
Making Multipath TCP friendlier to
Load Balancers and Anycast

Fabien Duchene, Olivier Bonaventure
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM)

Université catholique de Louvain
Louvain-la-Neuve, Belgium

Email: firstname.lastname@uclouvain.be

Abstract—Multipath TCP is a recent TCP extension that
enables the utilization of different paths for a single connection.
This provides various benefits including bandwidth aggregation
and fast handovers on mobiles. A Multipath TCP connection
starts with a single TCP connection called subflow and other
subflows are added later to increase bandwidth or support
failover. One drawback of Multipath TCP is that it is not
currently compatible with stateless load balancers which rely
on the five-tuple for their forwarding decision. This hinders the
deployment of Multipath TCP.

We show that this limitation can be circumvented with a
small change to the handling of the initial subflow. Clients
use this subflow to discover the load-balanced server and the
additional Multipath TCP subflows are terminated at a unique
address associated to each physical server. With this small change,
Multipath TCP becomes compatible with existing stateless load
balancers. Furthermore, we show that the same approach enables
anycast Multipath TCP services, a major benefit given the
difficulty of deploying anycast TCP services. We implement this
modification in the Linux kernel and demonstrate its benefits
with several micro benchmarks.

I. INTRODUCTION

Multipath TCP [19], [20], [35] is a recent TCP extension
that enables hosts to send packets belonging to one connec-
tion over different paths. Several use cases have emerged
for Multipath TCP during the last years [15]. Apple uses
Multipath TCP on all its tablets, smartphones and laptops
to support the Siri voice recognition application. In this use
case, Multipath TCP provides very fast failovers when a
smartphones leaves the coverage of a WiFi access point. A
second use case for Multipath TCP is bandwidth aggregation.
In Korea, high-end smartphones include Multipath TCP to
bond the bandwidth of their WiFi and cellular interfaces and
achieve higher throughputs [36]. Finally, network operators
have started to deploy Multipath TCP proxies to bond xDSL
and LTE networks in rural areas [15], [14].

Given that the Multipath TCP specification was published
in 2013, the Apple deployment that began in September 2013
is the fastest deployment of a TCP extension [21]. Despite
this fast start, Multipath TCP is still not widely supported
by servers [27]. There are several reasons for this limited
deployment. On the client side, Apple’s implementation of
Multipath TCP is not exposed to regular applications and
the implementation in the Linux kernel [31] is not included

in the official kernel. On the server side, the deployment of
Multipath TCP is hindered by technical problems [32]. Many
servers reside behind load balancers [4]. There are basically
two families of load balancers: the stateless and the stateful
load balancers. Stateful load balancers maintain state for each
established TCP connection and load balance them among
different servers. Some of these load balancers have been
upgraded to support Multipath TCP [9], [3]. However, the
state maintained by these load balancers limits their scalability.
This is the reason why large content providers prefer to deploy
load balancers [17] that stores as less state as possible. Those
load balancers operate on a per-packet basis and take their
load balancing decision based on field of the IP and TCP
headers (e.g. the five tuple that uniquely identifies each TCP
connection). Multipath TCP breaks this assumption and forces
to rethink the operation of stateless load balancers. Two groups
of researchers have proposed modifications to load balancers to
support Multipath TCP [29], [26]. We discuss them in details
in section II.

In this paper, we view the load balancing problem from
a different angle. Instead of changing the load balancers to
support Multipath TCP, we propose to slightly change Multi-
path TCP to be compatible with existing load balancers. This
enables Multipath TCP to be used in any environment where
load balancers already are and is a much simpler deployment
path than changing load balancers. Our modification is simple
since it relies on a single bit in the option exchanged during
the three-way handshake. We implement it in the Linux kernel
and demonstrate its performance based on lab measurements.
Furthermore, we show that with this small modification it
becomes possible to efficiently support anycast services over
Multipath TCP. This opens new benefits for Multipath TCP in
addition to the existing bandwidth aggregation and fast failover
use cases.

II. BACKGROUND AND MOTIVATION

Multipath TCP is a recent TCP extension defined in [19].
A key benefit of Multipath TCP is that a Multipath TCP
connection can transport data over different paths. A typical
example is a smartphone that wants to use both its WiFi and
LTE interfaces to exchange data. A Multipath TCP connection
always starts with a three-way handshake like regular TCP
connections, except that the SYN and SYN+ACK carry the978-1-5090-6501-1/17/$31.00 c© 2017 IEEE

MP_CAPABLE option. This option carries keys whose usage
is described later. This TCP connection is called the initial
subflow in the Multipath TCP terminology. Once established,
data can flow in both directions over the initial subflow. The
added value of Multipath TCP comes from its ability to use
different paths. This is done by creating one subflow (i.e. also
a TCP connection) over each of those paths. Considering our
smartphone example, if the initial subflow was created over
the cellular interface, then another subflow is created over
the WiFi interface. Each subflow is created by using the TCP
three-way handshake with the MP_JOIN option in the SYN
packets. This option contains an identifier of the Multipath
TCP connection to which the subflow is attached (called token
in [19]) that is derived from the information exchanged in the
MP_CAPABLE option and some authentication information.

Besides MP_CAPABLE and MP_JOIN, Multipath TCP also
defines other TCP Options. When data are sent over different
subflows, they needs to be reordered at the destination. This
is achieved by using the DSS option that provides a sequence
numbering scheme at the level of the Multipath TCP connec-
tion. Thanks to this option, some data sent over one subflow
can later be resubmitted over another subflow if needed.
Another important Multipath TCP option is ADD_ADDR. It
enables a host to announce its other addresses. For example,
a dual stack server could accept a Multipath TCP connection
over its IPv4 address and then use the ADD_ADDR option to
announce its IPv6 address to its client that will then be able
to create an IPv6 subflow towards the server.

A. Load balancing principles

A network load balancing infrastructure is typically com-
posed of one or several load balancers located between the
physical servers that host the content and the edge routers
as shown by figure 1. In this paper, we focus on layer-4
load balancers[7], [17], [2] that do not terminate the TCP
connection unlike some layer-7 load balancing solutions[8],
[6].

load
balancer

#1

load
balancer

#2

Rack
#1

Rack
#2

VIP 1
VIP 2

VIP 3
VIP 4

Fig. 1. Typical deployment of Layer-4 load balancers

Load balancers typically announce Virtual IP addresses
(VIP) to the Internet. A VIP differs from a traditionnal IP
address because it is not assigned to a single server. It usually

belongs to a service whose content will be served by multiple
servers located behind the load balancers.

When a client tries to connect to a service, it usually obtains
the VIP via a DNS query and then sends packets to this
address. When the first packet of a connection reaches the
load balancer, the load balancer needs to select one of the
service’s servers for this particular connection. The specific
algorithm used to select the best server is out of the scope
of this paper, but it is important to emphasise that once that
the server has been selected, all the packets belonging to this
specific connection will be forwarded to that particular server.
With regular TCP, load balancers usually extract the 5-tuple of
the connection (protocol, source address, destination address,
source port, destination port) from each received packet and
assign each tuple to a specific server. Some load balancers
simply forward these packets to the corresponding server [7]
while others encapsulate the packet using Generic Routing
Encapsulation (GRE)[17]. The main benefit of encapsulation
is that the physical server does not need to be physically close
to the load balancer.

This solution works perfectly with TCP and UDP because
each TCP or UDP packet contains the five-tuple that identify
the flow. Multipath TCP unfortunately breaks this assumption.
A load balancer should send all the packets that belong to a
given Multipath TCP connection to the same physical server.
Since a Multipath TCP connection is composed of different
TCP connections, a packet can reach the load balancer via
any of these TCP connections and thus via possibly different
five-tuples. A layer-4 load balancer cannot rely only on the
information contained in this packet to determine the physical
server that was selected for this specific Multipath TCP
connection.

Several solutions have been proposed to reconcile Multi-
path TCP with load balancers. A first approach is to use
stateful load balancers. Some commercial products [9], [3]
already support Multipath TCP and researchers have proposed
stateful Multipath TCP capable load balancers [26]. Olteanu
and Raiciu propose in [29] a modification to Multipath TCP
that enables stateless load balancers to support Multipath
TCP. Their solution relies on changing the TCP timestamp
option. Instead of using this option to encode timestamps
only, they encode an identifier of the physical server besides
the load balancer inside the low-order bits of the timestamp
option [16]. Since clients always echo the timestamp option
sent by servers, this enables the load balancer to receive in
each packet an identifier of the physical server that needs
to receive the packet. This solution has been implemented
and tested in lab environment. However, it suffers from three
important limitations. First, load balancers and servers need
to be modified to extract the information from the timestamp
option. Second, this option, like any TCP option, can appear
anywhere in the extended TCP header. This implies that a
hardware implementation will be more complex than existing
hardware solutions that simply extract the source and desti-
nation addresses and ports that are placed at fixed locations
in all packets. Third and more importantly, there are various

types of middleboxes that are deployed on the global Internet
that change the values of the timestamp transported in TCP
Options. This solution is thus fragile in the presence of such
middleboxes.

Stateless load balancers are much more scalable than state-
ful load balancers and large content providers want to continue
to use stateless approaches for load balancing. In this paper,
instead of modifying the load balancer, a device that’s usually
hard to modify, we choose instead to slightly modify the
protocol by slightly changing how addresses are advertised and
used. Given that the IETF is currently finalising the revision of
Multipath TCP [19] to publish it as a standard track document
[20], this is the right time to propose such a modification.

III. MODIFICATIONS TO MULTIPATH TCP
In a nutshell, our modification to Multipath TCP to support

load balancers is to assign two addresses to each physical
server: a VIP that is the load balanced address and a unique
address that is assigned to each physical server. When a client
creates a Multipath TCP connection to a load balancer, it
uses the VIP and the load balancer forwards the packets to
the selected physical server. The physical server advertises its
unique address and the client immediately creates a second
subflow towards this address.

A. Restricting the initial subflow
Our first modification concerns the initial subflow that is

created by the client. This subflow is created by sending
a SYN packet that contains the MP_CAPABLE option. This
subflow is established between the client address and the VIP
served by the load balancers. We add a new “B“ flag to the
MP_CAPABLE option returned by the physical server. When
the “B“ flag is set, this indicates that the source address of
the packet carrying this option (in this case the VIP address)
cannot be used to create additional subflows. If a smartphone
receives a SYN+ACK packet with the “B“ flag set in response
to a SYN packet sent over its cellular interface, it infers that
it cannot create any additional subflow towards this address.
This prevents the smartphone from creating a subflow that
would not be correctly load balanced by the load balancer,
but this unfortunately also prohibits the utilisation of the WiFi
interface to reach the physical server.

All the packets of the initial subflow will reach the load
balancer and be forwarded to the physical server chosen by the
load balancer for this connection. If the client creates another
subflow, the packets belonging to this server must also reach
the same physical server. For this, we leverage the existing
ADD_ADDR option defined in [19]. This option allows a host
to advertise one of its IP addresses. We configure each physical
server with two addresses: the VIP and a unique address. If the
physical server advertises its physical address then the client
will be able to create additional subflows towards this address
which can bypass the load balancer.

B. Reliable ADD_ADDR
If the “B“ flag has been set in the MP_CAPABLE option, the

client is prohibited form establishing any additional subflow

Server Server Server

Load Balancer

Client

Server Server Server

Load Balancer

Client

Server Server Server

Load Balancer

Client

NAT Direct Server Return Multipath TCP

Fig. 2. Different types of load balancer deployments

until it has received the ADD_ADDR option that advertises
the unique address of the server. Unfortunately, according
to the current Multipath TCP specification, the ADD_ADDR
option is sent unreliably. This implies that any loss of the
packet carrying this option could be problematic, e.g. for a
smartphone that moves away from the wireless access point
used for the initial subflow. To ensure that addresses are
reliably advertised, we add the “E“ bit to the ADD_ADDR
option. This bit is reset when a host advertises an address.
When a host receives an ADD_ADDR option with the “E“
flag reset, it must echo this ADD_ADDR option with the “E“
flag set. This echoing serves as an acknowledgement of the
ADD_ADDR option.

IV. USE CASES

In this section, we describe two use cases of the protocol
extension described in the previous section. The first one is that
it becomes possible to place the load balancers complete off-
path once the Multipath TCP connection has been established.
The second one is that with our proposed extension it becomes
possible to deploy anycast services over Multipath TCP, even
in small networks.

A. Beyond Direct Server Return

Several deployment scenarios exist for load balancer. A
simple approach is to place the load balancer in front of all
the physical servers such that all the packets sent and received
by the physical servers pass through the load balancer. This
type of deployment is widely used when only a few physical
servers and used. The main advantage of this deployment is
that it is simple to deploy and operate. However, since all
the packets pass through the load balancer, it could become a
bottleneck when the traffic load increases. This is illustrated
in the left part of figure 2.

Large web farms use a different approach to deploy their
load balancers to support higher traffic loads. HTTP is highly
asymmetrical. Most of the HTTP traffic is composed of the
data packets that are sent by the physical servers towards the
clients. The clients themselves only send the HTTP requests
which are much less frequent. Many web farms leverage this

traffic asymmetry by configuring the router/switch attached
to the physical server to send the packets generated by those
servers directly to the clients without passing through the load
balancer. The packets sent by the clients (TCP acknowledge-
ments and HTTP requests) still need to pass through the load
balancer to be forwarded to the selected physical server. This
deployment is illustrated in the center of figure 2.

With our proposed modification to Multipath TCP, it is
possible to go beyond Direct Server Return and completely
bypass the load balancer for any type of TCP connection. The
client establishes the initial subflow with the load balancer
that forwards all packets belonging to this subflow to the
selected physical server. The physical server advertises its
address and the client creates an additional subflow towards
this server address. All the packets sent to and from the
physical server address automatically bypass the load balancer.
Once the additional subflow has been established, the physical
server can terminate the initial subflow so that no packet
passes through the load balancer anymore. Storage services
like Dropbox and Google Drive where the HTTP traffic is
less asymmetrical could benefit from this modification. Several
APIs have already been proposed and implemented to enable
applications to control the Multipath TCP subflows [23], [22].
This deployment is illustrated in the right of figure 2 in which
the red arrows (center) are related to the initial subflow, and
the blue arrows (right) to the secondary subflow.

B. Supporting Anycast Services

There are three types of addresses that can be supported in
an IP network: (i) unicast addresses, (ii) multicast addresses
and (iii) anycast addresses. The unicast service is well-known.
Multicast is outside the scope of this paper. Anycast has been
initially proposed by Partridge et al. in [33]. Anycast applies
to a network that contains several hosts that provide the same
service. If each of these hosts is configured with the same
anycast address, then when a client sends a packet towards
the anycast address associated to the service, the network
automatically forwards the packet to the closest host. Anycast
has several appealing features such as its resilience to failure
or its ability to minimize latency. Anycast is widely used to
deploy DNS resolvers in ISP or enterprise networks [18], [10].
Given the privacy and security constraints of the DNS service,
several researchers have proposed to run the DNS service
above TLS and TCP instead of UDP [37], [25].

Unfortunately, it is difficult to use TCP servers with anycast
addresses [28]. To understand this difficulty, let us consider
the simple network topology shown in figure 3. There are two
anycast servers in this network shown as S in the figure. One
is attached to router R2 and another attached to router R4.
Both advertise the same anycast address in the network. If
the client attached to router R1 creates a connection towards
this anycast address, the resulting packets are forwarded to the
server attached to R2. If the R1-R2 link fails, the next packet
sent by the client towards the anycast address will be delivered
to the server attached to R4. Since this server does not have

state for this TCP connection, it will send a RST packet to
terminate it and the client will have to restart this connection.

R3

R1 R4

R2

Server

Server Client

Fig. 3. Anycast workflow.

Thanks to our proposed extension to Multipath TCP, it
becomes possible to support anycast services. For this, each
unicast server must be configured with two addresses: (i)
the anycast address that identifies the service and (ii) the
unique server address that identifies the physical server. Let
us consider the same scenario as above. The client creates a
Multipath TCP connection towards the anycast address. The
network forwards the SYN packet to the server attached to
router R2. This server accepts the Multipath TCP connection
and replies with a SYN+ACK. The server then advertises its
unique address over this initial subflow and then signals to the
client to consider this subflow as a backup one. If link R1-R2
fails, the packets of the initial subflow reach the server attached
to R4. This server does not have state for this subflow and thus
replies with a RST packet that terminates the initial subflow.
This does not affect the other subflow that is bound to the
unique address of the server attached to R2. The Multipath
TCP connection with the server attached to R2 continues
without any impact on the client.

Anycast TCP services are typically deployed by associating
a Fully Qualified Domain Name (FQDN) to each service and
using the DNS server to spread the load among different
servers. However, there are several situations where a DNS-
based solution might not work. A first example are the DNS
resolvers mentioned earlier [37], [25]. Those servers must be
reachable via an IP address that is advertised by DHCP or
through the IPv6 router advertisements. Another example are
the different types of proxies that are being discussed within
the IETF [14], [36], [15].

V. PERFORMANCE EVALUATION

To demonstrate the benefits of the solution described in the
previous section, we first modify the reference implementation
of Multipath TCP in the Linux kernel [31]. We then use this
implementation to perform experiments in a lab with both load
balancers and anycast services.

A. Implementation in the Linux kernel
The Multipath TCP implementation in the Linux kernel [30]

is divided in three parts. The first part includes all the functions

WHEN A NEW CONNECTION IS ESTABLISHED:
/* Get the specific IP address */
ip_addr = GET_SERVER_IP()
/* Send an ADD_ADDR containing that

address to the client */
ADVERTISE_TO_CLIENT(ip_addr)
/* Change the first subflow to backup mode */
SET_BACKUP_MODE(get_first_subflow())

Fig. 4. Algorithm of the Load balancing.

that send and receive TCP packets. The second part is the
path manager. This module contains the logic that manages
the different subflow. Several path managers have been im-
plemented [30], [13]. The reference implementation contains
the full-mesh and the ndiffports path managers. The
full-mesh path manager is the default one. It tries to create
a full-mesh of subflows among the addresses available on
the client and the server. The ndiffports path manager
was designed for single-homed clients and servers. On the
client side, it creates n subflows with different source ports
towards the server. It was designed for the datacenter use case
described in [34]. The third part is the packet scheduler that
selects the subflow that will be used to transmit each packet.

We first add support for the “B“ flag in the code that
processes the MP_CAPABLE option described in section III-A.
To support this flag, we had to modify the path manager used
by the client to prohibit it form creating any subflow towards
the destination address of the initial subflow.

Our second modification was to add the support of the “E“
bit in the ADD_ADDR option as described in section III-B. We
implemented it, by sending the ADD_ADDR option in every
packet until the reception of the address acknowledgement
(reception of an echo, with the“E“ bit set to 1), making the
transmission of the ADD_ADDR option reliable.

To support these two modifications, we have created a new
path manager that is tuned for servers behind a load balancer.
This path manager does not create any subflow, this is the
standard behaviour of path managers running on servers. It
advertises the unique server address on the initial subflow
and then changes the priority of this subflow to become a
backup subflow. Multipath TCP [19] defines backup subflows
as follows : path to use only in the event of failure of other
working subflows. This means that the initial subflow, that
passes through the load balancer can still be used but the server
encourages the client to use the subflows towards its unique
address. An alternative would have been to reset the initial
subflow, but this would have been less failure resilient. We
have preferred to set the initial subflow in backup mode. The
algorithm of this path manager is illustrated by the figure 4.

These modifications represent approximatly 600 lines of
kernel code, splitted into three patches (one by feature). 50%
of the code lays in the path manager that can easily be plugged
into the Linux kernel implementation.

Clients LVS

Server 1

Server 2

Server 3

1Gbps link

Fig. 5. Evaluation setup.

B. Layer 4 load balancers

To evaluate the performances with load balancers, we use
the network shown in figure 5. The client is a 2Ghz AMD
Opteron 6128 with 16GB of RAM Debian Linux using our
modified version of the latest Multipath TCP kernel. This
version is based on the Linux kernel version 4.4. The server
uses the same hardware configuration and runs lighttpd version
1.4.35 with the same kernel as the client.

The client accesses the web server via a VIP. This VIP is
attached to the load balancer. Our load balancer runs on a
2.5Ghz intel Xeon X3440 server running Linux Virtual Server
(LVS)[7] configured in NAT mode. We use 1 Gbps Ethernet
links between the load balancers and the servers. Each server
has a second 1 Gbps interface that is attached to a switch
connected to the client.

The purpose of this setup is to mimic a production en-
vironment where the servers would have a dedicated net-
work interface directly connected to the Internet. Clients will
download web pages, representing a total amount of 4 GB.
We use the apache benchmark software [1] to simulate 10
parallel clients. We use netem to simulate different delays
and different packet loss ratios. To simplify the interpretation
of the figures, we started by configuring the load balancer to
send all requests to a single server. An evaluation with several
servers is done in subsection V-C.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

2000

4000

6000

8000

10000

12000

14000

16000

R
eq

ue
st

s
pe

rs
ec

on
ds

Requests per second with 0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Fig. 6. Number of requests per second without loss or delay.

Figure 6 shows the number of requests completed every
second when the client downloads a total of 4 GB using
different web pages sizes. The evaluation shows that for small
request sizes, Multipath TCP slightly underperforms TCP. This
can be explained by the slightly higher cost of establishing
Multipath TCP connections[35].

For larger request sizes, starting at 100KB, Multipath TCP
and TCP both reach the same amount of requests per second,
which is expected because TCP uses the 1 Gbps link connected
to the load balancer, while Multipath TCP uses the 1 Gbps link
connected directly to the server.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0.0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Fig. 7. Transfer rates without loss or delay.

With this experiment, we want to test whether our solution
is deployable in a production environment. In this paper we
argue that with our proposal it is no longer needed to use
costly hardware to run a load balancer. To prove this point,
the remaining measurements in this section have been run with
the same scripts, but we changed the speed of the link between
the client and the load balancer to 100 Mbps.

Figure 7 shows the transfer rate for the same experiment
as the one shown in 6, but with a 100 Mbps link between
the client and the load balancer. Again, for small request
sizes, Multipath TCP slightly underperforms TCP. For larger
requests such as 500 KB, Multipath TCP reaches a goodput of
942 Mb/s. The higher Multipath TCP goodput is an illustration
that Multipath TCP provides more than TCP. Indeed, shortly
after the establishment of the initiation subflow, the client
learns the address of the load balanced server and creates
a second subflow via the 1 Gbps interface of the server.
Multipath TCP then automatically uses the interface going
directly to the server and achieves higher goodput than TCP.

1) Impact of the delay: We evaluate in this section whether
latency affects the performance of Multipath TCP behind load
balancers.

For this experiment, we configure a delay of 20 msec on the
link between the client and the load balancer. Figure 8 shows
that Multipath TCP is still able to benefit from the 1 Gbps
link. Unsurprisingly, the transfer rate for small web objects is
lower than when there is no added latency. This is an expected

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0% loss and 20.0ms delay

Regular TCP
Multipath TCP

Fig. 8. Transfer rates with no loss and 20ms delay.

and already documented [11] behaviour of Multipath TCP. In
our setup, the Multipath TCP starts with an initial subflow
that uses the 100 Mbps link. The client sends the HTTP GET
over this subflow and it can only start the establishment of the
second subflow after the reception of the acknowledgements
for this initial data. The 20 msec added latency delays the
establishment of the second subflow and thus lowers the total
transfer rate.

By increasing the latency to 200ms, as shown by figure 9
we see an important impact on both Multipath TCP and TCP.
This high latency increases the time required for congestion
control algorithm used on the subflows to ramp up.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 0.0% loss and 200.0ms delay

Regular TCP
Multipath TCP

Fig. 9. Transfer rates with no loss and 200ms delay.

2) Impact of packet losses: Packet losses are another factor
that can influence the performance of TCP. Measurements
over the global Internet have reported packet loss ratios of
roughly up to 1%. Our solution needs to cope with two
different types of packet losses: (i) loss of a TCP packet
and (ii) loss of a packet carrying the ADD_ADDR option that
announces the physical address of the server. The standard
retransmission and congestion control mechanisms used by

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)
Transfer rates with 1.0% loss and 0.0ms delay

Regular TCP
Multipath TCP

Fig. 10. Transfer rates with 1% loss and no delay.

TCP and Multipath TCP cope with the former type of packet
losses. Our implementation copes with the latter by ensuring
that the ADD_ADDR option is reliably delivered. If a packet
carrying the ADD_ADDR option is lost, it is retransmitted later
to ensure that the remote host has learned the new address.
Figure 10 shows that when there is no added latency, the
Multipath TCP throughput is not affected by packet losses.
A closer look at the packet traces confirmed that a second
subflow was created for all Multipath TCP connections.

1KB 10KB 100KB 500KB 1MB 5MB 10MB

Page size

0

200

400

600

800

1000

R
at

e
(M

bi
ts

/s
ec

)

Transfer rates with 1.0% loss and 200.0ms delay

Regular TCP
Multipath TCP

Fig. 11. Transfer rates with 1% loss and 200ms delay.

Figure 11 shows that even when we combine loss and delay,
the performance of Multipath TCP is not significantly affected
compared to TCP. The important factor being the latency,
this can be verified by comparing figures 11 and 9. The high
latency playing only for the initial connection establishment,
the performances are lower than without latency, but bigger
files sizes allows Multipath TCP to achieve a transfer rate of
803Mb/s where TCP achieves 16Mb/s. With these measure-
ments, we demonstrated that with our modification, Multipath
TCP works in environments where layer-4 load balancers are
used. In this specific setup, we used Linux Virtual Server[7],

but any layer-4 load balancer can ben used with the same
results. Our measurements show that with our modifications,
the load balancer is no longer the bottleneck of the network
since it is only used to put the client in relation with the
server. With Multipath TCP, the load balancers no longer needs
to be expensive machines with a lot of power and network
bandwidth as almost all of the traffic can be exchanged direclty
between the server to the client.

Direct Server Return (DSR) or Direct return[5] is a tech-
nique used in load balancing where the servers are also
directly connected to the Internet via a link bypassing the load
balancer. This link is used to send the traffic coming from the
servers to the client without passing through the load balancer.
This technique improves performance in a download scenario,
but does not bring benefits for upload scenarios, where most
of the traffic is going from the client to the server like in
storage scenarios. Our solution, however, fully works in both
direction, allowing it to be used in more scenarios.

C. Anycast

A full evaluation of anycast would require a deployment
in a larger network that was not possible given the number
of servers in our lab. From an abstract viewpoint, an anycast
deployment can be considered as a network that distributes
the packets sent by clients to the closest server. If the network
topology changes, some clients could be redirected to a
different server. This change would affect TCP and this is
the main reason why anycast TCP is difficult.

To evaluate the support of anycast services, we rely on the
network shown in figure 12. Each server has two addresses
on its 1 Gbps interface: the anycast address and a unique
address. Each server listens to the anycast address but are
configured to advertise their unique address with Multipath
TCP and set the initial subflow as a backup subflow. These
servers are behind a router that uses Equal Cost MultiPath
(ECMP) [24] to distribute the load accross the servers. The
client is connected to the router via a 10 Gbps link, while the
servers are connected to the router via a 1Gbps link each. Like
in the previous setup, the clients will establish multiple HTTP
connections, 300 in this case, and download files from these
servers.

Clients Router

Server 1

Server 2

Server 3

Anycast addr.

Anycast addr.
Public prefix.

Anycast addr.
Public prefix.

Anycast addr.
Public prefix.

Fig. 12. Anycast Evaluation setup

To simulate network reconfigurations, every 10 seconds, we
remove one of the server from the ECMP anycast pool for 5
seconds. After 5 seconds, that server is added again.

0 20 40 60 80 100 120

Time (seconds)

0

500

1000

1500

2000

2500

3000

B
an

dw
id

th
(M

bi
ts

/s
ec

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
ro

fR
S

T

Bandwidth usage (RX) on the client (TCP)

Fig. 13. With TCP, many connections are reset and this affects the utilisation
of the client-router link

1) TCP Anycast: Figure 13 shows results obtained with
TCP anycast. We perform the measurement during 120 sec-
onds. The client machine runs apache benchmark configured to
retrieve very large (100 MBytes) files from one of the anycast
servers. We use 300 parallel clients. The figure shows two
different curves. The top curve plots the utilisation of the link
between the client and the router. When all servers are part of
the ECMP pool, the client downloads at 2800Mbps. However,
when the router is reconfigured and one of the physical servers
is removed from the pool to simulate a topology change in
the network, the utilisation of the link drops to 1900 Mbps.
This is expected since one server has left the ECMP pool.
Unfortunately, a consequence of this network reconfiguration
is that some packets towards the anycast address are redirected
to a different server than before the topology change. Since
this server does have state for the TCP connection, it sends a
RST packet and the client needs to restart the entire download.
A closer look at the bottom curve of figure 13 reveals that
servers also send RST packets when a new server is added to
the pool. We experimentally observe that more RST packets
are generated when a server is removed from the ECMP
anycast pool than when a server is added to the ECMP anycast
pool. This is normal because when a server is removed from
an ECMP anycast pool, all the TCP connections that were
handled by this server are redirected. These RST packets
explain why network operators do not want to deploy TCP
anycast in entreprise networks.

We now perform exactly the same measurement with our
extension to Multipath TCP. Figure 14 shows results that are
completely different from those obtained with regular TCP.
The first and most important result is that we do not observe
any failure of established Multipath TCP connections during
the 120 seconds of the experiment. Despite of the 16 topology
changes that we simulated, no Multipath TCP connection
failed. This is a very important result that confirms that

0 20 40 60 80 100 120

Time (seconds)

0

500

1000

1500

2000

2500

3000

B
an

dw
id

th
(M

bi
ts

/s
ec

)

0

2000

4000

6000

8000

N
um

be
ro

fR
S

T

Bandwidth usage (RX) on the client (Multipath TCP)

Fig. 14. With Multipath TCP, no connection is reset when the network
topology changes

Multipath TCP can be deployed to support anycast services
which could bring an additional use case for Multipath TCP.
The upper curve of figure 14 reveals that the utilisation of
the client-router bandwidth stays at 2.8 Gbps despite the
network reconfigurations. When a server is removed from the
ECMP anycast pool, the Multipath TCP connections that were
handled by this server automatically switch to the second
subflow as the initial subflow (towards the anycast address)
is redirected to another physical server. This handover is
seamless for the application and the connection continues.
When a server is removed from the ECMP anycast pool,
the packets belonging to an initial subflow are redirected
to another server that does not have state for this subflow.
This server responds to those packets with RST packets that
terminate this initial subflow. However, the second subflow,
which is attached to the unique server address, is still up and
the data transfer continues.

VI. SECURITY CONSIDERATIONS

Besides distributing the load among different servers, load
balancers also shield the physical servers from the open
Internet and can filter some of the packets sent to the physical
servers depending on their configuration. By advertising the
addresses of the physical servers, our solution exposes them
more than existing stateless load balancers. If network oper-
ators are concerned about the advertisement of the addresses
of the physical servers, there are several solutions that can be
used to mitigate the security risks.

First, the physical servers only need to accept additional
subflows. A security concerned network administrator can eas-
ily reject incoming SYN packets containing the MP_CAPABLE
option to prohibit the establishment of new Multipath TCP
connection that do not pass through the load balancer. Those
filters can be installed on the physical servers or upstream
firewalls. This could also be achieved by slightly modifying the
Multipath TCP/TCP implementation to reject any SYN packets
not containing the MP_JOIN option on specificed interfaces.

Another point that is worth to be discussed are the additional
subflows that can be established by sending SYN packets with
the MP_JOIN option towards the physical server that was
selected by the load balancer. Multipath TCP [19] relies on two
techniques to protect the servers from the establishment of fake
subflows. First, the MP_JOIN option contains a 32-bits token
that uniquely identifies the Multipath TCP connection. If an
attacker wants to add a subflow to an existing Multipath TCP
connection, he/se must guess the 32-bits token that identifies
this connection. This is not sufficient since the establishment
of the additional subflows is authenticated by using HMACs
that are computed over 64 bits keys exchanged by the client
and the server during the initial handshake. To successfully
create an additional subflow, an attacker would need to guess
this 64 bits key.

With the above solution, the server plays an active role
in mitigating the attack since it needs to match the received
SYN with the tokens that it has allocated and then compute
the HMAC before sending the SYN+ACK. The computational
cost of this HMAC could be a concern in the case of denial
of service attacks. In our lan, a single unique address has
been assigned to each physical server. In IPv4 networks, this
would be the expected deployment given the scarcity of IPv4
addresses. In IPv6 networks, many addresses are available. We
could leverage the large IPv6 addressing space and allocate
one /64 prefix to each physical server. The server would then
announce this prefix to the network to which it is connected.
When a new Multipath TCP connection arrives on the server,
it assigns a unique IPv6 address from its /64 prefix to this
specific connection. We propose to compute the low order
64 bits of this address as hash(secret, token) where hash
is a fast hash function, token the token associated to this
connection and secret a random number. The server then
concatenates the output of this function to its /64 prefix and
announces it to its client. This address is unique to this specific
connection. If the client creates another subflow towards this
server, it will send a SYN packet towards this address with
the connection token inside the MP_JOIN option. A simple
filter can then be used, either on the physical server or an
upstream firewall to verify the validity of the SYN packet
without requiring any state. This filter could be implemented
as a set of eBFP rules similar to those described by Cloudflare
in [12]. Such eBPF rules can process packets at a higher rate
than the Linux kernel and thus are very useful when mitigating
denial of service attacks.

VII. CONCLUSION

The deployment of Multipath TCP on servers has been
hindered by the difficulty of supporting it on stateless load-
balancers. In this paper we have proposed a small modification
to Multipath TCP that enables it to work behind any stateless
load balancers. This modification has already been accepted
by the IETF [20]. We have implemented our modifications
to Multipath TCP in its reference implementation in the
Linux kernel and have demonstrated its performance with

measurements in the lab. An important benefit of our solution
compared to existing deployments such as Direct Server
Return, is that the load balancer can be placed off-path for
long transfers. This is an important feature that could be very
useful as the web transitions to the HTTP/2 protocol that will
use longer flows than HTTP/1.x.

Our Multipath TCP extension is more generic that simply
supporting load balancers in front of servers. It enables net-
work operators to use anycast addresses for Multipath TCP
services. This brings another use case for Multipath TCP in
addition to the existing deployments that leverage fast failover
or bandwidth aggregation.

REPEATABILITY OF THE RESULTS

The measurement results described in this paper were ob-
tained with our modifications to the reference implementation
of Multipath TCP in the Linux kernel. These modifications
and the measurement scripts is available at https://github.com/
fduchene/ICNP2017 to enable other researchers to repeat our
measurements and expand them.

REFERENCES

[1] Apache Bench. https://httpd.apache.org/docs/2.4/programs/ab.html. Ac-
cessed: 2017-04-23.

[2] Barracuda Load Balancer ADC. https://www.barracuda.com/products/
loadbalancer. Accessed: 2017-04-23.

[3] Citrix Netscaler. http://www.citrix.com/. Accessed: 2017-04-23.
[4] Datanyze - Load Balancers market share report. https://www.datanyze.

com/market-share/load-balancers/. Accessed: 2017-04-23.
[5] Direct return in Linux Virtual Server. http://www.austintek.com/LVS/

LVS-HOWTO/HOWTO/LVS-HOWTO.LVS-DR.html. Accessed: 2017-
05-12.

[6] HAProxy. http://www.haproxy.org/. Accessed: 2017-04-23.
[7] Linux Virtual Server. http://www.linuxvirtualserver.org/. Accessed:

2017-04-23.
[8] Nginx. http://www.nginx.org/. Accessed: 2017-04-23.
[9] Release Note: BIG-IP LTM and TMOS 11.5.0. https:

//support.f5.com/kb/en-us/products/big-ip_ltm/releasenotes/product/
relnote-ltm-11-5-0.html#rn_new/. Accessed: 2017-05-10.

[10] J. Abley and K. Lindqvist. Operation of Anycast Services. RFC 4786
(Best Current Practice), December 2006.

[11] Behnaz Arzani, Alexander Gurney, Sitian Cheng, Roch Guerin, and
Boon Thau Loo. Deconstructing MPTCP performance. In Network
Protocols (ICNP), 2014 IEEE 22nd International Conference on, pages
269–274. IEEE, 2014.

[12] Gilberto Bertin. Introducing the p0f BPF compiler. https://blog.
cloudflare.com/introducing-the-p0f-bpf-compiler/, 2016.

[13] Luca Boccassi, Marwan M. Fayed, and Mahesh K. Marina. Binder: A
system to aggregate multiple internet gateways in community networks.
In Proceedings of the 2013 ACM MobiCom Workshop on Lowest Cost
Denominator Networking for Universal Access, LCDNet ’13, pages 3–8,
New York, NY, USA, 2013. ACM.

[14] Olivier Bonaventure, Mohamed Boucadair, and Bart Peirens. 0-RTT
TCP converters. Internet-Draft draft-bonaventure-mptcp-converters-01,
Internet Engineering Task Force, July 2017. Work in Progress.

[15] Olivier Bonaventure and SungHoon Seo. Multipath TCP
deployments. IETF Journal, 2016, November 2016.
http://www.ietfjournal.org/multipath-tcp-deployments/.

[16] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger. TCP
Extensions for High Performance. RFC 7323 (Proposed Standard),
September 2014.

[17] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wen-
tao Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable
software network load balancer. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 523–
535, Santa Clara, CA, 2016.

[18] Xun Fan, John Heidemann, and Ramesh Govindan. Evaluating anycast
in the domain name system. In INFOCOM, 2013 Proceedings IEEE,
pages 1681–1689. IEEE, 2013.

[19] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions
for Multipath Operation with Multiple Addresses. RFC 6824 (Experi-
mental), January 2013.

[20] Alan Ford, Costin Raiciu, Mark J. Handley, Olivier Bonaventure, and
Christoph Paasch. TCP Extensions for Multipath Operation with Mul-
tiple Addresses. Internet-Draft draft-ietf-mptcp-rfc6824bis-09, Internet
Engineering Task Force, July 2017. Work in Progress.

[21] Kensuke Fukuda. An Analysis of Longitudinal TCP Passive Measure-
ments (Short Paper), pages 29–36. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

[22] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure.
SMAPP: Towards Smart Multipath TCP-enabled Applications. In
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’15, pages 28:1–28:7, New
York, NY, USA, 2015. ACM.

[23] Benjamin Hesmans and Olivier Bonaventure. An Enhanced Socket API
for Multipath TCP. In Proceedings of the 2016 Applied Networking
Research Workshop, ANRW ’16, pages 1–6, New York, NY, USA, 2016.
ACM.

[24] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992
(Informational), November 2000.

[25] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
Specification for DNS over Transport Layer Security (TLS). RFC 7858
(Proposed Standard), May 2016.

[26] Simon Liénardy and Benoit Donnet. Towards a Multipath TCP Aware
Load Balancer. In Proceedings of the 2016 Applied Networking Research
Workshop, ANRW ’16, pages 13–15, New York, NY, USA, 2016. ACM.

[27] Olivier Mehani, Ralph Holz, Simone Ferlin, and Roksana Boreli. An
Early Look at Multipath TCP Deployment in the Wild. In Proceedings
of the 6th International Workshop on Hot Topics in Planet-Scale

Measurement, HotPlanet ’15, pages 7–12, New York, NY, USA, 2015.
ACM.

[28] E. Nordmark and I. Gashinsky. Neighbor Unreachability Detection Is
Too Impatient. RFC 7048 (Proposed Standard), January 2014.

[29] Vladimir Olteanu and Costin Raiciu. Datacenter scale load balancing for
multipath transport. In Proceedings of the 2016 Workshop on Hot Topics
in Middleboxes and Network Function Virtualization, HotMIddlebox
’16, pages 20–25, New York, NY, USA, 2016. ACM.

[30] Christoph Paasch. Improving Multipath TCP. PhD thesis, UCLouvain /
ICTEAM / EPL, November 2014.

[31] Christoph Paasch, Sebastien Barre, et al. Multipath TCP in the Linux
Kernel. available from http://www.multipath-tcp.org.

[32] Christoph Paasch, Greg Greenway, and Alan Ford. Multipath TCP
behind Layer-4 loadbalancers. Internet-Draft draft-paasch-mptcp-
loadbalancer-00, Internet Engineering Task Force, September 2015.
Work in Progress.

[33] Craig Partridge, Trevor Mendez, and Walter Milliken. Host anycasting
service. RFC1546, 1993.

[34] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving Datacenter Performance and Robustness with
Multipath TCP. In ACM SIGCOMM 2011, 2011.

[35] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio
Honda, Fabien Duchene, Olivier Bonaventure, and Mark Handley. How
hard can it be? Designing and implementing a deployable Multipath
TCP. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 29–29, Berkeley,
CA, USA, 2012. USENIX Association.

[36] SungHoon Seo. KT’s GiGA LTE: Commercial Mobile MPTCP
Proxy service launch. https://www.ietf.org/proceedings/93/slides/slides-
93-mptcp-3.pdf.

[37] Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin,
and Nikita Somaiya. Connection-oriented DNS to improve privacy and
security. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
171–186. IEEE, 2015.

