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Abstract

The ISDA CDS pricer is the market-standard model to value credit default swaps (CDS). Since
the Big Bang protocol moreover, it became a central quotation tool: just like options prices are
quoted as implied vols with the help of the Black-Scholes formula, CDSs are quoted as running
(conventional) spreads. The ISDA model sets the procedure to convert the latter to an upfront
amount that compensates for the fact that the actual premia are now based on a standardized
coupon rate. Finally, it naturally offers an easy way to extract a risk-neutral default probability
measure from market quotes. However, this model relies on unrealistic assumptions, in particular
about the deterministic nature of the recovery rate. In this paper, we compare the default probability
curve implied by the ISDA model to that obtained from a simple variant accounting for stochastic
recovery rate. We show that the former typically leads to underestimating the reference entity’s
credit risk compared to the latter. We illustrate our views by assessing the gap in terms of implied
default probabilities as well as on credit value adjustments (CVA) figures and pricing mismatches of
financial products like deep in-/out-of-the-money standard CDSs and digital CDSs (main building
block of credit linked notes, CLNs).

1 Introduction

Credit Default Swaps (CDSs) are credit derivatives allowing one party (protection buyer) to buy protec-
tion on a given reference entity from another party (protection seller) Fabozzi (2003). These instruments
act as insurance contracts between the two parties, who trade the default risk of the reference entity for a
given notional N up to a maturity date T . Before the crisis, the protection buyer had to make quarterly
payments (defined by a specific calendar, called IMM dates) with amounts determined by the coupon
rate c (called running spread), the contract’s notional N and some day-count convention. This spread
was the premium that makes the deal be worth zero at inception. Hence, the running spread agreed at
inception with the prevailing par (also called break-even). In exchange of those premia, the protection
seller agrees to make a payment (called contingent flow) to the protection buyer in case the reference
entity effectively defaults prior to the contract’s maturity. In the case of standard CDS contracts, the
amount of the contingent flow depends on the contract notional as well as on the actual recovery rate
of the firm that will be determined either by the residual value of issued Bonds or via an auction. The
ISDA (International Swap and Derivatives Association) proposed a model to value CDS contracts based
on a particular specification of the general no-arbitrage pricing equations. This model became the stan-
dard on the market. It is for example the default model in Bloomberg (the other alternatives being just
variants of the latter), but also inspired most of the other pricing platforms like Markit or Summit, that
differ from the ISDA model only by minor specificities.

But this way of trading CDSs is not really convenient from a Treasury management perspective.
For instance, if a trader wants to close the position afterwards (i.e. at a different running spread) by
entering in a reverse trade, she is left with a stream of residual payments. In order to facilitate back
office operations, a standardization was needed. The fundamental reviewing of CDS trading conventions

∗Contact information: Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium. E-mail: frederic.vrins@uclouvain.be.

1

mailto:frederic.vrins@uclouvain.be


is called the Big Bang protocol Markit (March 13, 2009). While traders still quote CDS contracts in the
form of a running spread (now called conventional spread), the mechanism of the quarterly payments
made by the protection buyer has been standardized. The premium payments are decomposed in two
parts: the first part consists in quarterly payments but, in contrast with the former convention, the
coupon rate is no longer the quoted (running) spread. Instead, it is a standard coupon rate (k, say),
being either 100 or 500 bps depending on the credit risk of the counterparty at inception.1 As there is in
general no reason that the credit risk premium of a reference entity (i.e. the quoted spread c) matches
with the standard coupon rate k, a financial adjustment needs to take place. This correction takes the
form of an upfront payment. For instance, if c > k, the quarterly payments made by the protection buyer
to the protection seller do not properly compensate the value of the protection leg, and the trade would
have a positive Mark-to-Market (MtM) to the buyer. To compensate the protection seller, the buyer
has to pay (if positive, receive if negative) an additional (upfront) amount that precisely compensates
the MtM. With this additional upfront amount (corresponding to the difference between (i) the present
value of the payments made if the coupon rate were c and (ii) the present value of those made according
to the standard rate k), the contract is at par. Therefore, the Big Bang protocol is just another way
to schedule the premium flows. In such a setup, a trader willing to close her trade with another party
only needs to make an upfront payment. In particular, all the quarterly flows will cancel each other,
independently of the prevailing levels of quoted spreads. In this context, the ISDA model also plays the
role of converter. Just like Black-Scholes formula allows to convert “quoted vols” to “cash amounts”,
the ISDA CDS pricer (also called ISDA converter since then) allows to quote deals on a running basis
rather than on upfront amounts, which is much more intuitive and convenient for traders Markit (2004).
The ISDA converter wipes out any ambiguity about how to convert quoted spreads to upfront amounts
by making the present value of quarterly payments in the new setup (upfront + premia based on the
standard coupon rate k) equal to the present value of the payments in the old setup assuming the quoted
is the running spread c (i.e. without upfront, but replacing k by c in the premia).

On the top of being a pricer and a converter, it also became the central tool to select a pricing measure
in (incomplete) credit markets. In the classical no-arbitrage setup, the value of a contract is the present
value of the future cashflows. In the CDS case, this means that at inception, the value of the premium leg
(upfront + present value of payments based on the standard coupon rate) agrees with the protection leg
(present value of the contingent cashflow). The ISDA pricer consists in simplifying the pricing equations
to have a simple form for both legs. Therefore, inverting the ISDA pricing equations, starting from
quoted spreads of a set of CDS contracts, provides an easy way to pick up a pricing probability measure
and, in particular, to back out a parametric risk-neutral default probability curve. This measure could
then be used to compute other quantities, like credit valuation adjustments (CVA) or prices of non-
standard credit-sensitive deals. Whereas most of these simplifications have little impact and are quite
realistic, one of them may have substantial financial consequences: the recovery rate that determines the
contingent payment in case of default is assumed to be known, and is typically set to 40% (or 20% for
sovereigns). While 40% is indeed close to the average of observed recovery rates from past defaults, fixing
the recovery rate to that level contradicts empirical evidence. Since the ’90s in fact, researchers started
to analyze recovery rates information and build evidence about their time-series and cross-sectional
variation. It became clear that recovery rates exhibit significant differences across seniority levels of the
defaulted bonds and sector to which issuers belong (Altman and Kishore (1996)): interactions among
these two features can also play an important role. While it is straightforward to think that lack of
collateralization and higher degrees of subordination lead to lower recoveries, industry effects have been
justified by asset redeployability and/or anticipated government support considerations2 (Shleifer and
Vishny (1992), Acharya et al. (2007), Sarbu et al. (2013)). Moreover, there is clear evidence that recovery
rates are negatively correlated with the business cycle and in particular with default probabilities: on
average, the higher the default rate, the lower the recovery rate (Frye (2000), Hu and Perraudin (2002),
Altman et al. (2005), Boudreault et al. (2013)). It is worth noting that the interest about recovery rates
uncertainty is not only limited to academia, but it is also shared among the industry under the form of
research reports, mainly by rating agencies (Hamilton et al. (2001), Cantor and Varma (2004), Keisman
and Van de Castle (1999), Van de Castle and Keisman (2000)). The main message of all these studies is

1On the European contracts, a standard coupon rate of 25 bps is also considered for a couple of entities having a very
high creditworthiness.

2This is particularly true in the banking sector, even though there are famous counter-examples.
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again that recovery rates are unknown before default, and they should be considered as random variables.
Surprisingly, none of the standard approaches account for this crucial point.

The goal of this paper is to show that in some circumstances, disregarding this reality may have
important consequences in terms of pricing and risk-management of financial products. We first recall
in Section 2 the no-arbitrage pricing equations associated to CDS contracts and show that the ISDA
model essentially is an approximation where the recovery rate assumption plays a central role. We then
introduce a simple CDS model in Section 3. The purpose of this model is to provide some intuition
about the possible consequence of the recovery rate’s uncertainty. The model is used in Section 4 as
an external benchmark to identify the potential model risk embedded in the standard pricers. We start
with an empirical analysis of recovery rates based on the Moody’s Default and Recovery Database. This
will provide guidelines to adjust the recovery rate parameters in our ”in-house” CDS model. Then,
the two models are compared from various points of views: implied default probabilities, CVA figures
and mispricing of instruments like digital CDSs (customized CDSs that strike the recovery rate to 0%
contractually, they are the cornerstone of credit linked notes, CLNs Fabozzi et al. (2007)) as well as on
existing standard CDSs that are not explicitly quoted.

2 Pricing equations

We derive the pricing equations under the assumption that we are valuing deals at time t coming prior
to maturity T and that the firm did not default yet. All contracts are valued from the standpoint
of the protection buyer. In order to ease the notations the valuation date is used as a refence time
(t = 0). Therefore, depending on the context, a same symbol s can be used to loosely denote either a
date or the remaing time from the valuation date (t = 0) to date s. For instance, T represents both the
contract maturity and the time-to-maturity. This is a common abuse of notation that drastically eases
the mathematical exposition.

2.1 General no-arbitrage CDS pricing equations

The price of a CDS is given by the difference between the risk-neutral expectation of the discounted
contingent cashflow with that of the discounted flows of the premium leg. Let us start with the protection
leg. The default of the reference entity triggers the payment of the contingent flow at default’s time,
should the latter comes prior to the contract maturity T . The payment is a fraction L = (1−R) of the
notional N where R stands for the recovery rate of the firm:

(1−R)N 1I{τ≤T} ,

where 1I{ω} stands for the indicator function defined as 1 if ω is true and 0 otherwise. The corresponding
present value in a non-arbitrage setup is

Prot(T ) := N E
[
1I{τ≤T}

(1−R)

βτ

]
,

where E stands for the expectation operator under a chosen risk-neutral probability measure Q and β
denotes the (risk-free) bank account numéraire.

Seen from the valuation time t = 0, the premium leg consists in a stream of (future) periodic flows
paid at specific dates t1 < . . . < tm = T . We denote by t0 either the last payment date (prior to t) or the
inception date (if none premium payment took place before t). The cashflows associated to the quarterly
payments can be split in two parts. The first term deals with the protection between the valuation date
and the next coupon date. The part of the coupon associated to the period (t, t1) is dued if τ ≥ t1.
Otherwise, only a part of it (corresponding to the (t, τ) period) has to be paid. More precisely, let ∆(s, t)
be the fraction of year between the dates (s, t) according to the specific day count convention. Then, the
discounted flow associated to the credit protection for the period (t, t1] is3

kN 1I{τ≥t1}
∆(t, t1)

βt1
+ kN 1I{τ<t1}

∆(t, τ)

βτ
.

3Note that the period between the last payment date (or inception) t0 and the valuation date does not enter the picture
as it deals with past protection, and there is no reason to pay for it. The corresponding amount kN∆(t0, t) is called the
accrued and explains the difference between clean and dirty prices as for Bonds.
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The remaining terms deal with the following payments. As above, each of them can be split in two
terms. A first term that deals with the case where there is no default up to the payment date (in which
case the full coupon is due) and a second term (called rebate) accounting for the fact that whenever the
default takes place between two payment dates, only a part of the coupon (corresponding to the period
up to default) has to be paid. More specifically, the discounted cashflow is

kN

(
m∑
i=2

1I{τ≥ti}
∆(ti−1, ti)

βti
+

m∑
i=2

1I{ti−1<τ<ti}
∆(ti−1, τ)

βτ

)
.

Hence, the risk-neutral present value of the premium flows is given by

Prem(T ) = up +kPV01(T ) ,

where PV01(T ) is called the risky duration of the deal and is given by the present value of the premium
payments based on a unitary coupon rate. Denoting t+i := max(t, ti) for conciseness 4, it comes

PV01(T ) := N

m∑
i=1

(
∆(t+i−1, ti)E

[
1I{τ≥ti}

βti

]
+ E

[
1I{ti−1<τ<ti}

∆(t+i−1, τ)

βτ

])
.

Consider the special case where the risk-free rate underlying the numéraire β is independent from
both the default time τ and recovery rate R. Then,

Prot(T ) = −N
∫ T

0

(1− E[R|τ = u])P (u)dG(u) (1)

PV01(T ) = N

m∑
i=1

(
∆(t+i−1, ti)P (ti)G(ti)−

∫ ti

t+i−1

∆(t+i−1, u)P (u)dG(u)

)
(2)

where

P (s) := E
[

1

βs

]
, s ≥ 0

is the price of a risk-free zero-coupon bond paying 1 unit of currency at time S and

G(s) := E
[
1I{τ>s}

]
= Q(τ > s) = Q(τ ≥ s) , s ≥ 0

is the risk-neutral survival probability of the reference entity5. Observe that the assumption that the
reference entity did not default by the valuation time (τ > 0) leads G to be non-increasing after t with
G(0) = 1.

2.2 ISDA pricing equations

The ISDA model derives from JP Morgan routines. Except little subtleties that are negligible for our
purposes, the protection leg and risky duration are given by 6

Prot(T ) := (1− x)N

m∑
i=1

P̄ (ti)
(
Ḡ(t+i−1)− Ḡ(ti)

)
PV01(T ) := N

m∑
i=1

∆(t+i−1, ti)P̄ (ti)
Ḡ(t+i−1) + Ḡ(ti)

2

= N

m∑
i=1

∆(t+i−1, ti)P̄ (ti)

(
Ḡ(ti) +

Ḡ(t+i−1)− Ḡ(ti)

2

)
.

4This notation is needed to deal with the term i = 1, to make sure that t+i−1 = t+0 = t and not t0
5In this paper, we assume that τ admits a density. In particular, Q(τ = s) = 0 for all s ∈ R+.
6In particular, we adopt a discretization scheme in line with the payment schedule (i.e. quarterly), and assume that

all payments impacted by the occurence of the reference entity’s default take place at the first payment date following the
default event.
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A key assumption is that it assumes a fixed loss-given-default, i.e. it requires the knowledge of the
recovery rate x. In the standard ISDA pricer, the discount curve P̄ (.) is the risk-free discount curve
built from the prices of specific instruments taken from the previous day. The curve Ḡ represents the
reference entity’s survival probability, and is built in agreement with market quotes (see Section 2.3).

These equations resemble those obtained by no-arbitrage provided in (1) and (2). Indeed, replacing
P̄ ← P and Ḡ← G and assuming independence between default time and recovery (setting x← E[R|τ =
u] = E[R]) the protection leg expressions agree up to the discretization of the integral. Same applies
to the risky duration, provided that one assumes that the payments always take place at payment date
(even in case of default) and that if the default happens between two payment dates, half of the coupon
is due. Most of these assumptions are known to have little impact. The impact of discretization is
limited because the only effect is to discount from slightly different dates. For the same reason, the
impact of choosing P̄ instead of P is most of the time negligible. The parametric curve Ḡ allows to
obtain a continuous survival probability curve from a limited number of quotes, but due to calibration
constraints, its impact is minimal. All in all, the fundamental difference between the ISDA model and
the no-arbitrage CDS equations is arguably the assumption regarding the dependence between variables
and processes. The credit-rate independence assumption is known to be acceptable (Brigo and Alfonsi
(2005)). Eventually, the fundamental specificity of the ISDA versus the general CDS equations has to
be found in the protection leg, and with the treatment of the recovery rate in particular.

2.3 Calibration of the ISDA model to observed mark-to-market values

It is clear from above that Ḡ aims at representing the survival function under the pricing measure. Credit
models are incomplete. Hence several risk-neutral measures exist. However, in order to avoid arbitrage
opportunities, any chosen measure must be calibrated to the market. In other words, the chosen measure
has to comply with market quotes. We now show how such quotes uniquely determine the parametric
curve Ḡ in the ISDA model when a set of CDS calibration instruments is provided.

We start from a set of n (say) liquid CDS quotes of the reference entity with various maturities
(T1 < T2 < . . . < Tn, typically 1,3,5 and sometimes 10 years) called calibration instruments. As we have
only n constraints, the curve Ḡ(.) will have n degrees of freedom. In the ISDA model, it is parametrized
via a hazard rate function h as

Ḡ(s) = e−
∫ s
0
h(u)du , s ≥ 0 .

The function h is piecewise constant between the maturities of the calibration CDSs with flat ex-
trapolation beyond the last martutity. In order to calibrate the ISDA model, we make sure that the
model and market prices of the calibration instruments agree. In particular, we make sure that the
protection and premium legs of the ISDA model match when the coupon rate is set to the quoted spread
c(T1), . . . , c(Tn) for the assumed recovery rates ~x = (x1, . . . , xn).7 Hence, this curve (i.e. the piecewise
constant levels of h) is constructed iteratively (in the order given by the products’ maturities) so as to
ensure

c(Ti) =
Prot(Ti)

PV01(Ti)
, i ∈ {1, 2, . . . , n} . (3)

These calibration constraints simultaneously provide the function Ḡ as well as the legs Prot and PV01.
As stressed before, the coupon rate actually used in quarterly payments is not the quoted spread c(T )
but instead the standard coupon rate k, and the MtM difference is compensated via the upfront. The
ISDA model is the market standard procedure to determine the actual upfront amounts from quoted
(conventional) spreads:

up(k, Ti) = Prot(Ti)− kPV01(Ti) = (c(Ti)− k)PV01(Ti) . (4)

The way Ḡ is constructed combined with the way c is converted to an upfront amount implies that all
calibration instruments have, by construction, an ISDA-model price that is inline with the market.

7Usually, the term-structure of recovery rate is flat, i.e. x1 = . . . = xn = x.
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2.4 Calibration of in-house model to observed mark-to-market values

Let us now consider an alternative (in-house) model controlled by a set ~θ of exogenous parameters. As
before, the model price of the calibration instruments must agree with those implied by the model. There
is a fundamental difference, however. Whereas the ISDA model is calibrated from quoted (conventional)
spreads, the calibration of the in-house model has to be done on the actual prices. In particular, the
target that we have to meet is that, for all calibration instruments, the difference between the model-
implied protection leg Prot(T ) and the risky duration PV01(T ) needs to agree with the upfront resulting
from the application of the ISDA converter to the quoted spreads (as per eq. (4)):

up(k, Ti) = Prot(Ti)− kPV01(Ti) . (5)

This puts some constraints on the protection leg and the risky duration and so on the survival probability
curve G. The procedure is illustrated on Figure 1. The key point here is to notice that the differences
between the two models will change the selected risk-neutral measure. In particular, there is no reason
that the survival probability in the ISDA model (computed with the help of the measure selected during
the ISDA calibration procedure) agrees with that of the in-house model (that is based on another measure,
the one picked up from the in-house model calibration step).

c(T1)
...

c(Tn)

 ISDA G ISDA

up(k, T1)
...

up(k, Tn)

 Model G

−→x (−→x , k) (
−→
θ , k)

Figure 1: Methodology to extract the model implied default probability curve G from n quoted spreads.
The procedure works as follows: (1) quoted spreads are first used to compute the ISDA’s curve Ḡ, (2) the
ISDA model fed with Ḡ is then used to convert quoted spread to upfront amounts and (3) the survival
probability curve G of the in-house model is tuned such that it implies the same prices (upfront) for the
instruments used in the calibration procedure.

As explained above, the survival probability curve Ḡ obtained by inverting the ISDA CDS pricer
equations provide a rather fair estimation of the risk-neutral default probability curveG when the recovery
rate is known in advance (and agrees with the value plugged in the ISDA model). The other discrepancies
have indeed very little impact. However, the curve Ḡ is obtained by calibrating the ISDA model (that
assumes a fixed recovery) to prices of standard (i.e. floating recovery) CDS. This inconsistency suggests
that one makes an error when assuming that the curve Ḡ is a valid proxy for G, depending on the
stochastic properties of the recovery rate. In the next section, we provide a simple model to illustrate
the potential impact of this way of working.

3 A simple model

The first models of stochastic recovery rates have been developed in the context of risk management. We
refer the reader to Frye (2000), Jarrow (2001), Jokivuolle and Peura (2000), and Pykthin (2003), just
to name a few. To the best of our knowledge, the pioneer work with regards to random recovery rates
in the context of credit derivatives pricing is due to Andersen and Sidenius. In Andersen and Sidenius
(2004), the authors extend the One Factor Gaussian Copula model for CDO pricing (also known as Li’s
model, Li (2016)), which was the market standard at that time. The credit crisis triggered a specific
interest for stochastic recovery models. At some point, super senior CDO tranches (with attachment
point higher than 60%) started to trade. However, such tranches are not worth anything under a fixed
40% recovery rate assumption. This is the best evidence that recovery rates have either to be decreased
or, more realistically, have to be made stochastic. Since then, many stochastic recovery rate models have
been introduced for the sake of pricing CDOs. We can mention for instance Gaspar and Slinko (2008),
Ech-Chatbi (2008), Krekel (2010), Amraoui et al. (2012).
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Surprisingly however, the impact of stochastic recovery rates on single-name CDS did not receive
much attention. Yet, some authors tackled this point. For instance, Boudreault et al. (2013), Boudreault
et al. (2015) and Bégin et al. (2017) propose a credit risk model in which the default intensity and the
recovery rate are a non-linear function of the firm leverage ratio. This approach allows to capture the
negative relationship between default probability and recovery rate observed in the empirical studies.
The model is estimated using a filtering approach on a sample of CDS premiums. They show that the
interrelation between recovery rate and default probability modifies the term structure of zero-coupon
yield to maturity and impacts significantly the standard risk measures such as the VaR and the expected
shortfall. While these methods can be adapted for this purpose, we prefer to introduce a simple model
that is tailored to illustrate the potential impact of disregarding recovery rates uncertainty. Our goal
here is indeed to put forward the impact of the uncertainty of recovery rate as well as its correlation with
default rate on single-name credit derivatives. Therefore, it is more convenient to work with a model
based on the standard approach, but adjusted for the effect we want to analyze.

In the sequel, we analyze “how far” can the default probability curve Ḡ extracted from the ISDA pricer
be from the actual default probability curve G extracted from a CDS pricing model that would account
for the stochastic nature of recovery rate. To concentrate on the effect we are effectively interested in,
we disregard some technicalities that are known to have a minor impact on CDS valuation. First, we
assume a unit notional (N = 1) and that the discount curve P and P̄ agree and are parametrized by a
constant and known risk-free rate r so that

P (s) = P̄ (s) = e−rs, s ≥ 0 .

Second, we make some simplifications in terms of payment schedule; the premiums are paid on a
continuous-time basis. Finally, we assume that we have only one calibration instrument (n = 1). All
these assumptions can be easily relaxed but significantly simplify the exposition. For the ISDA pricing
equations, we assume that a single calibration CDS instrument is used, so that h(s) = h and Ḡ(s) = e−hs

for s ≥ 0. Setting the ISDA recovery rate level to the value x, the corresponding protection leg and risky
duration become

Prot(T ) = −(1− x)

∫ T

0

P (u)dḠ(u) = (1− x)h

∫ T

0

e−(r+h)u du = (1− x)
h

r + h
(1− e−(r+h)T ) ,

PV01(T ) =

∫ T

0

P (u)Ḡ(u)du =

∫ T

0

e−(r+h)u du =
1− e−(r+h)T

r + h
.

From (3), we find the credit triangle h = c(T )/(1− x).

We now introduce our simple in-house model. A standard approach in credit risk modeling consists
in representing the default time τ as the first jump of a Poisson process with intensity λ under Q. By
doing so, G(T ) = Q(τ > T ) = e−λT . Accounting for the possible dependency of R and τ , one gets

Prot(T ) = λ

∫ T

0

(1− E[R|τ = u]) e−(r+λ)u du ,

PV01(T ) =

∫ T

0

P (u)G(u)du =

∫ T

0

e−(r+λ)u du =
1− e−(r+λ)T

r + λ
.

Interestingly, we observe that the risky duration in both the ISDA and the in-house models reads
PV01(h, T ) and PV01(λ, T ) where

PV01(z, T ) :=
1− e−(r+z)T

r + z
.

As explained above, the protection leg needs to be modeled with care. One directly observes that
when R and τ are independent, we have h = λ (i.e. G = Ḡ) whenever E[R] = x. Generally speaking
however, credit events and recovery rates are not independent. The most famous study supporting that
claim is undoublty that of Altman et al (Altman et al. (2005)). This is why an alternative to ISDA,
accounting for that effect, needs to be considered.
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An easy choice consists in adopting a static copula setup. The idea is similar to the resampling
approach used in counterparty risk application to compute the credit value adjustment (CVA) under
wrong-way or right-way risk (Gregory (2010), Sokol (2011) or Vrins (2016)). One models the conditional
expectation E [Rτ |τ = s] using a function f(s) that collapses to µR := E[R] when there is no dependency
between τ and R. We start by fixing the marginal laws of R and τ . The survival probability function
of τ is implied by our Poisson model and is denoted by G(s). On the other hand, R is modeled with a
Beta distribution with shape parameters α and β whose distribution function is denoted by FR(.;α, β).
Then, R and τ are coupled with a copula C with a fixed dependency parameter ρ, so that one can sample
(R, τ) using independent uniform random variables (U, V ):

(R, τ) ∼ C
(
F−1R (U ;α(τ), β(τ)), F−1τ (V ); ρ

)
.

Choosing the Gaussian copula with correlation ρ, the conditional distribution of R given τ ∈ ds is

f(s; ρ, Z)ds := F−1R

(
Φ
(
ρΦ−1(G(s)) +

√
1− ρ2Z

)
;α, β

)
ds

where Z ∼ N (0, 1) and Φ its cumulative distribution function. Hence,

E[R|τ ∈ ds]/ds = E [f(s; ρ, Z)] =: f(s; ρ)

so that

E
[
R 1I{τ≤T}

βτ

]
= −

∫ T

0

f(u; ρ)P (u)dG(u) .

Eventually, the protection leg takes the following form:

Prot(T ) =
λ
(
1− e−(r+λ)T

)
r + λ

− λ
∫ T

0

f(u; ρ) e−(r+λ)u du = λ

(
PV01(λ, T )−

∫ T

0

f(u; ρ) e−(r+λ)u du

)
.

In order to correctly price the CDS contract with this model, the difference between the protection leg
and the present value of the periodic premium payments must correspond to the upfront amount (the
MtM of the deal without upfront); this is summarized in Figure 2. This in turns means that λ needs to
satisfy eq. (5) which in this case reads as

up(k, T ) = (λ− k) PV01(λ, T )− λ
∫ T

0

f(u; ρ) e−(r+λ)u du .

c(T ) ISDA h ISDA up(k, T ) = (c(t)− k) PV01(h, T ) Model λ

x (x, k)

Figure 2: Methodology to calibrate the model’s parameters to correctly price standard instruments. For
simplicity, we assume here that only one CDS is quoted on the market so that only one conventional
spread (with maturity T ) is available for the reference entity. Hence, the hazard rate curve h collapses
to a constant, and same for the default rate of the in-house model. The procedure works as follows: (1)
quoted spreads are first used to compute the ISDA’s parameters, (2) the ISDA model is used to convert
quoted spread to upfront amounts and (3) the in-house model is calibrated such that it implies the same
upfronts for the standard instruments.

Interestingly, f(u; 0) = µR whenever ρ = 0 or when the variance of R vanishes. This means that if the
recovery rate is deterministic (and equal to the constant used in the ISDA model) or if it is stochastic
but independent from default’s time (but whose risk-neutral expected value agrees with the constant
used in the ISDA model), then λ = h. On the other hand, one can see that when ρ > 0, a high default
probability (lower G) implies on average a low recovery rate. Hence, the observation in Altman et al.
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(2005) suggests that one should use ρ > 0.8 If we believe in our in-house model, the correct default rate λ
can be obtained by looking at the hazard rate h implied by the ISDA model. In the other cases however,
estimating the default rate λ (and equivalently the default probability curve G) from the hazard rate h
leads to an error. We provide some order of magnitudes in the next section.

4 Numerical Experiments

We take the α and β shape coefficients so as to satisfy two constraints about the mean µR and variance
σ2
R of the recovery rate. First, we want the conditional expectation of R given τ ∈ ds to be a given

value µR when ρ = 0, i.e. f(t; 0) = µR. Second, we would like the variance σ2
R to be “valid”. As the

variance of a distribution whose support is [0, 1] and mean is π is upperbounded by that of a Bernoulli
with parameter π, we choose:

σR = a
√
µR(1− µR) , a ∈ [0, 1] .

In this expression, a controls the uncertainty we have about the recovery rate around the mean. These
two constraints yield the shape and scale parameters

α := µR

(
µR(1− µR)

σ2
R

− 1

)
, β :=

1− µR
µR

α .

In the sequel, we consider the “ideal case” where the deterministic recovery rate value x used in the
ISDA pricer is 40% does indeed correspond to E[R] = µR (the alternatives will of course lead to more
significant errors).

4.1 Maximum Likelihood estimation of the parameters

The shape parameters of the conditional distributions of recovery rate can be easily estimated either by
moment matching techniques (plugging the sample mean and sample variance into the above formulas)
or via maximum likelihood. The latter method works as follows. Given the probability density function
of the Beta distribution parametrized by α, β > 0

f(x;α, β) =
1

B(α, β)
xα−1(1− x)β−1 =

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where B(·, ·) and Γ(·) denote the beta and gamma functions respectively, the likelihood function, given
the sample of recovery rate observations X = (x1, ..., xn), has the following form:

Ln(α, β|X) =

n∏
i=1

f(xi;α, β) =

n∏
i=1

Γ(α+ β)

Γ(α)Γ(β)
xα−1i (1− xi)β−1 .

The maximum likelihood estimator of α and β is then given by:

∂`n(α, β|X)

∂α
= nΨ(α+ β)− nΨ(α) +

n∑
i=1

log(xi) = 0 (6)

∂`n(α, β|X)

∂β
= nΨ(α+ β)− nΨ(β) +

n∑
i=1

log(1− xi) = 0 (7)

where Ψ(·) denotes the digamma function. In Table 1, we report summary statistics of recovery rate
empirical distributions taken from Moody’s Default and Recovery Database, together with the mean
µML and standard deviation σML of the theoretical Beta conditional distributions obtained by maximum
likelihood estimation with respect to the shape parameters α and β.9 Conditioning is made with respect

8The reason why a negative relationship between recovery rate and default intensity corresponds to a positive ρ stems
from the fact that the default-time is negatively correlated with the default probability: the higher the default intensity,
the sooner the default time, on average.

9Note that, in the log-likelihood function we have to subtract a machine-precision quantity from full recoveries (i.e.
when the recovery rate is equal to 100%).
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Min. 1st Qu. Median µ 3rd Qu. Max. σ µML σML

Junior Subordinated 0.63 8.00 13.99 20.34 33.00 74.00 18.98 20.68 17.74
Senior Subordinated 0.01 10.31 25.00 30.39 44.14 100.00 24.04 31.46 25.22
Senior Unsecured 0.01 15.00 31.94 36.63 56.06 100.00 26.03 37.85 26.80
Senior Secured 0.01 20.00 40.00 44.57 65.36 100.00 27.73 46.81 28.81

Banking 0.01 3.94 18.00 23.55 37.00 92.08 22.70 23.91 22.57
Capital Industries 0.01 14.43 30.14 36.35 57.00 100.00 26.18 37.05 26.81
Consumer Industries 0.01 15.00 31.67 36.95 55.00 100.00 25.73 38.60 26.48
Energy & Environment 0.01 19.00 36.75 38.86 52.82 100.00 25.70 39.89 27.93
FIRE 0.13 10.00 25.00 32.48 46.63 100.00 25.36 35.47 26.50
Media & Publishing 0.01 16.00 33.50 38.45 54.00 99.00 26.99 38.74 27.84
Retail & Distribution 0.50 13.62 29.00 33.52 48.62 99.50 25.63 35.97 26.98
Technology 0.25 10.00 23.75 30.32 45.00 100.00 25.36 32.91 26.18
Transportation 1.75 16.00 25.38 32.76 45.88 99.88 21.99 34.69 22.19
Utilities 13.99 43.63 67.18 62.87 84.65 100.00 26.46 65.27 27.26

Table 1: Summary statistics of empirical conditional distributions of recovery rates where recoveries
are expressed as percentages of the bond face value. The last two columns display the mean and the
standard deviation of the theoretical distribution with shape parameters α and β obtained via maximum
likelihood. Data for the analysis are taken from Moody’s Default and Recovery Database: the sample

includes 2035 north-American bond defaults covering the period 1st January 1912 – 23rd January 2017.
Regarding the optimization, we adopted a quasi-Newton method (L-BFGS algorithm with lower-bound
constraints).

to the seniority of the defaulted Bond or the industry of the issuing company.
These results support the empirical findings discussed in Section 1 and confirm that the assumption of a
constant recovery rate of 40% is indeed misleading. We observe important differences both in expected
recovery rates µML of different Bond seniorities (with mean recovery rates increasing with the level of
seniority) and in their variability σML. We also document a large intra-class variability (i.e. considerable
values of σML once we have conditioned for a specific seniority). In particular, we point out the higher
variability of recoveries on Senior Secured Bonds: given the mean being around 50% and the standard
deviation being nearly 1/

√
12 ≈ 28.87%, one should notice that this conditional distribution is in fact

close to be Uniform in [0, 1].10 Similarly to Bond seniorities, we document sensible differences in mean
and standard deviation of recovery rates conditional distributions when conditioning is made on the
industrial sector. Also for this type of conditioning the recovery rates intra-class variability is high. In
the sequel, we run our experiments as if the expected recovery rate µML were exactly equal to the fixed
one of 40% used as input in the ISDA pricer but with different levels of uncertainty. However, simulations
could be run also by taking as inputs the last two columns of Table 1: this would lead to an amplification
of the results. The time-evolution of recovery-rate using sliding window is depicted on Figure 3.

4.2 Impact on implied default probability

We look at the impact of the correlation parameter (ρ) for two uncertainty levels about the recovery
rate value: a small uncertainty (a = 10% leading to σR = 5%) and a large uncertainty (a = 50% leading
to σR = 25%, which is indeed close to the average σML of Table 1). We consider a single calibration
instrument which is a T = 5Y CDS with running spread of 250 bps. The standard coupon is set to k = 100
bps. Figure 4 shows the mismatch between λ and h as well as a similar information but translated into
survival probability at maturity to ease the interpretation. The ISDA model always returns the same
constant value located at the intersection of the dotted lines. One can see that for ρ > 0 (suggested by
empirical evidences), the survival probability implied by the “in-house” model is lower than that of the
ISDA model. To put it differently, the ISDA model underestimates the (risk-neutral) default likelihood

10Uniform distribution is a particular case of the Beta distribution when both the shape parameters α and β are equal
to one (indeed our estimation of this conditional distribution yields α = 0.9 and β = 1). The flat distribution for Senior
Secured bonds is in accordance with the findings of Schuermann (2004).
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Figure 3: Half-yearly averages of recovery rates black solid line) with the ±1 standard deviation envelope

(grey area) for north-American bond defaults in the period 5th January 1982-31st December 2016. The
red dotted line corresponds to the average recovery rate observed in this period.

in such cases.

4.3 Impact on deep in-/out-of-the-money standard CDSs

Suppose that a trader wants to price a CDS with outstanding maturity of 3Y and that the market
only quotes a 5Y contract. The ISDA procedure would be to first extract the survival probability curve
which, in the simplified setup depicted above, is given by the credit triangle: h = c(5Y )/(1− x) (where
x is the recovery rate assumed. This in turns indicates that the break-even spread for the 3Y contract
is, c(3Y ) = c(5Y ). In our simple in-house model, the procedure is slightly different. We still assume
µR = x = 40% but the implied default rate λ depends on ρ and a. From these assumptions, one can
extract the break-even spread of the 3Y contract. Eventually the upfront is given by scaling the difference
between the later spread and the standard coupon rate k with the risky duration of the deal computed
according to the model. As above, one needs to convert the model spread c(3Y ) to a quoted spread
ĉ(3Y ) in agreement to the quoting convention. A similar development as above yields

ĉ(3Y ) = k + (c(3Y )− k)
PV01(λ, 3Y )

PV01(h, 3Y )
.

Figure 5 summarizes the methodology and Figure 6 illustrates the impact in terms of conventional spreads
and MtM.
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Figure 4: Impact of correlation on the implied default rate (blue, solid+dotted markes, left axis) and
survival probability at maturity (red, solid+red squares, right axis) for two different values of recovery
rate volatility: a = 1/10 (filled markers) and a = 1/2 (empty markers). Parameters: x = µR = 40%,
calibration instrument: T = 5Y maturity swap with c(T ) = 250 bps, k = 100 bps.

4.4 Impact on CVA of a call

Credit value adjustment (CVA) is the current market price corresponding to the option – implicitly given
to our counterparty– to default during the life of a trade. Let us consider a deal where we trade a call
option with maturity T and strike K on a stock S (with volatility σ) with a counterparty whose default
time τ is independent from S. Then, letting C̃s := Cs/βs be the time-s discounted price of the call and
G is the survival probability of the counterparty, Brigo and Vrins (2017)

CVA = E
[
1I{τ<T}(1−R)

C+
τ

βτ

]
= −

∫ T

0

(1− E[R|τ = s])E[C̃+
s ]dG(s) .

But the price of a call and the numéraire β are always non-negative, so that C̃+
s = C̃s and E[C̃s] = C̃0 =

C0 as C̃ is a Q-martingale. It becomes clear that in this context, CVA is nothing but the protection leg
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up(k, 5Y )

c(5Y ) ISDA h ISDA c(3Y ) = c(5Y )

Model λ Model c(3Y ) ISDA ĉ(3Y )

x

(a, ρ) (h, x)

Figure 5: Methodology to analyze the model impact on the 3Y spread of a standard CDS starting from
a 5Y spread of a standard CDS.

of a CDS whose reference entity is the counterparty, with zero risk-free rate and notional C0:

CVA = −C0

∫ T

0

(1− E[R|τ = s])dG(s) .

In Figure 7(a) we compare two types of CVAs. The first one is computed by assuming an independent
recovery rate whose expected value is equal to the ISDA level, E[R|τ = s] = x = 40% and used λ ← h
to be consistent:

CVA = h

∫ T

0

(1− x)E[C̃+
s ] e−hs du = (1− x)C0(1− e−hT ) ,

so that the CVA on a Call option with maturity T per unit of option premium is the ISDA protection
leg Prot(T ) with r = 0. This is the horizontal black curve on Figure 7(a).

The second way to compute CVA is by extracting λ with our in-house model assuming a given pair
(a, ρ) and then price CVA consistently. Hence, we are consistent with the ways recovery rate is considered
in both the calibration and in the CVA pricing steps:

CVA = λ

∫ T

0

(1− f(s, ρ))E[C̃+
s ] e−λs ds = λC0

∫ T

0

(1− f(s, ρ)) e−λs ds .

As before, the “in-house” CVA, expressed per unit of option premium, is the “in-house” protection leg
Prot(T ) with r = 0. This is the blue curve on Figure 7(a). One can see that if we are consistent in the
way we extract default probabilities and price CVA, the error is limited (the blue and black curves do
not deviate too much from each other). If by contrast we lack consistency, i.e. use the internal model to
compute the default probability curve but assume a fixed recovery in the CVA’s payoff as below,

C̃VA = λ(1− x)

∫ T

0

E[C̃+
s ] e−λs ds = (1− x)C0(1− e−λT ) .

This is similar to computing CVA assuming a deterministic recovery rate of x but assuming a stochas-
tic recovery rate when extracting the default probability (by using λ instead of h). The inconsistency is
striking by comparing this CVA (red curve) with the others on Figure 7(a).

4.5 Impact on par spread of digital CDSs

As a final experiment we focus on the price of digital CDS, i.e. a CDS contract where the recovery rate
is contractually set to 0, so that the contingent flow is either 0 if τ > T or N otherwise. Applying the
ISDA procedure, the hazard rate h is extracted from standard CDS, and the valuation of the digital
CDS with the ISDA approach naturally leads to the spread d̄(5Y ) = h = c(5Y )/(1 − x). Similarly,
once the default rate λ of our in-house model has been extracted, it is straightforward to check that the
break-even spread implied by the in-house model is d(5Y ) = λ. Note that a proper comparison would

require not to compare d̄ and d but to compare d̄ with the “ISDA-equivalent” spread d̂(5Y ). Indeed,
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Figure 6: Impact of correlation on the implied break-even CDS spread with maturity 3Y (blue, dot
markers, left axis) and corresponding MtM with 10k notional (red, square markers, right axis) for two
different values of recovery rate volatility: a = 1/10 (filled markers) and a = 1/2 (empty markers).
Parameters: x = µR = 40%, calibration instrument: 5Y maturity swap with c = 250 bps, k = 100 bps.

from the in-house model, the trader would not quote d(5Y ) but would quote a spread d̂(5Y ) such that,
when converting this spread according to the ISDA converter, she would find the same MtM (i.e. upfront
amount) as the one implied by the in-house model when the actual (standard) coupon rate k is used.

The spread d̂(5Y ) is computed such that the “in-house model” price (correct to the trader) and “ISDA
model” (conventional quotation) price agree:

(d(5Y )− k) PV01(λ, T ) = up = (d̂(5Y )− k) PV01(h, T )⇒ d̂(5Y ) = k + (d(5Y )− k)
PV01(λ, T )

¯PV01(h, T )
.

Figure 8 summarizes the methodology and Figure 7(b) shows the impact. From the inputs given above, we
find d̄(5Y ) = c(5Y )/0.6 ≈ 417 bps (horizontal dotted blue line). By contrast, the break-even spread d(5y)

(blue) or its ISDA-equivalent d̂(5Y ) (magenta) substantially depends on (a, ρ) but are relatively close from
each other. Accounting for a positive dependency between ρ and λ leads to a digital CDS conventional
spread larger than the one given by the simple rescaling of the conventional spread c(5Y )/(1 − 0.4)
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Figure 7: Impact of stochastic recovery rate on CVA (left) and implied par digital CDS spread (right)
with respect to ρ. Calibration instrument: 5Y maturity swap with c = 250 bps and k = 100 bps.

suggested by the ISDA model.

up(k, 5Y )

c(5Y ) ISDA h ISDA d(5Y ) = c(5Y )/(1− x)

Model λ Model d(5Y ) ISDA d̂(5Y )

x

(a, ρ) (h, x)

Figure 8: Methodology to analyze the model impact on the spread of a 5Y digital CDS starting from
the spread of a 5Y standard CDS.

5 Conclusion

In this paper, we have stressed that the recovery rate uncertainty (which had been emphasized in many
studies and again emphasized above) is a key driver of CDS prices. Moreover, quite a few empirical
analyses suggest a negative dependency between recovery rate and default probability. Based on our
simple in-house model, we have shown that the common way of extracting risk-neutral probabilities (i.e.
inverting the equations derived from the ISDA CDS pricer, the standard pricer in the market) leads
to underestimate the actual market-implied default probabilities in standard situations. This can have
serious consequences when assessing credit risk of the firms. Moreover, it can also impact the valuation
of less liquid instruments (like digital CDSs) or existing standard deals. This type of mispricing is of
the same nature as those that led to introduce multi-curve pricing (OIS discounting): if one bootstraps
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the Libor curve from new trades, these trades will, by construction, price at par. By contrast, the
impact of adopting the (correct) multi-curve approach will be clearly visible for swaps where the fixed
rates substantially deviate from the prevailing swap rates. Therefore, just like Black-Scholes formula is a
handy tool to communicate prices in terms of implied vols, the ISDA CDS model is a nice way to quote
CDS prices as running premiums. Nevertheless, as pricer, it must be used with care as it neglects one of
the major risks underlying such products. The figures produced with the simple model introduced above
suggest that traders and risk managers may not make the economy of developing their own model when
it comes to extract risk-neutral probabilities or price non standard deals. To the best of our knowledge,
there is no standard alternative to the ISDA CDS pricer involving stochastic recovery rate. Developing
such alternatives is the purpose of active research in the field.
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