
Selective Hearing: An Approach to Distributed,
Eventually Consistent Edge Computation

Christopher Meiklejohn
Basho Technologies, Inc.

Bellevue, WA
Email: cmeiklejohn@basho.com

Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: peter.vanroy@uclouvain.be

Abstract—We present a new programming model for large-
scale mobile and “Internet of Things” style distributed applica-
tions. The model consists of two layers: a language layer based
on the Lasp language with a runtime layer based on epidemic
broadcast. The Lasp layer provides deterministic coordination-
free computation primitives based on conflict-free replicated
data types (CRDTs). The epidemic broadcast layer is based on
the Plumtree protocol. It provides a communication framework
where clients may only have a partial view of membership and
may not want to participate in or have knowledge of all active
computations. We motivate the new model with a nontrivial
mobile application, a distributed ad counter, and we give the
model’s formal semantics.

I. INTRODUCTION

Traditional approaches to synchronization increasingly
have problems when clients become geographically distributed
and more numerous. Specifically, they do not operate within
the acceptable latency requirements of most consumer-facing
applications.1 This problem is further complicated by the
recent addition of two new classes of large-scale Internet
applications: “Internet of Things” sensor networks and mobile
applications. “Internet of Things” sensor networks rely on
tiered aggregation networks that leverage devices with limited
connectivity, limited power, and limited local storage capacity.
Mobile applications usually operate with replicated state and
allow offline modifications to this state, placing the onus on
the application developer to resolve concurrent modifications
to replicated data items.

In previous work, we have proposed a solution to the prob-
lem of large-scale, coordination-free programming, namely
the Lasp programming model [2], [3]. Lasp uses functional
programming operations to deterministically compose conflict-
free replicated data types (CRDTs) [4]. CRDTs are guaranteed
to converge under concurrent operations to replicated state.
The composition of CRDTs into larger applications preserves
these convergence properties. This means that applications can
make progress while offline, propagating their state upstream
as connectivity becomes available, and are resilient to both
re-ordering and replay of messages. We have implemented
the Lasp programming model on a consistent-hashed ring in
a datacenter (see Section II-C). However, this architecture is
inappropriate for edge computing because ring management
is increasingly difficult for growing numbers of limited nodes
with intermittent connectivity.

1For example, Amazon estimated that every 100ms in latency resulted in a
1% sales loss [1].

This paper proposes a new programming model for edge
computing applications such as Internet of Things and mobile
applications. The model combines an execution layer based
on Lasp with a gossip layer based on epidemic broadcast.
These two layers work well together: gossip is adapted to
loosely coupled systems and Lasp is adapted to the properties
of the gossip layer. Using gossip provides improved placement
of application state and computations with that state across
a large and variable set of nodes. Using Lasp provides an
inherent ability to continue computing despite frequent node
disconnections, node failures, and message reordering. The
gossip layer is based on previous work on epidemic broadcast
trees [5], which provides the efficient and reliable delivery
of messages to clusters containing large and dynamically
variable numbers of nodes. This paper presents and motivates
the programming model and gives a formal semantics of its
execution. We are currently implementing and evaluating the
model. To our knowledge, this paper is the first to articulate a
general purpose programming model using epidemic broadcast
as the basis for the language’s runtime.

The paper is structured as follows. Section II introduces
the concepts we build on: CRDTs, Lasp and its ring-based
implementation, and epidemic broadcast trees. Section III gives
a motivating example, namely a distributed ad counter for mo-
bile applications. Section IV presents Selective Hearing, which
combines the Lasp execution model with a new distribution
model based on gossip. Section V gives the formal semantics
that defines Lasp execution on the gossip layer. Section VI
relates our new model with other models of group management
and execution. Section VII concludes and explains how we
intend to continue this work.

II. BACKGROUND

In this section we review Conflict-free Replicated Data
Types, Lasp, and Epidemic Broadcast Trees.

A. Conflict-free Replicated Data Types (CRDTs)

CRDTs are data structures designed for use in replicated,
distributed computations. They come in a variety of flavors,
such as maps, sets, counters, registers, and flags, and they pro-
vide a programming interface that is similar to their sequential
counterparts. They are designed to capture concurrency prop-
erly: for example, by guaranteeing deterministic convergence
after concurrent additions of the same element at two different
replicas of a replicated set.

One variant of these data structures is formalized in terms
of bounded join-semilattices. Regardless of the type of muta-
tion performed on these data structures and whether that func-
tion results in a change that is externally non-monotonic, state
is always monotonically increasing and two states are always
join-able via a binary operation that computes a supremum, or
least upper bound. To provide an example, adding to a set is
always monotonic, but removing an element from a set is non-
monotonic. CRDT-based sets, such as the Observed-Remove
Set (OR-Set) used in our example, model non-monotonic
operations, such as the removal of an item from a set, in a
monotonic manner. To properly capture concurrent operations
that occur at different replicas of the same objet, individual
operations, as well as the actors that generate those operations,
must be uniquely identified in the state.

The combination of monotonically advancing state, in
addition to ensuring that replicas can converge via a determin-
istic merge operation, provides a strong convergence property:
with a deterministic replica-to-replica communication protocol
that guarantees that all updates are eventually seen by all
replicas, multiple replicas of the same object are guaranteed
to deterministically converge to the same value. Shapiro et al.
have formalized this property as Strong Eventual Consistency
(SEC) in [4].

To demonstrate this property, we look at an example. In
this example, a small circle represents an operation at a given
replica and a dotted line represents a message sharing that state
with another replica, where it is merged in with its current
state.

RA

RB

RC

{1}

(1, {a}, {})

{1}

(1, {b}, {})

{}

(1, {b}, {b})

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

add(1)

add(1) remove(1)

Figure 1: Example of resolving concurrent operations with
an Observed-Remove Set (OR-Set). In this example, concurrent
operations are represented via unique identifiers at each replica.

Figure 1 is an example of the Observed-Remove Set (OR-
Set) CRDT. This set uses unique identifiers derived at each
replica and represents state at each replica as a triple of values,
a set of unique identifiers for each element addition and a set of
unique identifiers for each element removal. When removing
an element, removals remove all of the “observed” additions,
so under concurrent additions and removals, the set biases
towards additions.

B. Lasp

Lasp is a programming model that uses CRDTs as its
primary data type [2], [3]. Lasp allows programmers to build
applications using CRDTs while ensuring that the composition
of the CRDTs also observes the same strong convergence
properties (SEC) as the individual objects do. Lasp provides

this by ensuring that the monotonic state of each object
maintains a homomorphism with the program state.2

The relevant contribution of the Lasp programming model
is the process. In Lasp, processes are used to connect two or
more instances of CRDTs. One example of a Lasp process
is the filter operation over sets: as the input set is mutated,
the filter function is reevaluated, resulting in a new value for
the output. Lasp processes ensure this transformation is both
monotonic and deterministic.

C. Ring-Based Distribution Model for Lasp

The Lasp programming model was initially designed and
implemented in Erlang [6] using the Riak Core distributed
systems library. The Riak Core library provides a framework
for building applications in the style of the original Dynamo
system as described by DeCandia et al. in 2007 [1]. Riak Core
provides library functions for cluster management, dynamic
membership, failure detection and state management.

This Lasp implementation uses Dynamo-style partitioning
of application state and computations: consistent hashing and
hash-space partitioning are used to distribute copies of each
variable and Lasp process across nodes in a cluster to en-
sure high availability and fault tolerance. Replication of each
variable’s state, and the instantiation of Lasp processes, are
performed between adjacent nodes in a cluster and quorum-
based operations are used to read and modify variables and
the result of computations in the system. Additionally, an
anti-entropy protocol is deployed alongside the quorum-based
operations to ensure reliable delivery of all messages in the
system.

While this model of distribution is designed for fault-
tolerance and high-availability, it is inherently skewed towards
clusters where both the work and latency distribution across
the cluster is uniform.

D. Epidemic Broadcast Trees

Epidemic Broadcast Trees [5], or more specifically the
Plumtree protocol, is an efficient, reliable broadcast protocol.
This approach combines techniques from two previous ap-
proaches to reliable broadcast: deterministic tree-based broad-
cast protocols that have low complexity in message size and
are therefore less fault-tolerant, and gossip protocols that have
higher complexity in message size but are tolerant to faults.

To achieve efficient and fault-tolerant reliable broadcast,
the protocol implements a hybrid approach for each message
that is composed of two phases: given a unique identifier for
the message, first push the message identifier and payload to
nodes contained by the leaves of the broadcast tree, known as
the eager push phase; then, push only the message identifier to
a random sampling of other nodes known by the peer service,
known as the lazy push phase. If any of the nodes do not
receive a message they have learned about through the lazy
push phase within a designated timeout period, they request
this message by identifier from a randomly picked peer in the
overlay network.

2For more information about how this transformation is performed and
maintained, the reader is referred to [2], [3] and [6].

The Plumtree protocol starts off with a random sampling
of nodes, selected from a peer service, placed in the eager set.
As the protocol evolves, nodes are moved from the eager set to
the lazy set as duplicate messages are received. This process
of pruning the eager set is how the protocol computes the
spanning tree that will be used for the eager phase of message
broadcast.

III. MOTIVATING EXAMPLE

We now present an application scenario to motivate our
programming model. Figure 2 visualizes an eventually con-
sistent advertisement counter written in Lasp as originally
presented in [2], [3]. In this example, shaded circles represent
primitive CRDTs and white circles represent CRDTs that
are maintained through composition using Lasp operations.
Additionally, Lasp operations are represented as diamonds, and
directed edges represent the monotonic flow of information in
the Lasp application.

Our advertisement counter operates as follows:

• Advertisement counters are grouped by vendor and
combined into one list of advertisements using a union
operation.

• Advertisements are joined with active “contracts” into
a list of displayable advertisements using both the
product and filter operations.

• Each client periodically reads the list of active adver-
tisements from the server and stores a copy locally.
When displaying an advertisement, clients choose an
advertisement from this local list and increment the
counter. This allows clients to make progress while
offline, but still correctly capture the number of ad-
vertisement impressions.

• Clients periodically synchronize their counters with
the server. As a counter hits 50,000 advertisement im-
pressions, the advertisement is “disabled” by removing
it from the list of active advertisements.

A. Selection of Consistency Protocol

Our original Lasp design focused on the replication of all
objects across a hash-space partitioned ring using consistent
hashing. This design is problematic for the advertisement
counter. In the advertisement counter, not all objects may want
to adhere to the same consistency protocol. We examine two
cases in Figure 2.

Advertisement Counters Each advertisement counter stored
at the client is a local copy that is mutated when advertisements
are viewed locally. In this case, we do not want to replicate
this object at the client or across other clients; we may want
to only store a single copy of this counter and periodically
synchronize with the server accepting that any impressions
between synchronization periods may be lost. In this example
fault-tolerance is provided through periodic synchronization
periods with the server.

Advertisement Transformations At the server, the transfor-
mation using union, product, filter is performed on a weakly
consistent store with quorum-based operations. In this case, an

administrator may want to use state-machine replication tech-
niques via a system like Zookeeper, or a traditional RDMBS,
such as PostgreSQL to store this information.

Given the desired flexibility, we propose that single nodes
in the gossip model of this paper can themselves be imple-
mented either as Dynamo-style rings with quorum operations,
state-machine replication, or a single register.

IV. SELECTIVE HEARING

We now present our new distribution model for Lasp,
called Selective Hearing. This algorithm supports large-scale
computation with Lasp where clients can incrementally con-
tribute results to computations and selectively receive results
of computations as needed. The semantics for this algorithm
removes the notion of “replicas” as previously presented in [2],
[3] and reasons about a single copy of a data item. This “single
copy” is an abstraction over the consistency protocol used to
maintain it; for example, it may be maintained with state-
machine replication, quorum-based operations on a weakly
consistent store, or operations on a single register.

The system model consists of a set of nodes supporting
Lasp operations that are implemented using epidemic broad-
cast. Each node is uniquely identified and tracks a monotonic
counter that is incremented with each operation. Nodes can
join or leave at any time. Nodes fail by crashing and all
messages in the system are eventually delivered to all correct
nodes by the epidemic broadcast protocol (reliable broadcast).
Crashed nodes disappear from the system; whenever a node
recovers it chooses a new identifier and reinitializes its mono-
tonic counter at zero. We can therefore summarize the system
model as two layers:

A. Lasp Layer

Each node can initiate one of the following operations:

• declare(t): Given type information t, return a new
unique variable identifier i that contains the type
information and broadcasts this identifier to all nodes.
We do not specify in more detail how t is encoded.

• read(i, p, c): Test whether variable i’s value v satisfies
predicate p(v). If so, call the continuation c(v). If
not, add (p, c) to the interest set for variable i. This
information will be used by the bind operation when
the variable is bound.

• bind(i, v): Broadcast value v, which is then merged
with the existing value of variable i on all nodes that
have an interest set for i. For these nodes, test all
predicates and invoke the corresponding continuation
for each predicate that succeeds.

Both predicate p and continuation c have one argument v. Any
standard semantics for predicates (i.e., boolean functions) and
continuations may be used; for brevity we do not give these
semantics since they are not a contribution of this paper. Note
that these three operations are designed to commute pairwise
for any variable i (see Section V-C). This is an essential
property since the gossip layer cannot guarantee delivery order.

Ads

Rovio Ad
Counter 1

Rovio Ad
Counter 2

Riot Ad
Counter 1

Riot Ad
Counter 2

Contracts

Ads
Contracts

Ads
With

Contracts

Riot Ads

Rovio
Ads

FilterProduct

Read
� 50,000

Remove

Increment

Read

Union

Lasp Operation

User-Maintained CRDT

Lasp-Maintained CRDT

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Rovio Ad
Counter

1

Rovio Ad
Counter

2

Riot Ad
Counter

1

Client Side, Single Copy at Client

Figure 2: Eventually consistent advertisement counter as presented in [2], [3]. The dotted line represents the monotonic flow of information
for one update. In this example, clients contain only their portion of the shared state they are modifying. Only one copy of the partial
counters on the client is stored, it is not replicated in the cluster.

B. Gossip Layer

The gossip layer implements the Plumtree epidemic broad-
cast protocol. It efficiently implements the broadcast operations
required by the Lasp layer. The broadcast operations are not
ordered, i.e., a node may receive broadcasts in any order and
different nodes may receive them in different orders. Because
of the Strong Eventual Consistency property of CRDTs, this
does not affect correctness. Furthermore, this allows an im-
portant optimization that reduces the computations needed to
implement the bind operation.

Bind operations initiated on each node are numbered
consecutively via a node-level monotonic counter. Since each
variable’s successive values are inflations of a lattice, a bind
operation that is delivered on a node does not have to invoke
local computation if another bind with a greater value has
already been delivered.

The Plumtree protocol relies on three properties for fault-
tolerant message delivery: (1) Each message can be uniquely
identified: given the lazy push phase of the protocol broadcasts
only message identifiers, a node is required to know whether
that message has been received or not. (2) Nodes must store
a history of all messages received. (3) When receiving an
identifier for a message, a node must be able to determine
if it has already been subsumed by a previous one.

To meet these requirements, we maintain a monotonic
clock at each node and store a version vector for each CRDT.
This version vector is used to uniquely identify the message
when broadcast and allows us to identify messages that have
been subsumed by other messages without comparison of
payload. By leveraging a per object version vector that is
incremented as mutations are performed to each object, we
can store a history of all messages received with vector as
wide as the number of participating actors in the system.

V. SEMANTICS

We give the formal semantics of the operations in the Lasp
layer in terms of the gossip layer’s broadcast operation.

A. Node State

The system consists of a set of nodes, where the state of
each node is a three-tuple (σ, δi, δv). Here, σ is the known
variables set, δi is the interest set, and δv is the known values
set. The execution of each node is a sequence of states:

(σ(0), δ
(0)
i , δ(0)v) =

({}, {}, {})→ · · · → (σ(k), δ
(k)
i , δ(k)v)→ · · ·

(1)

The sets are initially empty; the k-th state is denoted by
superscript (k). We now define the content of each set.

The known variables set σ contains the unique variable iden-
tifiers known at the node:

σ = {i0, i1, . . .} (2)

The interest set δi contains information about the variables
that the node is interested in, i.e., for which a read operation
has been invoked but not yet resolved by the arrival of a new
value that satisfies the read predicate. For each variable, the
set contains the variable identifier i and a set of pairs of a one-
argument predicate p and a one-argument continuation c. When
the node receives a new value, then each predicate is evaluated,
and for those that succeed the continuation is invoked.

δi = {(i0, {(p0, c0), . . .}), (i1, {(p1, c1), . . .}), . . .} (3)

The known values set δv contains a set of pairs (i, v) of variable
identifiers i and their highest values v observed on the node:

δv = {(i0, v0), (i1, v1), . . .} (4)

B. Basic Invariants on Node State

We assume that node states obey the following invariants:

• The known variables set σ and the known values set
δv both grow monotonically: variables will only be
added and never removed to both sets.

σ(k) ⊆ σ(k+1) δ(k)v ⊆ δ(k+1)
v (5)

• For any interest set δi and known values set δv , their
identifiers will be contained in some future state of
σ3.

∀k. ∃n. n > k ⇒ πi(δ
(k)
i) ⊆ σ(n)

∀k. ∃n. n > k ⇒ πi(δ
(k)
v) ⊆ σ(n)

(6)

C. Operations

All Lasp operations are initiated on one node and may
have effects on all nodes; we denote the initiating node by a
subscript k. We specify what each operation does on a node
state (σ, δi, δv) to compute the subsequent state (σ′, δ′i, δ

′
v); any

set that is not mentioned does not change value. In addition
to local operations, some operations do a broadcast using the
gossip layer; we assume the broadcast message is delivered to
all nodes including the sending node. We specify what each
receiving operation does.

declare The operation i = declare(t) returns a new unique
variable identifier i. The operation has the following local
specification:

i = declarek (t) : u = unique() ∧ i = (u, t) (7)

The variable identifier is a pair of a unique constant u and type
information t. The operation then broadcasts the variable iden-
tifier with the following specification (the notation declarej

k(i)
means that node k broadcasts to node j). This adds the variable
identifier to the known variables σ:

declarej
k(i) : σ

′ = σ ∪ {i} (8)

read The operation read(i, p, c) tests whether p(v) holds for
the current value v of variable i. If it does, the continuation
is invoked as c(v). If not, (p, c) is added to the interest set
of variable i, which will delay the invocation until a binding
arrives that sufficiently increases i’s value.

readk (i , p, c) : (∃v.(i, v) ∈ δv ∧ p(v)⇒ c(v)

; (∃s.(i, s) ∈ δi ⇒
sn = s ∪ {(p, c)}; sn = {(p, c)})

δ′i = δi \ {(i,)} ∪ {(i, sn)}
σ′ = σ ∪ {i})

(9)

bind The operation bind(i, v) updates the current value stored
in δv by doing a join with v. The operation has the following
local specification:

bindk (i , v) : true (10)

The operation is then broadcast and has the following specifi-
cation on all other nodes:

bind j
k (i , v) : (∃v′.(i, v′) ∈ δv ⇒ vn = v t v′; vn = v)

δ′v = δv \ {(i,)} ∪ {(i, vn)}
σ′ = σ ∪ {i}
∃s.(i, s) ∈ δi ⇒
ssat = {(p,) ∈ s | p(vn)}
δ′i = δi \ {(i,)} ∪ {(i, s \ ssat)}
∀(, c) ∈ ssat : c(vn)

(11)

3We define π as the standard projection.

In variable i’s interest set, all pending read operations (all
pairs (p, c) in s) are checked. Those for which p succeeds
are removed from s and their continuation c is invoked.

D. Processes

A Lasp process is defined as a recursive function that uses
the Lasp operations. Figure 3 shows the execution of a Lasp
process running the filter operation. The example runs on four
nodes, (1), (2), (3), and (4).

Subfigure (a) is a Lasp program that creates two instances
of the Grow-Only Set (G-Set) CRDT and applies the filter
operation with predicate λx.odd(x) from A to B. This Lasp
program has four instructions, each of which executes on a
different node. The executing node is written to the left of
each instruction.

Subfigure (b) is a Lasp program that defines the filter
operation: a recursive function that repeatedly reads new values
of A and computes new values of B. Each iteration executes a
read on A that waits for predicate P to be satisfied, at which
time the continuation C is executed.

Subfigure (c) shows the operations executed and the state
at each node.

This example executes as follows:

1) The declare1 operation is executed on node 1 which
locally generates the unique identifier A. This oper-
ation results in a declarej

1(A) message broadcast to
all members of the cluster.

2) The declare2 operation is executed on node 2 which
locally generates the unique identifier B. This oper-
ation results in a declarej

2(B) message broadcast to
all members of the cluster.

3) The filter operation is executed on node 3. This
operation results in a read3 (A,P ,C).

4) The bind4 (A, {1 , 2 , 3}) operation is issued on node
4. This operation results in a bind j

4 (A, {1 , 2 , 3})
message broadcast to all members of the cluster;
however, only node 3 is waiting for a value of A.
Given the predicate is satisfied, the continuation is
invoked on node 3, trigging a local bind3 (B , {1 , 3})
operation and a broadcast of a bind j

3 (B , {1 , 3})
message. Given no nodes are waiting for a value of
B, the message is not processed.

VI. RELATED WORK

We examine related work in programming languages and
sensor networks.

A. Process Groups and Programming Languages

The earliest known use of a publish/subscribe model was
by Birman and Thomas in 1987 with the ISIS Toolkit [7]. In
ISIS, process groups were used to handle the replication of an
object using reliable broadcast.

The Quicksilver system described by Ostrowski et al. [8]
presents the design of a “live” distributed objects system
that has pluggable communication substrates. This system
places the onus on the communication layer for managing

(1) (2) (3) (4)

(a)

(b)

(c)

filter(A, Pf , B) : filter(A, Pf ,?, B)

filter(A, Pf , v, B)

read(A,�w .v @ w ,C)

C(v0) : comp(. . .)

bind(B , . . .)

filter(A,Pf , v
0,B)

� = {A, B}
�i = {(A, {(P 0, C 0)})}

�v = {(A, {1, 2, 3}), (B, {1, 3})}

� = {A, B}
�i = {}

�v = {(A, {1, 2, 3}), (B, {1, 3})}

(1) A = declare(gset)

(2) B = declare(gset)

(3) filter(A,�x .odd(x),B)

(4) bind(A, {1 , 2 , 3})

� = {A, B}
�i = {}

�v = {(A, {1, 2, 3}), (B, {1, 3})}

� = {A, B}
�i = {}

�v = {(A, {1, 2, 3}), (B, {1, 3})}

declare1 (gset)

declare1
1 (A)

declare1
2 (B)

bind1
4 (A, {1 , 2 , 3})

bind1
3 (B , {1 , 3})

declare4
1 (A)

declare4
2 (B)

bind4 (A, {1 , 2 , 3})

bind4
4 (A, {1 , 2 , 3})

bind4
3 (B , {1 , 3})

declare2
1 (A)

declare2 (gset)

declare2
2 (B)

bind2
4 (A, {1 , 2 , 3})

bind2
3 (B , {1 , 3})

declare3
1 (A)

declare3
2 (B)

filter3 (A,�x.odd(x), B)

read3 (A, P, C)

bind3
4 (A, {1, 2, 3})

P(val)) C (val)

bind3 (B , {1 , 3})

bind3
3 (B , {1 , 3})

read3 (A,P 0,C 0)

Figure 3: Execution of a Lasp process over gossip with four nodes. Subfigure (a) shows an example program with the nodes selected
for the execution of each Lasp operation; subfigure (b) shows the definition of a Lasp filter process; subfigure (c) shows where each
operation executes and where each broadcast message arrives along with the final state at each node at the end of the execution.

consistency, replication, and propagation of events. While a
gossip protocol version is mentioned as future work, no further
details of how it would manage object state are provided.

B. Directed Diffusion and Digest Diffusion

Directed diffusion [9] is an efficient protocol for perform-
ing realtime dissemination of “interests”, metadata describing
information that should be collected, and “samples”, collec-
tions of information coming from the sensors in the network.

Directed diffusion shares many common traits with Selec-
tive Hearing: a publish/subscribe paradigm, use of a broadcast
protocol, and a API that supports aggregation of information.
However, directed diffusion’s primary focus is on capturing
immutable samples in a large-scale sensor network, whereas
Selective Hearing focuses on general computations over shared
state using a declarative, functional programming approach.

Digest diffusion [10] presents a energy-efficient model of
computation, where operations that are idempotent can be
decomposed and distributed in a network so that nodes will
converge to a correct value. This work outlines the problems
of performing operations that are not idempotent, but can be
decomposed: for example, even under ideal network condi-
tions a count operation can exhibit anomalies from message
duplication.

Our use of the Lasp programming model yields computa-
tions that can be decomposed and distributed by design; all
of the variables in the language are CRDTs: data structures
designed to be resilident to replay and re-ordering of messages.

VII. CONCLUSION

This paper presents a new distribution model for Lasp
based on combining a Lasp execution layer with an epidemic
broadcast communication layer. Since the Lasp semantics
obeys strong eventual consistency, it can use a communication
layer that does not provide ordering guarantees. The model
is designed to operate with two new classes of applications:
mobile gaming with shared state, and “Internet of Things” style
applications. We believe this is the first programming model
to use an epidemic broadcast protocol as a core component of
its runtime system. We are in the process of implementing this

model and evaluating it. We plan to continue improving the
design and distribution of Lasp by modeling several industrial
applications, including the industrial use cases of SyncFree
partner Rovio Entertainment, a mobile gaming provider [11].

ACKNOWLEDGMENT

Thanks to Larry Marburger and our anonymous reviewers
for their feedback. This work was partially funded by the
SyncFree project in the European Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement no 609551.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 6. ACM, 2007, pp. 205–220.

[2] C. Meiklejohn and P. Van Roy, “Lasp: a language for distributed,
eventually consistent computations with CRDTs,” in Proceedings of
the First Workshop on Principles and Practice of Consistency for
Distributed Data. ACM, 2015, p. 7.

[3] ——, “Lasp: A language for distributed, coordination-free program-
ming,” in Proceedings of the 17th Symposium on Principles and
Practice of Declarative Programming (PPDP 2015). ACM, Jul. 2015.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A compre-
hensive study of convergent and commutative replicated data types,”
INRIA, Tech. Rep. RR-7506, 01 2011.

[5] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in
26th IEEE International Symposium on Reliable Distributed Systems
(SRDS 2007). IEEE, 2007, pp. 301–310.

[6] “Lasp source code repository,” https://github.com/lasp-lang/lasp, ac-
cessed: 2015-06-14.

[7] K. Birman and T. Joseph, Exploiting virtual synchrony in distributed
systems. ACM, 1987, vol. 21, no. 5.

[8] K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn, “Programming
with live distributed objects,” in ECOOP 2008–Object-Oriented Pro-
gramming. Springer, 2008, pp. 463–489.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
a scalable and robust communication paradigm for sensor networks,”
in Proceedings of the 6th annual international conference on Mobile
computing and networking. ACM, 2000, pp. 56–67.

[10] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for
monitoring wireless sensor networks,” in Sensor Network Protocols
and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on. IEEE, 2003, pp. 139–148.

[11] “SyncFree: Large-scale computation without synchronisation,” https://
syncfree.lip6.fr, accessed: 2015-02-13.

https://github.com/lasp-lang/lasp
https://syncfree.lip6.fr
https://syncfree.lip6.fr

	Introduction
	Background
	Conflict-free Replicated Data Types (CRDTs)
	Lasp
	Ring-Based Distribution Model for Lasp
	Epidemic Broadcast Trees

	Motivating Example
	Selection of Consistency Protocol

	Selective Hearing
	Lasp Layer
	Gossip Layer

	Semantics
	Node State
	Basic Invariants on Node State
	Operations
	Processes

	Related Work
	Process Groups and Programming Languages
	Directed Diffusion and Digest Diffusion

	Conclusion
	References

