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Abstract

This work presents STR, a geo-distributed, partially replicated transactional data store, which leverages on novel
speculative techniques to mask the inter-replica synchronization latency.

The theoretical foundations on top of which we built STR is a novel consistency criterion, which we call SPeculative
Snapshot Isolation (SPSI). SPSI extends the well-known Snapshot Isolation semantics in an intuitive, yet rigorous
way, by specifying desirable atomicity and isolation guarantees that shelter applications from subtle anomalies that
can arise when adopting speculative transaction processing techniques.
We assess STR’s performance on up to nine geo-distributed Amazon EC2 data centers, using both synthetic

benchmarks as well as complex benchmarks (TPC-C and RUBiS). Our experimental study highlights that STR
achieves throughput gains of up to 6⇥ and latency reduction up to 100⇥, in workloads characterized by low inter-data
center contention. Furthermore, thanks to self-tuning techniques that automatically adjust the aggressiveness of
STR’s speculation degree, STR offers robust performance even when faced with unfavourable workloads that suffer
from high misspeculation rates.
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1 Introduction

Modern online services are increasingly deployed
over geographically-scattered data centers (geo-
replication) [12, 27, 29]. Geo-replication allows services to
remain available even in the presence of outages affecting en-
tire data centers and it reduces access latency by bringing data
closer to clients. On the down side, though, the performance
of geographically distributed data stores is challenged by large
communication delays between data centers. To provide ACID
transactions, a desirable feature that can greatly simplify appli-
cations’ development [41], some form of global certification is
unavoidable in order to safely detect conflicts developed among
concurrent transactions executing at different data centers. The
adverse performance impact of inter-data center certification
is of a twofold nature: i) system’s throughput can be severely
impaired, as transactions need to hold pre-commit locks during
their global certification phase, which can cripple the effective
concurrency that these systems can achieve; ii) client-perceived
latency is also directly affected, since the inter-data center
certification lies in the critical path of execution of transactions.

This work investigates the opportunities and challenges
associated with the use of speculative processing techniques
in geo-distributed partially replicated transactional data stores
that provide a widely employed consistency criterion, i.e.,
Snapshot Isolation [13, 16] (SI). We focus on two speculative
processing techniques, which we call: speculative reads and
speculative commits.

Speculative reads allow transactions to observe the data
item versions produced by pre-committed transactions, instead
of blocking until they are committed/aborted. As such,
speculative reads can reduce the “effective duration” of pre-
commit locks (i.e., as perceived by conflicting transactions),
thus reducing transaction execution time and enhancing the
maximum degree of parallelism achievable by the system —
and, ultimately, throughput. We say that speculative reads are
an internal speculation technique, as misspeculations caused
by it never surface to the clients and can be dealt with by
simply re-executing the affected transaction.

Speculative commits, instead, allow for exposing to external
clients the results produced by transactions that are still
undergoing their global certification phase. By removing the
global certification phase from the critical path of transaction
execution, speculative commits can drastically reduce the
user-perceived latency. However, analogously to other tech-
niques [33, 21] that externalize uncommitted state to clients —
and that we call external speculation techniques — speculative
commits require programmers to define compensation logic
to deal explicitly with misspeculation events.

A number of works have already demonstrated how the
use of speculative reads and speculative commits, either indi-
vidually [18, 33, 25, 21] or in synergy [43], can significantly
enhance the performance of distributed [43, 35, 25, 33, 34]
and single-site [18] transactional systems. However, existing
approaches suffer from several relevant limitations which
represent the key motivation underlying the work presented
in this paper:
1. Unfit for geo-distribution/partial replication. Some
existing works in this area [35, 25, 43] were not designed for
partially replicated geo-replicated data stores. On the contrary,
they target different data models (i.e., full replication [35, 43])
or rely on techniques that impose prohibitive costs in WAN
environments, such as the use of centralized sequencers to
totally order transactions [25].
2. Subtle concurrency anomalies. To the best of our knowl-
edge, all partially replicated geo-distributed transactional data
stores that allow speculative reads [18, 22, 34] expose applica-
tions to anomalies that do not arise in non-speculative systems
and that can severely undermine application correctness. Fig-
ure 1 illustrates two examples of concurrency anomalies that
may arise when using these systems. The root cause of the
problem is that existing systems allow speculative reads to
observe any pre-committed data version, which exposes ap-
plications to observe data snapshots that reflect only partially
the updates of transactions (Fig. 1a) and/or include versions
created by conflicting concurrent transactions (Fig. 1b). These
concurrency anomalies have the following negative impacts:
1) transaction execution may be affected to the extent that they
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(a) Atomicity violation — T2 observes T1’s pre-committed version of data item C,
but not of B. This breaks the application invariant (B!=C), causing an unexpected
division by zero exception that could crash the application at node N3.
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 Init: A=2, B=1
 T1: A=4, B=2
 T2: A=10, B=5
 T3: a=read(A)
       b=read(b)
       while (b!=a)
          ++b
          <Loop body>

(b) Isolation violation — T3 observes the pre-committed updates of two conflicting
transactions, namely T1 and T2. T3 enters an infinite loop, as the application
invariant (A=B*2) is broken due to the concurrency anomaly.

Figure 1: Examples illustrating possible concurrency anomalies
caused by speculative reads. N1, N2 and N3 are three nodes that
store data items A, B and C, respectively.

cause application’s crashes or hangs without ever requesting
to commit, and 2) if jointly used with speculative reads, spec-
ulative commits can observe and externalize non-atomic/non-
isolated snapshots to human users or third-party applications.
3. Performance robustness. If used injudiciously, specula-
tion can hamper, instead of benefiting performance. As we will
show, in adverse scenarios (e.g., large likelihood of transaction
aborts and high system load) misspeculations can significantly
penalize both user-perceived latency and system throughput.

This work aims to address precisely these limitations by
introducing STR (Speculative Transaction Replication), a
novel speculative transactional protocol for partially replicated
geo-distributed data stores.

STR’s shares several key design choices with state-of-the-art
strongly consistent data stores [12, 13, 36], which contribute to
its efficiency and scalability. These include: multi-versioning,
which maximizes efficiency in read-dominated workloads [9],
purely decentralized concurrency control based on distributed
clocks [12, 13, 37], and support for partial replication [26, 12].
The key contribution of STR lies in its innovative distributed
concurrency control scheme that supports speculative execution
while providing intuitive and stringent consistency guarantees.

The theoretical foundations over which we built STR is
a novel consistency model, which we called SPeculative
Snapshot Isolation (SPSI) (§5). Besides guaranteeing the
familiar Snapshot Isolation (SI) to committed transactions,
SPSI provides clear and stringent guarantees on the atomicity
and isolation of the snapshots observed and produced by
executing transactions that use both speculative reads and
speculative commits. In a nutshell, SPSI allows an executing
transaction to not only read data item versions committed

before it started (as in SI), but also to observe, in an atomic
way, the effects of non-conflicting transactions that originated
on the same node and pre-committed before it started.

Further, STR integrates a lightweight, yet effective, hill
climbing-based self-tuning mechanism that dynamically
adjusts the aggressiveness of the speculative mechanisms
employed by the system based on the workload characteristics
(§6). The use of self-tuning spares developers from the
complexity of manually tuning any additional system knobs,
by automatically identifying the configurations that maximize
the performance gains achievable via speculation in favourable
workloads, while ensuring robust performance in adverse
scenarios that are unfavourable to the use of speculative
techniques.

We evaluated STR on up to nine geo-distributed Amazon
EC2 data centers, assessing its performance via both synthetic
and complex benchmarks (TPC-C [4] and RUBiS [2]). Our
experimental study highlighted that the use of speculative
reads allows achieving up to 6⇥ throughput improvements
(in a completely transparent way for programmers) and that
applications that exploit also speculative commits can achieve a
further reduction of the user-perceived latency by up to 100⇥.

2 Related Work

Geo-replication. The problem of designing efficient
mechanisms to ensure strong consistency semantics in
geo-replicated data stores has been intensively studied. A
class of geo-replicated systems [45, 14] is based on the
state-machine replication (SMR) [28] approach, in which
replicas first agree on the serialization order of transactions and
then execute them without further coordination. Other recent
systems [12, 13, 27, 30] adopt the deferred update (DU) [24]
approach, in which transactions are first locally executed and
then globally certified. This approach is more scalable than
SMR in update intensive workloads [47, 24] and, unlike SMR,
it can seamlessly support non-deterministic transactions [38].
The key down side of the DU approach is that locks must
be maintained for the whole duration of transactions’ global
certification, which can severely hinder throughput [44].
STR builds on the DU approach and tackles its performance
limitation via the use of speculative techniques.

Speculation. To mask latency in replicated systems, Helland
et. al. advocate the guesses and apologies programming
paradigm [23], in which systems expose preliminary results
of requests (guesses), but reconcile the exposed results
if they are different from final results (apologies). This
corresponds to STR’s notion of speculative commits, which
is a programming approach adopted also in other recent
systems, like PLANET [33] and ICG [21]. Unlike STR,
though, these systems are designed to operate on conventional
storage systems, which do not support speculative reads of
pre-committed data. As such, these approaches can benefit
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user-perceived latency, but they do not tackle the problem
of reducing transaction’s blocking time, which can severely
impair throughput. In fact, as we will show in our evaluation
study, thanks to the use of speculative reads, STR can provide
up to 6⇥ throughput gains over systems, like PLANET or
ICG, that only use speculative commits.

The idea of letting transactions “optimistically” borrow, in a
controlled manner, data updated by concurrent transactions has
already been investigated in the past. SPECULA [35] and Ag-
gro [32] have applied this idea to local area clusters in which
data is fully replicated via total-order based coordination prim-
itives; Jones et. al. [25] applied this idea to partially replicat-
ed/distributed databases, by relying on a central coordinator to
totally order distributed transactions. These solutions provide
consistency guarantees on executing transactions (and not only
on committed ones) that are similar in spirit to the ones speci-
fied by SPSI1. However, these systems rely on solutions (like a
centralized transaction coordinator or global sequencer) that im-
pose unacceptably large overheads in geo-distributed settings.

Other works in the distributed database literature,
e.g., [22, 34, 18], have explored the idea of speculative reads
(sometimes referred to as early lock release) in decentralized
transactional protocols for partitioned databases, i.e., the same
system model assumed by STR. However, these protocols
provide no guarantees on the consistency of the snapshots
observed by transactions (that eventually abort) during their
execution and may expose applications to subtle concurrency
bugs such as the ones exemplified in Figure 1.

Mixing consistency levels. Some recent systems exploit the
coexistence of multiple consistency levels to enhance sys-
tem performance. Gemini [29] and Indigo [7] identify and
exploit the presence of commutative operations that can be
executed with lightweight synchronization schemes, i.e. causal
consistency, without breaking application invariants. These
techniques are orthogonal to STR, which tackles the problem
of enhancing the performance of non-commutative transactions
that demand stronger consistency criteria (i.e., SI). Salt [48] in-
troduced the notion of BASE transactions, i.e., a classic ACID
transaction that is chopped into a sequence of sub-transactions,
which can externalize intermediate states of their encompass-
ing transaction to other BASE transactions. This approach,
analogously to STR’s speculative reads, allows to reduce lock
duration and enhance throughput. Differently from STR,
though, Salt requires programmers to define which intermedi-
ate states of which BASE transactions should be externalized
and to reason on the correctness implications of exposing such
states to other BASE transactions. STR’s SPSI semantics spare
programmers from this source of complexity, by ensuring that
transactions always observe and produce atomic and isolated
snapshots — which are guaranteed not to include the execution
of concurrent transactions originated at different nodes.

1In fact, these works do not consider SI as base consistency criterion, but
rather opacity [20] and serializability.

3 System and transaction execution model

Our target system model encompasses a set of geo-distributed
data centers, each hosting a set of nodes. In the following, we
shall assume a key-value data model. This is done for simplic-
ity and since our current implementation of STR runs on a key-
value store. However, the protocol we present is agnostic to
the underlying data model (e.g., relational or object-oriented).

Data and replication model. The dataset is split into
multiple partitions, each of which is responsible for a disjoint
key range and maintains multiple timestamped versions for
each key. Partitions may be scattered across the nodes in the
system using arbitrary data placement policies. Each node
may host multiple partitions, but no node or data center is
required to host all partitions.

A partition can be replicated within a data center and
across data centers. STR employs synchronous master-slave
replication to enforce fault tolerance and transparent fail over,
as used, e.g., in [12, 6]. A partition has a master replica and
several slave replicas. We say that a key/partition is remote
for a node, if that node does not replicate that key/partition.
At commit time, update transactions contact the masters of
the partitions they accessed. These verify whether transactions
can be correctly serialized and propagate their updates, along
with any metadata (e.g., locks held by the transaction) required
for their recovery, to its replicas. This scheme allows for
transparent fail over, in master replicas fail. Further, it allows
reads to be served by any replica, which allows clients to
freely select their geographically closest ones.

Synchrony assumptions. STR does not rely on any
synchrony assumption, except that for the management of
failures. STR only requires that nodes are equipped with
loosely synchronized, conventional hardware clocks, which
we only assume to monotonically move forward. Additional
synchrony assumptions, though, are required to ensure the
correctness of the synchronous master-slave replication
scheme, used by STR, in presence of failures [17]. STR
integrates a classic single-master replication protocol, which
assumes perfect failure detection capabilities [11]. However,
it would be relatively straightforward to replace the replication
scheme currently employed in STR to use techniques, like
Paxos [15], which require weaker synchrony assumptions.

Transaction execution model. Transactions are first ex-
ecuted in the node where they were originated. When they
request to commit, they undergo a local certification phase,
which checks for conflicts with concurrent transactions, orig-
inated either locally or remotely. If the local certification
phase succeeds, we say that transactions local commit and
are attributed a local commit timestamp, noted LC. Next,
they execute a global certification phase that detects conflicts
with transactions originated at any other node in the system.
Transactions that pass the global certification phase are said
to final commit and are attributed a final commit timestamp,
noted FC.
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A local committed transaction, T , can expose its state to
other transactions via the speculative read mechanism. We
say that these transactions have data dependencies on T .
Programmers can also allow to expose the state produced by
a local committed transaction, T , to clients via the speculative
commit mechanism. Then clients can activate new transactions
without waiting for the final commit of T . Such transactions
are said to flow depend on T .

4 Programming Model

As discussed in§1, STR uses both internal (speculative reads)
and external (speculative commits) speculation techniques.
While the former ones are totally transparent to programmers,
speculative commits allow to expose uncommitted state and,
as such, require the development of compensation logic to deal
with misspeculations. To this end, STR employs an API, sim-
ilar in spirit to the ones proposed by other recent systems [33,
21], which allows developers to circumscribe the scenarios in
which external speculation should be used and to define ad-hoc
compensation logics. We exemplify STR’s API by means of
a simple online shopping application (Listing 1), which allows
users to purchase an item and decrements its quantity by one.

buyItemTx(String itemKey) {
CanSpecCommit checkRisk= new CanSpecCommit() {
public boolean canSpecCommit(TxInfo txInfo)
{return txInfo.get("itemPrice") < 100

&& SYSINFO.getCommitProb("buyItem") >0.9;} };
OnSpecCommit ackOrder

= //Display "Your order has been placed."
OnFinalCommit confirmOrder = //Send an

email to the user notifying successful order.
try {

Transaction tx = new Transaction();
Item item = tx.read(itemKey);
item.quantity -= 1;
tx.write(itemKey, item);
tx.getTxInfo().put("itemPrice", item.price);
tx.commit(checkRisk, ackOrder, confirmOrder);

}
catch (NonSpecTxAbortException e1) {
// Retry.

}
catch (SpecTxAbortException e2) {
// Send apology email to the client.

}
}

Listing 1: Exemplifying STR’s programming model.

STR extends the API exposed by conventional, non-
speculative transactional systems in a simple and intuitive
way, by requiring programmers to specify, upon transaction
commit, the following three callbacks:
• CANSPECCOMMIT() is invoked by STR when a transaction
completes its local execution, and returns a boolean that
determines whether STR should or should not speculative
commit the transaction. In the example, this callback
(implemented by checkRisk()) evaluates the risk associated
with external speculation on the basis of the price of the
item being sold and on the commit rate experienced by the
corresponding transaction over a recent time window. The
former information is inserted during transaction execution
in the txInfo map, which is associated with the specific

transaction instance. The statistical information on the commit
probability of various transaction types are instead obtained via
SYSINFO, a shared in-memory map that is maintained by STR.
• ONSPECCOMMIT() is invoked if the transaction is allowed
to speculative commit (CANSPECCOMMIT() returns true)
and allows for defining how the transaction’s speculative state
should be exposed — in the example, it informs the user that
the order has been placed.
• ONFINALCOMMIT(), as the name suggests, is invoked if
the transaction successfully finalizes its global certification
phase, i.e., it final commits — in the example, it confirms
the success of the purchase via email.

Finally, STR lets programmers react to the abort of
transactions that exposed speculative state via the SpecTx-
AbortException (sending an apology email in the example),
as well as of transactions that did not externalize uncommitted
states via the NonSpecTxAbortException (in which case the
transaction can be simply retried).

5 Speculative Snapshot Isolation

SPSI has been designed to generalize the well-known SI
criterion and define a set of rigorous, yet intuitive, guarantees
that shelter applications from the subtle anomalies (exemplified
in Figure 1) that may arise when using speculative techniques.
Before presenting the SPSI specification, let us first recall the
definition of SI [46]:

• SI-1. (Snapshot Read) All operations read the most recent
committed version as of the time when the transaction
began.

• SI-2. (No Write-Write Conflicts) The write-sets of any
committed concurrent transaction must be disjoint.

Let us now introduce the SPSI specification:

• SPSI-1. (Speculative Snapshot Read) A transaction T
originated at a node N at time t must observe the most
recent versions created by transactions that i) final commit
with timestamp FCt (independently of the node where
these transactions originated), or ii) local committed with
timestamp LCt and originated at node N.

• SPSI-2. (No Write-Write Conflicts among Final Committed
Transactions) The write-sets of any final committed
concurrent transaction must be disjoint.

• SPSI-3. (No Write-Write Conflicts among Transactions
in a Speculative Snapshot) Let S be the set of transactions
included in a snapshot. The write-sets of any concurrent
transaction in S must be disjoint.

• SPSI-4. (No Dependencies from Uncommitted Transac-
tions) A transaction can only be final committed if it does
not data or flow depend on any local-committed or aborted
transaction.

SPSI-1 extends the notion of snapshot, at the basis of the
SI definition, to provide the illusion that transactions execute
on immutable snapshots, which reflect the execution of all the
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transactions that local committed before their activation and
originated on the same node. By demanding that the snapshots
over which transactions execute reflect only the effects
of locally activated transactions, SPSI allows for efficient
implementations, like STR, which can decide whether it is
safe to observe the effects of a local committed transaction
based solely on local information. Note that this guarantee
applies to every transaction, including those that are eventually
aborted. SPSI-1 has also another relevant implication: assume
that a transaction T , which started at time t, reads speculatively
from a local committed transaction T 0 with timestamp LCt,
and that, later on, T 0 final commits with timestamp FC> t;
at this point T violates the first sub-property of SPSI-1. Hence,
T must be aborted before T 0 is allowed to final commit.

SPSI-2 coincides with SI-2, ensuring the absence of write-
write conflicts among concurrent final committed transactions.
SPSI-3 complements SPSI-1 by ensuring that the effects of
conflicting transactions can never be observed. Finally, SPSI-4
ensures that a transaction can be final committed only if it
does not depend on transactions that may eventually abort.

Overall, SPSI restricts the spectrum of anomalies that can
be experienced by local committed transactions, by limiting
them only to conflicts with concurrent transactions originated
at remote sites and of which the local node is not aware yet.
More formally, SPSI ensures that any transaction T , which
uses speculative reads and speculative commits, observes/pro-
duces snapshots equivalent to the ones that T would have
produced/observed, if it had executed in a SI-compliant history
that included only the transactions known by the node in
which T originated, at the time in which T was activated.

6 The STR protocol

For sake of clarity, the design of STR is presented in an in-
cremental fashion. We first present a non-speculative protocol,
which represents the basis on top of which STR is built. This
base protocol is then extended with a set of mechanisms
aimed to support speculation in an efficient and safe (i.e., SPSI
compliant) way. Next, we explain the STR protocol along with
its pseudo-code. Finally, we discuss the fault-tolerance of STR
and explain how the self-tuner adjusts the speculation degree.

6.1 Base non-speculative protocol
The base, non-speculative, protocol on top of which we
designed STR is a multi-versioned, SI-compliant algorithm
that avoids non-scalable solutions, like the use of centralized
sequencers [25] or the involvement in a transaction’s certi-
fication phase of nodes that do not replicate data accessed by
that transaction [40, 5]. Conversely, STR’s base protocol relies
on a fully decentralized concurrency control scheme that is
similar in spirit to the one employed by recent, highly scalable
systems like Spanner or Clock-SI [13, 12]. In the following,
we describe the main phases of STR’s base protocol.

Execution. When a transaction is activated, it is attributed
a read snapshot, noted as RS, equal to the physical time of the
node in which it was originated. The read snapshot determines
which data item versions are visible to the transaction. Upon a
read, a transaction T observes the most recent version v having
final commit timestamp v.FCT.RS. However, if there exists
a pre-committed version v0 with a timestamp smaller than
T.RS, then T must wait until the pre-committed version is
committed/aborted. In fact, as it will be clearer shortly, the
pre-committed version may eventually commit with a times-
tamp FCRS — in which case T should include it snapshot
— or FC>RS — in which case it should not be visible to T .

Note that read requests can be sent to any replica that
maintains the requested data item. Also, if a node receives
a read request with a read snapshot RS higher than its current
physical time, the node delays serving the request until its
physical clock catches up with RS. Instead, writes are always
processed locally and are maintained in a transaction’s private
buffer during the execution phase.

Certification. Read-only transactions can be immediately
committed after they complete execution. Update transactions,
instead, first check for write-write conflicts with concurrent
local transactions. To this end an update transaction T that
is being certified must check whether, for any of the data
items it updated and that is locally replicated: i) there exist a
pre-committed version created by a transaction T 0 — in which
case T must block until the outcome of T 0 is determined; or,
ii) the most recent final committed version has a timestamp
larger than the the read snapshot of T — in which case T has
to be aborted.

If T passes this local certification stage, it activates a,
2PC-based, global certification phase by sending a pre-commit
request to the master replicas of any key it updated and for
which the local node is not a master replica. If a master replica
detects no conflict, it acquires pre-commit locks, and proposes
its current physical time for the pre-commit timestamp.

Replication: If a master replica successfully pre-commits
a transaction, it synchronously replicates the pre-commit
request to its slave replicas. These, in their turn, send to
the transaction coordinator their physical time as proposed
pre-commit timestamps.

Commit: After receiving replies from all the replicas of
updated partitions, the coordinator calculates the commit
timestamp as the maximum of the received pre-commit
timestamps. Then it sends a commit message to all the replicas
of updated partitions and replies to the client. Upon receiving
a commit message, replicas mark the version as committed
and release the pre-commit locks.
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6.2 Ensuring atomic and isolated speculative
snapshots

Let us now extend the base protocol described above to
incorporate speculative reads, i.e., reads of pre-committed ver-
sions. The example execution in Fig. 1.a, illustrates a possible
anomaly that could arise if one adopted a naive protocol that
would simply allow to observe any pre-committed version
having pre-committed timestamp smaller than the transaction’s
read snapshot. Since nodes propose pre-commit timestamps
in an independent fashion, and depending on whether they
receive the pre-commit request, i.e., asynchronously, transac-
tions could observe non-atomic snapshots, violating property
SPSI-1. Furthermore, Fig. 1.b illustrates how such a naive
protocol may violate property SPSI-3, allowing to include in
T3’s snapshot versions created by two conflicting transactions.

STR tackles these issues as follows. First, it restricts
the use of speculative reads, as mandated by SPSI-1, by
allowing to observe only pre-committed versions created
by local transactions. To this end, when a transaction local
commits, it stores in the local node the (pre-committed)
versions of the data items that it updated and that are also
replicated by the local node. This is sufficient to rule out
the anomalies illustrated in Fig. 1, but it still does not suffice
to ensure properties SPSI-1 and SPSI-3. There are, in fact,
two other subtle scenarios that have to be taken into account,
both involving speculative reads of versions created by local
committed transactions that updated some remote key.

The first scenario, illustrated in Fig. 2, is associated with
the possibility of including in the same snapshot a local
committed transaction, T1 — which will eventually abort
due to a remote conflict, say with T2 — and a remote, final
committed transaction, T3, that has read from T2. Such an
execution clearly violates property SPSI-3. It should be noted
that the local certification phase, whose success is a necessary
condition to local commit a transaction (and, hence, allow
exposing its updated versions via speculative reads), can only
detect conflicts between local transactions, or between local
transactions and remote transactions that pre-commit at the
local node. Indeed, the totally decentralized nature of STR’s
concurrency protocol, in which no node has global knowledge
of all the transactions committed in the system, makes it
challenging to detect scenarios like the ones illustrated in
Figure 2 and to distinguish them, in an exact way, from
executions that did not include transaction T2 — in which
case the inclusion of T1 and T3 in T4 would have been safe.

The mechanism that STR employs to tackle this issue is
based on the observation that such scenarios can arise only in
case a transaction, like T4, attempts to read speculatively from
a local committed transaction, like T1, which has updated
some remote key. The latter type of transactions, which we call
“unsafe” transactions, may have in fact developed a remote
conflict with some concurrent final committed transaction
(which may only be detected during their global certification
phase), breaking property SPSI-3. In order to detect these

N1

N2
C, D

T1 Local-commit
A, B

Write(A=A1)
Write(C=C1)

Write(C=C2)
Write(E=E2)
T2 Final Commit Prepare C1: Abort

T4 Exec

Read(A)->A1

Read(B)->B3

N3
E, F

T3 Final Commit

Read(E)->E2

Write(B=B3)

C= C2

E= E2

B= B3

Figure 2: History exemplifying indirect conflicts between a local
committed transaction, T1, and a final committed transaction
originated at a different node, T3. If T4 included both T1 and T3
in its snapshot, it would violate SPSI property 3.

scenarios, STR maintains two additional data structures per
transaction: OLC (Oldest Local-Commit) and FFC (Freshest
Final Commit), which track, respectively, the read snapshot
of the oldest “unsafe” local committed transaction and the
commit timestamp of the most recent remote final committed
transaction, which the current transaction has read from (either
directly or indirectly). Thus, STR blocks transactions when
they attempt to read versions that would cause FFC to become
larger than OLC. This mechanism prevents including in the
same snapshot of a transaction unsafe local committed transac-
tions along with remote final committed transactions that are
concurrent and may conflict with them. For example, in Fig. 2,
STR blocks T4 when attempting to read B from T3, until the
outcome of T1 is determined (not shown in the figure).

The second scenario arises in case a transaction T attempts
to speculatively read a data item d that was updated by a local
committed transaction T 0, in case d is not replicated locally. In
this case, if T attempted to read remotely d, it may risk to miss
the version of d created by T 0, which would violate SPSI-1.
To cope with this scenario, whenever an unsafe transaction
local commits, it temporarily (until it final commits or aborts)
stores the remote keys it updated in a special cache partition,
tagging them with the same local commit timestamp. This
grant prompt and atomic (i.e., all or nothing) access to these
keys to any local transaction that may attempt to speculatively
read them.

6.3 Maximizing the chances of speculation
Recall that, SPSI-1 requires that if a transaction T reads
speculatively from a local committed transaction T 0, and T 0

eventually final commits with a commit timestamp that is
larger than the read snapshot of T , then T has to be aborted.
Thus, in order to increase the chance of success of speculative
reads, it is important that the commit timestamps attributed
to final committed transactions are “as small as possible”.

To this end, STR proposes a new timestamping mechanism,
i.e., PreciseClock, which is based on the following observation.
The smallest final commit timestamp, FC, attributable to
a transaction T that has read snapshot RS must ensure the
following properties:

• P1. T.FC>T.RS, which is necessary to guarantee that if
T reads a data item version with timestamp RS and updates
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it, the version it generates has larger timestamp than the
one it read.

• P2. T.FC is larger than the read snapshot of all transactions
T1,...,Tn that read, before T final committed, any of the
keys updated by T , and that did not see the versions created
by T , i.e., T.FC>max{T1.RS,...,Tn.RS}. This condition is
necessary to ensure that T is serialized after the transactions
T1, ... , Tn, or, in other words, to track write-after-read
dependencies among transactions correctly.

Ensuring property P1 is straightforward: instead of
proposing the value of the physical clock at its local node as
pre-commit timestamp, the transaction coordinator proposes
T.RS+1. In order to ensure the latter property, STR associates
to each data item an additional timestamp, called LastReader,
which tracks the read snapshot of the most recent transaction
to have read that data item. Hence, in order to ensure property
P2, it suffices that the nodes involved in the global certification
phase of a transaction T propose, as its pre-commit timestamp,
the maximum among the LastReader timestamps of any key
updated by T on that node.

It can be easily seen that the PreciseClock mechanism al-
lows to track write-after-read dependencies among transaction
at a finer granularity that the timestamping mechanism used in
the base protocol — which, we recall, is also the mechanism
used by non-speculative protocols like, e.g., Spanner [12] or
Clock-SI [13]. Indeed, as we will show in§ 8, the reduction
of commit timestamps, achievable via PreciseClock, does not
only increase the chances of successful speculation, but also
reduces abort rate for non-speculative protocols.

6.4 Tracking transaction dependencies
SPSI-4 allows transaction to commit only if they have no
data or flow dependencies on local committed or aborted
transactions. To accomplish this goal, in STR each transaction
T maintains the following data structures:

• inDD: a set that tracks the transactions which T data
depends on. T cannot final commit unless inDD is empty.
• outDD: a set that tracks the transactions that data depend on
T . These transactions are notified when T aborts or final com-
mits. If T aborts, the transactions in outDD are aborted as well.
If T final commits, T aborts all the transactions in outDD that
have a read snapshot smaller than T ’s final commit timestamp
(which is needed to ensure SPSI-1, see§ 5), and notifies the
remaining transactions to remove T from their inDD set.
• inFD: it tracks the transaction that T flow depends on, if any.
As for inDD, T cannot final commit unless inFD is empty.
• outFD: it tracks the transaction that flow depends on T , if
any. T notifies the transaction tracked by outFD, say T 0, when
it final commit or aborts. In the former case, T 0 remove T
from its inDD. Else, T 0 aborts.

These data structures allow also for efficiently identifying
the cascading abort mechanism: whenever a transaction

aborts it just has to notify the transactions in its outDD
and outFD to also abort. Finally, we call the number of
pending speculatively-committed transactions that a client has
subsequently activated as speculation chain length, or, more
concisely, SL, which can be tracked by inFD.

6.5 Detailed protocol description
In this subsection we provide a detailed description of the STR
protocol, whose behavior is formalized by the pseudo-code
in Alg. 1 and 2.

Start transaction. A transaction is initialized in a node and
assigned a read snapshot (RS) equal to the current value of
the node’s physical clock. It initializes its FFC (to 0) and
OLDDict, a dictionary that stores OLC of transactions it will
read from. As the transaction has not read from any unsafe
transaction, OLCDict is set to contain • (Alg1, 1-6).

Speculative read. Read requests to locally-replicated keys
are served by corresponding local partitions directly. A read
request to a non-local key is first served at the cache partition to
check for updates from previous local-committed transactions.
If no appropriate version is found, the request is sent to any
(remote) replica of the partition that contains this key (Alg1, 8-
12). Upon receiving a read request to a key, a partition updates
the LastReader of the key and fetches the latest version of the
key with a timestamp no larger than the reader’s read snapshot
(Alg2, 6-7). If the fetched version is committed, or it is local-
committed and the reader is reading locally, then the partition
returns the value and id of the transaction that created the value;
otherwise, the request request is blocked until the transaction’s
final outcome is known (Alg2, 8-14). Upon receiving the read
reply, the reader transaction updates its OLCDict and FFC,
and only reads the fetched value if the minimal value of its
OLCDict is greater than or equal to its FFC. If not, this value
may conflict with other values already included in the transac-
tion’s snapshot, so the transaction waits until the minimal value
in its OLCDict becomes larger than its FFC (Alg1, 13-15).
This condition may never become true if the transaction that
created the fetched value actually conflicts with transactions al-
ready contained in the reader’s snapshot. In that case, the reader
will be notified after this conflict is detected and it will abort.

Local certification. After the transaction finishes execution,
its write-set is locally certified. The local certification is
essentially a local 2PC across all local partitions that contain
keys in the transaction’s write-set, including the cache partition
if the transaction updated non-local keys (Alg1, 18-23).
Each partition prepares the transaction if no write-write is
detected, and proposes a prepare timestamp according to the
PreciseClock rule (Alg2, 16-25). Upon receiving replies from
all updated local partitions (including the cache partition), the
coordinator calculates the local-commit timestamp as the maxi-
mal between received prepare timestamps and the transaction’s
read snapshot plus one, then notifies all updated local partitions.
A notified partition converts the pre-committed record to local
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committed state with the local commit timestamp (Alg1, 27
and Alg2, 26-30). If the transaction updates non-local keys,
the transaction is an ‘unsafe’ transaction so it adds its own
read snapshot to its OLCDict (Alg1, 24-25).

After a transaction is local committed, if the provided
CANSPECCOMMIT permits, the system executes the
SPECCOMMIT callback. Then, the client that issued the
transaction may be notified of the “speculative commit”
event, and he can issue new transactions until the maximal
speculation chain length is reached.

Global certification and replication. After local certifica-
tion, the transaction performs global certification by sending
keys whose master partitions are stored remotely to their
corresponding master partitions (Alg1, 28). Just like for the
local certification phase, master partitions check for conflicts,
propose a prepare timestamp and prepare the transaction
(Alg2, 16-22). Then, a master partition replicates the prepare
request to its slave replicas and replies to the coordinator
(Alg2, 23-25). After receiving a replicated prepare request,
a slave partition aborts any conflicting local committed
transactions and stores the prepare records. As slave replicas
can be directly read bypassing their master replica, slave
replicas also track the LastReader for keys, so each slave
replica also proposes a prepare timestamp for the transaction
and replies to the transaction coordinator (Alg2, 32-36).

Final commit/abort. A transaction coordinator can final com-
mit a transaction, if (i) it has received prepare replies from all
replicas of updated partitions, (ii) all data dependencies are
resolved, and (iii) its flow-dependent transaction has commit-
ted. To commit a transaction T , its transaction coordinator first
notifies transactions in its outDD, i.e., transactions that data-
dependent on T : if the read snapshot of a transaction in T ’s
outDD is smaller than T ’s commit timestamp, the transaction
is aborted; otherwise, the transaction removes T from its inDD
and OLCDict, and updates its FFC by including T ’s commit
timestamp. Then, the transaction coordinator atomically sets
its local committed updates to committed state and cleans its
cached updates in the cache partition, if there is any. Then the
commit decision, along with the commit timestamp (the maxi-
mal of all received prepare timestamps), is send to to all replicas
of updated partitions. T ’s FFC is updated to its own commit
timestamp, and its OLCDict is set to infinity (Alg1, 40-50).

On the other hand, a transaction is aborted if its certification
check fails, its speculative reads are invalid, or its flow-
dependent transaction is aborted. The coordinator atomically
removes its local-commit updates, aborts transactions
flow-dependent or data-dependent on it and sends the decision
to remote replicas (Alg1, 52-54).

6.6 Fault tolerance
With respect to conventional/non-speculative 2PC based
transactional systems, STR does not introduce additional
sources of complexity for the handling of failures.

Algorithm 1: Coordinator protocol
1 startTx()
2 Tx.RS current time()
3 Tx.Coord self()
4 Tx.OLCDict {sel f (),•}

5 Tx.FFC 0
6 return Tx

7 read(Tx, Key)
8 if Key is locally replicated or in cache then
9 {Value, Tw} local partition(Key).readFrom(Tx, Key)
10 else
11 send {read,Tx,Key}to any p 2 Key.partitions()
12 wait receive {Value, Tw}
13 Tx.OLCDict.put(Tw, min value(Tw.OLCDict)}
14 Tx.FFC max(Tx.FFC, Tw.FFC)
15 return Value when min value(Tx.OLCDict) >= Tx.FFC

16 commitTx(Tx, canSpecCommit, scCallback, fcCallback)
// Local certification

17 LCTime Tx.RS+1
18 for P, Keys 2 Tx.WriteSet
19 if local replica(P).prepare(Tx) = {prepared, TS}
20 LCTime max(LCTime, TS)
21 else
22 abort(Tx)
23 throw NonSpecTxAbortException
24 if Tx updates non-local keys
25 Tx.OLCDict.put(self(), Tx.RS)
26 send local commit to local replicas of updated partitions
27 if canSpecCommit(): scCallback(Tx.getTxInfo())

// Global certification
28 send prepare to remote masters of updated partitions
29 wait receive {prepared, TS} from Tx.InvolvedReplicas
30 wait until all dependencies are solved
31 CommitTime max(all received TS)
32 commit(Tx, CommitTime)
33 if Tx.HasSpecCommit: fcCallback()
34 return committed
35 wait receive aborted
36 abort(Tx)
37 if Tx.HasSpecCommit: throw SpecTxAbortException
38 else: throw NonSpecTxAbortException

39 commit(Tx, CT)
40 Tx.FFC CT
41 Tx.OLCDict {sel f (),•}

42 for Tr with data dependencies from Tx
43 if Tr.RS >= CT then
44 remove Tx from Tr’s read dependency
45 Tr.OLCDict.remove(Tx)
46 Tr.FFC max(Tr.FFC, CT)
47 else
48 abort(Tr)
49 atomically commit Tx’s local committed updates

and remove Tx’s cached updates
50 send commit to remote replicas of updated partitions

51 abort(Tx)
52 atomically remove Tx’s local committed updates
53 abort transactions with dependencies from Tx
54 send abort to remote replicas of updated partitions

Just like any other approach, e.g., [12, 13, 36, 37], based on
2PC, some additional, orthogonal solutions have to be adopted
in order to ensure the high availability of the coordinator state.
A typical approach, in this sense, consists in replicating the co-
ordinator state, like, e.g., in [19], over a (typically small) set of
processes co-located in the same data center, so to minimize the
impact of this fault-tolerance technique on the user-perceived
performance. These replication techniques can be straightfor-
wardly exploited to ensure the recoverability also of the trans-
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Algorithm 2: Partition protocol
1 upon receiving {read, Tx, Key} by partition P
2 reply P.readFrom(Tx, Key)

3 upon receiving {prepare, Tx, Updates} by partition P
4 reply P.prepare(Tx, Updates)

5 readFrom(Tx, Key)
6 Key.LastReader max(Key.LastReader, Tx.RS)
7 {Tw, State, Value} KVStore.latest before(Key, Tx.RS)
8 if State = committed
9 return{Value, Tw}
10 else if State = local-committed and local read()
11 add data dependence from Tx to Tw
12 return{Value, Tw}
13 else
14 Tw.WaitingReaders.add(Tx)

15 prepare(Tx, Updates)
16 if exists any concurrent conflicting
17 local committed or committed transaction
18 return aborted
19 else
20 PT max(K.LastReader+1 for K 2 Updates)
21 for{K, V} 2 Updates do
22 KVStore.insert(K,{Tx, pre-committed, PT, V})
23 if P.isMaster() = true
24 send {replicate, Tx} to its replicas
25 return {prepared, PrepTime}

26 localCommit(Tx, LCT, Updates)
27 for{K, V} 2 Updates do
28 KVStore.update(K,{Tx, local-committed, LCT, V})
29 unblock waiting preparing transactions
30 reply to waiting readers

31 upon receiving {replicate, Tx, Updates}
32 abort all conflicting pre-committed transactions

and transactions read from them
33 PT max(K.LastReader+1 for K 2 Updates)
34 for{K, V} 2 Updates do
35 KVStore.insert(K,{Tx, pre-committed, PT, V})
36 reply {prepared, PT}to Tx.Coord

actions’ results externalized to clients, in case programmers de-
cide to enable the use of STR’s external speculation techniques.

As already mentioned in Section 3, currently STR relies on
synchronous replication scheme of the pre-commit logs, which
requires that the transaction coordinator collects replies from
all the nodes that replicate data updated by the transaction.
This approach assumes the existence of an underlying
group management toolkit providing, e.g., virtual synchrony
guarantees [10]. It is then straightforward, upon a view change
event, to purge faulty nodes and reconfigure the system to
ensure progress. However, replacing the current, synchronous
master-slave replication scheme of the pre-commit logs with
alternative approaches, based on consensus algorithms like
Paxos [28] or Raft [31], would not raise major difficulties.

6.7 Chasing the optimal speculation degree
Both speculative reads and speculative commits are based on
the optimistic assumption that local-committed transactions
are unlikely to experience contention with remote transactions.
Although our experiments in§ 8 show that this assumption
is met in well-known benchmarks such as TPC-C and RUBiS,
it is highly application-dependent. In fact, the unprejudiced

use of speculation in adverse workloads can lead the system
to suffer from excessive misspeculation that degrades
performance. In order to enhance the performance robustness
of STR, we coupled it with a lightweight self-tuning algorithm
that dynamically adjusts STR’s speculation degree to meet
the workload’s characteristics. The self-tuning scheme
takes a black-box approach that is agnostic of the data store
implementation and also totally transparent to application
developers. It relies on a hill-climbing search algorithm
that tentatively explores the following increasing degrees
of speculation, till a local maximum is found: at the lowest
extreme, both speculative reads and speculative commits are
disabled; then, only speculative reads are enabled; finally, both
speculative reads and speculative commits are enabled, and
then the maximum speculation chain length at each client is
increased from 1 to a given maximal length.

7 Safety and Liveness

In this section, we prove that STR is safe, i.e., it will not
violate any SPSI property, and live, i.e., any transaction may
be blocked for finite time, but will eventually commit or abort.
The following analysis will assume a failure-free scenario. As
discussed in§ 6.6, failures can be addressed using orthogonal
techniques.

7.1 Safety

SPSI-1: Speculative Snapshot Read Assume there are
two transactions T1 and T2: T1 updates a key K, then local
commits with T1.LC and final commits with T1.FC; T2 tries
to read K in a partition P and T2.RS>=T1.FC>=T1.LC.
We consider all possible interleaving of T1’s prepare event
and T2’s read event in P, and prove that in any considered
interleaving, either T2 will read T1’s update to K, or this
interleaving violates our assumption.
• T2 reads K before T1 pre-commits: in this case, the
LastReader of K will be updated to RS, and this causes
T1.FC >= T2.RS + 1. This contracts the assumption
T2.RS>=T1.FC.
• T2 reads K after T1 pre-commits, but before T1 local
commits: first, T2 will be blocked until T1 local commits (if
T1 and T2 were originated at the same node) or final commits
(T1 and T2 were originated at different nodes). In both case,
when T2 is unblocked, since T2.RS>=T1.FC>=T1.LC,
T2 will read from T1’s update to K.
• T2 reads K after T1 local commits but before T1 final
commits: if T1 and T2 were originated at the same node, T2
reads T1’s update on K; otherwise, T2 is blocked until T1
final commits and then reads T1’s update on K.
• T2 reads K after T1 final commits: since T2.RS>=T1.FC,
obviously T2 will read T1’s update on K.

SPSI-2: No Write-Write Conflicts among Final Com-
mitted Transactions This property is trivially ensured by
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STR’s 2PC-based certification. Essentially, a transaction can
only commit if all its updated partitions have prepared its
write-set. A partition only prepares a transaction if it does
not detect conflict between this transaction and any committed
transaction; after preparing a transaction, a partition keeps the
prepare record and if it receives prepare requests from trans-
actions that can potentially conflict with this transaction, the
partition delays serving these requests until only the prepared
transaction is either committed or aborted (as described in§6.1).

SPSI-3: No Write-Write Conflicts among Transactions
in a Speculative Snapshot We prove this property by contra-
diction, assuming the following is true: a transaction T0 is not
suspended due to having potential conflict in its snapshot, but it
has read from (possibly indirectly) two conflicting transactions
T1 and T2. We say that T has indirectly read from T 0, if there
exists a chain of transaction T,T 00,...T 0 where each transaction
(directly) reads from its following transaction. Without loss
of generality, we assume T0 was originated at node NT0, and
T1 conflicts with T2 in a key K. We consider all possible
states of T1 and T2, after they have been read by T0:

• T1 and T2 are both committed: this is not possible, as
SPSI-2 guarantees that committed transactions can not have
write-write conflict.

• T1 and T2 are both local committed: if T1 and T2 were
originated at different nodes, then at most one can be read by
T0, which contradicts the assumption that both of them have
been read by T0. However, if both of them were originated
at the same node, then since they have write-write conflict,
at least one of them would have been aborted during local
certification, so they can not be both local committed.

• One of them is committed and the other is local committed:
without loss of generality, we assume T1 is local committed
and T2 is committed. Also, T1 should be originated at NT0
so that it would be readable to T0.

We firstly consider the case that K, the key T1 and T2 have
conflict on, is replicated by NT0. In this case, since NT0 repli-
cates K, then before T2 commits, T2 must have been pre-
pared on NT0 (since a master partition synchronously repli-
cates prepare requests to all its replicas). If T2 is prepared on
NT0 before T1 prepares, then T1 can not be local commit-
ted because its conflict with T2 would have been detected
during local certification. On the other hand, if T1 has been
local committed before T2 is prepared on NT0, then before
preparing T2, NT0 will abort T1 (as described in§6.5). Over-
all, if T0 reads from T1 first, T0 will be aborted before T2
commits; if T0 reads from T2 first, then since T1 is aborted
before T2 commits, T0 can not read from T1. Therefore,
T1 and T2 can not both be included in T0’s snapshot.

Then we consider the case that K is not replicated by NT0,
which leads to the following inequations:
1) T0.OLC>=T0.FFC, since T0 is not suspended,
2) T1.OLC <= T1.RS, because T1 updated a non-local
key,

3) T0.FFC >= T2.FC (T2’s final commit timestamp),
because T0 has either directly or indirectly read from T2,
so T0.FFC includes T2’s final commit timestamp, and
4) T1.OLC >= T0.OLC, since T0 has read from T1,
T0.OLC includes T1.OLC.
By combining the above inequations, we can conclude
that T1.RS>=T2.FC, which means that T1 and T2 are
not concurrent and does not conflict. This contradicts the
assumption.

SPSI-4: No Dependencies from Uncommitted Trans-
actions As described in§6.4, a transaction keeps the
identifiers of its data and flow dependent transactions in
inDD and inFD, respectively. A transaction can not commit
before both its inDD and inFD are empty, and a dependency
in both sets is only removed if the dependent transaction
commits. Therefore, a committed transaction can not data
or flow depend on local committed or aborted transactions.

7.2 Liveness

We give a high-level discussion about the liveness of STR
with no presence of failure. We consider all possibilities that
may block a transaction, T , during its execution and show
that T can be not blocked infinitely.

• Blocked during reading: T can be blocked for two cases
when trying to read a key: 1) the latest version of the key is
pre-committed with a pre-commit timestamp smaller than
or equal to T ’s snapshot time, or 2) the latest version of
the key is a local committed version with a local commit
timestamp smaller than T ’s snapshot time, and T is not
reading locally. In both cases, T will be unblocked until the
pre-committed or local committed transaction gets finalized
(committed or aborted).

• Blocked during certification: during T ’s certification phase
(either local or global), an involved partition can not immedi-
ately decide whether to prepare T if the keys in T ’s write-set
have already been prepared by other transactions. Though,
we use wait-die scheme [39] base on transaction id to decide
if the transaction should wait or simply abort. Deadlock is
not possible and T is guaranteed to only wait for finite time.

• Blocked due to FFC larger than OLC: if T ’s FFC is larger
than its OLC, T is blocked. On one hand, when an unsafe
transaction that T has read from gets aborted, T is noti-
fied, then it stops waiting and gets aborted. On the other
hand, when an unsafe transaction that T has read from gets
committed, its OLC is removed from T.OLCDict. As more
transactions are removed from T.OLCDict and no transac-
tion is added, the minimal value of T.OLCDict will eventu-
ally be larger than its FFC and T will continue execution.

• Blocked due to speculative dependencies: T may not be
able to commit because it still has data/flow, i.e. speculative,
dependencies. We represent T ’s speculative dependency
chain as T,T 0,...T 00,T 000, where each transaction data/flow
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depends on its following transaction and T 000 has no
speculative dependency. Since T can only data/flow depend
on transactions with smaller read snapshots than T , this
chain is guaranteed to be acyclic. As T 000 has no speculative
dependency and our previous proof has shown that even if
T 000 is blocked, T 000 will only be blocked for finite time. As
such, each transaction in the chain may only be blocked for
finite time, so eventually T ’s dependencies will be removed
and T will commit.

8 Evaluation

This section reports the results of an extensive experimental
study aimed to assess the performance of STR when using
exclusively internal speculation, i.e., speculative reads, as well
as when jointly enabling external speculation, i.e., when exter-
nalizing the results produced by speculatively committed trans-
actions to clients. In the following, we refer to the first STR’s
variant as STR-Internal, and to the second one as STR-External.
This choice allows us to contrast the performance achievable
by STR when speculation is used in a fully transparent way to
clients and programmers, with the case in which applications
can tolerate the risk of exposing misspeculations to clients.

Unless otherwise specified, both STR variants use the
hill-climbing self-tuning mechanism described in§ 6.7. For
the case of STR-Internal, the self-tuning mechanism simply
determines whether to use or not speculative reads. With
STR-External, we allow all transactions to speculative commit,
and the self-tuning mechanism determines both whether to use
speculative reads and the maximum length of the speculation
chain length at each client in the [0, 8] range.

We use two baseline protocols. The first one is the
non-speculative protocol described in§6.1, which we refer
to as ClockSI-Rep, since its execution resembles that of
ClockSI [13] extended to support replication. The second
baseline aims to emulate protocols, like PLANET [33], which
allows for speculatively committing transactions to reduce
user-perceived latency. Unlike STR, though, PLANET builds
on a non-speculative data store, and as such it does not allow
speculative reads nor the speculative commit of more than
a transaction at a single client. We implement this baseline
by building it atop ClockSI-Rep and allowing clients to
speculatively commit at most one transaction (SL=1). Note
that the original PLANET system relies on analytical model,
which is designed to predict the likelihood of successful
external speculation under the assumption that the underlying
transactional protocol (MDCC) ensures a much weaker
consistency criterion (read committed) than the one adopted
by STR. As developing a similar analytical model for SPSI (or
even SI) is far from being a trivial task, we could not include
this component in this baseline.

Experimental setup We implemented the baseline protocols
and STR in Erlang, based on Antidote[1], an open-source
platform for evaluating distributed consistency protocols. The

code of the protocols and of the benchmarks used in this study
is freely available at this URL [3].

Our experimental testbed is deployed across the following
nine DCs of Amazon EC2: Ireland(IE), Seoul(SU), Syd-
ney(SY), Oregon(OR), Singapore(SG), North California(CA),
Frankfurt(FR), Tokyo(TY) and North Virginia(VA). Each DC
consists of three m4.large instances (2 VCPU and 8 GB of
memory). We use a replication factor of six, so each partition
has six replicas, and each instance holds one master replica
of a partition and slave replicas of five other partitions. The
above list of DCs also indicates the order of replication, e.g.,
a master partition located at IE has its slave replicas in SU,
SY, OR, SG and CA.

A workload stressor is located at each node of the system,
which spawns one thread per emulated client. Each client
issues transactions to a pool of local transaction coordinators
and retries a transaction if it gets aborted. We use two metrics
to evaluate latency: the final latency of a transaction is calcu-
lated as the time elapsed since its first activation until its final
commit (including possible aborts and retries); the perceived
latency is defined as the time since the first activation of a trans-
action until its last speculative commit, i.e., the one after which
it is final committed. Each reported result is obtained from the
average of at least three runs. As the standard deviations are
low, we omit reporting them in the plots to enhance readability.

8.1 Synthetic workloads
Let us first consider a synthetic benchmark, which allows
for generating workloads with precisely identifiable and
very heterogeneous characteristics. The synthetic benchmark
generates transactions with null “think time”, i.e., client
threads issue a new transaction as soon as the previous one is
final committed, for ClockSI-Rep, STR-Internal and PLANET,
or speculatively committed, for STR-External. This type of
workload is representative of non-interactive applications, e.g.,
high frequency trading applications.

Transaction and data access A transaction reads 10 keys
then updates them. When accessing a data partition, 90%
of the accesses goes to a small set of keys in that data
partition, which we call a hotspot, and we adjust the size of
the hotspot to control contention rate. Each data partition has
two million keys, of which one million are only accessible by
locally-initiated transactions and the others are only accessible
by remote transactions. This allows adjusting in an indepen-
dent way the likelihood of contention among transactions
initiated by the same local node (local contention) and among
transactions originated at remote nodes (remote contention).

We consider three workload scenarios, which we obtain by
varying the size of the hotspot size in the local and remote data
partitions: i) low local and remote contention, ii) high local
and low remote contention, and iii) high local and remote
contention.

Low local and remote contention. Let us start by consid-
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Figure 3: Performance of different protocols under four levels of contention. Low local, high remote denotes low local contention and high
remote contention, and so forth. In the latency plot, we use solid lines for final latency and dashed lines for perceived latency.

Figure 4: The throughput of tuning versus static configuration.
SR denotes enabling speculative reads and SLx denotes enabling
speculative commits with speculation chain length x.

ering a workload characterized by low local and remote
contention. As shown in Figure 3a, in workloads with negligi-
ble contention (both local and remote), STR-Internal, PLANET
and ClockSI-Rep (whose throughput/final-latency/abort rate
basically overlap with those of PLANET) achieve similar
throughput, while STR-External achieves significantly higher
throughput up to 40 clients. Intuitively, in STR-Internal,
PLANET and ClockSI-Rep clients can only activate new trans-
actions once they have final committed their previous transac-
tions, whereas in the latter, clients can activate new transactions
as soon as they have speculatively committed a transaction,
unless the maximal speculation chain length is reached. As
expectable, the negligible contention of this workload creates
also little chance of exploiting the speculative read technique,
which explains why STR-Internal and ClockSI-Rep achieve
almost identical performance. When the number of clients
increases to 80, given the negligible contention level, all proto-
cols fully saturate the available hardware’s resources, and reach
the peak throughput supported by the system. Still, it is worth
highlighting that STR-External is able to saturate the system
with a much smaller number of clients than the other protocols.

As we can see from the latency plot, the contrast between
the perceived latency of PLANET and STR-External is
interesting: while PLANET delivers generally low perceived
latency (as there is low contention, transactions rarely abort),

the perceived latency of STR-External is higher and varies with
the number of clients. This is due to the self-tuning mechanism
of STR-External: with small number of clients, the self-tuner
tends to choose large speculation chain length to achieve high
throughput, which in turn causes the cascading aborts of a
large number of transactions when misspeculations occur.
However, with larger number of clients, the system becomes
increasingly saturated, so the self-tuner chooses smaller
speculation chain length. At peak load, i.e., with 80 clients,
the self-tuner finally disables pipelining for STR-External, so
it provides the same perceived and final latency as PLANET.

Overall, given that with this workload speculative reads are
not effective (due to its negligible degree of contention), this
experiment allows us also to indirectly quantify the overheads
introduced by the concurrency control mechanisms used by
STR to support internal speculation (i.e., local certification
and speculative reads). Indeed, the fact that the throughputs
achieved by ClockSI-Rep, PLANET and STR-Internal in this
workload are indistinguishable represents an experimental ev-
idence supporting the efficiency of the proposed mechanisms.

High local and low remote contention. Figure 3b shows
a workload with high local and low remote contention. In
this workload, due to high local contention, transactions will
be frequently blocked if not allowed to read pre-committed
data, hence limiting throughput. Also, transactions that pass
local certification are likely to commit due to the low remote
contention, which means speculative reads can often succeed.
Overall, it is a favourable workload for protocols allowing
speculative reads, i.e., STR-Internal and STR-External. As
Figure 3b shows, both STR-Internal and STR-External
achieve much higher throughput than the two baselines even
at high number of clients, namely approximately 50% higher
throughput at 80 clients. This is due to the fact that the use
of speculative reads allows STR to achieve a higher degree
of parallelism among transactions, and, hence, a higher peak
throughput. Moreover, the abort rate plot shows that the use
of PreciseClock greatly reduces abort rate.
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Figure 5: The performance of different protocols for three TPC-C workloads. In the latency plot, we use solid lines for final latency and
dashed lines for perceived latency.

However, PLANET achieves no performance gain as
transactions often gets blocked during execution and have little
chance to speculative commit. The effect of speculative read
is directly reflected in latency: when there is low load, the
latency of PLANET and ClockSI-Rep increases considerably
compared with figure 4a, while the latency of STR-Internal
and STR-External are not affected due to speculative read.

High local and remote contention. Lastly, we consider a
workload with both high local and remote contention, which is
unfavorable for speculative approaches like STR. As Figure 3c
shows, all protocols deliver worse throughput than in previous
workloads due to high contention. Though, STR still achieves
speedup with small number of clients, when the contention
is still relatively low. As the number of clients in the systems
grows, along with the likelihood of misspeculations, the
self-tuning mechanism opts for progressively disabling both
speculative reads and pipelining transactions, falling back to
a conservative/non-speculative processing mode.

Self-tuning. The previous discussion has shown that STR’s
self-tuning mechanism allows for delivering robust perfor-
mance even in adverse workload settings. Figure 4 reports the
throughput that STR would achieve using static configurations
of the speculation degree. It shows that the speculation
degree that maximizes throughput varies significantly, and
in non-linear ways, as the workload characteristics vary.
The data in Figure 4 does not only highlight the relevance
of the self-tuning capabilities of STR, but also provides an
experimental evidence of the fact that, once fixed the system’s
load, the relation between speculation degree and throughput
is expressed via convex functions — a necessary condition
to ensure convergence to global optimum for local search
strategies such as the one employed by STR’s self-tuning
mechanism. This finding supports the design choice of
STR’s hill-climbing-based self-tuning strategy, in favour of
more complex strategies (like simulated annealing [42]) that

# of keys to update 10 20 40 100 200
Speedup 1.02 1.04 1.07 1.18 1.38

Table 1: Speedup of using PreciseClock varying the number of keys
to update for each transaction

sacrifice convergence speed in order to achieve better accuracy
in non-convex optimization problems.

Coping with fluctuating load levels is also relatively
straightforward, as it just requires detecting statistically
meaningful changes in the average input load (e.g., by using
robust change detectors like the CUSUM algorithm [8]), and
react to these events by re-initiating the hill-climbing-based
self-tuning mechanism.

Benefits and overhead of PreciseClock. The above exper-
iments have shown that the use of PreciseClock can greatly
reduce transaction’s abort rate. Intuitively, with lower abort
rate, the system wastes less resources aborting and re-executing
transactions, which directly benefits throughput. In this
experiment, we quantify how the reduction in abort rate due to
PreciseClock improves throughput in non-speculative systems.
We compare the original ClockSI-Rep with a new version
that is equipped with PreciseClock. Our workload varies the
number of keys each transaction reads and updates. As shown
in Table 1, the more keys a transaction updates, the higher
speedup PreciseClock brings. When each transaction accesses
200 keys, PreciseClock improves the throughput by 38%.

We also assessed the additional storage overhead introduced
by the use of PreciseClock, which, we recall, requires main-
taining additional metadata (a timestamp) for each key. Our
measurement shows that for two realistic workloads TPC-C
and RUBiS, PreciseClock requires about 9% of extra storage.

8.2 Macro benchmarks

Next, we evaluate the performance of STR with two realistic
benchmarks, namely TPC-C[4] and RUBiS [2]. To model
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realistic human to machine interaction, TPC-C and RUBiS
specify large “think time” (instead of null think think for
the synthetic ones) between consecutive operations issued
by a clients, typically a few seconds. Moreover, some
transactions of these two benchmarks, e.g., payment of TPC-C
and register item of RUBiS, generate much more severe
contention levels than the synthetic benchmarks.

TPC-C. We implemented three TPC-C transactions, namely
payment, new-order and order-status. The payment transaction
has very high local contention and low remote contention;
new-order transaction has low local contention and high
remote contention, and order-status is a read-only transaction.
We consider three workload mixes: 5% new-order, 83%
payment and 12% order-status (TPC-C A); 45% new-order,
43% payment and 12% order-status (TPC-C B) and 5%
new-order, 43% payment and 52% order-status (TPC-C C).
We add the “think time” and “key time” for each transaction
as described in the benchmark specification, so a client sleeps
for some time (from 10 seconds to as large as hundreds of
seconds) both before issuing a new transaction.

Figure 5 shows that speculative reads bring significant
throughput gains, as all three workloads have high degree
of local contention. Compared with the baseline protocols,
STR-Internal and STR-External achieve significant speedup
especially for TPC-C A (6.13⇥), which has the highest degree
of local contention due to having large proportion of payment
transactions. Though, they still achieve 2.12⇥ and 3⇥ of
speedup for TPC-C B and TPC-C C, respectively. Allowing
pipelining in this case barely brings speedup, as speculatively-
committed transaction usually get final committed before
clients “wake up” after a large think time. In terms of latency,
though, speculative commits provide significant gains, in
terms of reduced perceived latency at the client side: with low
number of clients, while the final latency of all protocols is
about 400ms, PLANET and STR-External provide about 4ms
of perceived latency, an improvement of about 100⇥.

Another interesting observation is that, with larger number
of clients (2000 to 3000), the latency of PLANET and
ClockSI-Rep is on the order of 5-8 seconds as a consequence
of the high abort rate incurred by these protocols. Conversely,
both STR-External and STR-Internal deliver a latency of a
few hundred milliseconds.

RUBiS. RUBiS [2] models an online bidding system and
encompasses 26 types of transactions, five of which are up-
date transactions. RUBiS is designed to run on top of a SQL
database, so we performed the following modifications to adapt
it to STR’s key-value store data model: (i) we horizontally
partitioned database tables across nodes, so that each node
contains an equal portion of data of each table; (ii) we created
a local index for each table shard, so that some insertion opera-
tions that require a unique ID can obtain the ID locally (instead
of modifying a table index shared by all shards by default). We
run RUBiS’s 15% update default workload and use its default
think time (from 2 to 10 seconds for different transactions).

Figure 6: The performance of different protocols for RUBiS. In
the latency plot, we use solid lines for final latency and dashed lines
for perceived latency.

Also with this benchmark (see Figure 6) STR achieves
remarkable throughput gains and latency reduction. With
5000 clients (level at which we hit the memory limit and were
unable to load more clients), both STR variants achieve about
43% higher throughput than ClockSI-Rep and PLANET. As
for latency, STR-Internal achieves up to 10⇥ latency reduction
versus ClockSI-Rep and PLANET, whereas the latency gains
extend up to 100⇥ when using STR-External.

9 Conclusion

This paper proposes STR, an innovative protocol that exploits
speculative techniques to boost the performance of distributed
transactions in geo-replicated settings. STR builds on a novel
consistency criterion, which we called SPeculative Snapshot
Isolation (SPSI), that extends the familiar SI criterion and
shelters programmers from subtle anomalies that can arise
when adopting speculative transaction processing techniques.
STR combines a set of new speculative techniques with a
self-tuning mechanism, achieving striking gains (up to 6⇥
throughput gains and 100⇥ latency reduction) in workloads
n workloads characterized by low inter-data center contention,
while ensuring robust performance even in adverse settings.
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