

The mesh deformation technique we employ here is based on the method

proposed by Dupret et al [(Berghezan and Dupret 1994)]. In this method, the

boundary and interface nodes are fixed after displacement, while the internal

nodes are moved to a more appropriate place at each iteration until the mesh

is acceptable. This result can be obtained by exerting on any internal node



2.6. Extend to surface triangulation 45

an appropriate pseudo-force, which tends to correct ill-behaved elements and

which vanishes for a satisfactory solution. Figure (2.19) shows the deformed

melt/crystal mesh in a quasi-steady simulation. This quasi-steady simulation

begun with an initial flat melt/crystal interface, then this interface was de-

formed to the appropriate place due to the isothermal condition of the solidifi-

cation front when taking the global heat transfer and/or melt convection into

account. Figure (2.20) shows the global deformed mesh due to the lengthen-

ing of crystal and lift of crucible. It should be noted that for time-dependent

simulations, re-meshing is needed if geometrical changes become too important

when switching to a subsequent growth stage. This can be easily performed by

our unstructured mesh generation algorithm.

2.6 Extend to surface triangulation

Currently, single crystal growth simulation are transiting from two-dimension

axisymmetric models to three-dimensional models, although we believe that

this transition will take quite a long time because of the limits of nowadays

computing power and the slow progress in algorithm development for large

sets of algebraic equations. Therefore fully three-dimensional time-dependent

simulations for industrial applications will not be available in the near future.

The first big difficulty arising in 3D simulations is the requirement of automatic

unstructured mesh generation for the whole crystal growth system, particularly

for the melt/crystal “macro-elements” which exhibit a continuously deforming

geometry.

One basic step of 3D mesh generation is to generate initial meshes on the

boundary surfaces, as typically represented by NURBS or analytical functions.

Surface mesh generation algorithms can be classified as either belonging to

parametric space methods or to direct 3D methods. The former approach first

generates elements in the two-dimensional parametric space and then maps the

u− v coordinates back to x− y− z space. On the other hand, direct 3D meth-

ods generate elements directly on the geometry surface without regard to the

parametric representation of the underlying geometry [(Owen 1998)]. Here, we

try to extend our algorithm to surface triangulation by the parametric space

method. We first generate and refine a 2D mesh in the parametric space by the

minimum angle, maximum area-scale criteria and the newly introduced surface

approximation tolerance criterion. When the refinement process has converged,

the final surface mesh can be obtained by mapping the 2D mesh onto the sur-

face space. However, a mapping with bad properties can easily spoil the final

triangulation. Therefore, the key point of this method is to find a “good”
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mapping from 2D parametric space to 3D surface space while keeping the cor-

rectness of mesh topology and quality. This is another hot topic in parametric

surface visualization and surface meshing research community. Fortunately,

nearly all important geometries of the crystal growth system, particularly the

crucible, the melt and the crystal, etc., are perfectly axisymmetric in order to

grow cylindrical crystals, and therefore it is not so difficult to find a “good”

mapping between 2D parametric space and 3D surface space. Several surface

triangulations and the corresponding meshes in the 2D parametric space are

presented in Figure 2.21 with different minimum angle, maximum area-scale

and surface approximation tolerance criteria.
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(a) α = 20, scale = 104, ǫ = 10−3 (b) α = 20, scale = 104, ǫ = 2.0e−4 (c) α = 20, scale = 104, ǫ = e−4

(d) α = 20, scale = 5.0e3, ǫ = 10−2 (e) α = 20, scale = 5.0e3, ǫ = 2.0e−3 (f) α = 20, scale = 5.0e3, ǫ = 4.0e−4

Figure 2.21: Surface triangulation examples
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2.7 Conclusions

This chapter aimed at addressing the unstructured mesh generation for single

crystal growth processes. We first introduced a general strategy of unstruc-

tured mesh generation for quasi-steady and dynamic simulations of bulk crystal

growth processes. Then we focused on 2D shape-quality unstructured mesh gen-

eration by a modified incremental Delaunay refinement algorithm and a grade-

adaptive 1D mesh generation algorithm on fixed geometries, followed by the

introduction of 1D and 2D mesh deformation techniques for quasi-steady and

dynamic simulations. Finally, we discussed the possibility to extend our al-

gorithm and implementation to surface/3D unstructured mesh generation and

closed this chapter by presenting some applications to single crystal growth pro-

cesses.

The first step of our 2D shape-quality unstructured mesh generation algo-

rithm is to generate an initial triangulation for a given 1D boundary mesh.

This initial triangulation is also called the simple polygon triangulation, which

is a classic problem in computational geometry. We have reviewed three sim-

ple popular polygon triangulation algorithms and summarized their advantages

and disadvantages for real applications, then we have focused on the algorithm

improvements and implementation by the sweep line method. Comparisons be-

tween our implementation and other popular polygon triangulation codes avail-

able from the web were also presented. Our practical experience and numerical

experiments have showed that our implementation is very competitive and prove

to be faster than other popular codes.

The next step of our algorithm is to transform the initial triangulation into

an initial Delaunay triangulation by flipping operations. Finally the triangula-

tion is refined by a modified incremental refinement algorithm. Three criteria

were used to control the mesh shape/size quality and mesh density. Unlike the

implementation by Ruppert, splitting the encroached boundary line segments is

ignored during the different refinement stages in order to keep boundary consis-

tency between the different “macro- elements”. When a Steiner point is inserted

into the triangulation, one key issue is to find where this point is located. To

solve this so-called point location problem, we have proposed and implemented

the first linear point location algorithm for incremental Delaunay refinement

without using any additional preprocessing, storage space and complicated data

structure, while providing an easy to implement algorithm at the same time.

After one Steiner point is inserted and the target triangle is found, a so-called

“split-and-flip” algorithm to construct an updated Delaunay triangulation has

been proposed and implemented.
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Since the 1D boundary mesh plays a prominent role in our Delaunay refine-

ment algorithm, we have proposed and implemented a “global” grade-adaptive

1D mesh generator taking the density, curvature, curvature impact factor and

adjacent curves into account and hence the quality of the meshes generated by

our new method was significantly improved.

In order to handle deformed geometries both for quasi-steady and time-

dependent simulations, appropriate techniques to deform and optimize the mesh

were summarized at the end of this chapter and the possibility to extend our

algorithm to surface and 3D unstructured mesh generation was also discussed.





Chapter 3

Modeling of Melt Convection

3.1 Melt convection in Czochralski growth

It is well known that convection of the molten semi-conductor strongly affects

mass, heat and momentum mixing in several growth systems, thereby affect-

ing the temperature gradient in the melt, the melt/crystal interface shape, the

crystal growth rate, and the chemical composition and defect density of the

crystal. Hence, understanding the melt flow pattern and characteristics can

help the crystal grower to control, improve and optimize the crystal growth

process. However, the molten semi-conductor flow in a Czochralski crucible is

dauntingly complicated [(Hurle 1993)] due to a complex combination of natu-

ral and forced convection, and the main characteristics of the melt flow in the

Czochralski crystal growth process are still not well understood.

Natural convection results from the buoyancy and capillary forces acting in

the melt and on its interface. The origin of these two kinds of forces is due to

the melt density and surface tension dependence upon temperature and solute

concentration. In all growth processes, a temperature gradient is necessary in

order to grow the crystal from the melt. Therefore, natural thermal convection

is always present due to this temperature gradient between the hot crucible

wall and the relatively cold solidification interface. If the temperature gradi-

ent is sufficiently low, a flow pattern with steady, laminar and axisymmetric

characteristics can be observed, but when the temperature gradient is larger

than a critical value, the flow becomes unstable and time-dependent, or even

turbulent and asymmetric (see Figure 3.1). Natural solutal convection is due

to the solute concentration gradients, and hence the fluid density gradients,

generated by segregation along the solidification interface and across the melt

surface.

The thermosolutal dependence of melt/gas surface tension induces fluid flow

along this interface from the low surface tension area (usually located in the hot

part of the interface, close to the crucible wall) to the high surface tension region

(usually located in the cold part of the interface, close to the tri-junction). The



52 3. Modeling of Melt Convection

Figure 3.1: Experiments of temperature gradient influence on liquid silicon

oil convection without rotation of the dummy crystal: with a

sufficiently high temperature difference, a multiroll and “blurred”

structure is observed and the “blurred” effect is due to the

unsteady flow features [(Hintz et al. 2001)].

surface tension gradient due to concentration variations along the liquid/gas

interface can also drive the flow. In general, the surface tension induced flow,

also called Marangoni convection, is generated at the free surface and usually

has the same direction as the buoyancy driven flow. Marangoni convection

increases the flow velocity at the melt surface, and hence, in Czochralski sili-

con growth, influences the rate of evaporation of oxygen from the free surface

significantly.

“Forced” convection denotes the flow induced by crystal and crucible rota-

tions in order to grow axisymmetric cylindrical crystals. The rotation of the

crucible generates the so-called Coriolis force, which reduces the vertical con-

vection due to angular momentum conservation, hence stabilizing the fluid flow

[(Kishida and Okazawa 1999)]. However, the Coriolis force with increasing ro-

tation rate will complicate the convection structure and increase the curvature

of the fluid particle paths, resulting in a special fluid motion called baroclinic

instability. Further increasing the crucible rotation rate, a transition from

baroclinically stable flow to unstable, geostrophic turbulence will occur at high

Taylor numbers (as defined in Table 3.2). On the other hand, above a critical

crystal rotation rate, a typical wave/vortex pattern can be observed at the melt

free surface, see Figure (3.2). This pattern is a flow instability induced by the

interaction between the flow outgoing from the center of the melt domain due

to crystal rotation, and the incoming buoyancy driven flow [(Assaker 1998)].

The “forced” convection induced by crystal and/or crucible rotations has great

influence on the solidification interface shape and the concentration of impuri-
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ties in the crystal, and therefore is often used as a key parameter to establish

the desired interface shape, and a homogeneous distribution of impurities as

well.

Figure 3.2: Wave/Vortex pattern in a model experiment simulating the

behaviour of a Czochralski silicon puller [(Delsaute et al. 2006,

Bamberg, Germany)].

The shear stress exerted on the melt/gas interface or meniscus due to gas

convection is another kind of force driving the flow, which also plays an im-

portant role, therefore influencing oxygen transport and rate of evaporation.

The shear stress due to gas convection usually has an opposite direction to the

buoyancy and capillary driven forces. Numerical simulations of Kalaev et al

[(Kalaev et al. 2003)] show that, at low crucible and/or crystal rotation rates,

the gas flow is insufficient to generate a separate flow cell in the melt and only

slightly damps out the melt flow driven by buoyancy and Marangoni forces.

However, at high crucible and/or crystal rotation rates, the melt flow becomes

much more sensitive to shear stress and a separate clockwise cell probably ap-

pears beneath the melt/gas interface.

In addition, in modern Czochralski crystal growth systems, magnetic fields

are widely used to damp out the melt flow and temperature fluctuations. In

this case, the melt flow experiences the Lorentz electromagnetic force induced

by the interaction between electrical current and magnetic field. Accordingly

the flow and temperature oscillations are strongly reduced.

The combination of all the above driving forces leads to a complex three-

dimensional and time-dependent flow structure. Ample evidence shows that

the melt flow driven by the above mentioned forces is oscillating and most

often chaotic and turbulent [(Lipchin and Brown 1999)], even for those semi-
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conductor growth systems with relatively small-scale crucibles [(Kim and Langlois

1991)]. Such complex flow patterns can only be predicted by using equally com-

plex models and numerical methods.

3.2 Modeling of melt convection in Czochralski

silicon growth

The modeling of melt convection during Czochralski silicon crystal growth has

represented a major objective in Czochralski growth modeling [(Dupret and

Van den Bogaert 1994)]. In fact it was one of the most active research topics

in the last three decades, and probably will continue to so in the next decades.

In the early 1980s, the efforts to understand the mechanisms of melt con-

vection were based mainly on using finite difference methods [(Stewart and

Weinberg 1972)][(Langlois 1977)][(Langlois 1982)][(Langlois 1983)] [(Kobayashi

1980)]. Reviews of these efforts can be found in [(Pimpputkar and Ostrach

1981)][(Polezhaev 1984)][(Langlois 1985). Afterwards, the finite element method

was introduced by various authors [(Ettouney and Brown 1983)][(Crochet et al.

1983b)] [(Chang and Brown 1984)][(Derby and Brown 1987)][(Sackinger et al.

1989)], in order to calculate highly non-linear and coupled melt convection, and

to solve melt/crystal interface problems in Czochralski growth processes. By

the end of the 1980s, the modeling of crystal growth melt convection for two-

dimensional stationary problems, together with significant progress in global

heat and mass transport modeling and simulation [(Wouters 1985)][(Dupret

et al. 1986a)][(Dupret et al. 1986b)][(Atherton et al. 1987)][(Nicodeme et al.

1988)][(Sackinger et al. 1989)] [(Derby et al. 1989)][(Ryckmans 1989)][(Dupret

et al. 1990)] [(Bornside et al. 1990)] in moderately complicated geometries had

reached a more accurate level. However, due to extremely large computational

costs and limited computer resources a few decades ago, most studies on the

melt convection during this period were based on the use of a laminar model

with simplified or moderately complicated silicon melt geometries.

Tremendous progress in the computer modeling of bulk crystal growth had

been achieved at the end of the 1980s and in the 1990s. On the one hand,

the time-dependent global models developed by [(Atherton et al. 1987)] (us-

ing an explicit integration technique), and by [(Van den Bogaert 1993)][(Van

den Bogaert and Dupret 1997a)][(Van den Bogaert and Dupret 1997b)] (us-

ing an implicit technique) were initially introduced to perform crystal growth

simulations. On the other hand, more complicated numerical techniques and

turbulence models to predict the flow behavior and heat transfer in the silicon
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melt were developed, and coupled with the global quasi-steady or even time-

dependent heat transfer. For example, a global time-dependent heat transfer

model firstly taking melt convection with the mixing-length or k− l turbulence

models to predict melt convection in any complicated two-dimensional geome-

try was developed by [(Assaker et al. 1997)][(Assaker 1998)], and great success

was witnessed when applying these models to industrial Czochralski silicon

growth processes. Furthermore, the standard turbulence k − ǫ model, the low-

Reynold k − ǫ turbulence model of Chien [(Chien 1982)] and Jones and Laun-

der [(Jones and Launder 1972)] have been widely used by other crystal growth

research groups, such as in the work of [(Kinney and Brown 1993)][(Chung

et al. 1996)][(Zhang et al. 1996)][(Kalaev et al. 2002)], etc.. A special study

was conducted by [(Lipchin and Brown 1999)] to understand which turbulence

k− ǫ model is the best for melt convection simulation. Their numerical experi-

ments were performed on a simplified silicon melt geometry (with a cylindrical

crucible and flat meniscus) with uniform thermal boundary conditions and us-

ing the finite volume method, and they concluded that the low-Reynolds model

of Jones and Launder is preferable with respect to the prediction of bulk flow

and impurity transport through the melt. Later on, they used this turbulence

model to calculate the global heat and mass transfer in a Czochralski system us-

ing a hybrid finite volume - finite element method [(Lipchin and Brown 2000)].

Recently, the employment of hybrid LES (Large-eddy simulation) and Reynolds

averaged approach for two-dimensional and/or three-dimensional melt convec-

tion was presented by [(Evstratov et al. 2001)][(Kalaev et al. 2002)][(Evstratov

et al. 2002)].

The mid-1990s was a period of great optimism in the hope that accu-

rate three-dimensional simulations, including the prediction of global time-

dependent phenomena, would soon become routine [(Yeckel and Derby 2005)].

However, in the past few years there appears to have been a slowdown of the

developments in crystal growth numerical modeling. This slowdown is mainly

due to the great difficulties and extremely expensive computational costs expe-

rienced when solving the three-dimensional turbulent melt convection problem

arising in crystal growth processes, particularly for time-dependent growth pro-

cesses. For such kind of problems, an iterative solver with parallelized imple-

mentation is nearly mandatory, and practical three-dimensional applications

maybe will become routine and accurate enough in the next decade only if

robust and efficient iterative preconditioning techniques develop at current or

more rapid pace. Therefore, the transition from two-dimensional axisymmetric

calculations to fully three-dimensional industrial applications maybe will take

another decade, and crystal growth numerical modeling with the axisymmet-
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ric assumption still represents the most economic way to predict, control and

optimize the industrial single crystal growth processes.

3.2.1 Governing equations

Based on three basic assumptions: ❶ the flow of the silicon melt is incompress-

ible, ❷ molten silicon is a Newtonian fluid, and ❸ the effect of melt density

variations is negligible except in the buoyant force (Boussinesq approximation),

the motion of the silicon melt in the crucible is governed by the momentum and

continuity equations, and the temperature field of the melt is governed by the

energy equation. The momentum equation, which describes the fluid particle

acceleration DU/Dt due to the surface stresses and body forces experienced by

the fluid, writes as follows:

ρ
DU

Dt
= ∇ · σ + f (3.1)

where
D

Dt
=

∂

∂t
+ U · ∇ (3.2)

The molecular-originated stresses are described by the stress tensor σ, which is

symmetric, that is σij = σji. For constant density Newtonian fluids, the stress

tensor is given by:

σ = −pI + 2µ(T )D (3.3)

where

D =
1

2
(∇U + ∇UT ) (3.4)

is the symmetric, deviatoric rate-of-stain tensor, p is the pressure, I is the

identity tensor and µ(T ) the dynamic shear viscosity as a function of fluid

temperature T .

The body forces can be gravity, electromagnetic Lorentz force or any other

force per unit volume. For industrial Czochralski crystal growth systems, the

gravity force is normally present and can be described by:

f = ρ(T )g, (3.5)

where g is the gravity acceleration vector. According to the Boussinesq approx-

imation, the effect of melt density variations in the buoyant force term is not

negligible. Assuming a linear temperature dependence, ρ(T ) can be written as:

ρ(T ) = ρ0

(

1 − β(T − T0)
)

, (3.6)
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where

β = − 1

ρ0
(
∂ρ

∂T
), (3.7)

is the (assumed constant) thermal expansion coefficient, T the temperature

field and ρ0 the fluid density at the reference temperature T0.

Various kinds of magnetic fields are widely employed to damp out the melt

convection in modern large-size Czochralski crystal growth systems. When a

magnetic field is applied, the Lorentz force can be expressed as:

f = J × B (3.8)

where J is the electric current density, and B the magnetic induction. Introduc-

ing equations (3.4) to (3.8) into (3.1), the final form of the momentum equation

is obtained:

ρ
(∂U

∂t
+U·∇U

)

= −∇p+∇·
(

µ(T )(∇U+∇UT )
)

+ρg
(

1−β(T−T0)
)

+J×B

(3.9)

Assuming that the melt flow is quasi-steady, and defining the modified pressure

P as:

P = p+ ρgz (3.10)

where z is the vertical coordinate, the momentum equation for quasi-steady

melt convection can finally be rewritten as follows:

ρ(U · ∇U) = −∇P +∇ ·
(

µ(T )(∇U +∇UT )
)

+ ρβg(T − T0) + J×B (3.11)

Here, the gravity force term exists implicitly in the momentum equation. There-

fore the gravity force experienced by the fluid has the same effect as the isotropic

pressure p and this conservative force has no effect on the velocity. It should

also be noted that, in equations (3.9) and (3.11), the reference density ρ0 has

been replaced by ρ for simplicity reasons.

The continuity equation, which ensures mass conservation, is given by:

Dρ

Dt
+ ∇ · (ρU) = 0 (3.12)

For incompressible fluids, equation (3.12) can be simplified as follows:

∇ · U = 0 (3.13)

The temperature field T is governed by the energy equation:

ρc(T )
DT

Dt
= −∇·q + w (3.14)
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where w is the volumetric heat source and q the heat flux given by Fourier’s

law:

q = −k(T )∇T (3.15)

Plugging equations (3.4) to (3.15) into equation (3.14) and assuming that there

is no heat source in the melt and crystal of a Czochralski furnace (w = 0), we

obtain the energy equation as follows:

ρc(T )
(∂T

∂t
+ U · ∇T

)

= ∇ ·
(

k(T )∇T
)

(3.16)

where ρ, c(T ) and k(T ) are the density, specific heat and thermal conductivity

of the melt or crystal, respectively. Notice that both the specific heat and

thermal conductivity can be temperature dependent.

3.2.2 Boundary conditions

The boundary of the melt domain Γ consists of two complementary subsets

Γdu and Γnu , on which given Dirichlet-type (with imposed velocity vector

Ū) and Neumann-type (with imposed stress vector λ̄n) boundary conditions

apply. More specifically, along all solid surfaces including the melt/crystal

solidification front Γs and the crucible bottom wall Γc, the melt should stick to

the corresponding solid boundary and no-slip boundary conditions (Dirichlet-

type) are thus applied:

Ui = Ūi on Γs ∪ Γc (3.17)

Along the melt/gas interface (the so-called meniscus), capillary normal stress

and zero normal velocity boundary conditions are imposed:

U · n = 0 on Γm (3.18)

and

σn = χσ − Pa on Γm (3.19)

where σ and χ denote the meniscus surface tension and curvature respectively,

while Pa stands for the gas pressure. The condition (3.19) is used to determine

the meniscus shape. Concerning the tangential stress, it is imposed to be zero

as well if the Marangoni effect is negligible. However, if Marangoni effect is

taken into account, the tangential stress along the meniscus will not be zero.

This tangential force is induced by the gradient of surface tension σ from low

σ to high σ along the meniscus. The value of σ is sensitive to temperature and

solute concentration. Neglecting this latter effect and assuming a linear surface

tension thermal behavior, σ can be described as:

σ = σ0 + γT (T − T0) (3.20)
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where σ0 is the surface tension at the reference temperature T0, T the actual

temperature and γT =
∂σ

∂T
the surface tension coefficient, which is negative for

liquid silicon where the surface tension decreases with increasing temperature.

The meridional thermocapillary force exerted along the meniscus is then given

as follows:

fσ =
∂σ

∂s
= γT

∂T

∂s
(3.21)

where s stands for the curvilinear abscissa along the meniscus.

Note that the melt convection below the meniscus has a negligible effect on

its shape due to the low capillary and Weber numbers characteristic of silicon

melt flow [(Brown 1998)]. Therefore the meniscus shape calculation can be

decoupled from the equations governing melt convection.

3.3 Numerical modeling

3.3.1 Discretization method and formulation

To obtain effective numerical simulation, the problems governed by partial dif-

ferential equations (PDEs) have to be converted to a set of algebraic equations

which can be solved by direct or iterative solvers. The most common tech-

niques to discretize PDEs are the finite-volume method (FVM) and the finite-

element method (FEM), although the boundary-element method (BEM), the

finite-difference method (FDM) and the spectral method are also widely used.

In FDM method, the discretization is based on the differential form of the

PDEs to be solved and all the derivatives are approximated by finite difference

formulas. The computational domain is usually subdivided into structured

quadrangular or hexahedral cells and the resulting sparse system of equations

can be efficiently solved by direct or iterative solvers. Comparatively, in FVM

method, the discretization is based on the integral form of the PDEs to be

solved. The computational domain can be discretized into structured or un-

structured finite volumes and the resulting solution typically consists of vari-

ables placed at finite volume centroids (rather than at nodal points with FDM

or FEM methods). On the other hand, the FEM discretization is based on a

piecewise representation of the solution in terms of specified, usually polyno-

mial, basis functions. The computational domain is subdivided into smaller

domains (the finite elements) and the solution in each element is constructed

locally from the basis (or trial) functions while the equation are made discrete

by mean of appropriate test functions. Finally, in the spectral method, a com-

plete family (or basis) of global smooth functions is employed to minimize the
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weighted residuals of the equations. It is difficult to compare these discretiza-

tion methods. Generally speaking, for the same problem with the same order

of discretization, the spectral method provides the most accurate results in the

absence of singularities, closely followed by the other methods provided strongly

refined meshes are used [(Dupret and Van den Bogaert 1994)].

The FVM method has been the most widely used numerical method in

the CFD community because of its low computational cost compared with the

FEM method while keeping enough flexibility for complex geometries. How-

ever, since all the equations governing the crystal growth process are coupled,

nonlinear and extremely complicated, the Galerkin FEM method is particularly

suitable for such kinds of nonlinear problems on complex deforming geomet-

rical domains which mix equations of different types. Therefore, the Galerkin

FEM discretization method has been traditionally chosen in the FEMAG soft-

ware to discretize all the governing equations, and hence it has been employed

throughout our work.

Let Th be a partition of the domain Ω into finite elements (triangles, quad-

rangles, etc.), while the elements are denoted by Ωe with boundary Γe. Let-

ting H1(Ω) be the Hilbert space of square-integrable functions with square-

integrable first-order derivatives, then the finite dimensional subspace H1h ⊂
H1(Ω) is defined as the space spanned by piecewise, usually polynomial, C0

continuous basis functions φh over the discretization Th:

H1h =
{

φh|φh ∈ C0(Ω), φh|Ωe ∈ P k, ∀Ωe ∈ Th
}

(3.22)

where P k represents the set of kth-order polynomials. A set of functions be-

longing to H1h then can be written as a linear combination of nodal basis

functions:

φh(x, y) =
∑

j

φjψj(x, y) (3.23)

where the coefficients φj are the so called degrees of freedom (or nodal values)

of φh, and ψj(x, y) is the jth basis function (associated with node j). Note

that ψj(xi, yi) = δij for any two nodes i and j of the grid, where δij is the

Kronecker delta. Letting uh = (uh, vh, wh) denote the trial solution for velocity

and ph the trial solution for pressure, then the velocity and pressure fields are
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approximated as follows on each element:

uh(r, z) =

nv
∑

j

ujψ
v
j (r, z) (3.24)

vh(r, z) =

nv
∑

j

vjψ
v
j (r, z) (3.25)

wh(r, z) =

nv
∑

j

wjψ
v
j (r, z) (3.26)

ph(r, z) =

np
∑

j

pjψ
p
j (r, z) (3.27)

where nv and np are the numbers of velocity and pressure nodes on each el-

ement, while ψvj and ψpj stand for the velocity and pressure basis functions

respectively. In order to obtain an algebraic equation for each unknown, a so-

called weak weighted residual formulation is applied. Letting vh and qh denote

test functions for the momentum equation (3.11) and the continuity equation

(3.13), respectively, the classical Galerkin formulation can be written as follows:
∫

Ω

[

ρ(U · ∇U)−∇ ·
(

µ(∇U + ∇UT ) − pI
)

− ρβg(T −T0)
]

·vhdΩ = 0 (3.28)

and
∫

Ω

[

(∇ ·U)qh
]

dΩ = 0 (3.29)

If the test-functions are chosen to be the shape functions, which is typical of

the Galerkin FEM method, then plugging the test-function set:

vh =







(ψj , 0, 0) j = 1, ..., nv,

(0, ψj, 0) j = 1, ..., nv,

(0, 0, ψj) j = 1, ..., nv,

(3.30)

and

qh = ϕj , j = 1, ..., np, (3.31)

into equation (3.28) and equation (3.29), for each element we obtain appropriate

contributions to a set of 3 ∗ nv + np nonlinear algebraic equations governing

the nodal velocity and pressure fields. After assembly with contributions from

other elements, these equations can be written as:














Fu(u, v, w, p) = 0

Fv(u, v, w, p) = 0

Fw(u, v, w, p) = 0

Fp(u, v, w, p) = 0

(3.32)
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It should be noted that, in order to respect the so-called LBB condition

[(Babus̆ka 1971)][(Babus̆ka 1973)] [(Brezzi 1974)] the degree of the velocity

field basis functions was chosen as 2 with C0 continuity, while for the pressure

field this degree is chosen as 1 with the same continuity as for the velocity field.

3.3.2 Numerical method

The resulting set of discretized algebraic equations (3.32) is highly nonlinear.

This nonlinearity comes from the nonlinear advection terms and the viscous

terms if turbulent viscosity is taken into account. Due to this nonlinearity,

the Newton-Raphson iterative method is chosen to linearize and solve these

algebraic equations. The choice of this method has been mainly motivated by

its quadratic convergence rate when the current guess is close enough to the

actual solution [(Assaker 1998)]. At each Newton-Raphson iteration, a sparse

linear system of the following form has to be solved:
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F iv
F iw
F ip









(3.33)

The above linear system of equations can be solved by means of a direct

solver or an iterative solver. Historically, direct methods based on variants of

the Gaussian elimination (such as, the frontal method), are proved to be robust

and efficient for two-dimensional problems. However, for large scale applica-

tions, using a direct solver is not the optimum choice because of large memory

requirements and low performance, especially for three-dimensional problems,

and also because this method is very difficult to parallelize. Therefore, for large-

scale or three-dimensional problems, iterative methods are almost mandatory.

Let us here note that iterative methods have experienced striking progress in

the past decades and gained popularity in many areas of scientific computing

because of the emergence of ❶ preconditioned conjugate gradient-like methods

or ❷ multigrid methods for solving linear systems. In practice, it was found

that the combination of pre-conditioning and Krylov subspace iterations could

provide efficient and simple “general purpose” procedures that could compete
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with direct solvers and approach their quality [(Saad 2000)]. However, when

iterative solvers are used, particular attention has to be paid to transport mod-

eling (such as in crystal growth) since the significant nonlinearity resulting from

the convection terms, might greatly slow down or sometimes even completely

halt the convergence to a solution [(Yeckel and Derby 2005)].

3.4 Numerical benchmark testing on 2D cavity

problem

In order to validate our Navier-Stokes solver based on unstructured meshes

(structured quadrilateral meshes were used in the previous FEMAG-1 software

generation), benchmark testings on the 2D lid-driven cavity problem are per-

formed at different Reynolds numbers. Comparisons of our solutions with other

highly accurate results will be presented thereafter.

The 2D lid-driven cavity flow is probably one of the most studied fluid prob-

lem in the field of computational fluid dynamics due to simple geometry and

associated boundary conditions. At the same time, the cavity flow retains a

rich fluid physics manifested by multiple counter-rotating recirculating regions

near the cavity corner depending on the Reynolds number. There exists a vari-

ety of experimental and numerical results for this classic problem, which hence

can be used as a benchmark test for our unstructured steady incompressible

Navier-Stokes solver.

The problem configuration with a square domain Ω = [0, 1]× [0, 1] and the

corresponding anisotropic unstructured mesh with 10, 372 elements are illus-

trated in Figure (3.3). The associated boundary conditions for this problem

are: along the top boundary (0, 1) → (1, 1), the velocity vector is imposed as

(1, 0), whereas the velocity vector along any other boundary is imposed as (0, 0).

Therefore the boundary conditions are discontinuous at the top left and right

corners, which represent singularities of the solution. The Reynolds number of

this problem is given by:

Re =
ρ

µ
(3.34)

where, ρ is the fluid density and can be imposed as 1.0 for simplicity, and µ

denotes the dynamic viscosity.

In all our numerical experiments, computations are performed for the flow

regimes with Re = 1, 100, 400, 1, 000, 5, 000, 10, 000, 12, 500, 15, 000, 20, 000

and 25, 000 using the same mesh in Figure (3.3), while the corresponding

streamline contours can be found in Figure (3.4) and Figure (3.5). It should
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Re present work Ghia et al Erturk et al Medić et al

100 (0.6229, 0.7340) (0.6172, 0.7344) – (0.6100, 0.7500)

400 (0.5534, 0.6013) (0.5547, 0.6055) – (0.5800, 0.6150)

1000 (0.5267, 0.5534) (0.5313, 0.5620) (0.5300, 0.5650) (0.5450, 0.5600)

5,000 (0.5267, 0.5267) (0.5117, 0.5352) (0.5150, 0.5350) (0.5300, 0.5300)

10,000 (0.5000, 0.5267) (0.5117, 0.5333) (0.5117, 0.5300) (0.5250, 0.5300)

Table 3.1: Comparison of the primary vortex location.

be noted that the maximum Reynolds number achieved on this specific mesh

is 25, 000. According to author’s knowledge, this is also the highest Reynolds

number obtained for the 2D steady incompressible flow in a lid-driven cavity.

The results of the present computations are compared with the highly accurate

benchmark solutions obtained by [(U. Ghia and Shin 1982)] using a multi-

grid strategy for a Reynolds number as high as Re = 10, 000 on meshes with

129× 129 and 257× 257 nodes, by [(E. Erturk and Gokcol 2005)] by means of

a high-order Finite Difference method up to a Reynolds number of 21, 000 on a

uniform 601×601 grid size, and by Medić et al [(Medić and Mohammadi 1999)]

as based on Chorin’s project method by means of the Finite Element Method

on unstructured meshes with 5,000 and 10,000 elements. The comparison of

the primary vortex location shows a very good agreement between our solution

and the above-mentioned literature (see table 3.4), while a maximum difference

of 2.93% is found with respect to the results of [(U. Ghia and Shin 1982)] at

Re = 5, 000.
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x

y

(0
,0

)

(0, 0)

(0
,0

)

(1, 0)

(a) 2D cavity problem geometry

(b) Computational mesh: 10,372 elements, 5331 vertices.

Figure 3.3: 2D cavity problem
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(a) Re = 1 (b) Re = 100

(c) Re = 400 (d) Re = 1, 000

(e) Re = 5, 000 (f) Re = 10, 000

Figure 3.4: Streamlines for different Reynolds numbers
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(a) Re = 12, 500 (b) Re = 15, 000

(c) Re = 20, 000 (d) Re = 25, 000

Figure 3.5: Streamlines for different Reynolds numbers, continued
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Figure 3.6: Maximum value of the stream function, as a function of the

grashof number, for the case of a two-dimensional flow in a

rectangle cavity by Pulicani et al [(Pulicani et al. 1990)].

3.5 From laminar to turbulent flow

As detailed earlier, the molten semi-conductor flow in a Czochralski system is

dauntingly complicated due to a complex combination of natural and forced

convection, as associated with the buoyancy resulting from the temperature

dependence of the density, the Coriolis forces resulting from the rotation of the

crucible, the centrifugal pumping due to crystal rotation, the shear stress due

to gas convection along the meniscus and the thermocapillary forces due to

the temperature dependence of surface tension along the meniscus, etc.. The

combination of the above driving forces leads to a complex three-dimensional

and time dependent flow structure, such that the melt flow is chaotic and

turbulent. For example, the axisymmetric time-dependent simulations of Kim

and Langlois [(Kim and Langlois 1991)] on relatively small-scale crucibles show

chaotic flow patterns.

Based on similarity analysis, hydrodynamic flows can usually be analyzed
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Symbol and Description Definition

Rec, crucible rotation Reynolds number Rec =
R2
cΩc
ν

Res, crystal rotation Reynolds number Res =
R2
sΩs
ν

Gr, Grashof number Gr =
βg△TL3

ν2

Pr, Prandtl number Pr =
ν

κ

Ma, Marangoni number Ma =
|γT |(Rc −Rs)△T

µκ

Ra, Rayleigh number Ra = Gr × Pr =
βg△TL3

νκ

Ta, Taylor number Ta = 4Ω2
cR

4
c/ν

2

We, Weber number We =
ρU2L

σ

Ar, melt aspect ration Ar =
H

Rc

Rr, crucible to crystal radius ratio Rr =
Rc
Rs

with,

β, the thermal expansion coefficient g, the acceleration of gravity

ν, the silicon melt kinematic viscosity Rc, the crucible radius

µ, the silicon melt dynamic viscosity Rc, the crystal radius

σ, the silicon melt surface tension Ωs, the crystal rotation rate

△T , a characteristic temperature difference Ωc, the crucible rotation rate

κ = k/(ρc), the silicon melt heat diffusivity L, a characteristic length scale

U , the velocity scale in silicon melt

Table 3.2: Important dimensionless numbers of Czochralski crystal growth

by several dimensionless numbers. In the crystal growth modeling community,

the Czochralski bulk flow can be described by means of several independent

dimensionless parameters as indicated in Table (3.2).

However, one must be very careful when computing these dimensionless

numbers before using them to draw any general conclusions concerning the flow
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structure and nature. For example, the Grashof number is a very important

dimensionless number describing the characteristics of the melt flow. However

calculating the exact value of this number is not an easy task since it is difficult

to define the related length scale and temperature scale due to the constantly

evolving melt/crystal geometry, operating conditions and thermal environment.

On the other hand, even assuming that the Grashof number is correct, in

some cases a completely misleading conclusion can be drawn when using this

parameter to describe the flow structure. This was confirmed by the numerical

investigations from Crespo del Arco et al [(Crespo del Arco et al. 1997)] [(Crespo

del Arco et al. 1989)], Pulicani et al[(Pulicani et al. 1990)] and B. Roux et al

[(R. Boux 1990)]. The numerical experiments were conducted on a zero Prandtl

number liquid in a rectangular cavity, where a horizontal temperature gradient

was imposed, see Figure (3.6). One can observe from their results that, when

the Grashof number is increased, the steady one-cell initial structure of the

streamlines gives rises to an alternatively oscillating or quasi-periodic flow. A

sudden change of the flow regime is observed at a critical Grashof number of

about 3.5× 104, and a steady two-cell flow is then formed. However, when the

Grashof number is decreased, this structure persists down to a Grashof number

of about 2.5× 104, and a rapid switch to the initial one-cell flow regime is then

found.

Although the use of these dimensionless numbers can be sometimes mislead-

ing, they still help understand some general flow characteristics and features.

The following Table (3.3) gives an order of magnitude of the principal dimen-

sionless numbers for 4 different silicon crystal diameters. Let us notice that,

even for a 4” crystal diameter, the Grashof number has a magnitude of 109,

which is much larger than the above-mentioned critical Grashof number. There-

fore, the melt flow in Czochralski silicon growth is surely asymmetric, unsteady

and three-dimensional for nearly all practical production conditions, and the

flow in small crucibles is transitional, while for modern large size Czochralski

crystal growth systems, the flow is weakly or even fully turbulent.

Crystal diameter Res Rec Gr Ra Ma

4” 1.1 × 104 2.3 × 104 2.0 × 109 2.9 × 107 3.8 × 103

8” 4.5 × 104 9.3 × 104 1.6 × 1010 2.3 × 108 7.6 × 103

12” 1.1 × 105 2.1 × 105 5.6 × 1010 7.8 × 108 1.1 × 104

16” 1.8 × 105 3.7 × 105 1.3 × 1011 1.8 × 109 1.5 × 104

Table 3.3: Order of magnitude of the dimensionless parameters for different

size of crystal [(Assaker 1998)].
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3.6 Turbulence modeling

The previously summarized Navier-Stokes equations governing the melt flow

provide vast details about the flow turbulence, from the largest to the smallest

length and time scales. Unfortunately, as a consequence of this completeness,

using a direct approach (DNS) to solve the Navier-Stokes equations is almost

impossible. A natural alternative to DNS is to use a statistical approach asso-

ciated with the chaotic properties of turbulence.

3.6.1 Reynolds averaged Navier-Stokes equations

Starting from the Navier-Stokes equations, which govern the underlying in-

stantaneous turbulent velocity U(x, t), it is possible to derive equations for the

evolution of the mean and fluctuating velocity fields by means of the Reynolds

decomposition. For each turbulent variables φ(x, t), one can decompose it into

an averaged value and some fluctuations around this value:

φ′(x, t) ≡ φ(x, t) − 〈φ(x, t)〉 (3.35)

where 〈φ(x, t)〉 is the ensemble average (over N repetitions) of variable φ(x, t),

defined as follows:

〈φ(x, t)〉 = lim
N→∞

1

N

N
∑

n=1

φn(x, t) (3.36)

Here, φn(x, t) is the value of φ at position x and time t for the nth experiment.

One can replace ensemble averaged values by time averaged values (over a time

interval T ) when assuming a statistically steady turbulence and the validity of

the ergodic hypothesis [(Speziale 1995)]: for any n:

〈φ(x, t)〉 = φ̄(x, t) = lim
T→∞

1

T

∫ t′+T

t′
φn(x, t)dt (for any n) (3.37)

The above defined ensemble on time averaging procedures obey several basic

rules as follows:

ā = a (3.38)

φ̄′ = 0 (3.39)

aφ+ bψ = aφ̄+ bψ̄ (3.40)

∂φ

∂xi
=

∂φ̄

∂xi
(3.41)

∂φ

∂t
=
∂φ̄

∂t
(3.42)
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∇φ = ∇φ (3.43)

∇ · Φ = ∇ ·Φ (3.44)

where a, b are constants, xi denotes the spatial coordinates, and φ, ψ and Φ

are three generic variables.

According to the ensemble on time averaging rules, the mean of the conti-

nuity equation (3.13) is simply:

∇ ·U = ∇ ·U = 0 (3.45)

Based on the Reynolds decomposition, both the mean velocity Ū and the ve-

locity fluctuation u′ are solenoidal, since

∇ · U = ∇ · (Ū + u′) = 0 (3.46)

while, by subtraction:

∇ · u′ = 0 (3.47)

The mean momentum equation can be derived from equation (3.11) as follows.

Since, applying Einstein’s summation convention on dummy indices,

DUj
Dt

=
∂Uj
∂t

+
∂(UiUj)

∂xi
(3.48)

in such a way that the mean of the substantial derivative is

DUj
Dt

=
∂Uj
∂t

+
∂(UiUj)

∂xi
(3.49)

while

UiUj = (Ūi + u′i)(Ūj + u′j) (3.50)

= ŪiŪj + u′iŪj + u′jŪi + u′iu
′

j

= ŪiŪj + u′iu
′

j

plugging equation (3.50) into equation (3.50), provides the mean of the sub-

stantial derivative as follows:

DUj
Dt

=
∂Ūj
∂t

+
∂

∂xi
(ŪiŪj + u′iu

′

j) (3.51)

=
∂Ūj
∂t

+ Ūi
∂Ūj
∂xi

+
∂

∂xi
(u′iu

′

j)
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Defining the mean substantial derivation operator as:

D̄

D̄t
≡ ∂

∂t
+ Ū · ∇ (3.52)

it results that:
DUj
Dt

=
D̄Ūj
D̄t

+
∂

∂xi
(u′iu

′

j) (3.53)

Applying the Reynolds decomposition to the other terms of the momentum

equations, like viscous stresses, isotropic pressure and/or any body forces, fi-

nally the mean momentum, or the so called Reynolds-averaged Navier-Stokes

equations (RANS) are obtained as follows:

ρ
DŪj
Dt

=
∂

∂xj

[

µ(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
]

− ∂p̄

∂xi
− ρ

∂

∂xi
(u′iu

′

j) + ρβgi(T̄ − T0) (3.54)

The Navier-Stokes equation (3.1) and the above derived RANS equations are

quite the same in appearance. However, there is a crucial difference between

them, since an additional so called Reynolds stress term −ρ(u′iu′j) is introduced

due to the fluctuating velocity field.

The same treatment can be applied to the energy equation and we obtain

the mean energy equation as follows:

ρc(T )
D̄T̄

D̄t
= − ∂

∂xi
(q̄i + qRei ) (3.55)

where

q̄i = −k(T̄ )
∂T̄

∂xi
(3.56)

is the mean heat flux and qRei the turbulent heat flux due to temperature and

velocity fluctuations [(Assaker 1998)]:

¯qRei = ρc(T )u′iT
′ − (k(T ) − k(T̄ ))

∂T

∂xi
(3.57)

Here, it was supposed that the thermal conductivity can depend upon temper-

ature. A similar decomposition technique can be applied to the momentum

equations if the viscosity is temperature dependent.

3.6.2 Closure problem and turbulent-viscosity hypothesis

For a general statistical flow, there are 4 independent equations governing the

mean velocity and pressure fields, namely the 3 components of the Reynolds
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equations (3.61) together with the mean continuity equation (3.45). However,

these 4 equations contain more than 4 unknowns due to the newly introduced 6

Reynolds stress and 3 Reynolds flux components (note that the energy equation

is decoupled in our iterative strategy). Such a set of equations with more

unknowns than equations is said to be unclosed and cannot be solved unless the

Reynolds stresses are somehow determined. Generally speaking, it is useless to

determine the instantaneous, fluctuating velocity and pressure fields in practice.

More practical and of more important relevance are the statistical quantities

given by the mean values of these variables, which are solution of equations

(3.61) and (3.45)

To close the problem governed by the mean continuity and RANS equations,

either an additional mathematical model that describes the additional unknown

variables as a function of the basic ones, or an additional set of equations

governing the new unknowns must be developed.

The turbulent-viscosity hypothesis, which was introduced by Boussinesq

in 1877, is mathematically analogous to the stress-rate-of-strain relation for a

Newtonian fluid. According to this hypothesis, the deviatoric Reynolds stress

aij = (−ρu′iu′j +
2

3
ρkδij) (3.58)

is proportional to the mean rate of strain,

−ρu′iu′j +
2

3
kδij = ρνt

(∂Ūi
∂xj

+
∂Ūj
∂xi

)

(3.59)

where the positive scalar coefficient νt is the turbulent eddy viscosity, while k

is the turbulent kinetic energy, which is defined as follows:

k =
1

2
u′iu

′

i (3.60)

The mean-momentum equations incorporating the turbulent-viscosity hypoth-

esis can be re-expressed as follows:

ρ
D̄Ūj
D̄t

=
∂

∂xi

[

(µ+µt)(
∂Ūi
∂xj

+
∂Ūj
∂xi

)
]

− ∂

∂xj
(p̄+

2

3
ρk)−ρ ∂

∂xi
(u′iu

′

j)+ρβgi(T̄−T0)

(3.61)

where (µ+µt) is called the effective viscosity(µeff). This equation is the same

as the Navier-Stokes equation with Ū and µeff in place of U and µ, and p̄+
2

3
ρk

(the modified mean pressure) in place of p.

It is important to note that the turbulent-viscosity hypothesis has been

introduced without justification or criticism so far. For many flows the ac-

curacy of this hypothesis is poor or even wrong for very simple flows. The
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turbulent-viscosity hypothesis can be viewed in two steps. First, there is an

intrinsic assumption that the Reynolds stress anisotropy aij is determined by

the mean velocity gradients at each point and time. Second, there is a spe-

cific assumption that the relationship between aij and the velocity gradients

is governed by equation (3.59). However, according to the wind-tunnel ex-

periment on an axisymmetric contraction by Uberoi [(Uberoi 56)] and Tucker

[(Tucker 1970)], together with the DNS results from Lee and Reynolds [(Lee

and Reynolds 1985)], the Reynolds stresses are not determined by the rate of

strain, but by the total amount of mean strain experienced by the turbulence,

and at the same time the turbulent fluid does not behave like a viscous fluid,

but more like an elastic solid [(Crow 1968)]. Therefore the turbulent viscosity

hypothesis is qualitatively incorrect. Nevertheless, the concept of eddy viscosity

often works well in practice and forms the basis of nowadays popular turbulence

models in the computational fluid dynamics (CFD) modeling community.

3.6.3 Turbulence models and simulations

The CFD models for turbulent flows can be classified into three main categories:

direct numerical simulation (DNS) models, large eddy simulation (LES) mod-

els and Reynolds-averaged Navier-Stokes (RANS) models. Actually, DNS does

not include any modeling at all, apart from the required numerical approxima-

tion and grid resolution technique, and hence DNS can be treated as accurate,

or even more accurate than experiments. However, the DNS method is too

expensive since the computational cost increases rapidly with the Reynolds

number (approximately as Re3), and hence can only be applied to flows with

low or moderate Reynolds number. On the other hand, the use of cut-off in

wave-number space enables higher Reynolds number flows to be simulated by

LES method. Depending on the approach used to close the mean continuity

and RANS equations, the RANS models can be subdivided in two major cat-

egories, viz the turbulent-viscosity models, which are based on the intrinsic

assumption that the deviatoric Reynolds stresses aij are locally determined by
∂Ūi
∂xj

, and the Reynolds stress models, which model the Reynolds stresses di-

rectly by Reynolds-stress transport equations. Generally speaking, Reynolds

stress models are computationally more expensive and experience more diffi-

culties to converge compared with turbulent viscosity models [(Pope 2000)].

The concept behind any turbulent viscosity model is that the unknown

Reynolds stresses are modeled by using known flow parameters, for example

the average rate of strain Sij , together with an eddy viscosity. Algebraic or
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zero-equation models use an algebraic equation to model the eddy viscosity,

while one-equation models, such as the turbulence k − l model, use a turbu-

lent quantity governed by a transport equation (usually the turbulent kinetic

energy) and a second turbulent quantity (a turbulent length or time scale) ob-

tained from an algebraic expression or an equation independently by of the

first turbulent quantity. Two-equation models employ 2 transport equations

to model the eddy viscosity. For two-equation models, the eddy viscosity is

typically modeled by a product of powers of the turbulent kinetic energy k and

a secondary turbulent quantity φ as follows:

νt ∼ kaφb (3.62)

Based on dimensional analysis, the turbulent viscosity to be modeled has the

following form:

k − l model : νt ∼
√
kl (3.63)

k − ǫ model : νt ∼
k2

ǫ
(3.64)

k − ω model : νt ∼
k

ω
(3.65)

However, for turbulent-viscosity models, several comments are useful:

• Although the above turbulent-viscosity models are all based on the tur-

bulent viscosity hypothesis (remember that there is no sound physical

foundation for this hypothesis), these models still perform reasonably well

in many flows and are extensively used in commercial CFD applications

and academic researches as well.

• From the modeling aspect, both the two-equation k − ǫ, and k − ω and

the Reynolds stress models are complete and can be applied to any tur-

bulent flow theoretically. However not all models are applicable to all

flows in practice. Each model is originally developed for specific kinds

of flows with some special terms or calibrated modeling constants. For

example, the k − ǫ model has been very successful in a large variety

of flow situations, but is inaccurate for flows with adverse pressure gra-

dients and extremely difficult to integrate across the viscous sublayer

[(Wilcox 1998)]. Therefore, many k−ǫmodels incorporate ad-hoc “damp-

ing functions” which have been used to fit the model to experimental

or DNS computational data. The Wilcox k − ω model is more accu-

rate for two-dimensional boundary layers with variable pressure gradients

[(Wilcox 1998)][(Menter 1992)]. However Wilcox’s k−ω model is sensitive
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to free-stream boundary conditions for free shear flows [(Menter 1992)].

The SST k−ω model developed by Menter [(Menter 1992)] incorporates

a damped cross-diffusion derivative term in the ω equation and fine-tunes

the modeling constants to overcome the shortcomings of Wilcox k − ω

model for adverse pressure gradient flows, airfoil flows, transonic shock

waves, etc.

• From a numerical viewpoint, two-equation models, especially the k − ǫ

model, are very difficult to solve. Firstly two-equation models often in-

corporate highly nonlinear damping functions. The behavior of these

functions cannot be easily controlled by conventional linearization tech-

niques and can therefore interfere with the algorithm convergence proper-

ties [(Wilcox 1998)]. Secondly, the final solution of a two-equation model

can be very sensitive to the flow boundary conditions. For example, both

ǫ and ω do not tend to zero along a no-slip boundary. As pointed out

by Wilcox [(Wilcox 1998)], the k, ǫ and ω quantities satisfy the following

equations near the wall:

k =
u2
τ√
β∗

, ω =

√
k

(β∗)
1/4
κy

, ǫ = (β∗3/4)
k3/2

κy

Here y is the distance from the wall boundary, uτ =
√

tw/ρ the friction

velocity, which is defined from the wall shear stress tw and fluid density ρ,

while κ = 0.41 is the von Karman constant and β∗ an empirical constant.

Also Menter [(Menter 1992)] suggested that for the k−ω model, it is much

easier and as accurate to implement the following boundary condition for

ω:

ω = 10
6ν

β1(△y2)
at y = 0 (3.66)

where △y is the distance to the next point away from the wall. How-

ever, in order to eliminate any numerical errors and to obtain results

that are not sensitive to the boundary conditions provided by the above

equations, Wilcox and Menter suggest that 7 ∼ 10 grid points are needed

for y+ = y/δv < 2.5 with δv = ν/uτ . Considering that the viscous sub-

layer thickness is of the order of 10−2mm to 10−1mm for large-size crys-

tal growth systems, this is a very stringent condition and an extremely

refined mesh near the solid-liquid interface and the crucible wall is indis-

pensable in order to obtain grid-independent, boundary insensitive solu-

tions. Recalling that actual flows in Czochralski melts are also strongly

rotating, time-dependent and three-dimensional, therefore both k− ǫ and
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k − ω models are too computationally expensive for nowadays large-size

crystal growth simulations, particularly for time-dependent and/or three-

dimensional simulations.

• Both the mixing-length and one-equation k − l turbulence model are in-

complete since the mixing-length lm has to be specified a priori. The

appropriate specification of lm is however dependent on the flow geome-

try. For a complex flow that has not been studied before, the specification

of lm requires a large measure of guesswork. However for flows that have

been studied extensively, appropriate specification of the mixing-length

can be well established and quite accurate results can be expected. There-

fore, specifying the appropriate mixing-length is the key issue of mixing-

length and k − l models and the accuracy of the modeling results will

be strongly dependent on the specified mixing-length. The mixing-length

model is arguably the simplest turbulence model and rarely causes un-

expected numerical difficulties. On the other hand, for the one-equation

k− l model, an additional turbulent kinetic energy transport equation is

introduced, and therefore the computational cost is slightly higher. Also

the k − l model has convergence difficulties when the mesh is too coarse

or the initial guess value is too far away from the solution. A compar-

ison of model predictions with experimental data by Wilcox shows that

the one-equation k − l model has a modest advantage in accuracy over

the mixing-length model. Both the mixing length and k − l models are

attractive for practical global and time-dependent crystal growth simula-

tions due to their much lower CPU costs compared with other models and

their reasonable accuracy as long as the mixing-length is appropriately

specified.

3.7 The mixing-length turbulence model

The mixing length model is the simplest turbulence model to close the system

governed by the mean continuity equation (3.45) and RANS equations (3.61).

The mixing length hypothesis was initially proposed in 1925 by Prandtl for

unidirectional boundary-layer flows parallel to a flat wall. In fact the mixing

length is the macroscopic analogous of the mean free path introduced in the

kinetic theory of gas molecular momentum transport [(Wilcox 1998)]. Accord-

ing to the Boussinesq eddy-viscosity approximation, the turbulent viscosity νt
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is then defined in shear flow in such a way that the Reynolds stress is given by

−u′v′ = νt
∂Ū

∂y
(3.67)

where the mean flow has a velocity Ū(y) in x direction, whose perturbations

are denoted by u and v, while the turbulent eddy-viscosity can be expressed as

the product of a velocity scale u∗ and a lengthscale lm (the mixing length):

νt = u∗lm (3.68)

Prandtl postulated that this velocity scale u∗ (the mixing velocity) can be

written as:

u∗ = lm

∣

∣

∣

∂Ū

∂y

∣

∣

∣
(3.69)

Finally the turbulent eddy-viscosity can be rewritten as:

νt = l2m

∣

∣

∣

∂Ū

∂y

∣

∣

∣
(3.70)

As mentioned earlier, the Prandtl mixing length hypothesis was originally pro-

posed for unidirectional flows parallel to a flat plate. Several generalizations

of equation (3.70) have been introduced in order to provide applications of the

mixing length hypothesis for all flows. On the basis of the mean rate-of-strain

d̄ij , Smagorinsky [(Smagorinsky 1963)] proposed the following model:

νt = l2mγ̇ (3.71)

= l2m

√

2d̄ij d̄ij

whereas, based on the mean rate-of-rotation Ω̄ij , Baldwin and Lomax [(Baldwin

and Lomax 1978b)] proposed that νt can be described as follows:

νt = l2m

√

2Ω̄ijΩ̄ij (3.72)

Here, d̄ij is an objective symmetric, deviatoric tensor:

dij =
1

2

(∂Ūi
∂xj

+
∂Ūj
∂xi

)

(3.73)

while Ω̄ij is an non-objective antisymmetric tensor:

Ωij =
1

2

(∂Ūi
∂xj

− ∂Ūj
∂xi

)

(3.74)
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Both equation (3.71) and equation (3.72) reduce to equation (3.70) when
∂Ū1

∂x2
is the only non-zero mean velocity gradient.

We have based our mixing length model on Smagorinsky’s formula. The

only unknown to close the mixing length model is the length scale lm, which is

a key parameter of our model. Recalling that Prandtl’s mixing length hypoth-

esis was proposed on the basis of an analogy with gas molecular momentum

transport nearly one century ago, it should, however, be observed that the fun-

damental mechanisms of molecular and turbulent eddy diffusions are different.

Therefore the validity of the analogy between these processes is quite flimsy.

Even at current stage the value and physical interpretation of the mixing length

still remains unknown. On the other hand, although the length scale is not rig-

orously defined, the Prandtl hypothesis greatly simplifies the turbulence closure

problem and surprisingly sometimes does an excellent job for reproducing some

experimental measurements. Moreover, the model can be easily calibrated for

specific classes of flows.

3.7.1 Mixing-length modeling

The only unknown in equation (3.71) is lm, which is a semi-empirical and flow

dependent quantity. For example, the mixing length is constant across the mix-

ing layer and proportional to the width of the layer for free shear flows. How-

ever, for flows near solid boundaries, turbulence behaves differently. Prandtl

originally postulated that, for the flow near a solid boundary, the mixing length

is proportional to the distance from the surface:

lm = Cd (3.75)

where d is the distance to the flow boundary and C is an empirical constant

which should be determined experimentally for each particular flow configura-

tion. Prandtl’s postulate is proved to be consistent with the well-known law of

the wall, which has been observed for a wide range of wall-bounded flows. For

the wall-bounded flows observed in crystal growth, it can be found experimen-

tally that C equals the von Karman constant κ, or C = κ = 0.41.

A smooth approximation of the distance to the boundary d can be obtained

by solving the following equation, ref Lecomte et al [(Lecomte et al. 1992)] and

Assaker[(Assaker 1998)]:

△△d = 0 in ΩL (3.76)

where △ is the Laplacian operator. At the melt boundary of a Czochralski crys-

tal growth system, the boundary conditions along the melt/crucible interface
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Γc and melt/crystal interface Γs are as follows:










d = 0

∂d

∂n
= 1

on Γs ∪ Γc (3.77)

while along the melt/gas interface Γm, either a wall same as equation (3.77) or

a mirror boundary condition as follows can be chosen:











∂d

∂n
= 0

∂△d
∂n

= 0

on Γm (3.78)

where n is the normal to the corresponding boundary.

Note that the equation governing the distance to the boundary d is a func-

tion of the melt geometry only, in such a way that it can be solved decoupled

from other physical unknowns like the temperature, velocity and pressure fields.

In order to solve the above differential equation by the FEM method, we intro-

duce an additional temporary variable λ, which is defined as follows:

△d = λ (3.79)

and hence equation (3.76) becomes:






△d− λ = 0

△λ = 0
(3.80)

Using the same discretization for d and λ as for the velocity field,

λ =

N
∑

j

λjψj(r, z) (3.81)

d =

N
∑

j

djψj(r, z) (3.82)

where N is the number of nodes and choosing the same test functions as the

shape functions ψj , we obtain the weak formulation of these equations as fol-

lows:
∫

Ω

(∇d · ∇ψi + λψi)dΩ =

∫

Γ

∂d

∂n
ψidΓ (3.83)

∫

Ω

(∇λ · ∇ψi)dΩ =

∫

Γ

∂λ

∂n
ψidΓ (3.84)
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Plugging equations (3.81) and (3.82) into the weak formulations, we obtain the

following set of linear equations without taking yet the boundary conditions

into account:










∫

Ω

(

∇ψi · ∇ψj
)

dΩ

∫

Ω

(ψiψj)dΩ

0

∫

Ω

(

∇ψi · ∇ψj
)

dΩ











[

dj
λj

]

= 0 (3.85)

The final local matrices and right-hand side vectors are dependent on the

boundary conditions applied to the crucible wall, melt/crystal interface, or

meniscus. We will not address the details here. All these local matrices and

right-hand vectors can be assembled together and the resulting system can

easily be solved by direct or iterative solvers.

3.7.2 Enhanced mixing-length model

The differential equation (3.76) governing the distance d proposed by Lecomte

et al [(Lecomte et al. 1992)] provides a smooth, accurate and unique value of the

distance between the finite element nodes and the melt domain boundary. This

is particularly important in the vicinity of the domain corners where more than

one boundary side, and thus more than one distance, coexist [(Assaker 1998)].

The highest accuracy in distance evaluation is reached close to the boundary,

see equation (3.77). However, there are two main drawbacks in equation (3.76):

firstly, the mixing-length estimation gets poorer in the core of the melt and,

secondly, it does not take the mixing length boundary layer thickness into

account. For example, when applying the differential equation (3.76) to the 1D

case, the analytical solution of equation (3.76) is:

d = y(1 − 1

L
y) (3.86)

where L is the length of the 1D domain. Selecting L = 1 for simplicity, the

approximate mixing-length lm is:

lm = κy(1 − y) (3.87)

and hence for y → 0+, the above equation becomes:

lm = κy (3.88)

This result is consistent with the Prandtl mixing length hypothesis and the well-

known universal law of the wall for wall-bounded flows. However, experimental
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studies show that in the turbulence core (far away from the wall), the mixing

length lm only slightly changes with the flow geometry and is limited by a peak

value. Therefore different variants of the mixing length models were proposed

by Van Driest [(Driest 1956)], Smith and Cebeci [(Smith and Cebeci 1967)] ,

Baldwin and Lomax [(Baldwin and Lomax 1978a)] to fit experimental data. For

example, in Van Driest’s model, the mixing length is multiplied by a damping

function near the wall as follows:

lm = κy
(

1 − e(−y
+/A+

0
)
)

(3.89)

where A+
0 is a constant and A+

0 = 26. Escudier [(Escudier 1966)] found that

the model predictive accuracy is improved by limiting the peak value of the

mixing length as follows:

(lm)max = 0.09δ (3.90)

where δ is the boundary-layer thickness. Cebeci and Smith [(Smith and Cebeci

1967)], and Baldwin and Lomax [(Baldwin and Lomax 1978a)]also introduced

two-layer mixing length models by differently defining the mixing length in

those two layers. In the inner layer, the mixing length is the same as the

one proposed by Van Driest, while in the outer layer, the turbulent viscosity is

limited by a peak value described by some empirical closure coefficients and flow

dependent characteristics, for example the boundary layer thickness. Details

of these models are summarized by Wilcox [(Wilcox 1998)].

Actually, the distance to boundary equation (3.76) can be considered as

a model where an infinite mixing length boundary layer thickness near the

melt/crucible and melt/crystal interfaces is used. However, according to Kar-

man’s similarity solution (see also [(Colley et al. 1999)][(Owen and Rogers

1989)]), the boundary layer thickness along a rotating disk is given by

δ = 5.5
( ν

2πfD

)1/2

(3.91)

where fD is the rotation frequency in Hertz. In order to grow purely axisym-

metric crystals, the crystal and crucible are normally rotating at different and

opposite rates. Therefore, there are at least two boundary layers with different

boundary layer thicknesses near the melt/crucible, and melt/crystal walls and

it is necessary to take these two different boundary layers into account.

To overcome the two above mentioned drawbacks, enhanced equations gov-

erning the effective distance to the boundary are proposed as follows on the

basis of an idea of Winckelmans (private communication):
{

△△d+ ∇·(α∇d) = 0

△α = 0
(3.92)
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The boundary conditions for these two equations must be detailed: first, along

the melt/crucible and melt/ crystal interfaces, the boundary conditions for d

and α are:


























d = 0

∂d

∂n
= −C/κ

α = −
(C

P

)2

(3.93)

where C and P may be selected as constants (which can however differ along

the melt/crucible and melt/crystal interfaces). It should be noted that the

asymptotic properties of equation (3.92) at low values of P/C show that the

the mixing length boundary layer thickness can be described by combining

these two constants as follows (see Figure 3.7 and Figure 3.9):

δl = P/C (3.94)

and if P → ∞, the enhanced equations (3.92) will thus degenerate into the

E

FPc

Ps

δlc = Pc/Cc δls = Ps/Cs

Figure 3.7: Enhanced mixing-length model.

original governing equation (3.76) proposed by [(Lecomte et al. 1992)].

Finally, as boundary condition for α at the melt free surface, we have:

∂α

∂n
= 0 (3.95)
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Figure 3.8: Distance profiles along the symmetry axis:

Cs = Cc = 0.41 for all tests;

d1 (Ps = Pc = ∞); d2 (Ps = Pc = 1.0 × 10−3m);

d3 (Ps = 1.0 × 10−1m,Pc = 1.0 × 10−3m);

d4 (Ps = 1.0 × 10−3m, Pc = 1.0 × 10−1m)

and for the boundary conditions of d on the melt free surface, they are exactly

the same as in equation (3.78). The mixing length lm is again calculated from

d by equation (3.75).

The enhanced distance to boundary equation (3.92) can be solved by di-

rect or iterative solvers using the same procedures as described previously for

equation (3.76). However the governing equation (3.92) is nonlinear since d

and α are coupled, and therefore using Newton-Raphson’s method to linearize

the discretized equations is possible. Figure (3.8) shows the profiles of d along

the melt symmetry axis with different parameters. Figure (3.9) shows the com-

plete corresponding distance profiles in the melt domain. From these numerical

tests, we can see that the maximum of d is reached in the core of the melt, and

also that the thickness of the boundary layers can be easily controlled by the

enhanced mixing length model introduced.
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(a) Ps = Pc = ∞, d step=4.3mm (b) Ps = Pc = 10−3m, d step=0.6mm

(c) Ps = 10−1m, Pc = 10−3m, d step=1.2mm (d) Ps = 10−3m, Pc = 10−1m, d step=0.15mm

Figure 3.9: Profiles of enhanced d with different parameters, Cs = Cc = 0.41

3.8 Turbulence k − l model

3.8.1 Modeling of the turbulent kinetic energy equation

As explained earlier, on the basis of dimensional analysis the turbulent viscosity

is given by:

νt = Cµ
1/4l

√
k (3.96)
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where Cµ is a constant (whose value will be discussed later), l the length scale of

the large turbulent eddies and k the turbulent kinetic energy. In order to close

the problem, a turbulent kinetic energy transport equation has to be modeled.

The exact turbulent kinetic energy transport equation directly derived from

Navier-Stokes equations is as follows:

Dk

Dt
=

∂

∂xj
(ν
∂k

∂xj
) − ∂

∂xj
(
1

2
u′iu

′

iu
′

j +
pu′j
ρ

) − u′iu
′

j

∂Ūi
∂xj

− ν
∂u′i
∂xk

∂u′i
∂xk

− βgiTu′i

(3.97)

The left-hand side is a transient and convective transport term, while the right-

hand terms can be interpreted as a viscous diffusion term, a turbulence and

pressure diffusion term, a production term, a dissipation term and a buoyancy

term, respectively. Unfortunately, the derived equation introduces new addi-

tional unknown fluctuation correlations. A model k equation therefore should

be developed to represent the unknown correlations as approximate functions

of the mean or kinetic energy variables.

DNS results from Mansour, Kim and Moin [(Mansour et al. 1988)] show

that the pressure diffusion term is quite small when compared with the turbu-

lent diffusion term and therefore can be neglected. In analogy with the eddy

viscosity concept, the right-hand turbulent diffusion term grouped with the

pressure diffusion term can be represented as follows:

1

2
u′iu

′

iu
′

j +
pu′j
ρ

≈ − νt
σk

∂k

∂xj
(3.98)

where σk is an empirical constant. Since the Reynolds stress term can be

written as:

u′iu
′

j = 2νtdij −
2

3
kδij (3.99)

for incompressible flows, the production term can be rewritten as:

−u′iu′j
∂Ūi
∂xj

= 2νtdijdij = Pk (3.100)

At high Reynolds number, the dissipation rate ǫ scales as (u∗)3/l, where

u∗ and l are the velocity scale and lengthscale respectively. Consequently, it is

reasonable to model ǫ as

ǫ = Cdk
3/2/lm (3.101)

where Cd is a model constant, and lm the mixing-length. Here we still need a

prescription for the turbulence length-scale in order to close the system. As for

the mixing-length model, we still assume that this length-scale is proportional
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to the distance d to the boundary, as governed by the enhanced distance to

boundary equation (3.92) presented in the previous section.

Substituting equation (3.57) for the buoyancy term, we obtain:

Gk = βgiTu′i = ktβgi
∂T̄

∂xi
(3.102)

According to the Prandtl number definition, the turbulent thermal conductivity

in the energy equations can be expressed as follows:

kt =
c

Prt
µt =

Cµ
1/4

Prt
ρcl

√
k (3.103)

where Prt and c are the turbulent Prandtl number and heat capacity of the

fluid respectively. According to Rodi [(Rodi 1985)], experiments have shown

that the Prandtl number only varies slightly in any given flow and also slightly

from flow to flow.

Combining all the above equations, the k equation becomes:

Dk

Dt
= ∇ ·

(

(ν +
νt
σk

)∇k
)

+ Pk − Cdk
3/2/lm +Gk (3.104)

To completely close the turbulent kinetic energy equation, the empirical con-

stants Cµ, σk and Cd and the turbulent Prandtl number Prt must be specified.

The choice of the empirical constants used in our model was provided by Han-

jalic and Launder for fully developed axisymmetric flow in a plane channel

[(Hanjalic and Launder 1972)]:

Cµ = 0.09 σk = 1.0 and Cd = Cµ
3/4 = 0.164 (3.105)

Therefore,

Cµ
1/2 = 0.3 and Cµ

1/4 = 0.548 (3.106)

However, the optimal set of constants for a Czochralski flow is not yet

available [(Assaker 1998)] and additional experimental and numerical work is

thus necessary to provide the appropriate set of constants in a crystal growth

system.

There are two different boundary conditions associated with the turbulent

kinetic energy equation. Along the solid walls, for example the melt/crucible

and the melt/crystal interfaces Γc and Γs, k is simply imposed to be zero. On

the melt free surface, the following mirror boundary condition is imposed:

∂k

∂n
= 0 (3.107)
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3.8.2 Numerical method

The set of equations governing the turbulence k−l model will be the momentum

equation (3.11), the continuity equation (3.13), the turbulent kinetic energy

equation (3.104) and the energy equation (3.16). The turbulent kinematic

viscosity νt, turbulent conductivity kt and mixing length lm are governed by

equation (3.96), equation (3.103) and equation (3.92) respectively. As earlier

mentioned, the mixing length is a function of melt geometry only and can

be pre-calculated before the other physical unknowns. However for the newly

introduced turbulent kinetic energy equation, the convective transport term

and the production term Pk both are functions of the velocity field, while the

turbulent viscosity in the momentum equation is also a function of k. Therefore

we choose to solve the turbulent kinetic energy k together with the velocity and

pressure fields in a coupled way. Nevertheless, since the same strategy is used

in the laminar model, the energy equation governing the temperature field is

decoupled from all other equations.

The weak formulation and the discretization of equations (3.11) and (3.13)

have already been presented in the previous section, so here we only focus on

the weak form of the turbulent kinetic energy equation (3.104). Letting k′

denote the test functions, the weak formulation of (3.104) is:

∫

Ω

(

Dk

Dt
−∇ ·

(

(ν +
νt
σk

)∇k
)

− Pk + ǫ−Gk

)

k′dΩ = 0 (3.108)

where Pk = 2νtdijdij , ǫ = Cdk
3/2/lm and Gk = ktβgi

∂T̄

∂xi
. For k the same

discretization is used on each element as for the mean velocity field,

k(r, z) =

nk
∑

j

kjψj(r, z) (3.109)

where nk is the number of nodes per element and kj the turbulent kinetic

energy at node j. Choosing the test-functions as equal to the shape functions,

plugging equations (3.100), (3.101), (3.102) and (3.103) into the above equation

and performing Gauss integration by part, the final weak formulation for quasi-

steady flow becomes:
∫

Ω

(U · ∇kψi)dΩ +

∫

Ω

(ν +
νt
σk

)∇k · ∇ψidΩ (3.110)

−
∫

Ω

(νt2d : d)ψidΩ +

∫

Ω

(Cdk
3/2/lm)ψidΩ −

∫

Ω

(cνtg · ∇T )ψidΩ

=

∫

Γ

(ν +
νt
σk

)
∂k

∂n
ψidΓ
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Coupling together the above equation with the equations governing the velocity

and pressure fields and applying the corresponding boundary conditions, finally

we obtain after assembly a set of nonlinear algebraic equations governing the

nodal velocity, pressure and turbulent kinetic energy fields on the domain as

follows:


























Fu(u, v, w, p, k) = 0

Fv(u, v, w, p, k) = 0

Fw(u, v, w, p, k) = 0

Fp(u, v, w, p, k) = 0

Fk(u, v, w, p, k) = 0

(3.111)

At each Newton-Raphson iteration, the following linearized set of equations has

to be solved:
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(3.112)

A key issue results from the fact that the Reynolds equations are highly non-

linear due to the advection term. The newly introduced turbulent viscosity

νt = Cµ
1/4l

√
k in the Reynold equations makes the nonlinearity even worse.

In addition, the coupling of the highly nonlinear turbulent kinetic energy equa-

tion to the Reynolds equations dramatically increases the numerical difficulties

encountered when trying to simulate the melt flow. These difficulties come

from two reasons. First, due to the dominating nonlinear transport terms, the

equations are numerically of hyperbolic nature and Galerkin’s method is thus

non-optimal [(Assaker 1998)]. Secondly, the square-root of k present in the

turbulent viscosity expression leads to numerical failure when the turbulent ki-

netic energy k becomes negative during the Newton-Raphson iterative scheme

and therefore the quadratic convergence rate is not guaranteed. The methods

to overcome these difficulties will be addressed in the next section.
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3.9 Generic transformation method to avoid neg-

ative k

The nonlinear algebraic system coupling the Reynolds equations with the k

equation is very difficult to solve due to its numerically hyperbolic nature.

Furthermore, the k equation governing the turbulent kinetic energy is quite

similar to a generic advection-diffusion system. When the viscous diffusion term

dominates the turbulent kinetic energy transport process, numerical difficulties

(with oscillations or even negative k) will often happen during the Newton-

Raphson iterative process if the mesh is too coarse or if the initial guess solution

is too far away from the real one. Numerical oscillations and negative k values

will dramatically slow down the Newton-Raphson convergence rate and even

may lead to numerical failure. These difficulties also exist for the solution of

any two-equation (such as k − ǫ and k − ω model) by FEM or FVM method.

Several procedures were investigated by Assaker [(Assaker 1998)], Habets

and Nyevelt [(Habets and Nyevelt 1994)] to overcome the above mentioned

numerical difficulties. Firstly, the initial flow field and k distribution of the k−l
model were always generated by means of the mixing length model. Secondly,

to avoid negative k values, appropriate variable transformations of the form,

k = f(k̃) > 0 (3.113)

were introduced and the k equation to be solved then became:

Fk(k) = Fk

(

f(k̃)
)

= 0 (3.114)

The simplest transformation consists in adding an appropriate positive number

to the actual k value. Another way to avoid negative value of k consists in

using an adaptive relaxation to guarantee

kr+1 = kr + αrδkr > 0 (3.115)

at each Newton-Raphson iteration, where αr is the relaxation coefficient. Al-

though this method can avoid negative k values at all nodes, the k values at

Gauss integration points may still be negative due to quadratic interpolation.

Moreover, all the above trials showed an unacceptable decrease of the conver-

gence rate [(Assaker 1998)]. Therefore, more complicated transformations to

overcome the numerical difficulties seem to be necessary.

In the following section, a generic transformation algorithm is presented in

detail in order to overcome the two numerical difficulties encountered in the

Newton-Raphson iterative scheme.
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3.9.1 Transformation scheme and discretization

Let the new unknown L be defined as:

L = nk1/n (3.116)

in such a way that

k =
(L

n

)n

(3.117)

It is now L (and not k) which is discretized as follows:

L =

nL
∑

j

Ljψj (3.118)

where nL = nk. A family of test-functions,

k′ = k(1−1/m)ψi = (
L

n
)(1−1/m)nψi (3.119)

is considered in order to investigate the effect of the parameter m, whose value

is varied from 1 (the simplest case) to ∞ (a ”self-adjoint” model for diffusive

terms). Plugging equation (3.117) into the k equation (3.104), then we ob-

tain the transformed turbulent kinetic energy equation in weak formulation as

follows:

∫

Ω

[(

U · ∇(
L

n
)n
)(

(
L

n
)n(1−1/m)ψj

)]

dΩ (3.120)

+

∫

Ω

(ν +
νt
σk

)∇(
L

n
)n · ∇

(

(
L

n
)n(1−1/m)ψj

)

dΩ

−
∫

Ω

(νt2d : d)
(

(
L

n
)n(1−1/m)ψj

)

dΩ

+

∫

Ω

(Cdk
3/2/lm)

(

(
L

n
)n(1−1/m)ψj

)

dΩ −
∫

Ω

(cνtg · ∇T )
(

(
L

n
)n(1−1/m)ψj

)

dΩ

=

∫

Γ

(ν +
νt
σk

)
∂k

∂n

(

(
L

n
)n(1−1/m)ψj

)

dΓ

where m and n are integer constants and

νt = Cµ
1/4lm

√
k = Cµ

1/4lm

(L

n

)n/2

(3.121)
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In each Newton-Raphson iteration, the original set of linearized equations for

the k − l model is transformed into a linear system as follows:
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and in each Newton-Raphson iteration δL, but not δk is to be solved.

However, in practice we never introduce the new variable L into the sys-

tem in order to keep the solver consistency and simplicity. In other words,

the nodal values Li are not stored, but are directly obtained from the nodal

values ki by equation (3.116). Therefore, some key issues are to be addressed.

Firstly, in order to discretize the nonlinear system, the derivatives of all terms

involving L have to be developed as a function of the nodal value ki, including

the Reynolds equations associated with the turbulent viscosity. Secondly, an

appropriate incrementation algorithm for Newton-Raphson iterations has to be

implemented. Finally, the boundary conditions related to the k equation have

to be slightly changed.

The discretization of L and calculation of the associated derivatives are quite

complicated and will not be addressed here (refer to appendix A). Concerning

the incremental method for Newton-Raphson iterations, we have:

kr+1
i = kri + δkri (3.123)

while solving the linear system provides δLri , with

δLri = n
(

kr+1
i

)1/n − n
(

kri
)1/n

(3.124)

or
kr+1
i

kri
=
[

1 +
(δLri
n

)(

kri
)

−1/n
]n

(3.125)

The right-hand side of equation (3.125) can be approximated by a Padé fraction

whose numerator and denominator are both second degree polynomials. Letting
(

1 +
x

n

)n

=
1 + αx+ βx2

1 + α′x+ β′x2
(3.126)
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a Mac-Laurin development of the left-hand side provides the expansion:

1 + αx+ βx2 = (1 + αx′ + β′x2)
(

1 + x+
n− 1

2n
x2 + (3.127)

(n− 1)(n− 2)

6n2
x3 +

(n− 1)(n− 2)(n− 3)

24n3
x4 + ...

)

Therefore, to reach the maximal order in equation (3.127), the following equa-

tions have to be solved:



















































α = α′ + 1

β = β′ + α′ +
n− 1

2n

β′ +
n− 1

2n
α′ +

(n− 1)(n− 2)

6n2
= 0

β′ +
n− 2

3n
α′ +

(n− 2)(n− 3)

12n2
= 0

(3.128)

whose solution is:

α =
n+ 2

2n
β =

(n+ 1)(n+ 2)

12n2
α′ = −n− 2

2n
β′ =

(n− 1)(n− 2)

12n2

(3.129)

Finally, the incremental method develops as follows:

kr+1
i

kri
=

1 +
n+ 2

2n

( δLri
(kri )

1/n

)

+
(n+ 1)(n+ 2)

12n2

( δLri
(kri )

1/n

)2

1 − n− 2

2n

( δLri
(kri )

1/n

)

+
(n− 1)(n− 2)

12r2

( δLri
(kri )

1/n

)2
(3.130)

Since the discriminants of the quadratic polynomials are negative:

ρ = α2 − 4β = − (n+ 2)(n− 2)

12n2
≤ 0 ∀n ≥ 2 (3.131)

ρ′ = α′2 − 4β′ = − (n+ 2)(n− 2)

12n2
≤ 0 ∀n ≥ 2 (3.132)

equation (3.130) provides a positive left-hand side:

kr+1
i

kri
> 0 ∀n ≥ 2 (3.133)



3.9. Generic transformation method to avoid negative k 95

This algorithm is a generic one since we can choose different integer constants n

and m to implement different complex transformation schemes without chang-

ing any code implementation details.

In addition, a special incremental algorithm has to be developed when n→
∞. In this case, the transformation provides the so called log k method, since

lim
n→∞

(1 + L/n)n = eL = lim
n→∞

enk
1/n

= k (3.134)

Therefore, for log k method,

kr+1
i = eL

r
i +δLr

i = kri e
δLr

i (3.135)

Because δk is an exponential function of δL, if the initial guess solution is too

far away from the exact solution, any quite large δL will dramatically decrease

the Newton-Raphson convergence rate. Therefore, the following function is

introduced to approximate the exponential eδL while limiting its variations:

eδL
r
i ≈ f(δLri ) +

√

1 + f2(δLri ) (3.136)

where f(x) is an approximation function, whose role is to cut-off the overshoots.

For this approximation function, the following functions have been tested:.

f1(x) =
(

1.5x+

√

1 + (
3x

2
)2
)1/3

(3.137)

f2(x) =
2α

π
arctan(πx/2) (3.138)

f3(x) = α tanh(
x

α
) (3.139)

Also when n→ ∞, the relationship between the value of k and the element

nodal values kj can be re-expressed in terms of the shape functions as follows:

k = eL = exp(

nk
∑

j=1

Ljφj) =

nk
∏

j

k
φj

j (3.140)

Finally, the use of essential boundary conditions for k is adapted to the

transformation scheme. As mentioned a little bit earlier, for each Newton-

Raphson iteration, not δk but δL is selected as the unknown. Correspondingly,

the essential boundary conditions should apply to L after transformation. Ac-

cording to equation (3.116), the essential boundary conditions become for L:

nk1/n − nk̄1/n = 0 (3.141)



96 3. Modeling of Melt Convection

or

log k − log k̄ = 0 (3.142)

for log k method when n → ∞, with k̄ the imposed boundary k value in both

cases. Also for the log k method, k̄ should be modified by adding an appropriate

small positive value to the actual k if k̄ = 0.

3.9.2 Numerical experiments and discussions

A summary of the transformation schemes that we have tested on the Czochral-

ski flow problem, whose geometry is shown in Figure (5.1) (chapter 5), is listed

in Table (3.4), while the results obtained by these transformation schemes are

presented in Table (3.5) with the crystal rotation rate at 20 rpm, the crucible

rotation at -5 rpm and the crystal pulling rate at 1.0 mm/min. Please notice

that in Table (3.5), umin, umax, vmin, vmax, ψmin, ψmax, kmin, kmax, µtmin

and µtmax denote the minimum and maximum values of the radial and axial

velocities, the Stokes stream function, the turbulent kinetic energy, and the

turbulent viscosity respectively. One can observe that the solutions provided

both by
√
k and log k transformation schemes (with m equals to 1 for both

two schemes) are very close to the original k − l solution and the generic k − l

solution (with both m and n equal to 1). It should be noted that our practical

numerical experiments also showed that the original k−l solution will fail when

the initial guess values of k are far from the real ones, while both the
√
k and

log k succeed to converge to the final solution, with however much more iter-

ations needed. On the other hand, both
√
k and log k transformation scheme

could not reach convergence when m is chosen to be 2 for
√
k and ∞ for log k,

respectively, even when the inital solution is close enough to the real solution.

m n Scheme Test function Increment approximation

1 1 L = k ψi kr+1
i = kri + δkri

1 2 L = 2
√
k ψi kr+1

i =
(

1 + 2(
δLi
√

kri
) +

1

4
(
δLi
√

kri
)2
)

kri

2 2 L = 2
√
k

√
kψi kr+1

i =
(

1 + 2(
δLi
√

kri
) +

1

4
(
δLi
√

kri
)2
)

kri

1 ∞ L = log k ψi f(x) +
√

1 + f2(x)

∞ ∞ L = log k kψi f(x) +
√

1 + f2(x)

Table 3.4: Summary of the transformation schemes tested
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k − l generic k − l
√
k log k

umin(m/s) -0.05178 -0.05290 -0.05409 -0.005285

umax(m/s) 0.016004 0.016557 0.016932 0.0150702

vmin(m/s) -0.02219 -0.02299 -0.02340 -0.02137

vmax(m/s) 0.050869 0.052991 0.054388 0.055562

wmin(m/s) -0.06 -0.06 -0.06 -0.06

wmax(m/s) 0.191775 0.192716 0.193080 0.197928

ψmin(m3/s) -1.8724e-5 -1.8724e-5 -1.9466e-5 -1.5655e-5

ψmax(m
3/s) 8.3130e-4 8.3130e-4 8.5100e-4 7.7749e-4

kmin(m2/s2) 0∗ 0∗ 0 0

kmax(m
2/s2) 0.0018277 0.0018277 0.0018615 0.00181636

µtmin(kg/m · s) 0 0 0 0

µtmax(kg/m · s) 2.4730 2.4730 2.4945 2.4658

Table 3.5: Comparisons of the results obtained for the problem described in

Figure (5.1) with different transformation schemes, where m was

chosen as 1 both for
√

k and log k schemes.

3.10 Conclusions

The present chapter aimed at addressing one of the biggest challenging problems

in the Czochralski crystal growth process – namely the melt convection modeling,

which also has represented a major objective in bulk crystal growth modeling,

and is of primary importance for global heat and mass transfer in the crystal

growth process.

We first described the origin of the silicon melt flow in the Czochralski growth

system. Then, the modeling efforts in the past three decades to understand the

mechanisms governing Czochralski melt convection were reviewed. Next, the

mathematical model and associated boundary conditions governing the melt flow

and thermal field were introduced, and the Finite Element numerical method to

solve the Navier-Stokes equation and the energy equation governing the melt

flow were presented as well. Our finite element quasi-steady Navier-Stokes

solver based on unstructured meshes was validated by solving the well-known

2D lid-driven cavity flow problem at different Reynolds numbers up to 25,000

with other highly accurate benchmark solutions.

The rest of this chapter focused on turbulence melt convection modeling in

the Czochralski crystal growth process. Our main objective was to develop rel-

atively simple turbulence models, but with reasonable accurateness in order to

simulate efficiently the average axisymmetric flow in the Czochralski melt as
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coupled to the whole quasi-steady or time-dependent growth problem. With this

objective in mind, we first derived the evolution of the mean and fluctuating

velocity fields by means of the Reynolds decomposition. Some turbulence dy-

namics aspects, the eddy viscosity/conductivity concepts and the models required

to close the system of equations governing the mean quantities were reviewed

and introduced. Then we have detailed the turbulence mixing-length and k − l

models and the numerical method developed at the CESAME crystal growth re-

search group in the past decades, where the mixing-length l is approximated by

a smooth and continuous distance to the boundary function governed by double

Laplace equations. Based on the Laplace equations governing the distance to the

boundary, an enhanced model taking into account different turbulent boundary

layers along the melt/crucible and melt/crystal interfaces was presented, and

the modeling parameters governing the distance profiles to the boundary in the

silicon melt were primarily given.

It should be noted that when a very small mixing-length boundary layer

thickness δl = P/C is chosen, convergence problems might occur when solv-

ing the mixing-length governing equation (3.92). Even when convergence is

reached, it might remain very difficult to solve the melt convection problem,

since the melt convection boundary layer could not be well captured by using

not so highly refined isotropic meshes. Therefore the melt convection boundary

layer is underresolved in practice. However, the enhanced mixing-length model

still provides an ideal tool to fit the convection results obtained by numerical

simulation with experimental data. To solve the above mentioned numerical

problem, highly refined anisotropic meshes near the wall boundaries would be

needed, and appropriate wall models to accurately capture the melt convection

boundary layer are mandatory.

On the other hand, the coupling of an additional nonlinear equation to the

Reynolds equations increases dramatically the numerical difficulties encountered

when trying to simulate the melt flow by the turbulence k − l model. These

difficulties either come from the hyperbolic nature of the nonlinear transport

terms or from the square-root of k present in the turbulent viscosity expres-

sion in the Reynolds equations and turbulent kinetic energy equation. Both

of these difficulties, particularly the negative k issue will let fail the Newton-

Raphson iterative scheme (or dramatically slow down it if negative values of k

are set to zero). Therefore a generic transformation method to overcome these

difficulties was proposed and implemented, and our primary numerical experi-

ments have showed that the negative k problem was well solved by the specific

transformation schemes we have chosen. Another big advantage of our generic

transformation method is that we can choose different transformation constants
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to implement different complex transformation schemes without changing any

code implementation.





Chapter 4

Modeling of Gas Convection and
Oxygen Transport in Czochralski Silicon
Crystal Growth Process

4.1 Introduction

D
uring the Czochralski growth process, the gas inside the growth chamber

has to be evacuated after loading a precise amount of polycrystal charge.

The growth chamber is then back-filled with an inert gas to inhibit the entrance

of atmosphere gas into the melt during the growth process. The inert gas in the

growth chamber plays important roles in nowadays crystal growth processes.

The primary role of the inert gas is to protect the molten silicon melt against

oxidation. Another important role of the inert gas consists in evacuating the

evaporated oxygen away from the melt free surface by convection, hence af-

fecting the oxygen distribution in the melt and its concentration in the grown

crystal. Moreover, the inert gas convection also exerts a shear stress on the

melt free surface, therefore driving the melt flow from the crystal/melt/gas tri-

junction to the crucible wall. This shear stress due to gas convection usually

has the opposite direction than the buoyancy and Marangoni forces. Finally, in

modern crystal growth furnaces, “gas flow control” is widely used to adjust the

gas flow pattern near the melt free surface, and hence to increase the gas-phase

mass transfer coefficient as well as the gas-driven thermal effects.

On the other hand, oxygen, as one of the most important impurities in the

Czochralski silicon growth process, strongly affects the final quality of the single

crystal. Oxygen precipitates in the bulk of the wafer are used to act as gettering

centers for metal impurities and the dissolved interstitial oxygen also hardens

the silicon lattice [(Falster and Bergholz 1990)]. However, too high density of

oxygen precipitates will warp the silicon wafer and degrade the characteristics of

the electronic devices [(Moerschel et al. 1977)]. Therefore, a convenient oxygen

concentration is needed to increase the mechanical properties of the silicon

wafer [(Hu and Pateick 1975)]. It is found that an oxygen concentration in the
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range of 5×1017 ∼ 8×1017(atom/cm3) in the silicon wafer is beneficial for the

production of nowadays large-scale integrated circuits [(Mühe et al. 1999)].

The oxygen in the Czochralski silicon crystal originates from the dissolved

silica crucible. During the growth process, a large amount of oxygen dissolves

from the silica crucible into the silicon melt and is transported to the core of

the melt by diffusion due to a violent concentration gradient across a diffusion

layer [(Hoshikawa and Huang 2000)]. Then, the oxygen is transported to the

melt free surface and melt/crystal interface by diffusion and convection. Most

of the dissolved oxygen (more than 99%) evaporates in the form of SiO to the

gas phase at the melt free surface and the rest is incorporated from the silicon

melt into the crystal at the melt/crystal interface by segregation [(Hoshikawa

et al. 1981)]. Some of these processes are illustrated in Figure (4.1).

Figure 4.1: Oxygen transport process.

Numerical simulation of crystal growth becomes an indispensable tool to

understand, predict and optimize the crystal growth process. During the last

three decades, much effort has been made to develop and verify mathemati-
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cal models describing global heat transfer, melt flow, impurity transport and

defect evolution in the silicon crystal. However, gas convection in the furnace

chamber has often been neglected due to the very complicated gas chamber

structure (with associated mesh generation difficulties) and an expensive gas

flow computational cost. With the development of computer power and com-

putational methods, recently more and more attention is being focused on the

effects of gas convection on the global heat transfer, melt convection and oxy-

gen concentration during the crystal growth process. Machida and co-workers

[(Machida et al. 1998)][(Machida et al. 2000)] examined the effects of argon gas

flow rate, furnace pressure and magnetic field pattern on the oxygen concen-

tration in Czochralski silicon crystal growth through experiments, and these

experiments revealed that the gas flow pressure and the inlet gas flow rate

have significant effects on the oxygen concentration in the crystal. Kalaev and

co-workers [(Kalaev et al. 2003)] presented a model of global heat transfer in

Czochralski systems for the growth of silicon crystals taking the inert gas flow

into account by a laminar model. Their numerical results showed that at low

crucible and/or crystal rotation rates, the gas flow is insufficient to generate a

separated flow cell in the melt and only slightly damps out the melt flow driven

by buoyancy and Marangoni forces. However, at high crucible and/or crystal

rotation rates, the melt flow becomes much more sensitive to shear stresses

and a secondary clockwise melt flow cell, which is opposite to the natural melt

convection cell, probably appears beneath the melt/gas interface.

Concerning the modeling and numerical simulation of oxygen transport in

silicon growth, it is well known that oxygen transport in the melt is dominated

by convection and diffusion, and therefore that any physical phenomena and

material properties as well as operating conditions that affect melt convection

and diffusion will change the oxygen distribution both in the melt and the

crystal. In recent years, several experiments and numerical analyses have been

conducted on oxygen transport in the silicon melt. For example, A. Mühe et al

[(Mühe et al. 1999)] used an electrochemical oxygen sensor to measure the oxy-

gen distribution in production-scale Czochralski silicon melts and, comparing

the results with numerical simulations, found that the modeling assumptions

in the literature are not adequate to predict quantitative results. The oxy-

gen transport and its distribution both in the melt and the final crystal are

closely related to gas convection. Let us here recall the work of Machida et al

[(Machida et al. 1998)][(Machida et al. 2000)], Xu [(Xu 1999)], Watanabe et al

[(Watanabe et al. 2002)], Kakimoto et al [(Kakimoto et al. 1996)][(Kakimoto

et al. 2002)], Sim et al [(Sim et al. 2005)] and Li et al [(Li, Li, Imaishi, Akiyama

and Tsukada 2004)][(Li, Imaishi, Akiyama, Peng, Wu and Tsukada 2004)], who
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investigated the effects of Marangoni convection, magnetic fields and gas con-

vection on oxygen concentration in the Czochralski crystal growth system.

In this chapter, we will first present the laminar and mixing-length turbu-

lence models for gas convection and gas heat transfer, and then introduce the

modeling of oxygen transport in the silicon melt taking the turbulent melt flow

into account. Finally, we will focus on the ways to capture the shear stress

along the melt free surface due to gas convection by means of direct and La-

grange Multipliers methods, and the primary results captured by these two

methods will be presented and analyzed. However, the effects of gas convection

on the melt flow, the melt/crystal interface shape, and the oxygen distribution

as obtained on the basis of FEMAG quasi-steady simulations will be delayed

to the next chapter (chapter 5), and will not be presented and discussed here.

4.2 Modeling of gas convection

4.2.1 Governing equations

Employing the same strategy as for melt convection, the energy equation in the

gas domain is solved by applying a decoupled algorithm from gas convection

calculations and any other geometrical unknowns (however, the converged so-

lution is of course coupled). The temperature field T is governed by the energy

equation as follows:

ρcp
DT

Dt
= ∇ ·

[

(k + kt)∇T
]

(4.1)

where
D

Dt
=

∂

∂t
+ U · ▽ (4.2)

is the substantial time derivative operator, ρ, cp, k and kt are the density, spe-

cific heat at constant pressure, thermal conductivity and additional turbulent

thermal conductivity respectively. We always assume that there is no heat

source in the gas domain. It should be noted that the thermal conductivity k

and specific heat cp can be temperature dependent. Such as in the melt, kt is

expressed as follows:

kt =
νt
P tr

(4.3)

with νt the kinetic turbulent viscosity and P tr the turbulent Prandtl number,

which is generally assumed as being quite close to 1.

Similarly as for melt convection, several basic assumptions for the gas flow

have to be firstly introduced as follows: ❶ the argon gas in the furnace chamber

is an ideal gas; ❷ the argon gas is a weakly compressible, Newtonian fluid; and



4.2. Modeling of gas convection 105

❸ the argon gas flow is weakly turbulent. Momentum conservation, which

expresses Newton’s second law, is governed by the equation

ρ
DU

Dt
= ∇ · σ + f (4.4)

where U denotes the velocity field, ρ is the fluid density, σ the stress tensor and

f the body force acting on the fluid. Assuming a zero bulk viscosity by Stokes’

law, the constitutive equation of the stress tensor for a viscous, variable-density

and Newtonian fluid is given by

σij = −pδij + (µ+ µt)(2dij −
2

3
δij
∂Uk
∂xk

) (4.5)

where

dij =
1

2
(
∂Ui
∂xj

+
∂Uj
∂xi

) (4.6)

is the deformation rate tensor, p the pressure, δij Kronecker’s delta, µ the dy-

namic shear viscosity and µt the additional turbulent dynamic shear viscosity.

For the convection in a Czochralski furnace, the gas flow is only subject to the

buoyant force given by:

fi = ρ′gi (4.7)

where ρ′ is the density fluctuation (ρ′ = ρ − ρ0), ρ0 the gas density at given

temperature and pressure, and gi the gravity acceleration.

The continuity equation, which ensures mass conservation, is given by

1

ρ

Dρ

Dt
+ ∇ · U = 0 (4.8)

For an ideal gas

mP = ρRT (4.9)

and

mP0 = ρ0RT0 (4.10)

where m is the gas molar mass, R the ideal gas constant, P and T the pressure

and temperature respectively, while P0 and T0 denote the inlet gas pressure

and temperature.

The pressure P is further decomposed as follows:

P = P0 + p′ (4.11)

with p′ the dynamic pressure due to gas motion. Considering that in the

Czochralski furnace, P ≫ p′, therefore,

P = P0 + p′ ≃ P0 (4.12)
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and

mP0 = ρRT = constant (4.13)

for which, it results that

1

ρ

Dρ

Dt
= − 1

T

DT

Dt
= − 1

T
U · ∇T (4.14)

in the steady case. Plugging equations (4.9), (4.10), (4.11), (4.12) and (4.13)

into the momentum equation (4.4), the continuity equation (4.8), and the en-

ergy equation (4.1), and replacing p′ by p, the final governing equations are

then obtained in tensor form as follows:

m
P0

RT

DU

Dt
= −∇p+∇·

[

(µ+ µt)(2d− 2

3
(∇ ·U)I)

]

+m
P0g

R
(
1

T
− 1

T0
) (4.15)

∇ · U − 1

T
U · ∇T = 0 (4.16)

m
P0

RT
cp
DT

Dt
= ∇ ·

[

(k + kt)∇T
]

(4.17)

where, I is the identity tensor and d the deformation rate tensor defined in

equation (4.6). This is the so-called weakly compressible approximation.

4.2.2 Boundary Conditions

To complete the description of the mathematical model governing the temper-

ature and velocity fields in the gas domain, one must add the conditions that

should be applied to the associated boundaries. The same no-slip boundary

condition described in the previous chapter for melt convection is also applied

to the gas domain solid boundaries, that is:

Ui = Ūi (4.18)

More specifically, all normal and tangential velocity components along the gas

solid boundaries will be imposed to zero, while the azimuthal velocity w on the

crystal/gas interface, internal crucible/gas and external crucible/gas interfaces

is imposed to:

w = Ωr (4.19)

where Ω is the crystal or crucible rotation rate, and r the radial boundary

coordinate. It should be noted that along the melt/gas interface, the order of

magnitude of the melt velocity is much smaller than that of the neighbouring

gas. Therefore, it is reasonable to impose a no-slip boundary condition with
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zero normal and tangential velocities for the gas convection along this interface,

while the azimuthal velocity can be approximated by a Couette flow as follows:

w = Ar +B/r (4.20)

where r is the axial coordinate along the melt/gas interface, and A, B are

constants governed by the following equations:
{

ARs +B/Rs = ΩsRs
ARc +B/Rc = ΩcRc

(4.21)

Here Rs and Rc are the radius of crystal and crucible, while Ωs and Ωc are the

rotation rates of crystal and crucible, respectively. This procedure allows us to

decouple gas flow calculations from melt flow calculations in the algorithm.

A free boundary condition can be imposed along the outlet boundary, which

means that the three velocity components are free while the extra-stress vec-

tor is imposed to vanish. Along the inlet boundary, the radial velocity u and

azimuthal velocity w are imposed to 0. However, the axial velocity profile v

depends on the furnace design and other operating conditions, such as the di-

ameter of the gas inlet sections, the inlet gas pressure and flow rate, etc.. In

order to evaluate this velocity profile, a reasonable assumption is that the inlet

gas flow is steady, laminar and fully developed, and hence that the imposed ve-

locity profile along the inlet section is given by the following analytical solution

(see Figure 4.2 left):

v(r) = −2Q

π

[

1 − (r/R)
2]

R2
(4.22)

where Q is the inlet gas flow rate, R the gas inlet section radius, and r the

axial distance to the furnace symmetry axis. However, in an industry furnace,

there always exists a thin pulling/seeding rod. Taking this pulling rod into ac-

count, the inlet velocity profile along the inlet gate is governed by the following

analytical solution (see Figure 4.2 right):

v(r) = −2Q

π

r2 − a ln r + b
[

r4 + 2br2 + ar2(1 − 2 ln r)
]Rmax

Rmin

(4.23)

where

a =
R2
max −R2

min

lnRmax − lnRmin
(4.24)

b =
R2
max lnRmin −R2

min lnRmax
lnRmax − lnRmin

(4.25)

while Rmin and Rmax = R+Rmin are the radii of the pulling rod and the inlet

section respectively.
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R

Q

(a) Without pulling rod

R

Q

R˙min

(b) With pulling rod: Rmax = Rmin + R

Figure 4.2: Inlet velocity profile

4.2.3 Turbulence models for gas convection

In modern Czochralski crystal growth furnaces, a “gas flow control” device or

“heat shield” is widely used to control the radiation heat transfer to the crystal,

and also the gas flow velocity near the melt free surface, hence changing the

melt flow pattern, heat transfer and oxygen evaporation. However, due to this

apparatus, the local Reynolds number in the gas phase near the melt free surface

is much higher than in any other region of the furnace chamber. Therefore a

laminar model is no longer suitable to predict the gas flow in the vicinity of

this region, and a turbulence model has to be used. Considering the fact that

the mesh size for the gas chamber is quite large, only the mixing-length model

developed in the previous chapter for melt convection has been used to predict

the gas flow at a reasonable computational cost. Also, since the gas domain for

each quasi-steady simulation is fixed, the mixing-length lm can be evaluated a

priori.
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4.3 Modeling of oxygen transport

Oxygen transport in the silicon melt is governed by the following equation:

DC

Dt
= ∇ ·

(

(D0 +Dt)∇C
)

(4.26)

whereD0 is the oxygen diffusion coefficient in the silicon melt, Dt the additional

diffusion coefficient due to turbulence, which can be described as follows:

Dt =
νt
Stc

(4.27)

with νt is the kinetic turbulent viscosity and Stc the turbulent Schmidt number.

Recalling that the Schmidt number Sc is defined as:

Sc =
ν

D0
(4.28)

then the turbulent Schmidt number plays the same role in turbulent species

diffusion as the turbulent Prandtl number Prt in turbulent heat diffusion. It

is important to note that both Sct and Prt are close to 1 (or at least O(1)),

while this is generally not the case for Sc and Pr in a liquid.

The equilibrium dissolution oxygen concentration at the crucible wall re-

ported by Hirata et al [(Hirata and Hoshikawa 1990)] is used for the boundary

condition as follows:

C = 3.99 × 1023 × exp(−2.0×104/T )(atom/cm3) (4.29)

where T is the absolute temperature of the crucible wall.

On the other hand, at the melt/gas interface, a first approximation consists

in imposing the oxygen concentration to be 0 since 99% oxygen is evaporated

and immediately transported away from the melt/gas interface by gas flow.

More accurate conditions taking the adjacent gas flow boundary layer are under

investigation.

The boundary condition along the melt/crystal interface is a little bit com-

plex due to the effect of oxygen segregation along this interface. The oxygen

segregation coefficient is defined as:

k =
Cso
Clo

(4.30)

where Cso and Clo are the oxygen concentrations in the crystal and silicon

melt near the melt/crystal interface. In addition, the oxygen flux across the

melt/crystal interface is governed by the following balance equation:

cosθ(−vpull)Clo −Dl
o

∂Clo
∂n

= cosθ(−vpull)Cso −Ds
o

∂Cso
∂n

(4.31)
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where vpull is the crystal pull rate, θ the melt/crystal interface angle with re-

spect to the horizontal direction, and n the normal to the melt/crystal interface,

while Ds
o and Dl

o are the oxygen diffusion coefficients in the silicon crystal and

melt. Since Ds
o ≪ Dl

o and Cso = kClo, equation (4.31) can be simplified to:

−Dl
o

∂Clo
∂n

= cosθ(−vpull)(k − 1)Clo (4.32)

The segregation coefficient k is an important parameter governing oxygen in-

corporation along the melt/crystal interface. However, the reported results,

which include those calculated from thermodynamic data and those obtained

from the BPS theory of Burton et al [(Burton et al. 1958)] or the theory of

Yen and Tiller [(Yen and Tiller 1991)][(Yen and Tiller 1992)] are inconsistent

and range widely from 0.21 to more than one. In addition, Xu [(Xu 1999)] pre-

sented a theoretical model to investigate oxygen segregation in silicon crystal

growth and showed that k is smaller than 1 but very close to 1. This coeffi-

cient is finally suggested to be 0.8 ± 0.1 by Hoshikawa et al [(Hoshikawa and

Huang 2000)] after comparison of the oxygen concentration in the silicon crys-

tal and the oxygen saturation concentration in the silicon melt by means of

experiments.

In general, it should be pointed out that the oxygen dissolved from the silica

crucible wall diffuses across a thin diffusion layer to the bulk silicon melt due to

a very low D0, and therefore that there exists a strong concentration gradient

in the melt near the crucible wall. At the same time, another similar diffusion

layer near the melt/crystal solidification front also exists when k 6= 1 due to

the same reason. Hence an extremely highly refined mesh in the melt along the

crucible and the solidification front is required if these boundary layers are to be

captured. In particular, capturing the segregation boundary layer when k 6= 1

requires a huge computational effort, which is unfortunately completely lost

since the real value of k is basically unknown. Indeed, as mentioned earlier, the

experimental measurements only show that k is quite close to 1, and probably

a little bit lower than 1, and hence that its effect is reduced. In such a case, it

is better to approximate the solution by neglecting the diffusion layer near the

melt/crystal interface, which is simply obtained by setting k = 1 in equation

(4.30) and (4.32)[(Hurle 1994)].

Similarly, the evaporation of oxygen from the melt/gas interface certainly

will require a high mesh refinement near this interface if any accurate boundary

condition is modeled, since turbulent mixing tends to vanish in the normal

direction close to the free surface.

As a conclusion, improving our simple oxygen transport model represents a

very difficult and challenging task.
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4.4 Capture of the wall shear stress using La-

grange Multipliers

On the melt/gas interface or the “meniscus”, the molten silicon experiences a

viscous shear stress, which is opposite to the effect of buoyancy and Marangoni

forces and drives the melt flow from the crystal/melt/gas tri-junction to the

crucible wall. This shear stress is due to the gas velocity gradient near the

meniscus and can be expressed as follows:

fw = (τ · n) · s (4.33)

where, n and s are the unit normal and tangent vectors along the meniscus,

while τ is the viscous traceless extra-stress tensor defined as follows:

τd = τ − 2

3

(

tr(τ )
)

I (4.34)

with

τ = µ(∇U + ∇UT ) (4.35)

where µ is the gas dynamic viscosity. For the axisymmetric case, the viscous

stress tensor can be expressed as:

τ = µ





τrr τrz τrw
τzr τzz τzw
τwr τwz τww



 = µ



















2
∂u

∂r

∂u

∂z
+
∂v

∂r

∂w

∂r
− w

r

∂u

∂z
+
∂v

∂r
2
∂v

∂z

∂w

∂z

∂w

∂r
− w

r

∂w

∂z
2
u

r



















(4.36)

Hence, the boundary shear stress can be directly calculated from the boundary

velocity gradient as follows:

fw = µ(





τrr τrz τrw
τzr τzz τzw
τwr τwz τww



 · n) · s

= µ
[

− nrnzτrr + (n2
x − n2

y)τrz + nrnzτzz
]

(4.37)

However, another way to capture the boundary shear stress consists in using

the theory of Lagrange Multipliers with the objective of avoiding a complete

boundary layer mesh resolution in the melt and gas phases. The theory of La-

grange Multipliers applied to the Finite Element Method was initially studied
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and implemented in the 1970s to avoid the difficulty of fulfilling essential bound-

ary conditions in elasticity problems [(Babus̆ka 1971)][(Babus̆ka 1973)][(Brezzi

1974)]. Based on the theory of Lagrange Multipliers, a general diffusion model

problem governed by a partial differential equation with a Dirichlet-type bound-

ary condition

−△C + C = f on Ω (4.38)

C = C̄ on Γdu (4.39)

can be re-expressed in classical Galerkin formulation by introducing Lagrange

Multipliers λ as follows:
∫

Ω

(∇C ·∇C′+CC′)dΩ =

∫

Ω

(fC′)dΩ+

∫

Γdu

(λC′)dΓ+

∫

Γdu

λ′(C−C̄)dΓ (4.40)

where Γdu is the boundary with a Dirichlet-type condition, λ =
∂C

∂n
is the

flux along Γdu, and C′ and λ′ are arbitrary test-functions belonging to the

appropriate functional spaces. In this formulation, the test-functions C′ are

no longer constrainted to vanish on the boundary Γdu and hence the essential

boundary conditions (4.39) are imposed in a weak sense on Γdu.

The formal equivalence between the strong formulation (4.38) and the weak

formulation (4.40) can be established for smooth solutions C and λ using an

integration by parts. Applying the theory of Lagrange Multipliers to the Navier-

Stokes equation, then λ becomes the viscous stress exerted by the fluid on the

boundary Γdu:

λ = µ(∇U + ∇UT ) · n = τ · n (4.41)

and the wall shear stress experienced by the Dirichlet-type boundary becomes:

fw = λ · s = (τ · n) · s (4.42)

Finally, the Navier-Stokes equation with Lagrange Multipliers has to be solved

in weak formulation as follows:
∫

Ω

[

ρ(U · ∇U) · U ′ − p∇ · U ′ + (µ(∇U + ∇UT ) : ∇U ′)
]

dΩ (4.43)

=

∫

Γdu

[

(λ− pI) · U ′ + λ′ · (U − Ū)
]

dΓ

Mixed boundary conditions combining normal velocity conditions and tangen-

tial stress conditions, or vice-versa, can be treated in a similar way by use of

Lagrange Multipliers. Additional integrals have to be added to the right-hand

side of equation (4.43) if natural stress boundary conditions are imposed on a

given part of the boundary.
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4.4.1 Discretization and numerical method

As we can see from equation (4.43), for each node with a Dirichlet-type bound-

ary condition, three additional unknowns (the normal components of the vis-

cous stress tensor) are introduced in the Navier-Stokes equation, while the ve-

locity fields of the gas and melt flows are approximated by piecewise-quadratic

interpolations in our discretization and numerical method.

It should be recalled that, in our model, the gas flow is pre-calculated by

assuming a Couette-like velocity distribution along the melt surface. Therefore,

the boundary conditions for gas flow calculation are of essential type on the

meniscus. The melt flow is calculated in a second step, using the shear stress

provided by the gas flow as boundary condition. This approach is devoted

to avoid a useless and expensive coupling between melt and gas flow calcu-

lations. Correspondingly, three additional equations expressing the Dirichlet-

type boundary condition on the meniscus in a weak sense are established in gas

flow calculations. Hence the system represented by equation (4.43) is closed

and can be discretized and solved by a classical iterative technique. If 2nd-order

piecewise polynomials for all three components are chosen, then the final left-

hand side local stiffness matrix with Lagrange Multipliers λ for each element

by Newton-Raphson iterative method will be:

[

A B

BT 0

]

(4.44)

where, A is exactly the same local stiffness matrix (left-hand side) as in equation

(3.33), and B is constructed to make discrete the right-hand of equation (4.43)

from the following matrix L:

L =



















∫

Γdu

(ψ̂1ψ̂1)dΓ

∫

Γdu

(ψ̂1ψ̂2)dΓ

∫

Γdu

(ψ̂1ψ̂3)dΓ

∫

Γdu

(ψ̂2ψ̂1)dΓ

∫

Γdu

(ψ̂2ψ̂2)dΓ

∫

Γdu

(ψ̂2ψ̂3)dΓ

∫

Γdu

(ψ̂3ψ̂1)dΓ

∫

Γdu

(ψ̂3ψ̂2)dΓ

∫

Γdu

(ψ̂3ψ̂3)dΓ



















(4.45)

with the indices referring to the local velocity and Lagrange Multiplier nodes

on the element boundary. Therefore, with an appropriate numbering of the
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velocity nodes, the matrix B writes as follows:

B =



















L 0 0

0 0 0

0 L 0

0 0 0

0 0 L

0 0 0



















(4.46)

If exact nodal velocities are expected to result from gas flow calculations

along the meniscus, the same shape functions are to be used for Lagrange

Multiplier and velocity discretizations on the boundary. Therefore the follow-

ing piecewise 2nd-order polynomial set has been chosen in our first numerical

experiments on the 1D parent element (−1 ≤ ξ ≤ 1) ,










ψ̂1 = (1 − ξ)(1 − 2ξ)

ψ̂2 = 4ξ(1 − ξ)

ψ̂3 = ξ(2ξ − 1)

(4.47)

However, our numerical experiments have shown that strong oscillations are

observed if all three components of λ are approximated by 2nd-order piecewise

polynomials, even for flows at very low Reynolds number. Hence, the way to

discretize the Lagrange Multipliers λ had to be chosen carefully. To avoid the

above-mentioned drawback, we decided to discretize the viscous stresses by a

so-called mixed approximation as follows:

λm = λn(q) + λt(ℓ) (4.48)

where λn(q) is the normal stress vector, which is approximated by piecewise

2nd-order polynomials, while the tangential stress vector λt(ℓ) is approximated

by piecewise linear polynomials. More specifically,

λn(q) = λ
n(q)
i−1 ψi−1 + +λ

n(q)
i ψi + λ

n(q)
i+1 ψi+1 (4.49)

λt(ℓ) = λ
t(ℓ)
i−1φi−1 + λ

t(ℓ)
i+1φi+1 (4.50)

where, (ψi−1, ψi, ψi+1) and (φi−1, φi+1) denote the quadratic and linear shape

functions, respectively, while index (i) refers to the boundary element midside

node and indices (i− 1) and (i+ 1) refer to the element extremity nodes.

If we choose the piecewise 2nd-order polynomial set to be:










ψ̂i−1 = (1 − ξ)(1 − 2ξ)

ψ̂i = 4ξ(1 − ξ)

ψ̂i+1 = ξ(2ξ − 1)

(4.51)
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on the parent element, and the piecewise linear polynomial set to be:

{

φ̂i−1 = (1 − ξ)(1 − 2ξ)

φ̂i+1 = ξ(2ξ − 1)
(4.52)

on the parent element, then we have:

{

φ̂i−1 = ψ̂i−1 + ψ̂i/2

φ̂i+1 = ψ̂i+1 + ψ̂i/2
(4.53)

Also, to define a mixed approximation, the following decomposition was used:

λm = λ− λd (4.54)

where, λ = (λr, λz , λθ) represents the viscous stress approximated by piecewise

2nd-order polynomials for each component, while λd represents the difference

between λ and the mixed approximation λm, which has to be forced to zero in

a weak sense. Therefore,

λd = λ− λn(q) − λt(ℓ)

= (λ
t(ℓ)
i − λ

t(ℓ)
i−1 − λ

t(ℓ)
i+1)ψ̂i

= ∆λ
t(ℓ)
i ψ̂i (4.55)

Based on the above-described mixed discretization method, finally the Navier-

Stokes equation can be represented by the following equation in weak form:

∫

Ω

[

ρ(U · ∇U) · U ′ − p∇ · U ′ + (µ(∇U + ∇UT ) : ∇U ′)
]

dΩ (4.56)

=

∫

Γnu

[

(λ− pn) · U ′ + λ′ · (U − Ū) − λd · U ′ − λ
′d · (U − Ū) + λd · λ′d

]

dΓ

where the test-functions λ
′d are introduced to force λd to vanish in a weak

sense. Therefore, the final left-hand side local stiffness matrix with Lagrange

Multipliers λ using mixed approximation for each element by Newton-Raphson

iterative method will be:
[

A B′

B′T C

]

(4.57)
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where, with an appropriate numbering,

B′ =





























L − n2
yD nxnyD 0

0 0 0

nxnyD L − n2
xD 0

0 0 0

0 0 L − D

0 0 0





























(4.58)

C =











(n2
x + n2

y)n
2
yE −(n2

x + n2
y)nxnyE 0

−(n2
x + n2

y)nxnyE (n2
x + n2

y)n
2
xE 0

0 0 E











(4.59)

E =

∫

Γdu

ψ2
2dΓ ·





0.25 −0.50 0.25

−0.50 1.0 −0.50

−0.25 −0.50 0.25



 (4.60)

D =



















−1

2

∫

Γdu

(ψ̂1ψ̂2)dΓ

∫

Γdu

(ψ̂1ψ̂2)dΓ −1

2

∫

Γdu

(ψ̂1ψ̂2)dΓ

−1

2

∫

Γdu

(ψ̂2
2)dΓ

∫

Γdu

(ψ̂2
2)dΓ −1

2

∫

Γdu

(ψ̂2
2)dΓ

−1

2

∫

Γdu

(ψ̂3ψ̂2)dΓ

∫

Γdu

(ψ̂3ψ̂2)dΓ −1

2

∫

Γdu

(ψ̂3ψ̂2)dΓ



















(4.61)

A large number of simulations were performed with mixed Lagrange Mul-

tipliers in order to calculate the shear stress along the melt free surface and

melt/crucible interface. From these numerical experiments the following con-

clusions can be drawn:

• Special care must be given to the Lagrange Multipliers discretization at

the interface extremities (possibly located on the axis, the melt/crystal/gas

tri-junction and melt/crucible/gas tri-junction points) in order to avoid

some side effects as mass balance locking.

• Even when all these side effects are removed from the model the oscilla-

tions observed with fully quadratic Lagrange Multipliers are reduced but

do not completely disappear when mixed Lagrange Multipliers are used.
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(b) Lagrange Multipliers method

Figure 4.3: Comparison of captured stress tensor along melt/crucible

boundary at µ = 8.22kg/m.s by Direct Method and Lagrange

Multipliers method with 2nd-order approximation.
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(b) Lagrange Multipliers method

Figure 4.4: Comparison of captured stress tensor along melt/crucible

boundary at µ = 8.22 × 10−2kg/m.s by Direct Method and

Lagrange Multipliers method with 2nd-order approximation.
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Figure 4.5: Comparison of captured stress tensor along melt/crucible

boundary at µ = 8.22 × 10−4kg/m.s by Direct Method and

Lagrange Multipliers method with 2nd-order approximation.
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One cause of the above-mentioned problem (but not necessarily the only

one) was identified as resulting from an erroneously continuous discretization

of the Lagrange Multipliers on the interface. Indeed, considering that the La-

grange Multipliers λ are expected to approximate the normal viscous stresses

τ · n, it can immediately be observed that τ is continuous along the interface,

whereas this is not the case for the outer normal n when rectilinear elements

are used to make discrete a curved boundary. Consistency of the numerical

scheme requires that the exact analytic solution of the problem satisfies the ap-

proximate (discrete) equations, which obviously is impossible with continuous

discrete Lagrange Multipliers.

A possible solution to this problem is to use discontinuous Lagrange Mul-

tipliers. However, with a quadratic continuous velocity discretization on the

boundary, the degree of discontinuous Lagrange Multipliers is maximum one

while, as it was already explained, theory shows that the use of a lower degree

such as zero for the Lagrange Multipliers should always give better results.

In fact this provides a quite poor discretization. Moreover, discontinuous La-

grange Multipliers are not well-adapted to continuous pressure discretization.

This is why this approach was not investigated further.

The last approach we investigated in order to calculate interface shear

stresses by means of Lagrange Multipliers was to calculate the complete ex-

tra stress tensor τ (equation (4.35)) on the boundary. Since this tensor is

traceless, 3 of its 5 independent components can be calculated in the same way

as λ was, while the 2 remaining components can easily be estimated in a weak

sense from the velocity tangential derivatives.

Typical results obtained by this method are shown in Figure (4.3), Figure

(4.4) and Figure (4.5), and compared with the results of direct calculations.

Clearly, unacceptable oscillations remain present when Lagrange Multipliers

are used. However, the theory was not investigated further and we believe that

more investigation are needed to draw definite conclusions.

4.5 Conclusions

Gas convection exerts an important effect on the global heat transfer and the

distribution of oxygen both in the silicon melt and silicon crystal during modern

Czochralski crystal growth processes. Therefore the main purpose of this chap-

ter has been devoted to understand the effect of gas convection on the global heat

transfer and oxygen concentration through mathematical and numerical model-

ing, however without investigating dedicated applications to industrial Czochral-

ski growth systems, which will be covered in the next chapter.
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In this chapter, we have firstly summarized the role of the gas flow in nowa-

days Czochralski crystal growth systems, and the role and origin of oxygen trans-

port in Czochralski silicon crystal growth processes, and then we have reviewed

the available experimental observations, modeling tools and numerical experi-

ments on gas convection and oxygen transport in the crystal growth research

community. Next, the laminar and turbulent mathematical models governing

the gas convection, thermal distribution and oxygen concentration have been

developed, and associated boundary conditions for these equations have been in-

troduced. Employing the same strategy as presented in Chapter 3, the Finite

Element numerical method on unstructured meshes was used to solve the gas

convection and oxygen transport problems, and the velocity and temperature

fields were solved in a decoupled way for gas flow calculations. Moreover, the

oxygen transport equation is solved only after all the unknowns governing the

Czochralski growth system have converged to a final solution.

In order to analyze the effects of the gas flow on silicon melt flow, oxygen

distribution and global heater transfer, the rest of this chapter focused on in-

vestigating appropriate numerical approaches to capture the wall shear stress

exerted by the gas flow and experienced by the silicon melt. First, we have

introduced and implemented a direct way to capture the viscous stress tensor

along any boundary. Next, we have tried to capture the viscous stress by means

of Lagrange Multipliers through varied discretization approaches. The viscous

stresses captured by these two methods have been compared and discussed. Our

primary numerical experiments have shown that, at a very small Reynolds num-

ber, the viscous shear stresses obtained by these two methods are very similar.

However, at a medium or large Reynolds number, the Lagrange Multipliers

failed to capture the stresses due to strong oscillations of the normal stress.

Further investigations are still needed to draw definite conclusions.

Nevertheless, the interest of Lagrange Multipliers remains high since this

technique could provide an efficient method to avoid a complete boundary layer

resolution near the interface in turbulent flows. Indeed, relative stress varia-

tions across the boundary layer remain much more limited than relative velocity

variations, because stresses are momentum fluxes and that the momentum which

can be communicated to a very thin boundary layer is low. This is way a huge

number of numerical experiments were conducted in order to capture the bound-

ary shear stress in the melt along the melt/gas or melt/crystal interface by the

Lagrange Multipliers technique. Unfortunately strong oscillations appeared in

all cases and the method still cannot be used without important improvements.

Finally, it should be pointed out that we did not conduct numerically inves-

tigations on the effect of the gas flow on the way oxygen evaporates at the melt



122 4. Modeling of Gas Convection and Oxygen Transport

surface. However this effect is important and further research should be devoted

to investigate this effect.



Chapter 5

Industrial Applications of Czochralski
Silicon Crystal Growth Process

5.1 Introduction

The FEMAG software has switched from FEMAG-1 to FEMAG-2 genera-

tion on the basis of the use of unstructured meshes. Recalling that struc-

tured quadrilateral meshes were used in the previous FEMAG generation, all

the modules associated with structured meshes had consequently to be adapted

to unstructured meshes coordinately. It is necessary and important to validate

this adaptation by means of comparisons with literature and available experi-

mental results.

The main purpose of this chapter is devoted to the numerical application

of all the developments presented in the previous chapters about the sim-

ulation of industrial Czochralski crystal growth processes. First of all, the

FEMAG global modeling concepts and techniques will be summarized, since

these concepts and techniques as developed by [(Dupret et al. 1986a)][(Dupret

et al. 1990)][(Kakimoto et al. 1991)][(Van den Bogaert and Dupret 1997a)]

[(Van den Bogaert and Dupret 1997b)][(Assaker et al. 1997)] in the past three

decades at CESAME form the basis of all our numerical simulations. Then we

will focus on the industrial application of these methods to Czochralski silicon

growth by means of turbulent mixing-length (or m−l), enhanced mixing-length

and k− l models without taking gas convection into account. The influences of

the modeling parameters on the growth process, and particularly on melt con-

vection, melt heat transfer and melt/crystal interface shape will be presented.

Finally, in order to fully analyze the effect of inert argon gas convection on

the Czochralski growth process, a series of numerical experiments taking gas

convection into account will be performed with varied growth conditions and

operating parameters. Comparisons of the simulation results (such as heater

power, temperature difference in the silicon melt, etc.) with literature and avail-

able experimental observations will also be presented, and the influences of gas

convection on the global heat transfer, melt convection, interface position, and
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oxygen concentration in the silicon melt for different operating conditions will

be detailed and conclusions will be drawn.

5.2 Global modeling and iterative strategy

Numerical simulation of crystal growth processes requires use of a global mod-

eling technique in order to accurately predict the entire thermal behavior of

the growth system. The global simulation technique consists in analyzing heat

transfer taking all the furnace constituents (or macro-elements) into account.

From physical aspects, there are three types of macro-elements in the crystal

growth system:

❶ Radiative macro-elements, which are assumed to be transparent and

where the heat transfer is essentially radiative;

❷ Solid macro-elements, which are one- or two-dimensional, and result

from the discretization of solid components such as heater, insulator,

crucible, etc., where heat transfer is due to conduction;

❸ Two-dimensional convection macro-elements, where both the con-

ductive and convective heat transfer should be considered, such as the

melt and gas macro-elements. The interface between the different macro-

element forms the furnace skeleton.

Global simulations can be either quasi-steady or time-dependent. In quasi-

steady simulations, the time dependency of the furnace geometry, and of the

heat and mass transfer are not taken into account in the governing equations.

Only the release or absorption of latent heat proportionally to the imposed

pulling rate and the associated modifications of the melt/crystal interface are

taken into account. Although quasi-steady simulations provide cheap and valu-

able information for any selected specific Czochralski crystal growth stages,

however only time-dependent simulations can provide full information on the

entire crystal growth process, including poly-crystal melting, seeding, conical

growth, shouldering, body growth, tail-end stage and after growth cooling. The

major interests of time-dependent simulations are firstly to capture the tran-

sient effects during critical growth stages, such as the shouldering or tail-end

stages, and secondly, that developing efficient control strategies requires one

to analyze the dynamic response of the system to perturbations of the input

parameters [(Van den Bogaert and Dupret 1997a)], such as heater power or

pull rate. In time-dependent simulations, besides the transient effects of heat
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transfer in all the furnace components (including conductive and convective

heat transfer in the melt/crystal and gas macro-elements), all the geometrical

effects induced by crystal lengthening and crucible lift are also taken into ac-

count, together with the heat capacity of every constituent, the motion of the

solid-liquid and melt/gas interfaces, etc.. Therefore, time-dependent simula-

tions are not only very complex, but also computationally expensive.

Global simulations also can be performed either in a direct or in an in-

verse way. In a direct problem, the heater power is imposed as a function

of time, while the crystal shape is calculated by means of the crystal radius

evolution at the tri-junction. On the contrary, in an inverse problem, a nat-

ural process output is given (the crystal diameter history), while the heater

power evolution is calculated. In this chapter, only the inverse problem will

be considered due to the fact that its modeling is much easier to handle than

for a direct problem [(Dupret et al. 1990)]. In the next section, we will focus

on our numerical experiments and industrial applications by means of efficient

inverse global quasi-steady iterative algorithms. The full description of these

algorithms can be found in the above-mentioned corresponding literature and

will not be detailed here. However, to better understand the global iterative

strategies employed in this chapter, a quick summary is useful.

The Czochralski global quasi-steady algorithm is based on a decoupled,

global-local iterative strategy. Typically, a quasi-steady simulation starts by

performing a static condensation on all the furnace macro-elements (except the

radiative macro-elements). By this way, all the macro-element nodal unknowns

are expressed as a function of the macro-element boundary unknowns. The next

step consists in assembling the different macro-element contributions, thus lead-

ing to a nonlinear system of equations governing the skeleton temperatures and

the heater power, which can be iteratively solved by using Newton-Raphson’s

method. The computed skeleton temperatures and heat fluxes can then be used

as thermal boundary conditions for the melt/crystal and gas macro-elements,

where the local nonlinear equations governing the convection and heat trans-

fer described in the previous chapters are iteratively solved (in the case of the

melt/crystal macro-element, the solid/liquid interface position will also be com-

puted). Iterations are pursued until the local tri-junction temperature matches

the melting temperature. When convergence is reached, back-substitution is

performed in order to recover the temperature field inside the furnace con-

stituents.

In the case of a dynamic simulation, the procedure is subdivided in two

principal steps. First, the melt flow is calculated at several growth stages

by means of quasi-steady simulations. Secondly, interpolation between these
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quasi-steady results provides the melt flow at every time step of the dynamic

simulation. At each time step, calculations are iteratively performed in a similar

way as in the quasi-steady case (without however melt flow calculations since

flow interpolation is applied in order to reduce the computational cost).

5.3 Description of the industrial Leybold EKZ

1300 Czochralski silicon puller

All our numerical simulations are based on the industrial Leybold EKZ-1300

Czochralski silicon puller for the growth of 100mm diameter crystals. The

main reason to select this Czochralski silicon puller is that many numerical and

experimental results based on this apparatus can be found from the literature

[(Seidl 1995)][(Dornberger et al. 1997)][(Vizman et al. 2000)][(Gräbner et al.

2001)][(Kalaev et al. 2003)]. The global sketch of this puller with a 300mm

diameter crucible and 50mm-length single crystal is illustrated in Figure (5.1).

The material properties of all the corresponding furnace constituents are given

in Table (5.1), and the growth operating parameters used in all our simulations

are summarized in Table (5.2), while the other growth parameters not listed

in this table are varied in the calculations. The argon properties are presented

in Table (5.3) when the inert argon gas convection is taken into account, while

the thermal properties of silicon melt and crystal are summarized in Table

(5.4) (where the molten silicon dynamic viscosity and thermal conductivity are

approximated as constants).

5.4 Global quasi-steady simulations with turbu-

lence mixing-length model on two different

meshes

In order to analyze the quality of our global quasi-steady simulation results

with turbulence models, a series of numerical experiments on two finite el-

ement meshes with different densities (particularly the densities along the

melt/crucible, melt/gas and melt/crystal interface), are performed. The coarse

mesh in Figure 5.2(a) (left) has 1423 elements (4148 nodes) in the silicon melt,

and 496 elements in the solid crystal, while the slightly refined mesh in Figure

5.2(a) (right) has 2752 elements (7744 nodes) and 843 elements in the silicon

melt and solid crystal, respectively. The major differences between these two

meshes is that the density along the melt/crucible, melt/gas and melt/crystal
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Figure 5.1: Global sketch of the Czochralski silicon crystal 4′′ puller (Leybold

EKZ 1300). Left: the different puller constituents,

Right: global finite element mesh
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Quartz

Thermal conductivity 4.0W/mK

Specific heat 1000.0J/(kgK)

Emissivity 0.85

Graphite

Thermal conductivity 76.3 × e(−6.695×10−4T )W/mK

Specific heat 2100.0J/(kgK)

Emissivity 0.8

Felt

Thermal conductivity 7.679e−3 + 5.449e−5T − 4.35e−11T 3W/mK

Specific heat 1000.0J/(kgK)

Emissivity 0.9

Molybdenum

Thermal conductivity 10W/mK

Emissivity 0.18

Steel

Thermal conductivity 15W/mK

Specific heat 470.0J/(kgK)

Emissivity 0.45

Table 5.1: Material properties of the furnace constituents: Steel (enclosure

walls, pulling rod),Quartz (crucible), Felt (insulators),

Molybdenum (heat shield),Graphite (crucible holder, enclosures,

heater, heat shield holder)

Crystal diameter 4′′

Crystal rotation rate 20 rpm

Coolant temperature on the wall 300K

Gas reference pressure 15 mbar

Table 5.2: Operating parameters of the growth process

Conductivity 0.01 + 2.5 × 10−5T (W/m · K)

Specific heat 521(J/K · kg)

Dynamic viscosity 5.0 × 10−5(kg/m · s)
Gas constant 8.314(J/K · mol)

Table 5.3: Physical properties of argon gas

interfaces in the refined mesh is nearly tripled with respect to the coarse mesh,

although the mesh densities in the silicon melt core are only slightly different

in these two meshes. Detailed comparisons of the simulation results based on



5.4. Quasi-steady simulations on two different meshes 129

Silicon melt

Density 2.530 × 103(kg/m3)

Dynamic viscosity 8.22 × 10−4(kg/m · s)
Thermal expansion coefficient 1.32 × 10−4(K−1)

Latent heat of fusion 4.140 × 103(J/m3)

Melting temperature 1685(K)

Thermal conductivity 42.9(W/m · K)

Specific heat 942.727(J/kg · K)

Emissivity 0.3

Wetting angle 11o

Solid silicon

Density 2.34 × 103(kg/m3)

Thermal conductivity 21.6(W/m · K)

Thermal expansion coefficient 5.20 × 10−6(K−1)

Emissivity 0.7

Table 5.4: Silicon melt and crystal physical properties

Tmax(K) Tmin(K) umax (m/s) umin (m/s)

coarse mesh 1737.73 1109.76 0.02578 -0.01744

refined mesh 1738.65 1109.92 0.04169 -0.02036

vmax (m/s) vmin (m/s) wmax (m/s) wmin (m/s)

coarse mesh 0.01537 -0.02583 0.1047 -0.0948

refined mesh 0.02428 -0.0260 0.1047 -0.0960

Ψmax (m3/s) Ψmin (m3/s) Pmax (pa) Pmin (pa)

coarse mesh 2.11e-5 -2.78e-6 47.3277 -553.6187

refined mesh 2.07e-5 -3.08e-6 40.6181 -562.0627

kmax (m2/s2) µtmax (kg/ms) heater power deflection

coarse mesh 7.15e-4 0.19731 58.13 KW 1.6700mm

refined mesh 7.84e-4 0.18293 58.04 KW 1.8090mm

Table 5.5: Comparisons of computed results on two meshes with

mixing-length model

the two different meshes are given in Table (5.5), and the comparison of the

temperature profiles, and stream function contour lines in the silicon melt can

be found in Figure (5.2(b)) and Figure (5.2(c)), respectively. One can see that

the computed melt flow, temperature field and melt/crystal interface deflection

(as obtained using the mixing-length model), and the heater power required to

grow the prescribed crystal are quite similar for these two different meshes.
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(a) Left: coarse mesh / Right: refined mesh
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(b) Temperature profiles by steps of 5K, Left: coarse mesh / Right: refined mesh

(c) Stream functions by step of 1.0e-6m3/s, Left: coarse mesh / Right: refined mesh

Figure 5.2: Comparison of results on two different meshes. The crystal

pulling rate is 1mm/min, the crystal/crucible rotation rates are

20/-5 rpm,while gas convection is not taken into account. The

mixing-length models is used.
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(a) Mixing-length model (b) k − l model

Figure 5.3: Stream function contour lines by steps of 1cm3/s

obtained by the mixing length and k − l models.

5.5 Global quasi-steady simulation with turbu-

lence mixing-length and k − l models

This section is devoted to comparing the melt convection and temperature re-

sults obtained by using the turbulence mixing-length and k−l models developed

in the previous chapters. First of all, two global quasi-steady simulations with

standard mixing-length and k− l models will be performed, and the results pre-

dicted by these two models will be shortly analyzed. Then we will examine the

effect of the modeling parameters on the melt flow and melt/crystal interface

deflection based on our calculations by means of the enhanced mixing-length

model. Finally, three additional calculations will be conducted using the generic

k − l transformed method in order to simulate k − l,
√
k and log k schemes.

For all the calculations in this section, the growth conditions and parameters

are fixed as follows: the pulling rate is 1mm/min, and the crystal/crucible

rotation rates are 20 rpm/-5 rpm. When gas convection is taken into account,

the gas flow rate is chosen to be 1500 Standard Litre per Hour (SLH), and the

gas reference pressure is fixed at 15mbar.

The streamfunction contour lines predicted by the standard mixing-length

and k − l models are given in Figure (5.3). The flow pattern in the melt ob-

tained by these two models is quite similar, and is basically constituted by

two primary counter-clockwise vortices. One primary vortex is located just

beneath the melt/crystal interface due to the rotation of the crystal and the
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effect of Coriolis force, while another primary vortex is located under the melt

free surface, as due to the combined effects of buoyancy and crucible rotation.

These two vortices tend to merge into a single one when increasing the von

Karman modeling parameter, as observed by Assaker [(Assaker 1998)] through

numerical experiments. Our numerical experiments (as will be seen afterwards)

show that decreasing the crucible rotation rate results in the same effect. Fur-

thermore, there are two or three additional secondary clockwise vortices under

these specified growth conditions. One of these vortices is located under the

melt free surface but close to the melt/gas/crucible tri-junction point (upper

right corner in the melt) due to the Marangoni effect, while a second vortex is

located between the two primary counter-clockwise vortices. The third vortex,

as due to centrifugal force, is only observed with the k− l model just under the

melt/crystal interface. Generally speaking, the melt/crystal interface predicted

by the k − l model tends to be more concave from the crystal. Finally, the in-

tensities of all the vortices predicted by the mixing-length model are stronger

than that of the k− l model due to a lower turbulent viscosity obtained by the

mixing-length model.

In order to examine the influences of the modeling parameters on the melt

flow and the melt/crystal interface deflection, four additional calculations were

performed by means of the enhanced mixing-length model without taking gas

convection into account. According to equation (3.91) in Chapter 3, the bound-

ary layer thickness of a rotating disk is a linear function of 1/
√
fd, where fd is

the rotation rate of the crystal or the crucible in Hertz. Therefore, the model-

ing parameter Ps along the melt/crystal interface is chosen to be uniform and

equal to half the parameter Pc along the crucible wall, while the parameters

Cs and Cc are fixed at 0.41 for all the four calculations.

The contour lines of the distance to the boundary d, the stream function ψ

and the turbulent viscosity µt with Ps = 4.1 × 10−1m and Ps = 4.1 × 10−3m

are presented in Figure (5.4). One can observe from Figure 5.4(b) that the flow

pattern in the silicon melt core is much more complicated due to the damped

turbulent viscosity with much smaller Ps and Pc, and that an additional clock-

wise vortex is found near the primary vortex due to the rotation of the crys-

tal. Coordinately, the temperature difference in the silicon melt increases from

52.731K to 53.90K (as compared to 52.73K in the reference simulation) as a

consequence of the reduced turbulent heat conductivity and damped interac-

tion of the two primary vortices due to crystal/crucible rotational effects and

the buoyancy. However the main characteristics of the melt flow near the melt

boundaries keep quite the same.

The influence of the modeling parameters on the melt/crystal interface is
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(a) Distance to boundary by steps of 0.75mm

(b) Stream functions by steps of 1.2e − 6 m3/s

0.1323 kg/ms0.084 kg/ms0.1973 kg/ms0.1800 kg/ms

(c) turbulent viscosity by steps of 8.25e − 3 kg/ms

Figure 5.4: Use of the enhanced mixing-length model: contour lines of the

distance to the boundary, the stream function and the turbulent

viscosity with different modeling parameters:

Pc = 2 × Ps = 8.1 × 10−1m (left), Pc = 2 × Ps = 8.1 × 10−3m

(right). The crystal pulling rate is 1mm/min, and the

crystal/crucible rotation rates are 20/ − 5rpm.
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given in Figure (5.5). Our preliminary numerical experiments show that de-

creasing Ps and Pc lets the melt/crystal interface deflection become less concave

or more convex to the crystal, and also that interface deflection is much more

sensitive to these parameters at low Ps and Pc.
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Figure 5.5: Effect of the modeling parameters Ps and Pc (in meters) on the

melt/crystal interface shape with enhanced mixing-length model.

It should be observed that the turbulent viscosities obtained by the mixing-

length model (Figure 5.4) and the k − l model (Figure 5.6) are quite different,

together with the resulting melt/crystal interface deflections. Whereas the ef-

fect of the core turbulent viscosity is known to be limited in Czochralski melt

flows, the role of the melt/crucible and melt/crystal interface boundary layers

appear to be crucial. Since our Lagrange Multipliers technique failed to cor-

rectly capture the melt shear stress along these interfaces with an underresolved

boundary layer mesh, additional (and very expensive) numerical experiments

should be conducted with the appropriate mesh refinement in the boundary

layers before drawing definite conclusions on the model selection.

Finally, three additional global quasi-steady simulations were performed

based on our generic k − l transformed method in order to compare k − l,
√
k

and log k schemes, and all our calculations with different transformed schemes
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(a) Contour lines of turbulent kinetic energy k (b) Contours lines of turbulent viscosity µt

Figure 5.6: Quasi-steady simulation results with log k transformation

scheme.a. Turbulent kinetic energy k by steps of 1.0 × 10−5m2/s2

b. Turbulent viscosity µt by steps of 1.5 × 10−2m2/s2.

gave very similar results when compared with the standard k− l model without

transformation. The contour lines of the turbulent viscosity µt and turbulent

kinetic energy with log k scheme are presented in Figure (5.6) (the results ob-

tained by other transformed schemes are not illustrated here due to the very

similar results obtained). It should be noted that more Newton-Raphson it-

erations are needed to reach convergence when
√
k or log k scheme is chosen,

particularly when the initial guess value is too far away from the exact solution,

although the negative k problem is well solved by the
√
k or log k transformation

scheme proposed.

5.6 Influence of the pulling rate on the melt and

crystal interface

In order to examine the influence of the pulling rate on the melt/crystal in-

terface deflection, four global quasi-steady numerical experiments taking melt

convection into account (but without gas convection) are performed with the

pulling rate set to 1mm/min, 1.5mm/min, 1.8mm/min and 2.0mm/min,

while all other operating conditions and parameters are fixed. The interface

deflection for these different pulling rates is given in Figure (5.7). One can

observe that the interface is more convex to the melt when a lower pulling

rate is applied to the crystal. This phenomenon is related to the heat balance
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between the solid and the liquid across their interface. Moreover, the temper-

ature difference in the silicon melt for the four given growth rates is 53.65K,

49.56K, 45.90K and 44.15K, respectively, which means that the temperature

distribution in the silicon melt is more homogeneous with a larger pulling rate,

and therefore that a weaker natural convection due to buoyancy and a more

convex melt/crystal interface are observed. This conclusion was also confirmed

by other experimental observations and numerical simulations. Finally, in prac-

tice, in inverse simulations, a larger crystal growth rate always results in a lower

heater power to keep the same crystal radius, and hence the expected heater

power will be slightly decreased with an increasing pulling rate. Our numer-

ical experiments on the heater power required to grow the prescribed crystal

provide 58.12KW, 57.10KW, 56.23KW and 55.81KW for the four given growth

rates accordingly. The results also well agree with the measured experimental

result from [(Seidl 1995)] with a heater power of 52.0KW and a growth rate of

1.5mm/min.
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Figure 5.7: Influence of crystal growth rate on the melt

and crystal interface shape.
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5.7 Influence of convection on the Czochralski

crystal growth process

In order to fully analyze the influence of the gas flow on the global heat transfer,

melt convection, oxygen distribution, and melt/crystal interface position, a

series of calculations are performed by means of FEMAG inverse global quasi-

steady algorithm. That is, the temperature field and heater power necessary

to grow the prescribed crystal shape are accurately computed taking radiative,

conductive and convective heat transfer into account. It should be noted that

all our numerical experiments are performed based on the refined mesh, which

can be found on the right of Figure 5.2(a), while the mixing-length turbulence

model was chosen when gas convection and/or melt convection are taken into

account. These series of calculations can be grouped as follows:

• Group 1: Global quasi-steady calculations without gas and melt convec-

tion, with melt convection only, and with both uncoupled and coupled

gas/melt convection. The main purpose of this group of numerical exper-

iments is to examine the temperature distribution in the silicon melt with

or without taking melt convection and gas convection effects into account

during the growth process. Comparisons of the melt/crystal interface po-

sition and the heater power required to grow the prescribed crystal will

also be presented.

• Group 2: Global quasi-steady calculations at different gas flow rates

with fixed or varied crucible rotation rate, but with all the other operating

parameters remaining unchanged. The main purpose of these calculations

is to fully examine the gas convection effect on the Czochralski silicon

growth process. We are particularly interested in the gas convection effect

on the melt flow pattern, the melt/crystal interface deflection and the

oxygen distribution in the silicon melt at different gas flow rates and

varied crucible rotation rates.

5.7.1 Influence of melt/gas convection on the Czochralski

silicon growth process

The main purpose of this section is to examine and discuss the influences of

convection on the Czochralski silicon growth process based on the calculated

results of group 1. In this group, four numerical experiments are performed:

global quasi-steady calculation with pure heat conduction, with melt convection

only, and with uncoupled and coupled melt/gas convection. The temperature
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Figure 5.8: Simulation group 1. Temperature profiles in the silicon melt by

steps of 5K. The crystal pulling rate is 2mm/min, the

crystal/crucible rotation rates are 20/-5 rpm, the argon gas

pressure and flow rate are 15 mbar and 1500 SLH respectively,

and the crystal/crucible rotation rates are 20/ − 5rpm.

profiles of these numerical experiments in the silicon melt are given in Figure

(5.8), while the corresponding melt/crystal interface deflection, and the tem-

perature profile along the melt/crucible and melt/gas interfaces are illustrated

in Figure (5.9). The calculated temperature distribution in the entire furnace

taking into account the coupled silicon melt and argon gas convection is pre-

sented in the left part of Figure (5.10), while the argon velocity vectors in the

entire gas chamber are plotted on the right. Very similar results can be found

in [(Kalaev et al. 2003)].
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Figure 5.9: Simulation group 1. Interface position and temperature profile

along the melt/crucible and melt/gas interfaces. The crystal

pulling rate is 2mm/min, the crystal/crucible rotation ates are

20/ − 5rpm, and the argon gas pressure and flow rate are 15 mbar

and 1500 SLH, respectively.
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Figure 5.10: Simulation group 1. Temperature distribution and velocity

vectors in the entire furnace: pulling rate is 2mm/min, argon

gas pressure and flow rate are 15 mbar and 1500 SLH,

respectively, the crystal/crucible rotation rates are 20/-5 rpm.
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From Figures (5.8) and (5.9), one can see that melt convection has great

influence on the temperature distribution in the silicon melt, the melt/crystal

interface deflection, and the temperature profile along the melt/crucible and

melt/gas interfaces as well. When pure heat conduction is assumed, an over-

predicted temperature difference (∆T = 117.78K) with Tmax = 1802.78K

in the silicon melt is found. In this case, the heater power is also too large

(W = 62.5KW) due to the over-predicted temperature profile in the silicon

melt. When melt convection is taken into account, a much more reasonable

and realistic temperature difference (44.15K) in the melt is found, which (i)

is well agreeing with the numerical result (45K) from Gräbner et al [(Gräbner

et al. 2001)] as obtained by using the low Reynolds number turbulence model

of Chien [(Chien 1982)], and ii) is a little bit lower than the experimental

difference (50K) reported in [(Seidl 1995)]. When gas convection is taken into

account, our numerical experiments show that the temperature differences in

the melt with uncoupled and coupled melt/gas convection are 44.78K and

45.50K respectively, whereas the result of Kalaev et al [(Kalaev et al. 2003)]

for the same growth parameters with coupled gas convection was found to be

30K, which the authors believe as underestimated.

On the other hand, our numerical results for melt/crystal interface deflection

with pure heat conduction, with melt convection only, and with uncoupled and

coupled melt/gas convection are found to be 15.467mm, 12.346mm, 11.681mm

and 11.707mm, see Figure (5.9(a)), while the heater power necessary to grow

the prescribed crystal shape is 62.5KW, 55.81KW, 56.40KW and 56.43KW,

respectively, which is in good agreement with the experimentally required power

of 62KW for this puller[(Dornberger et al. 1997)], but with nearly 20% difference

with respect to the simulation result (67.05KW) of Kalaev et al [(Kalaev et al.

2003)]. The over-predicted result from Kalaev et al can mainly be attributed to

the underestimated temperature difference in the silicon melt, as the authors

stated. Therefore, based on the numerical experiments of group 1, it can be

concluded that:

❶ The quasi-steady global heat transfer model with the mixing-length tur-

bulence model well predicts the temperature difference in the silicon melt,

while the pure heat conduction global model does not.

❷ For these growth conditions, gas convection has a very limited influence on

the temperature difference in the silicon melt, the melt/crystal interface,

and the heater power as well, whether the melt convection is, or not,

coupled with gas convection.
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5.7.2 Influence of gas convection on Czochralski silicon

growth process under varied crucible rotation and

gas flow rate

The purpose of the numerical experiments of group 2 is to fully examine the

various effects of the gas flow rate on the Czochralski silicon growth process at

different crucible rotation rates, such as typically the global heat transfer, the

melt convection, the oxygen distribution, the melt/crystal interface deflection,

etc.. To achieve this goal, a set of numerical experiments are performed with the

gas flow rate set at 500 SLH, 1500 SLH, 3000 SLH and 4500 SLH, respectively,

and the crucible rotation rate chosen to be -1 rpm, -5 rpm and -10 rpm for each

gas flow rate. Moreover, for the gas flow rate of 1500 SLH, three additional

simulations are performed with the crucible rotation rate set to -2 rpm, -3

rpm and -7.5 rpm, respectively. All the other operating conditions and growth

parameters remain unchanged for all the numerical experiments in this section.

The temperature distributions in the whole Czochralski puller at different

flow rates with the crucible rotation rate of -5 rpm are presented in Figure

(5.11), and the correspondent stream function contourlines in the convection

macro-elements (gas and silicon melt) are given in Figure (5.12). The effects

of gas convection on the global heat transfer can be observed in Figure (5.11),

where it appears that the temperature gradient in the upper growth chamber

is dramatically increased with an increasing gas flow rate. In particular, strong

thermal boundary layers are found along the boundary of the pulling rod and

the crystal, and along the melt/gas free surfaces. On the other hand, the gas

flow pattern, particularly in the upper growth chamber, is quite sensitive to the

gas flow rate, which can be observed from Figure (5.12). At a low flow rate,

there exists only one primary clockwise vortex in the upper growth chamber,

but another counter-clockwise vortex appears near the puller shoulder when the

flow rate is increased. When further increasing the flow rate, the primary vortex

becomes counter-clockwise, and two secondary clockwise vortices coexist on the

left- and right-hand side of the heat shield. However, the major characteristics

of the gas flow pattern at the bottom part of the growth chamber remain

unchanged, except the intensities of those vortices.

However, the influence of gas convection on the temperature profile along

the melt/crucible and melt/gas interfaces is very limited, which can be ob-

served from Figure (5.13) and Table (5.6). When the gas flow rate is increased

from 500 SLH to 1500 SLH and 3000 SLH, the maximum temperature along

the melt/crucible interface is found to be 1729.6 K, 1730.5 K and 1731.0 K,

respectively. When further increasing the flow rate to 4500 SLH, the maximum
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500 SLH 1500 SLH 3000 SLH 4500 SLH

Tmax(K) 1729.6 1730.5 1731.0 1729.7

Tmin(K) 1102.3 1095.8 1090.2 1085.8

∆T (melt) 44.6 45.5 46.0 44.7

Table 5.6: Comparisons of computed temperature results along melt/crucible

and melt/crystal interface with varied argon gas flow rates. The

crystal rotation rate is 20 rpm and crucible rotation rate is -5 rpm.

temperature along the melt/crucible interface decreases to 1729.7 K, but the av-

erage temperature along the crucible bottom is slightly increased, which can be

observed in Figure (5.13(a)) or Figure (5.13(b)). However, the average temper-

ature along the melt/gas interface at different gas flow rates behaves differently

and is much more complicated than on the melt/crucible interface, although at

a low crucible rotation rate, both the maximum and average temperature along

the melt/crucible and melt/gas interface increase with increasing gas flow rate,

as shown in Figure (5.22(b)).

The melt/crystal interface for different gas flow rates with the crucible ro-

tation rate at -1 rpm, -5 rpm and -10 rpm is presented in Figure (5.14(a)),

Figure (5.14(b)) and Figure (5.15(a)), while a comparison of the melt/crystal

interfaces obtained for a gas flow rate at 1500 SLH with varied crucible rota-

tion rate is given in Figure (5.15(b)). One can observe that interface deflection

is much more sensitive to the gas flow rate at a higher crucible rotation rate,

while for a specified crucible rotation rate, the interface becomes less con-

vex with an increasing gas flow rate, which is consistent with the results in

[(Kalaev et al. 2003)]. Generally speaking, the melt/crystal interface deflection

decreases with increasing crucible rotation rate. However, when gas convection

is taken into account, the melt/crystal interface shape becomes more complex

due to the combination of forced convection, buoyancy and gas shear stress,

and there is no direct proportionality between the crucible rotation rate and

the melt/crystal interface shape, since in particular intersections are found be-

tween the melt/crystal interfaces at different crucible rotation rates, see Figure

(5.15(b)).
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Figure 5.11: Simulation group 2. Temperature distribution by steps of 100K in

the entire Czochralski puller: the crystal growth rate is 2mm/min,

the argon gas pressure is 15 mbar, and the crystal/crucible rotation rates are 20/-5 rpm.
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Figure 5.12: Simulation group 2. Stream function contourlines by steps of 0.001m3/s (left)

and 0.0025m3/s (right): the crystal growth rate is 2mm/min, the argon gas

pressure is 15 mbar, and the crystal/crucible rotation rates are 20/-5 rpm.
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(b) Crucible rotation rate at -10 rpm.

Figure 5.13: Simulation group 2. Temperature profiles along the

melt/crucible and melt/gas interfaces at different crucible

rotation rates with varied argon gas flow rates. The crystal

rotation rate is 20 rpm and crystal pulling rate is 2mm/min.
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(b) Crucible rotation rate at -5 rpm

Figure 5.14: Melt/crystal interface shape at different gas flow rates and

crucible rotation rates. The crystal pulling rate is 2mm/min.
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Figure 5.15: Melt/crystal interface shape at different gas flow rates and

crucible rotation rates. The crystal pulling rate is 2mm/min.
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The forced argon gas flow also exerts a shear stress on the silicon melt,

and therefore influences the melt/crystal interface, together with the convec-

tion and oxygen distribution in the silicon melt. The captured shear stress

along the melt/gas interface at different flow rates is given in Figure (5.16(a)).

One can see that the maximum boundary shear stress is exactly beneath the

heat shield, where the highest gas velocity gradient is encountered. It should

be noted that the location where the maximum boundary shear stress occurs

is slightly displaced and closer to the melt/crucible/gas triple point with in-

creased flow rate. Very similar results were obtained by Kalaev et al [(Kalaev

et al. 2003)]. However, the results of Kalaev are slightly lower (3.40% at flow

rate 1500 SLH, and 10.05% at 3000 SLH) than the results we have captured.

One possible reason is that a uniform inlet velocity is assumed in [(Kalaev

et al. 2003)], therefore the maximum inlet velocity and finally the maximum

velocity gradient beneath the heat shield are hence underestimated. Further-

more, at higher flow rate, negative values of the shear stress due to the clockwise

gas motion in the corner near the melt/crucible/gas triple point probably gen-

erate another secondary flow pattern in the silicon melt when acting together

with the Marangoni stress, particularly when the boundary shear stress is com-

parable with the value of the Marangoni stress. Finally, let us note that the

normal shear stress and other components of the viscous stress tensor along

this interface are presented in Figure (5.16(b)), where oscillations are found for

the viscous stress tensor component σrr, σzz , and the normal shear stress σnn.

The oscillatory nature of the stress tensor with an underresolved mesh can be

one of the reasons why we have experienced convergence problems when trying

to capture the shear stress by the Lagrange multipliers method.

The effect of gas convection on silicon melt convection at different flow rates

with varied crucible rotation are given in Figures (5.17), (5.18) and (5.19). One

can observe from these figures that at low flow rate (for example at 500 SLH

and 1500 SLH), gas convection has very limited influence on the melt flow,

since only the vortex beneath the melt/gas interface driven by the buoyancy

and Marangoni forces is slightly damped. However, when further increasing the

flow rate (for example at 3000 SLH), a separated clockwise vortex due to the gas

shear stress occurs, and the intensity of this newly generated vortex increases

with the gas flow rate. At a very high flow rate, for example at 4500 SLH,

not only the vortex due to the buoyancy and Marangoni effects, but also the

secondary vortex in the melt core (between the primary vortex due to crystal

rotation and the vortex due to buoyancy and Marangoni effect) is damped, see

Figure (5.18(d)) or Figure (5.19(d)).
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Figure 5.16: Shear stress and stress tensor components along

the melt/gas interface due to gas convection. The crystal

pulling rate is 2mm/min, and the crystal/crucible

rotation rates are 20/ − 5rpm.



5.7. Influence of convection on the Czochralski crystal growth process 151

(a) Flow rate at 500 SLH (b) Flow rate at 1500 SLH

(c) Flow rate at 3000 SLH (d) Flow rate at 4500 SLH

Figure 5.17: Stream function contour lines in the silicon melt by steps of

1cm3/s at different gas flow rates. The crystal pulling rate is

2mm/min, and the crystal/crucible rotation rates are

20/ − 1rpm.

The argon gas effect on melt convection is also dependent on other growth

parameters determining the turbulence characteristics, such as the crucible

rotation rate. This can be confirmed when comparing our numerical results

at different crucible rotation rates. From Figure (5.17), Figure (5.18) and

Figure(5.19), one can see that the generation of a new vortex due to the gas
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(a) Flow rate at 500 SLH (b) Flow rate at 1500 SLH

(c) Flow rate at 3000 SLH (d) Flow rate at 4500 SLH

Figure 5.18: Stream function contour lines in the silicon melt by steps of

1cm3/s at different gas flow rates. The crystal pulling rate is

2mm/min, and the crystal/crucible rotation rates are 20/-5 rpm.

shear stress is very sensitive to the crucible rotation rate. For example, when

the crucible rotation rate is chosen to be -1 rpm, even the high flow rate at 3000

SLH is insufficient to generate a separate clockwise vortex. However, for the

same flow rate but with a crucible rotation rate at -5 rpm (see Figure 5.18(c))

and -10 rpm, see Figure 5.19(c), an apparent separated clockwise vortex oc-

curs due to gas convection. A similar conclusion was also drawn from other
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(a) Flow rate at 500 SLH (b) Flow rate at 1500 SLH

(c) Flow rate at 3000 SLH (d) Flow rate at 4500 SLH

Figure 5.19: Stream function contour lines in the silicon melt by steps of

1cm3/s at different gas flow rates. The crystal pulling rate is

2mm/min, and the crystal/crucible rotation rates are 20/-10

rpm.

numerical experiments [(Kalaev et al. 2003)].

Oxygen concentration in silicon crystals is usually adjusted by crucible ro-

tation rate during growth, and it is well known that a high rotation rate yields

a crystal with high oxygen concentration [(Togawa et al. 1996)]. Our numerical

results of the oxygen distribution in the entire silicon melt at different crucible
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rotation rates and gas flow rates are presented in Figure (5.21), while the oxy-

gen concentrations along the melt axis at different crucible rotation rates and

gas flow rates are given in Figure (5.22(a)) and Figure (5.20). One can clearly

observe that the crucible rotation rate has a much more stronger influence on

the oxygen distribution in the silicon melt than any other operating parameter,

such as the argon gas flow rate or pressure, which can only be adjusted in a nar-

row range in industrial production. More specifically, the oxygen concentration

along the silicon melt axis increases dramatically with an increasing crucible

rotation rate, and this can be explained by the fact that more oxygen atoms

dissolve from the crucible bottom wall and are transported to the silicon melt

core by convection due to the stronger combination of crucible rotation effect

(via Coriolis force) and buoyant force at a higher crucible rotation rate, see Fig-

ure (5.21(c)), while at a very low crucible rotation rate, the oxygen transport

is dominated by diffusion through a thin diffusion layer along the crucible wall,

as illustrated in Figure (5.21(a)). On the other hand, for a specified crucible

rotation rate, a higher gas flow rate results in a significantly higher oxygen

profile in comparison with a lower gas flow rate, which was also observed in

experiments. For example, the experimental results obtained by Machida et

al [(Machida et al. 1998)][(Machida et al. 2000)] revealed that there is a di-

rect proportionality between argon gas flow rate and oxygen concentration, for

which effect the authors gave two possible reasons. One possible reason invoked

is that there is a temperature drop on the melt free surface due to the sweeping

argon gas [(Machida et al. 1998)], particularly for the puller with a heat shield.

A second possible reason is that the interaction between the vortex due to the

gas shear stress and the vortex driven by buoyancy is suppressed, and therefore

that the oxygen effective evaporation area decreases and finally the oxygen con-

centration in the silicon melt increases. However, our numerical results at low

crucible rates cannot be explained by the two above possible reasons. Firstly,

in our numerical experiments with the crucible rotation rate at -1 rpm, the

effect of gas convection on the melt flow is found to be very limited. Secondly,

the temperature along the melt free surface is found to be increased (and not

decreased) with an increasing gas flow rate, while there is also a temperature

increase along the melt/crucible interface, which can be clearly seen in Figure

(5.22(b)). Therefore, we can attribute the increased oxygen concentration in

the silicon melt to the increased temperature along the crucible bottom, where

the oxygen dissolution rate from the silica crucible is assumed to be a function

of temperature [(Kakimoto et al. 1996)].

Moreover, our numerical results show that a direct proportionality between

the argon gas flow rate and the oxygen concentration only exists for low crucible



5.7. Influence of convection on the Czochralski crystal growth process 155

rotation rates with low gas flow rates, for example for a crucible rotation rate at

-1 rpm and -5 rpm with a gas flow rate at 500 SLH, 1500 SLH or 3000 SLH (in

our numerical experiments). But with a crucible rotation rate at -10 rpm, the

oxygen concentration along the melt axis decreases considerably, and becomes

even lower in comparison with the result obtained from a gas flow rate at 500

SLH when the gas flow rate is further increased to 4500 SLH, see Figure (5.20).

This can be explained by the fact that SiO evaporation is dominated by a much

more thinner diffusion layer at very high argon gas flow rate, and therefore that

SiO evaporation is enhanced and finally that oxygen concentration in the silicon

melt becomes lower. Even the temperature profile (see Figure 5.13(b)) along

the silica crucible is a little bit higher than that with the flow rate at 3000 SLH.
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Figure 5.20: Oxygen distribution along the silicon melt axis for different gas

flow rates with the crucible rotation rate at -5 rpm and -10 rpm.
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Figure 5.21: Oxygen concentration in the melt by steps of 1.0e + 17

atom/cm3 at different crucible rotation rates and gas flow rates.

The crystal rotation rate is 20 rpm and the crystal pulling rate

is 2mm/min.
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Figure 5.22: Simulation group 2. Influences of the gas flow rate on (a) the

oxygen concentration in the silicon melt, and (b) the

temperature profile along the crucible bottom and melt free

surface. The crystal growth rate is 2mm/min and the

crystal/crucible rotation rates are 20 rpm/-1 rpm.
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5.8 Conclusions

The main purpose of this chapter was to be devoted to the numerical application

of all the developments presented in previous chapters to industrial Czochralski

crystal growth processes.

First of all, the FEMAG global modeling and iterative strategy employed

in our numerical experiments were summarized. Then we have focused on the

industrial application of Czochralski silicon growth processes by means of tur-

bulent mixing-length, enhanced mixing-length and k − l models with/without

taking gas convection into account. The influences of the growth parameters,

turbulence model and modeling parameters on the growth process, particularly

on melt convection, melt heat transfer and melt/crystal interface shape were

presented.

In order to analyze the effects of melt and gas convection on the Czochralski

silicon growth process, a series of numerical experiments with pure heat conduc-

tion, with melt convection only, and with uncoupled and coupled gas convection

was also carried out. Comparison of our numerical results with experiments

shows that the quasi-steady global heat transfer model with the mixing-length

or k − l turbulence model well predicts the temperature difference in the sil-

icon melt, while the pure heat conduction global model does not, whereas for

the specified growth conditions, gas convection has a very limited influence on

the temperature distribution in the silicon melt, the melt/crystal interface and

heater power as well, whether melt convection is or not coupled with gas con-

vection. Furthermore, a series of numerical experiments taking gas convection

into account with varied growth conditions and operating parameters were per-

formed, and the influences of the modeling parameters on the growth process,

particularly on melt convection, melt heat transfer, melt/crystal interface and

oxygen concentration, were fully given. Comparison of the simulation results

(such as the heater power, temperature difference in the silicon melt, etc.) with

literature and available experimental observations were also presented. Our nu-

merical results show that:

• The gas flow pattern, particularly the convection in the upper growth

chamber, is sensitive to the gas flow rate. With increasing gas flow rate,

the primary gas vortex in the upper growth chamber changes from clock-

wise to counter-clockwise, and the flow pattern is more complex at high

gas flow rate as well. On the other hand, the major characteristics of

the gas flow pattern in the bottom part of the growth chamber remain

unchanged, except the intensities of those vortices.
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• The forced argon gas flow also exerts a shear stress on the silicon melt

free surface. At low gas flow rate, the influence of the gas flow on melt

convection is very limited. However, at a high gas flow rate, a separated

clockwise vortex due to the gas shear stress occurs. Moreover, the gener-

ation of this clockwise vortex is also sensitive to other growth conditions,

such as the crucible rotation rate.

• For a specified crucible rotation rate, the melt/crystal interface is less

convex with an increasing gas flow rate. Furthermore, the melt/crystal

interface deflection is much more sensitive to the gas flow rate at higher

crucible rotation rate. On the other hand, for a specified gas flow rate, the

evolution of the melt/crystal interface becomes more complex and inter-

sections between these interfaces are found at different crucible rotation

rates.

• The oxygen distribution in the silicon melt is strongly dependent on the

crucible rotation rate. At low crucible rotation rate, oxygen transport

in the silicon melt is dominated by diffusion through a thin diffusion

layer along the crucible wall, and the oxygen concentration in the sili-

con melt increases dramatically with increasing crucible rotation rate due

to a strong combination of crucible rotation effects, buoyant force and

gas shear stress. It is also well-known that the gas shear stress exerts a

prominent effect on oxygen evaporation at the melt surface.

• On the other hand, our numerical experiments reveal that for a specified

crucible rotation rate, a higher gas flow rate results in a higher oxygen

concentration in the silicon melt mainly due to a high temperature pro-

file along the crucible wall. However, there is no direct proportionality

between the gas flow rate and the oxygen concentration at a high crucible

rotation rate.

• As a last comment it should be recalled that underresolved boundary layers

were always used in our numerical experiments. Therefore, the details of

the flow and temperature distribution in the melt and gas could only be

captured by means of an appropriate treatment (such as the use of wall

functions, or of anisotropic mesh refinement near the boundary, or an

enhanced Lagrange Multipliers technique).





Chapter 6

Conclusions

Global numerical modeling and simulation of bulk crystal growth has become

an essential and indispensable powerful tool to predict, understand, develop

and optimize single crystal growth processes. The main objective of this thesis

aimed to develop a fully automatic Czochralski simulator predicting the entire

Czochralski process taking all important physical phenomena and furnace con-

stituents (or macro-elements) into account, including radiation heat transfer in

the whole growth system, convective and conductive heat transfer in the silicon

melt and inert gas chamber, silicon impurity (oxygen) transport by convec-

tion and diffusion, etc.. With this objective in mind, our major contributions

towards the next generation Czochralski simulation tool are summarized as

follows.

First of all, powerful, robust and efficient mesh generation algorithms with

enough flexibility to control the mesh density were developed for whole bulk

crystal growth processes, including a global grade-adaptive 1D mesh genera-

tion algorithm for curved boundaries, an initial simple polygon triangulation

algorithm with/without holes by our improved sweep line technique, and an

automatic 2D shape-quality unstructured mesh generator by incremental De-

launay refinement algorithm, where the refinement process was optimized by

our firstly proposed linear point location algorithm without using any additional

preprocessing, storage space and complicated data structure. The successful de-

velopments of all these algorithms form a solid basis towards the development

of next generation Czochralski simulators.

Melt convection modeling remains one of the most biggest challenging prob-

lems of the Czochralski crystal growth process. In this work, a Finite Element

Navier-Stokes solver based on unstructured meshes was developed, and the

code was validated by solving the well-known 2D lid-driven cavity flow prob-

lem at different Reynolds numbers up to 25,000. Accordingly, the turbulence

mixing-length and k − l models and the numerical method developed by the

CESAME crystal growth research group in the past decades were adapted to

unstructured meshes.

Another of our main objectives regarding melt convection modeling was to
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develop relatively simple turbulence models, but with reasonable accurateness

in order to simulate efficiently the average axisymmetric flow in the Czochralski

melt as coupled to the whole quasi-steady or time-dependent growth problem.

Therefore, an enhanced model taking into account different turbulent boundary

layers along the melt/crucible and melt/crystal interfaces was presented and

analyzed.

On the other hand, the coupling of an additional nonlinear equation to the

Reynolds equations increases dramatically the numerical difficulties encoun-

tered when trying to simulate the melt flow by the turbulence k−lmodel. These

difficulties either come from the hyperbolic nature of the nonlinear transport

terms or from the square-root of k present in the turbulent viscosity expression

in the Reynolds equations and turbulent kinetic energy equation. Both of these

difficulties, particularly the negative k issue can dramatically slow down or even

let fail the Newton-Raphson iterative scheme. Therefore, a generic transforma-

tion method to overcome these difficulties was proposed and implemented, and

our primary numerical experiments have shown that the negative k problem

was well solved by the specific transformation schemes we have chosen.

In practice, gas convection exerts an important effect on the global heat

transfer and oxygen concentration both in the silicon melt and silicon crystal in

modern Czochralski crystal growth processes. Therefore, laminar and turbulent

mathematical models governing the gas convection, thermal distribution and

oxygen concentration were developed, and Finite Element numerical methods

to solve these governing equations on unstructured meshes were presented. In

order to analyze the gas effects on the silicon melt flow, oxygen distribution and

global heater transfer, appropriate numerical approaches to capture the wall

shear stress exerted by the gas flow and experienced by the silicon melt were

implemented and investigated. Our primary numerical experiments have shown

that, at a very small Reynolds number, the viscous shear stresses obtained by

a Direct method and the Lagrange Multipliers are very similar. However, at a

medium or large Reynolds number, the Lagrange Multipliers technique always

failed to capture the stresses due to strong oscillations of the stress tensor.

Finally, a series of numerical experiments devoted to investigate the in-

dustrial Czochralski crystal growth process under various growth conditions

were presented based on all the developments implemented. Comparison of

our numerical results with experiments shows that the quasi-steady global heat

transfer model with the mixing-length or k− l turbulence models well predicts

the temperature difference in the silicon melt, while the pure heat conduction

global model does not, whereas for the specified growth conditions investigated,

gas convection has a very limited influence on the temperature distribution
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in the silicon melt, the melt/crystal interface and the heater power as well,

whether melt convection is or not coupled with gas convection. The effect of

gas convection on oxygen evaporation at the melt surface was not investigated

but certainly this effect is non-negligible. However, unfortunately, all our nu-

merical experiments were performed with underresolved meshes in the melt

boundary layers, and the Lagrange Multipliers technique failed to resolve the

problem. Therefore some care should be given when considering the detail of

our solutions in the melt whereas accurate global results are generally obtained.

Furthermore, a series of numerical experiments taking gas convection into

account with varied growth conditions and operating parameters were per-

formed, and the influences of the modeling parameters on the growth process,

particularly on melt convection, melt heat transfer, melt/crystal interface and

oxygen concentration, were fully given. Comparison of the simulation results

(such as the heater power, the temperature difference in the silicon melt, etc.)

with literature and available experimental observations were also presented, and

conclusions were drawn based on these simulation results and observations.





Appendix A

Discretization of generic transformed
turbulent kinetic energy equation by Fi-
nite Element Method

The finite element discretization of unknowns (L) in the transformed turbulent

kinetic energy equation (3.120) (in weak form) is straight-ford, that is, L can

be discretized like a regular unknowns as follows:

L =

nL
∑

j

Ljψj (A.1)

where nL is the number of nodes on each element. In each Newton-Raphson

iteration, the transformed nonlinear turbulent kinetic energy equation has to

be linearized, thus unknowns L and corresponding unknown derivatives should

have to be developed and calculated a priori.

However, as mentioned earlier in chapter 3, we never introduce the new

variable L into the system in order to keep the solver consistency and simplicity.

That is to say, the nodal value Lj are directly obtained from the stored nodal

value kj , since

L = nk1/n (A.2)

and

k =
(

nL
∑

j

k
1/n
j ψj

)n

(A.3)

when n→ ∞ (for logk scheme), the equation (A.2) and (A.3) become:

L = lim
n→∞

(nk1/n) = logk (A.4)

and

k = eL = exp(

nL
∑

j=1

Ljφj) =

nL
∏

j

k
ψj

j (A.5)
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Similarly, corresponding unknown derivatives can also be developed and

calculated a priori based on nodal value kj as follows:

k,Lj =
∂k

∂Lj
=

∂k

∂(nk
1/n
j )

=
∂

∂(nk
1/n
j )

[

n−1
nk
∑

k

(nk
1/n
k )ψk

]n

=
n

nn

[

nk
∑

k

(nk
1/n
k )ψk

]n−1

ψj

= k(1−1/n)ψj (A.6)

k,xα =
∂k

∂xα
= nk(1−1/n)

nk
∑

j

k
1/n
j ψj,xα = k(1−1/n)L,xα (A.7)

∂k,xα

∂Lj
=

∂k,xα

∂(nk
1/n
j )

=
∂

∂xα

[

k(1−1/n)ψj

]

= (1 − 1

n
)k−1/nk,xαψj + k(1−1/n)ψj,xα

= (1 − 1

n
)k(1−2/n)L,xαψj + k(1−1/n)ψ,xα (A.8)

when n → ∞ (for logk scheme), the equation (A.6), (A.7) and equation (A.8)

become:

k,Lj =
∂k

∂Lj
=

∂k

∂(logkj)
= lim
n→∞

(k1−1/nψj) = kψj (A.9)

k,xα =
∂k

∂xα

= lim
n→∞

(

nk(1−1/n)
nk
∑

j

k
1/n
j ψj,xα

)

= k

nk
∑

j

(logkjψj,xα) = kL,xα (A.10)

∂k,xα

∂Lj
=

∂k,xα

∂(logkj)
=

∂

∂xα

(

kψj

)

= lim
n→∞

[

(1 − 1

n
)k−1/nk,xαψj + k(1−1/n)ψj,xα

]

= k,xαψj + kψj,xα (A.11)
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Based on the derivation of equation (A.6), (A.7), and (A.8), we choose not

to discretize the formal transformed turbulent energy equation (3.120), and a

better way is to discretize the original turbulent energy equation with testing

functions k(1−1/m)ψi as follows:

∫

Ω

[

(u · ∇k)(k(1−1/m)ψi) + (ν +
νt
σk

)
(

∇k : ∇(k(1−1/m)ψi)
)

+(Cdk
3/2/lm − µtγ̇ + βg

µt
Prt

· ∇T )(k(1−1/m)ψi)
]

dΩ = 0 (A.12)

Letting,

A =

∫

Ω

[

(u · ∇k)(k(1−1/m)ψi)
]

dΩ

=

∫

Ω

[

(uk,x + vk,y)(k
(1−1/m)ψi)

]

dΩ

=

∫

Ω

[

k(2−1/n−1/m)
(

uL,x + vL,y

)

(A.13)

B =

∫

Ω

[

(ν +
νt
σk

)
(

∇k : ∇(k(1−1/m)ψi)
)

]

dΩ

=

∫

Ω

[

(ν +
νt
σk

)
(

k,x(k
(1−1/m)ψi),x + k,y(k

(1−1/m)ψi),y

)]

dΩ

=

∫

Ω

[

(ν +
νt
σk

)k(2−2/n−1/m)
[

(1 − 1

m
)(L2

,x + L2
,y)ψi

+k1/n(L,xψi,x + L,yψi,y)
]

]

dΩ (A.14)

C =

∫

Ω

(Cdk
3/2 − µtγ̇ − µt

Prt
βg · ∇T )(k(1−1/m)ψi)dΩ (A.15)

then,
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Since we choose to solve the turbulent kinetic energy k together with the

velocity and pressure field in a coupled way, therefore, the derivatives of the

turbulent kinetic energy to velocities uj , vj and wj should be developed. Details

of the developments and forms are exactly as the same without transformation

except the way to calculate the k by equation (3.117). Furthermore, the Navier-

Stokes equation to unknown Lj should also have to be developed. Let the Fu,

F v and Fw represent the three governing equations of u, v and w components

in weak form, then in the axisymmetric coordinate system, we have:

∂Fui
∂Lj
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]
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2
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Similarly,
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