
Soft-regular with a Prefix-size Violation Measure

Minh Thanh Khong1, Christophe Lecoutre2, Pierre Schaus1, and Yves Deville1

1 ICTEAM, Université catholique de Louvain, Belgium
2 CRIL-CNRS UMR 8188, Université d’Artois, Lens, France

{minh.khong, pierre.schaus, yves.deville}@uclouvain.be; lecoutre@cril.fr

Abstract. In this paper, we propose a variant of the global constraint
soft-regular by introducing a new violation measure that relates a cost
variable to the size of the longest prefix of the assigned variables, which
is consistent with the constraint automaton. This measure allows us to
guarantee that first decisions (assigned variables) respect the rules im-
posed by the automaton. We present a simple algorithm, based on a
Multi-valued Decision Diagram (MDD), that enforces Generalized Arc
Consistency (GAC). We provide an illustrative case study on nurse ros-
tering, which shows the practical interest of our approach.

1 Introduction

Global constraints play an important role in Constraint Programming (CP) due
to their expressiveness and capability of efficiently filtering the search space.
Popular global constraints include, among others, allDifferent [1], count [2],
element [3], cardinality [4, 5], cumulative [6] and regular [7]. The constraint
regular imposes a sequence of variables to take their values in order to form
a word recognized by a finite automaton. This constraint happens to be use-
ful when modeling various combinatorial problems such as rostering and car
sequencing problems.

In many time-oriented problems, such as planning, scheduling, and time-
tabling, one has to take decisions while paying attention to the future demands,
resources, etc. Those are generally obtained from a forecasting model. The stan-
dard approach is basically to define an horizon and to try having the problem
instances solved over that horizon. Unfortunately, many problem instances are
over-constrained [8, 9]. Following the approach of [10], some hard-constraints can
then be relaxed and replaced by their soft versions. Although attractive, this ap-
proach applied to time-oriented problems has a major drawback which is that
constraints are equally penalized, whether the violation is about the beginning
or the end of the horizon. We claim that the importance of completely satisfy-
ing the constraints must decrease with elapsed time. In other words, satisfying
the constraints in the near future must be considered as more important than
satisfying the constraints in the far future (in addition, forecasts may be more
or less accurate).

In this paper, we are interested in the relaxation of the global constraint
regular. Existing violation measures for soft-regular are based on the con-
cept of distances in term of variables or edit operations [11–13]. We propose an

M.T. Khong et al

alternative violation measure that is based on the size of the longest prefix that
is consistent with the underlying automaton of the constraint. This violation
measure can be useful when first variables of the sequence (scope) are critical.
We illustrate our approach on a rostering application.

2 Technical Background

A Constraint Satisfaction Problem (CSP) [14–16] is composed of a set of n
variables, X = {x1, . . . , xn}, and a set of e constraints, C = {c1, . . . , ce}. On
the one hand, each variable x has an associated domain, denoted by D(x), that
contains the set of values that can be assigned to x. Assuming that the domain
D(x) of a variable x is totally ordered, min(x) and max(x) will respectively
denote the smallest value and the greatest value in the domain of x. Note also
that d will denote the maximum domain size for the variables in a given CSP. On
the other hand, each constraint c involves an ordered set of variables, called the
scope of c and denoted by scp(c). Each constraint c is mathematically defined by
a relation, denoted by rel(c), which contains the allowed combinations of values
for scp(c). The arity of a constraint c is the size of scp(c), and will usually be
denoted by r.

Given a sequence 〈x1, . . . , xi, . . . , xr〉 of r variables, an r-tuple τ on this
sequence of variables is a sequence of values 〈a1, . . . , ai, . . . , ar〉, where the indi-
vidual value ai is also denoted by τ [xi] or, when there is no ambiguity, τ [i]. An
r-tuple τ is valid on an r-ary constraint c iff ∀x ∈ scp(c), τ [x] ∈ D(x). A tuple
τ is allowed by a constraint c iff τ ∈ rel(c) ; we also say that c accepts τ . A
support on c is a valid tuple on c that is also allowed by c. A literal is a pair
(x, a) where x is a variable and a a value, not necessarily in dom(x). A literal
(x, a) is Generalized Arc-Consistent (GAC) iff it admits a support on c, i.e., a
valid tuple τ on c such that τ is allowed by c and τ [x] = a. A constraint c is
GAC iff ∀x ∈ scp(c), ∀a ∈ D(x), (x, a) is GAC.

3 Constraint soft-regularprx

Definition 1 (DFA). A deterministic finite automaton (DFA) is defined by
a 5-tuple (Q,Σ, δ, q0, F) where Q is a finite set of states, Σ is a finite set of
symbols called the alphabet, δ : Q × Σ → Q is a transition function, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of final states.

Given an input string (a finite sequence of symbols taken from the alphabet
Σ), the automaton starts in the initial state q0, and for each symbol in sequence
of the string, applies the transition function to update the current state. If the
last state reached is a final state then the input string is accepted by the au-
tomaton. The set of strings that the automaton accepts constitutes a language,
denoted by L(M), which is technically a regular language.

In [7], a global constraint, called regular, is introduced: the sequence of
values taken by the successive variables in the scope of this constraint must
belong to a given regular language. For such constraints, a DFA can be used

Soft-regular with a prefix-size violation measure

to determine whether or not a given tuple is accepted. This can be an attrac-
tive approach when constraint relations can be naturally represented by regular
expressions in a known regular language. For example, in rostering problems,
regular expressions can represent valid patterns of activities.

q0 q1 q2 q3

q4

a

c

b

a

a

b a

c Fig. 1. A DFA with initial state q0
and final states q3 and q4.

Definition 2 (regular). Let M be a DFA, and X = 〈x1, . . . , xr〉 be a sequence
of r variables. The constraint regular(X,M) accepts all tuples in {(v1, . . . , vr) |
v1 . . . vr ∈ L(M) ∧ vi ∈ D(xi),∀i ∈ 1..r}.

Example 1. Let us consider a sequence of 4 variables X = 〈x1, x2, x3, x4〉 with
D(xi) = {a, b, c},∀i ∈ 1..4 and the automaton M depicted in Figure 1. The
tuples (c, c, c, c) and (a, a, b, a) are accepted by the constraint regular(X,M)
whereas (c, a, a, b) and (c, c, c, a) are not.

Working with constraints defined by a DFA, Pesant’s filtering algorithm [7]
enforces generalized arc consistency by means of a two-stage forward-backward
exploration. This two-stage process constructs a layered directed multi-graph
and collects the set of states that support each literal (x, a). The worst-case time
and space complexities of this incremental algorithm are both O(rd|Q|). In [17],
the authors proposed a filtering algorithm for extended finite automata (with
counters) by reformulating them as a conjunction of signature and transition
constraints; their method can also be applied to constraints regular when there
are no counters.

It is worth noting that there is a direct correspondence between MDDs
(Multi-valued Decision Diagrams) and DFAs. An acyclic and minimized deter-
ministic finite automaton is equivalent to a reduced (ordered) MDD [18]. This
is the reason why we can use an underlying MDD [19, 20] as a basis for filtering
constraints regular.

When problems are over-constrained, it is sometimes relevant to relax some
hard constraints. More specifically, it is possible to soften global constraints
by adopting some known violation measures [10, 11]. A violation measure µ is
simply a cost function that guarantees that cost 0 is associated with, and only
with, any tuple that fully satisfies the constraint. The violation measure “var” is
general-purpose: it measures the smallest number of variables whose values must
be changed in order to satisfy the constraint (it basically expresses a Hamming
distance).

For the relaxed version of regular, we can use “var” as well as the viola-
tion measure “edit”, defined in [11] and revised in [12], which stands for the
smallest number of insertions, deletions and substitutions required to satisfy the
constraint. In a local search context, it was proposed [13] a violation measure by
dividing the sequence of variables into segments that are accepted by the under-
lying DFA. This measure overestimates the Hamming distance. In this paper, we

M.T. Khong et al

propose an original violation measure “prx” that is related to the size (length)
of the longest prefix of a tuple compatible with a DFA.

Definition 3 (Violation Measure “prx”). The violation measure µprx of an
r-tuple τ with respect to a DFA M is µprx(M, τ) = r − k, where k is the size of
the longest prefix of τ that can be extended to an r-tuple in L(M).

Definition 4 (soft-regularprx). Let M be a DFA, X = 〈x1, . . . , xr〉 be a se-
quence of r variables and z be a (cost) variable. The constraint
soft-regularprx(X,M, z) accepts all tuples in {(v1, . . . , vr, d) |
µprx(M, (v1, . . . , vr)) ≤ d ∧ vi ∈ D(xi),∀i ∈ 1..r ∧ d ∈ D(z)}.

Note that only the bounds of z are considered. We do not reason about equal-
ity, because z is supposed to be minimized. The constraint soft-regularprx(X,M, z)
supports an r-tuple τ = (v1, . . . , vr) for X iff τ is valid and µprx(M, τ) ≤ max(z),
i.e., the first r −max(z) values of τ can be extended to a tuple recognized by
M . We also have that a value d ∈ D(z) is a support of the constraint iff there
exists a valid r-tuple τ for X such that d ≥ µprx(M, τ).

Example 2. Let us consider the automaton M depicted in Figure 1, a sequence of
4 variables X = 〈x1, x2, x3, x4〉 with D(xi) = {a, b, c},∀i ∈ 1..4 and a cost vari-
able z with D(z) = {0, 1, 2}. The constraint soft-regularprx(X,M, z) supports
(c, c, c, a) for X but not (c, a, a, b) because µprx(M, (c, c, c, a)) = 1 ≤ max(z)
while µprx(M, (c, a, a, b)) = 3 > max(z). Suppose now that x3 and x4 are as-
signed to c and a, respectively. The r-tuple with the longest prefix consistent
with M is τ = (c, c, c, a) with violation cost µprx(M, τ) = 1. Hence, z = 0 can
not satisfy the constraint and should be removed from D(z).

4 A GAC Algorithm

We now introduce a filtering algorithm to enforce generalized arc consistency
on a constraint soft-regularprx, i.e., a soft regular constraint, using “prx” as
violation measure. As presented in [7, 11], the main data structure, the DFA, can
be traversed in order to identify the values that are supported by the constraint.
An MDD-based algorithm [19] can be applied for this step. Indeed, it is rather
immediate to unfold the automaton on r levels, where each level corresponds to
a variable in the main sequence X of variables. Arcs labelled with values for the
first variable leave the root node (at level 0), whereas arcs labelled with values
for the last variable reach the terminal node (at level r). An illustration is given
by Figure 2.

x1 x2 x3 x4

q00 q11

q14

q21

q22

q24

q32

q33

q34

>
a

c

a

b

c

b

b

a

c

a

a

c

Fig. 2. MDD Built for the Con-
straint soft-regularprx in Exam-
ple 2.

The principle of filtering is the following. The MDD is traversed first in
order to identify the deepest level for which a consistent prefix exists. With this

Soft-regular with a prefix-size violation measure

information, it is then possible to update the min bound, min(z), of the cost
variable z. This is exactly the same kind of filtering performed with respect to
the variable y in an inequality binary constraint x ≤ y when we apply: min(y)←
max(min(y),min(x)).

The value of the max bound, max(z), is also useful for possibly pruning some
values for variables in X. More precisely, for the first r − max(z) variables in
X, we need to only keep the values that occur in any consistent prefix whose
size is at least equal to r − max(z). This is the reason why we use an array
collected that gives for each variable xi, such that i ≤ r − max(z), the set of
values collected[xi] that respect that condition. Roughly speaking, this is the
spirit of the filtering performed with respect to the variable x in an inequality
binary constraint x ≤ y when we apply: max(x)← min(max(x),max(y)).

Algorithm 1 can be called to enforce GAC on a specified constraint
soft-regularprx(X,M, z). We introduce a map, called explored, that stores for
any processed node the size of the longest consistent prefix that can be reached
from it. As usual for a map, we use the operations (i) clear(), for reinitializing
the map, (ii) contains(), for determining if a specified node has already been
processed, (iii) get(), for getting the size of the longest consistent prefix that can
be reached from a specified node, (iiii) put(), for putting an entry in the map.

Algorithm 1: soft-regularprx(X = 〈x1, . . . , xr〉, root, z)
1 explored.clear()
2 collected[x]← ∅, ∀x ∈ X
3 maxSuccessLevel← exploreTree(root)
4 min(z)← max(min(z), r −maxSuccessLevel)
5 if D(z) = ∅ then
6 return Failure
7 else
8 foreach i ∈ 1..r −max(z) do
9 D(xi)← collected[xi]

Algorithm 1 works as follows. Data structures are initialized at lines 1 and
2. Then, the exploration of the MDD starts from the root, and the size of the
longest found consistent prefix is stored in the variable maxSuccessLevel. At
this point, it is possible to update both the domain of the cost variable z and
the domains of the first r −max(z) variables of X, as explained earlier in this
section. Note that if the domain of z becomes empty, a failure is returned. Also,
note that no domain wipe-out (failure) can happen when updating the domains
of variables in X.

Algorithm 2 makes an exploration of a (sub-)MDD and returns the size of the
longest prefix compatible with the DFA that can be reached from the specified
node. If this node corresponds to the terminal node (this is identified by a level
equal to r) or a node that has already been processed, the algorithm returns
the corresponding level. Otherwise, the algorithm explores each child (i.e., node
reached from an outgoing edge) such that the value labeling the linking arc is
still valid. Some values can then be collected, but note that we collect supported

M.T. Khong et al

values for only the first r−max(z) variables (lines 10-11). The level of a node is
equal to the maximum level reached by its children, which can be expressed by
the formula: maxLevel(node) = max(node.level,maxn:node.outsmaxLevel(n)).
Finally, Algorithm 2 adds an entry to the map explored and returns the size of
the longest consistent prefix.

Algorithm 2: exploreTree(node) : Integer

1 if node.level = r then
2 return r

3 if explored.contains(node) then
4 return explored.get(node)

5 x← node.var
6 maxLevel← node.level
7 foreach arc ∈ node.outs do
8 if arc.value ∈ D(x) then
9 currMaxLevel← exploreTree(arc.dest)

10 if node.level ≤ r −max(z) ≤ currMaxLevel then
11 collected[x]← collected[x] ∪ {arc.value}
12 maxLevel← max(maxLevel, currMaxLevel)

13 explored.put(node,maxLevel)
14 return maxLevel

Example 3. Let us consider the constraint soft-regularprx(X,M, z) from Ex-
ample 2. After the execution of Algorithm 1, we have: collected[x1] = {a, c},
collected[x2] = {a, b, c}, collected[x3] = collected[x4] = {}. Since max(z) = 2,
only domains of x1 and x2 may be updated. Here, b is removed from D(x1).

Suppose now that x3 and x4 are respectively assigned to c and a, and 2
is removed from D(z), i.e., max(z) = 1 . Since max(z) is now 1, we need to
collect values for the first 4 − 1 = 3 variables x1, x2, and x3. Any value la-
beling an arc is collected iff this arc can reach at least the level 3. We have:
collected[x1] = collected[x2] = collected[x3] = {c}. Consequently, we now have
D(x1) = D(x2) = D(x3) = {c}. Note that the deepest reachable consistent level
is 3, which implies that min(z) = 1.

Proposition 1. Algorithm 1 enforces GAC on any specified constraint
soft-regularprx(X,M, z).

Proof. After the execution of Algorithm 2, ∀xi ∈ X, with i ∈ 1..r − max(z),
∀vi ∈ D(xi), the arc associated with (xi, vi) must reach a node with a level at
least equal to r−max(z), i.e., there must exist a path from the root to this node
whose size is at least r − max(z). Values collected on this path can represent
a support for (xi, vi). The maximum level reached from the root corresponds
to the size of the longest prefix of a tuple that is consistent with the DFA M .
Hence, the lower bound of D(z) must be updated using this value. ut

Since Algorithm 2 traverses at most one each arc in the corresponding graph,
the time complexity of Algorithm 1 is O(r|δ|) where |δ| is the number of transi-
tions in the DFA.

Soft-regular with a prefix-size violation measure

5 Possible Decomposition

The constraint soft-regularprx can be decomposed using cost MDD [21] con-
straints with the unfolded automaton described in Section 4 by adding the fol-
lowing arcs: for each node at level i, add an escape arc to the terminal node
with cost r − i; each arc in the unfolded automaton has cost 0. The time com-
plexity to filter this constraint is also linear in the number of arcs but it is not
straightforward to implement if the cost MDD is not available.

The constraint soft-regularprx(X,M, z) can also be decomposed by using
reified table constraints [22] and (ordinary) table constraints as follows. First,
we introduce r + 1 new variables yi (i ∈ 0..r) such that D(y0) = {q0}, D(yi) =
Q,∀i ∈ 1..r − 1 and D(yr) = F . We also introduce r Boolean variables bi,
i ∈ 1..r, for reification purpose. Next, we introduce r reified table constraints
creifi : ci ⇔ bi where ci is a classical ternary positive table constraint such that
scp(ci) = {yi−1, xi, yi} and rel(ci) = δ for i = 1..r. These constraints reflect
the truth of a valid transition. We then introduce r functionality constraints
cfi (i = 1..r) where each constraint cfi is a ternary negative table constraint

such that scp(cfi) = {yi−1, xi, yi} and rel(cfi) = {(qk, v, 6= ql)| (qk, v, ql) ∈ δ}.
Finally, we enforce the prefix restriction by adding the constraints: (z ≤ r−k)⇒
(
∑

i=1..k bi = k). Note that when z ≤ r − k, a prefix of size at least equal to k
must be consistent with the underlying DFA, which implies that bi = 1, i = 1..k
and this is equivalent to

∑
i=1..k bi = k.

6 Experimental Results

We illustrate the practical interest of our approach on a variant of the Nurse
Rostering Problem (NRP). This problem has been extensively studied in both
domains of Operational Research and Artificial Intelligence for more than 40
years due to its importance in real-world hospital contexts [23, 24].

The NRP consists of creating a roster by assigning nurses different shift types
satisfying some constraints [23]. They are divided in two groups: hard constraints
and soft constraints. Hard constraints must be satisfied in order to have a feasible
solution whereas soft constraints can be partially violated by introducing some
violation costs. The objective is to minimize the sum of these costs.

In real NRP situations, it may happen that one or even several nurses indicate
that in a near future (not precisely indicated) they will have to be absent. One
possible solution is to relax the hard regular constraints corresponding to the
regulation rules for these nurses while trying to find a roster satisfying as much
as possible the first steps (shifts) of the underlying automata. The constraint
soft-regularprx can be applied for that. In [8], Schaus proposed to relax the
demands instead using a soft-cardinality constraint. However, this relaxation
does not allow us to optimize the longest feasible prefix easily over a horizon.

We have conducted an experimentation under Linux (CPUs clocked at 2.5
GHz, with 5GB of RAM). We have been interested in the NRP instances recently
proposed in [25]. We have also randomly generated some variants for the last four
instances by slightly modifying soft demands of nurses (we use symbols a and
b as suffix in their names). For our experiments, a nurse was randomly chosen

M.T. Khong et al

to be the person who can not totally follow the roster. So, we first minimize
the global violation cost (as initially computed for these instances), and then
we attempt to maximize the longest prefix satisfying the shift horizon of the
“relaxed” nurses. Note that we also force this staff’s roster to satisfy regulation
rules over at least the first half of the scheduling horizon.

Table 1. Results obtained on NRP instances. Timeout set to 3, 600s.

soft-regular
Instance #days #nurses #shifts LNS LNS (1 nurse)

objective objective violHoz

Instance1 14 8 1 607.0 512.0 5.9
Instance2 14 14 2 890.4 837.7 4.0
Instance3 14 20 3 1055.6 1006.2 3.6

Instance4 28 10 2 1732.4 1645.3 12.6
Instance4a 28 10 2 1694.2 1548.1 10.9
Instance4b 28 10 2 1722.4 1672.4 12.1

Instance5 28 16 2 1477.1 1261.9 11.5
Instance5a 28 16 2 1471.2 1390.0 11.7
Instance5b 28 16 2 1382.2 1303.0 11.1

Instance6 28 18 3 2629.1 2498.9 11.2
Instance6a 28 18 3 2539.6 2433.9 7.5
Instance6b 28 18 3 2706.7 2642.1 8.8

Instance7 28 20 3 1756.4 1555.1 9.1
Instance7a 28 20 3 1903.3 1810.6 8.3
Instance7b 28 20 3 1674.4 1485.8 9.4

We run our algorithm 10 times on each instance, with a timeout set to 3, 600
seconds, and we report average results. We chose Large Neighborhood Search
(LNS) [26] as a method to solve NRP instances. The variable ordering heuristic
selects the variable that admits the highest violation cost over a day while the
value ordering heuristic selects the value that reduces the overall cost most.
Concerning relaxation, firstly, one nurse is selected randomly. If no solution is
found after 10 executions, the number of nurses relaxed will increase by one. It
will be set back to one when a solution is found. For each restart, the number
of failures is limited to 100K.

Table 1 shows some representative results for only one relaxed nurse. The
first 4 columns gives some information about the instances. The 3 last columns
present solving results. The first column (out of these 3 last columns) shows the
violation cost obtained with LNS for the initial problem (i.e., without any relax-
ation). The last 2 columns present results for the relaxed problem: the obtained
objective cost, and the horizon violated by the roster of the relaxed nurse. Gen-
erally speaking, one can observe an improvement on the overall objective while
keeping a reasonable roster for the relaxed nurse.

Table 2. Execution time(s) for dedicated and decomposition approaches.

instance1 instance2 instance3 instance4 instance5 instance6 instance7

dedicated 71.7 40.4 58.4 38.0 64.5 98.5 98.6
decomp 190.7 81.2 122.6 57.9 74.4 110.5 118.9

We also compared our soft constraint soft-regularprx with the decompo-
sition approach. For simplicity, a static branching was used, and the program
was stopped when the number of failures reached 500K. The execution times in
seconds are reported in Table 2. Clearly, the dedicated approach is more robust
than the decomposition one, as it can be twice as fast.

Soft-regular with a prefix-size violation measure

Acknowledgments

The first author is supported by the FRIA-FNRS. The second author is sup-
ported by the project CPER Data from the ”Hauts-de-France”.

References

1. J.-C. Régin. A filtering algorithm for constraints of difference in CSPs. In Pro-
ceedings of AAAI’94, pages 362–367, 1994.

2. N. Beldiceanu and E. Contejean. Introducing global constraints in CHIP. Mathe-
matical and Computer Modelling, 20(12):97–123, 1994.

3. P. Van Hentenryck and J.-P. Carillon. Generality versus specificity: An experience
with AI and OR techniques. In Proceedings of AAAI’88, pages 660–664, 1988.

4. J.-C. Régin. Generalized arc consistency for global cardinality constraint. In
Proceedings of AAAI’96, pages 209–215, 1996.

5. J.N. Hooker. Integrated Methods for Optimization. Springer, 2012.
6. A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex scheduling

and placement problems. Mathematical and Computer Modelling, 17(7):57–73,
1993.

7. G. Pesant. A regular language membership constraint for finite sequences of vari-
ables. In Proceedings of CP’04, pages 482–495, 2004.

8. P. Schaus. Variable objective large neighborhood search: A practical approach
to solve over-constrained problems. In Tools with Artificial Intelligence (ICTAI),
2013 IEEE 25th International Conference on, pages 971–978. IEEE, 2013.

9. W. van Hoeve. Over-constrained problems. In Hybrid Optimization, pages 191–225.
Springer, 2011.

10. T. Petit, J.-C. Régin, and C. Bessiere. Specific filtering algorithms for over-
constrained problems. In Proceedings of CP’01, pages 451–463, 2001.

11. W. van Hoeve, G. Pesant, and L.-M. Rousseau. On global warming: Flow-based
soft global constraints. Journal of Heuristics, 12(4-5):347–373, 2006.

12. J. He, P. Flener, and J. Pearson. Underestimating the cost of a soft constraint
is dangerous: revisiting the edit-distance based soft regular constraint. Journal of
Heuristics, 19(5):729–756, 2013.

13. J. He, P. Flener, and J. Pearson. An automaton constraint for local search. Fun-
damenta Informaticae, 107(2-3):223–248, 2011.

14. U. Montanari. Network of constraints : Fundamental properties and applications
to picture processing. Information Science, 7:95–132, 1974.

15. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.
16. C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.
17. N. Beldiceanu, M. Carlsson, and T. Petit. Deriving filtering algorithms from con-

straint checkers. In International Conference on Principles and Practice of Con-
straint Programming, pages 107–122. Springer, 2004.

18. T. Hadzic, E.R. Hansen, and B. O’Sullivan. On automata, MDDs and BDDs in
constraint satisfaction. In Proceedings of ECAI’08 Workshop on Inference methods
based on Graphical Structures of Knowledge, 2008.

19. K. Cheng and R. Yap. An MDD-based generalized arc consistency algorithm for
positive and negative table constraints and some global constraints. Constraints,
15(2):265–304, 2010.

M.T. Khong et al

20. G. Perez and J.-C. Régin. Improving GAC-4 for Table and MDD constraints. In
Proceedings of CP’14, pages 606–621, 2014.

21. G. Perez and J.-C. Régin. Soft and cost mdd propagators. In Proceedings of
AAAI’17, pages 3922–3928, 2017.

22. M.T. Khong, Y. Deville, P. Schaus, and C. Lecoutre. Efficient reification of table
constraints. In Tools with Artificial Intelligence (ICTAI), 2017 IEEE 29th Inter-
national Conference on. IEEE, 2017.

23. E. Burke, P. De Causmaecker, G.V. Berghe, and H. Van Landeghem. The state of
the art of nurse rostering. Journal of scheduling, 7(6):441–499, 2004.

24. A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering:
A review of applications, methods and models. European journal of operational
research, 153(1):3–27, 2004.

25. T. Curtois and R. Qu. Computational results on new staff scheduling benchmark
instances. Technical report, ASAP Research Group, School of Computer Science,
University of Nottingham, 06-Oct-2014.

26. P. Shaw. Using constraint programming and local search methods to solve vehi-
cle routing problems. In International Conference on Principles and Practice of
Constraint Programming, pages 417–431. Springer, 1998.

