
Marked Mix-Nets ?

Olivier Pereira1 and Ronald L. Rivest2

1 UCLouvain (Louvain-la-Neuve, Belgium)
olivier.pereira@uclouvain.be

2 MIT (Cambridge, MA)
rivest@mit.edu

Abstract. We propose a variant mix-net method, which we call a
“marked mix-net” . Marked mix-nets avoid the extra cost associated
with verifiability (producing a proof of correct mixing operation), while
offering additional assurances about the privacy of the messages, com-
pared to a non-verifiable mix-net.
With a marked mix-net, each mix-server adds an extra secret mark in
each ciphertext, and the input ciphertexts are made non-malleable but
still re-randomizable (RCCA).
Marked mix-nets appear to be a good fit for the mix-net requirements of
voting systems that need a mix-net for anonymity but where correctness
is guaranteed through independent mechanisms. Our work investigates
applications to STAR-Vote, but other applications could be explored,
e.g., in Prêt-à-Voter, Selene or Wombat.

1 Introduction

1.1 Mix-nets

Mix-nets were originally proposed by Chaum [12], then extended and elaborated
by many others: additional details can be found in Adida [2], Sampigethaya et
al. [24], and Wikström [31], for instance. They are a central tool for anonymizing
a set of messages, like votes for instance, by breaking any observable connection
between the messages it receives, and those it outputs.

More precisely, a mix-net server, or mixer, takes a sequence of encrypted
messages and outputs them in permuted order, according a secret permutation
that only it knows (sometimes the message encryption and decryption process
are also included in the mix-net definition). Since the objective is to hide the
permutation, the inputs and outputs to the mix-net must be not only encrypted
somehow, but the outputs should be re-encrypted or encrypted differently than the
inputs, so that the outputs can not be trivially matched with the corresponding
inputs. This places additional requirements on the encryption methods used.

A mix-net can be just a single server, or a sequence of k mixers for some
k > 1, each permuting its inputs according to its own secret permutation before
sending its outputs along to be the inputs to the next mixers.

In some cases one may worry about malicious mixers who do not actually
permute their inputs, but perform some other operation instead. For example, in
? © International Financial Cryptography Association (IFCA), 2017.

a voting context, a mixer could replicate some inputs and delete others, causing
a change in the vote tally. Because of the encryption, such manipulations may
be hard or impossible to detect; the only thing an observer can really tell is that
the number of inputs is equal to the number of outputs.

For such applications one may use a verifiable mix-net [23,31,21,4,11]. Here
each mixer produces an additional output, which is often a non-interactive zero-
knowledge (NIZK) proof that it has operated correctly (i.e., that the set of
messages one obtains by decrypting the inputs is the same as the set of messages
one obtains by decrypting the outputs; the mixer only permuting things around).
Anyone can verify the published NIZK proofs from each mixer.

The design of these NIZK proofs considerably improved over the years,
and they certainly are among the most sophisticated cryptographic protocols
deployed in real-world applications: they started to be increasingly used in private
elections and trialed in public ones [9,14,27,28]. This sophistication also comes
with computational complexity. For instance, Bayer and Groth [4] report in
2012 timings between 2 and 5 minutes for two types of state-of-the-art proofs
computed for 100,000 ElGamal ciphertexts, computed in an order q subgroup
of Z∗

p where |q| = 160 and |p| = 1024. More recently, the authors of Verificatum
report timings around 12 minutes for the shuffle of 100,000 ElGamal ciphertexts,
again in an order q subgroup of Z∗

p, but with the more contemporary security
parameters |q| = 3247 and |p| = 3248 [29].

While remarkably efficient, such numbers can become a potential obstacle
when running a large-scale public election. Considering for instance an election
in a mid-size city with 500,000 voters and 100 races that need to be mixed
independently (in order to avoid pattern attacks), the computation of a proof
would take between 16 and 100 hours. In such a context, and given the typical
time-frame of elections, organizers will require each mixer to use several powereful
workstations in order to improve speed and parallelism. But such workstations
increase the management load, the attack surface, and are likely to require IT staff,
which need to be chosen independently for each mixer in order to avoid the creation
of a single point of corruption. Overall, these requirements of hardware and experts
can be expected to create important costs and organizational challenges.

Marked mix-nets aim at offering a considerably faster alternative that would
be useful in some practical settings. Going back to our previous example, the 100
hours required when computing a proof of shuffle modulo a 3248 prime modulus
become an online effort of around 13 minutes on a single laptop when using our
marked mix-net, while maintaining all previous parallelism possibilities.

This speed improvement comes with a relaxation of the security guarantees
offered by a fully verifiable mix-net.
1. The marked mix-net is only verifiable for privacy/anonymity, but not for

correctness. If the marked mix-net verification procedure succeeds, then the
link between the input and output ciphertexts is broken as soon as one mixer
is honest, and assuming that correctness is verified independently (possibly in
a statistical sense). There is indeed no guarantee that the output ciphertexts
are a permutation of those at the input: a malicious mixer could remove some

ciphertexts and insert new ciphertexts of his own while remaining undetected
by the statistical correctness test, due to luck.

2. A marked mix-net targets security in front of a covert adversary [3]. This
means that the marked mix-net aims at making any privacy/anonymity
violation likely to be visible to an auditor, and it is the expectation that the
sanctions that would result from any evidence of malicious behavior would be
high enough to deter any such behavior. (Note that organizational measures
can be taken so that a single judge audits the data before they are released,
so that any privacy violation would only be visible to that judge, and not to
the malicious party.)

We believe that these security properties are satisfactory for some applications,
and that the operational simplifications resulting from the lower computational
requirements makes marked mix-net an interesting option for some voting systems.

1.2 Applications of Marked Mix-nets

We were motivated to develop a marked mix-net by the need for a suitable mix-
net in the STAR-Vote design [5]. However, other systems, including Selene [22],
Wombat [6], or some variants of Prêt-à-Voter that use a human verifiable paper
audit trail [16] could possibly adopt a marked mix-net as well.

In STAR-Vote, human-readable paper ballots are produced by ballot marking
devices, together with an electronic and encrypted record of the votes. As ballots
are collected, this electronic record is replicated and hash chained in various
ways, in order to improve robustness and reliability. Furthermore, the content of
some hash-chains is included in the voter take-home paper receipts, in order to
support end-to-end verifiability. These features make it quite simple to identify
which voter produced what ciphertext – and this is not meant to be a secret
information.

STAR-Vote is designed to be end-to-end verifiable. Still, it is also designed to
accommodate failures in the end-to-end verification process. For instance, the
cast-as-indended audit process could fail to be performed on election day, or
there might be a soundness issue in the zero-knowledge proofs that are used to
prove the validity of the ballots. Therefore, STAR-Vote also supports an efficient
ballot-level risk-limiting audit (RLA) [7], illustrated in Figure 1, which proceeds
by comparing paper ballots randomly picked from the urns against electronic
ballot records. In order to perform a matching between electronic and paper
ballots, the encrypted votes need to be decrypted, but they need to be made
anonymous first. STAR-Vote requires the use of a mix-net for that purpose.

The original specification for STAR-Vote indicates that the mix-net should be
verifiable. But is a verifiable mix-net really needed for STAR-Vote? Perhaps not,
as the RLA that it serves compares electronic records against paper records in
order to detect if there is any significant malfeasance that would cause divergence
between these records, and as such would detect a divergence coming from an
incorrect mixing process. So, for integrity purposes, a verifiable mix-net may not
be needed.

v1
bid1 v2

bid2 v3
bid3

– Encryption
– Hash chaining
– Transmission
– Mixing
– Decryption

Software System

v1 v2 v3

Paper
ballots

Urn

v∗
1 , bid∗

1
v∗

2 , bid∗
2

v∗
3 , bid∗

3

Plaintext Votes

RLA

Fig. 1. Overview of the preparation of the inputs of the STAR-Vote risk limiting
audit. Voters interact with the software system, which prints paper ballots. After voter
verification, the paper ballots are placed into an urn. At the end of the election, the
software outputs an anonymized list of plaintext votes. The risk limiting audit compares
paper ballots and electronic ballots, referencing them by their ballot id.

Privacy is a different concern, though: STAR-Vote still relies on the electronic
process, and on the mix-net in particular, to guarantee that the ballots that
are decrypted are anonymous. And the use of a non-verifiable mix-net can raise
important privacy issues. For instance, a corrupted last mixer could ignore the
ciphertexts handed by the penultimate mixer, and mix those that were the input
of the first mixer instead. As a result, this corrupted mixer would be able to
deanonymize all cleartext votes after decryption, and this would be completely
undetectable. Hence the initial recommendation of a verifiable mix in the STAR
paper. But, as explained above, this is not an innocuous choice, both in terms of
computational requirement and organizational complexity for the STAR-Vote
implementers and auditors.

There are other systems that offer similar features, and for which the use of a
marked mix-net could be envisioned.

For example, Wombat [6] is another system that uses both encrypted electronic
records that are mixed, and human-readable paper records that can be used to
verify the electronic tally. As such, using a marked mix-net in Wombat could
increase the speed of the tally, as long as a (ballot polling) risk-limiting audit
process is used to confirm the electronic tally based on the paper ballots. Note
that the security model would be a bit different between Wombat and STAR-Vote:
in STAR-Vote, the mix-net is only a component of the RLA that is applied on
the result of a system that is end-to-end verifiable independently of it; while in
Wombat, the verifiable mix-net is really a component of the end-to-end verifiability
of the system, and moving to a non-fully verifiable mix makes the verification
of the correctness of the election result rely on the RLA. Besides, the “delayed
effect” attack detailed in Section 3.3 could apply.

Another example would be Selene [22], which uses two mix-nets: one for
assigning tracker numbers to voters, and one for making the votes anonymous.
While the use of a marked mix-net seems difficult for the tracker number as-
signment phase (e.g., duplication may be hard to detect), the use of a marked
mix-net for the vote anonymization phase might be an interesting option. Similar
observations can be made about a variant of Prêt-à-Voter proposed by Lundin
and Ryan [16], that offers a human readable paper trail.

We do not make any claim about the exact consequences of using a marked
mix-net in these systems, and leave these questions open for the moment, while
focusing on STAR-Vote in this paper.

The following sections give details. Section 2 provides some background
information on ElGamal encryption and an overview of the basic mix-nets
techniques. Section 3 explains the design of our marked mix-net. Section 4
describes the risk-limiting process of STAR-Vote and how it could be adapted to
use our marked mix-net, and Section 5 concludes.

2 Cryptographic Background

For concreteness, we present the new marked mix-net design using a variant of
the ElGamal encryption scheme [15]. Our ideas should be portable to mix-nets
based on other encryption schemes.

2.1 ElGamal Encryption

Assume that G is a group of prime order q, with generator g. The description
of G, including q and g, are public parameters. An ElGamal secret key x is
selected by drawing x uniformly at random from Fq − 0, and the corresponding
public key is computed as y = gx.

The encryption of a message m encoded as an element of G is computed as
E(y,m) = (mgr, yr) for a uniformly random element r from Fq. The decryption
of a ciphertext (a, b) is easy using x: we can indeed define D(x, a, b) = ab−1/x =
a(yr)−1/x = (mgr)(gxr)−1/x = m Note that x is invertible in Fq since x is
nonzero. The security of the ElGamal encryption scheme relies on the hardness
of the Decision Diffie-Hellman problem [8] in the group G.

There are various techniques for mapping bit strings into ElGamal messages
in the group G, but these techniques depend on the choice of G. For the purposes
of this paper, the specifics of this mapping do not matter and, when the context
is clear, we will not make any distinction between m as a sequence of bits and
m’s encoding as an element of G.

ElGamal is (multiplicatively) homomorphic—the (componentwise) product of
ciphertexts is a ciphertext for the product of the messages: E(y,m1)∗E(y,m2) =
E(y,m1m2). (Technically, the above means equality of sets of ciphertexts.) Be-
cause ElGamal is homomorphic, a ciphertext can be re-randomized knowing
only the public key, by multiplying (componentwise) by an encryption of 1:

E(y,m) ∗ E(y, 1) = E(y,m). Finally, ElGamal encryption is malleable. In par-
ticular, you can multiply the plaintext by a factor of b merely by multiplying
one component of the ciphertext by b (b, 1) ∗ E(y,m) = (b, 1) ∗ (mgr, yr) =
((bm)gr, yr) ∈ E(y, bm). We will make an intensive use of these two features in
our marked mix-net. (These features are also present in many other encryption
schemes, but ElGamal is probably the simplest and most common example.)

2.2 Mix-Nets

In re-encryption mix-nets (our focus here), each mixer receives a sequence of n
ciphertexts as input, to which it applies a random permutation, after which it
re-randomizes each ciphertext in order to make ciphertexts unlinkable, and then
outputs the result for the next mixer.

The inputs of a re-encryption mic-net can simply be encrypted with a single
public key y and, as explained above, the mix-servers do not need to know the
corresponding secret key x in order to re-randomize. The outputs of the last
mix-server can be decrypted by a party who knows x. (In some cases, x may
be secret-shared [25] by several parties, and a threshold number of such parties
cooperate to decrypt the mix-net outputs [18].)

Looking at the re-randomization process of ElGamal, we can observe an
interesting feature: the re-randomization is essentially the multiplication of two
ciphertexts that are independent of each other. This means that a mixer can, in an
offline phase, before he sees any ciphertext, compute a collection of encryptions of
“1” ∈ G. Then, the online phase can simply consist in ciphertext multiplications,
which is orders of magnitude faster than computing a ciphertext (the exact
factor being strongly dependent on the choice of G). This is the property we aim
at preserving when designing our marked mix-net. In particular, this excludes
so-called decryption mix-nets, in which each mixer would perform a partial
decryption, as this would cause a latency of at least one modular exponentiation
per ciphertext and per mixer.

Notation: We let k denote the number of mix servers. We let mi denote the ith
input message, for 1 ≤ i ≤ n. We let c(j)

i denote the ith input to the jth mix
server, for 1 ≤ i ≤ n and 1 ≤ j ≤ k, and let ĉ(j)

i denote the ith output of the jth
mix server. Since the outputs of server j are the inputs to server j + 1, we have
ĉ

(j)
i = c

(j+1)
i for all i and 1 ≤ j < k. Since there is no server k + 1, the values

{ĉ(k)
i } are the mix-net outputs.

3 Marked Mix-Nets

3.1 Privacy issues with non-verifiable mix-nets

Independently of the integrity properties, the use of the re-encryption mix-net
outlined above raises several privacy concerns.

Mixer bypassing. First, when using k mixers in order to avoid the need to trust
any particular one, there is no way to be sure that the mixers do not bypass
each other during the mixing process. In particular, Mk could ignore the ĉ(k−1)

∗

ciphertexts and use the c(1)
∗ instead. As a result,Mk alone would be able to choose

the permutation between the c(1)
∗ and the ĉ(k)

∗ ciphertexts, which is precisely
what the use of k mixers is expected to avoid. And there would be no way to
detect this manipulation.

One way to avoid this would be to require each mixer to apply, to each
ciphertext, a mark that shows that it processed this ciphertext, and that can be
removed after the end of the mixing process.

Ciphertext replication. At the other end of the chain of mixers, M1 could also
violate the privacy of some voters, by exploiting the homomorphic property of
ElGamal. The ciphertexts in c

(1)
∗ can be expected to have a known structure

and, in some cases, they could contain elements that cannot be verified easily, or
cannot be verified at all, like a random padding used in the message encoding. For
instance, in STAR-Vote, each c(1)

i is actually made of two ElGamal ciphertexts,
one of them encrypting a hash that can only be matched if the corresponding
paper ballot is picked, which is extremely unlikely in a large-scale election.
By relying on this, M1 could target a ciphertext c(1)

i by replacing c(1)
j with a

ciphertext c̄(1)
j = Enc(y, d) · c(1)

i where d is a message carefully crafted by M1 so
that c̄(1)

j looks like a perfectly plausible ciphertext, but can still be recognized
after decryption of the outputs of Mk by looking for two messages with difference
d.

This problem could be avoided by making the ciphertexts somehow non-
malleable, so that any duplication or malicious manipulation of a ciphertext would
become visible at time of audit. This requirement may seem to be contradictory
with the requirement of being able to mark ciphertexts (outlined above), and
the reconciliation of these two features is at the core of the design of our marked
mix-net.

3.2 A Marked Mix-Net

Our marked mix-net aims to address these privacy issues (and others, which
will be discussed later). Still, like the original mix-nets, it does not provide any
correctness guarantees: mixers remain able to add or delete ciphertexts during the
mixing process. However, contrary to the original mix-nets, these additions and
deletions must be independent of the honest mix-net inputs, hence preventing
the leakage of information about these inputs.

In order to obtain an extremely fast protocol, we address these issues in
a covert adversary model [3], in which attacks can succeed with non neglible
probablity, but will also be detected with a non negligible probability. Our
assumption here (which is in line with the motivation of the covert adversary
model) is that the mixing will be executed by well-defined public parties, and

that any cheating detection would immediately trigger police investigation and
important penalties, that would be sufficient to deter any such malicious behavior
in the first place. Aumann and Lindell discuss a strong version of the covert
adversary model in which, when an attack is detected, the adversary does not
learn any undue infrormation (so, it is punished on top of having no benefits from
his attack). Variants of our marked mix-net could offer this flavor of security,
e.g., by using two layers of encryption, but the resulting protocol would be more
expensive.

Non-malleability The resistance to replication attacks suggests the use of an
encryption scheme offering some form of non-malleability property that would
guarantee that any unauthorized ciphertext manipulation would trigger an alert.
However, we still need to be able to re-randomize ciphertexts, in order to be able
to perform the mixing operations.

These properties are reminiscent of the notion of re-randomizable RCCA
encryption, proposed by Canetti et al. [10], which requires the possibility to re-
randomize ciphertexts while preventing any other homomorphic transformation.
RCCA security of course does not prevent a mixer to make exact ballot copies
(possibly re-randomized), and we will need a mechanism in order to detect these.

One efficient solution for building re-randomizable RCCA encryption has been
proposed by Phan and Pointcheval [19], and consists in applying a transformation,
called OAEP 3-Round (OAEP3 for short), to messages before encrypting them
with a probabilistic encryption scheme like ElGamal.

This transformation assumes the availability of 3 independent random oracles,
H1, H2 and H3 (in practice, these can be implemented with a single hash
function and 3 distinct prefixes). The OAEP3 transform processes a message m,
represented as a bit-string, using a fresh random bit string r as follows:

s = m⊕H1(r) t = r ⊕H2(s) u = s⊕H3(t)

and outputs the pair (t, u).
The OAEP3 transformed message can then be encrypted with ElGamal as

usual, and the resulting scheme is shown to be RCCA secure [19], assuming the
hardness of the gap Diffie-Hellman problem in G [17], a problem that consists in
solving an instance of the computational Diffie-Hellman problem in the presence
of a Decisional Diffie-Hellman oracle. The intuition underlying this result is
common to the OAEP-style transformations: any change into t or u leads to
message changes that are unpredictable without querying the Hi oracles first. So,
a modification of a ciphertext can result in a recognizable modification of the
corresponding plaintext only if this plaintext is known in the first place.

Still, it does not guarantee that mixers operate on the expected ciphertexts
in the first place, without bypassing other mixers. This concern will be addressed
below.

Marking The mixer bypassing problem discussed above can be solved by requiring
all mixers to add a secret mark on each of the ciphertexts that they process, on
top of the OAEP3 transform.

Concretely, each of the k trustees proceeds as follows:

1. The encryption process is modified by requiring each party willing to submit
an encryption of a message m to the first mixer to encrypt the message
OAEP3(m‖0µ) instead, where µ is a security parameter.

2. Each mixer Mi ∈ {M1, . . . ,Mk} chooses a secret mark ai ∈ Zq, and broad-
casts E(y,OAEP3(ai)). (It may be appropriate to use a key y that is different
of the one used to encrypt the messages.)

3. At mixing time, instead of simply re-randomizing each ciphertext by mul-
tiplying it with a ciphertext of the form (gr, yr), each mixer performs mul-
tiplications with ciphertexts of the form (aigr, yr), hence multiplying the
encrypted message by ai.

4. When the whole mixing procedure is complete, the secret marks are decrypted,
and the decrypted outputs of the last mixer are all divided by the product of
all ai’s. It is then verified that the 0µ sequence is present in all the plaintexts,
and that the randomness used in OAEP3 is unique. An investigation is
triggered otherwise.

The 0µ string provides a baseline on top of which all marks are applied. If a
decrypted ciphertexts fails to have been properly marked, there is a probability
2−µ that, after the removal of all expected marks, it would still end with the 0µ
sequence. So, in our covert adversary setting, a very short µ may be sufficient, e.g.,
µ = 1 for having a probability around 1/2 of detecting this kind of malfeasance.

In a similar way, if an adversary tries to perform a copy of a ciphertext,
possibly rerandomized or modified in some way, the non-malleability property
obtained from OAEP3 will either cause the repetition of the randomness used in
the OAEP3 transform, which we require to be unique, or remove the 0µ string
with noticeable probability, leading to an invalid ciphertext.

Note also that we demand the encrypted marks of the initial broadcasts to
be OAEP3 processed too, essentially to make sure that the encrypted mark that
is broadcast cannot be used by a corrupted mixer to apply another mixer’s mark
(using the homomorphic property of ElGamal encryption for instance).

Thanks to this marking process, any mixer that would try to bypass other
mixers and process ciphertexts that did no go through the expected path will
fail to contain the marks that it should. This will also leave evidences through
the list of ciphertexts, and the cheating mixer can then be identified. The
marking mechanism used here is similar to that used by Chaum in the “dining
cryptographer’s problem” [13]. Here marks are also members of the underlying
abelian group, and can be added or removed from the message in any order.

The resulting marked mix-net is described in Figure 2.

3.3 Security analysis

We discuss how our marked mix-net defeats the traditional attacks on mix-nets,
including those discussed in the in-depth review of Adida [2], and leave a rigorous
specification and analysis of the security properties as an important and non
trivial future work, that should be performed before any deployment.

The marked mix-net proceeds as follows:

1. A public key y is made available to all message senders and mixers.
2. Each mixer Mi picks a random mark ai ∈ Zq, and broadcasts

E(y, OAEP3(ai)).
3. In order to submit a message m to the first mixer, submit a ciphertext

E(y, OAEP3(m‖0µ)).
4. When all inputs have been submitted, each mixer Mi sequentially shuffles

its input ciphertexts, multiplies each of them with a fresh ciphertexts
E(y, ai), then passes the resulting ciphertexts to mixer Mi+1.

5. The ciphertexts produced by the last mixer are verifiably decrypted, pro-
ducing a sequence d1, . . . , dn.

6. The encrypted marks are verifiably decrypted, making the ai’s available.
7. The mixed messages m̂1, . . . , m̂n are retrieved by computing (m̂i‖0µ‖ri) =

OAEP3−1(di/a) where a = a1a2 · · · ak. If the 0µ sequence is missing, or if
any pair of ciphertexts shares the same ri then an investigation is triggered
in order to identify the cheating party.

8. The inputs and outputs of each mixer are tested to be made of elements
of the group G, and the ZK proofs are verified.

Fig. 2. The marked mix-net

1. Related inputs. In this attack, a corrupted party submits a ciphertext
computed as a function of another one, in order to detect a know relation
after decryption and de-anonymize targeted ciphertexts. As usual, we require
the input ciphertexts to be submitted using a submission-secure scheme [30],
which prevents related submissions. Still, if the first mixers are corrupted,
they would be able to remove one ciphertext (or more) and replace it with
a ciphertext related to the one that is targeted. The relation between the
two ciphertexts can be of two types: either a direct (re-encrypted) copy, or
an encryption of a modified ciphertext. Copies would cause the presence
of messages with identical randomness (ri) after decryption. Modifications
would, thanks to the properties of the OAEP3 transform, result in the
decryption of a random message, which would then contain the 0µ message
tag with probability 2−µ and be declared invalid with high probability. Both
these attacks would be detected and investigated, in contradiction with our
covert adversary security model.

2. Attacks based on lack of semantic security. Our ciphertexts remain
standard ElGamal ciphertexts, which prevents any leakage of partial infor-
mation that could be used to track ciphertexts.

3. Attacks based on partial decryption during mixing. Our marked mix-
net only performs decryption after the completion of the mixing, preventing
any coalition of mixers to take advantage of the partial decryption of others.

4. Mixing cancellation. We prevent mixers from canceling the permutation
applied by other mixers (by mixing their inputs instead of their outputs)

thanks to our marking mechanism: skipping any mixer will cause a missing
mark, which will be spotted at decryption time.

5. Proof wrapping. Some mixes use double encryption layers, which may
cause issues when proofs are provided about the outer layer only (e.g., an
adversary could add a third encryption layer and make proofs about that
last one). OAEP3 can be interpreted as an extra layer in the encryption
mechanism. However, it is designed to prevent malleability, which is the core
ingredient used in wrapping attacks.

6. Subgroup tagging. A corrupted mixer may lift some ciphertexts to another
(possibly larger) group, and use this mechanism to circumvent the guarantees
of semantic security and track a ballot throughout the mixing process. In
order to prevent such attacks, we require the mix verification process to check
that the outputs of each mixer indeed lie in the right group.

7. Delayed effect. Here, a corrupted first mixer uses the time between the
closing of the polling places and the beginning of the mixing to replace
some ciphertexts, possibly with the help of the parties who submitted them.
This may make it possible to change or adapt votes after the closing of the
votes, based on fresh information. Such a strategy would definitely pass our
verification process and is the main reason that makes it non-verifiable in
the traditional sense. Whether it matters is application dependent. In an
application like STAR-Vote, in which the mixing-process is followed by a
risk-limiting audit against the paper ballots that were submitted before the
closing of the polling places, the RLA guarantees that this kind of attack will
be limited to happen for a very small number of ciphertexts, small enough
to make sure that it has no impact on the election outcome. Besides, any
change would also create discrepancies with the results of the end-to-end
verifiable tally.

8. Input guessing. This attack is similar to the previous one but, instead of
colluding with a voter, the adversary (corrupting the first mixer, for instance)
can try to guess someone’s vote (or maybe just verify that a voter followed
instructions) and replace the ciphertexts submitted by the targeted voter
with fresh ciphertexts encrypting the expected vote intent. As before, this
substitution cannot be detected as part of the mixing process. It is also
benign in itself, as long as the adversary has no way to detect whether his
guess was correct or not. This may not be the case however in an application
like STAR-Vote, where the RLA may actually offer evidence of a ballot
modification, which would happen as a the result of a wrong guess. But this
communication channel, which may inform the adversary about the targeted
voter intent, would at the same time offer evidence of malicious behaviour,
and this attack strategy would therefore be excluded by our covert adversary
model.

9. Permutation guessing. In another variation of the previous attacks, an
attacker could make a guess on the mapping between an input ciphertext and
an output ciphertext. If the guess is correct, then the division of these two
ciphertexts would provide an encryption of the mark of that mixer, which

could be used to bypass him. However, this attack will be visible in the likely
case of an incorrect guess, and is therefore excluded by the covert adversary
model.
In terms of accountability, the use of a marked mix-net makes investigations

more challenging than in the case of a fully verifiable mix-net: in the fully
verifiable case, it is enough to check all proofs of shuffle and decryption in order
to find out who cheated during the mixing process. A marked mix-net does not
provide such features anymore. However, we require all mixers to keep track of
their secret permutations and reencryption factors until the end of the audit
process (e.g., by storing their random seed). These can be used in order to obtain
the necessary accountability in case of discrepancy happening during decryption
(e.g., the 0µ sequence is missing) or if the RLA detects a problem. A simple
strategy for making mixers accountable would be to ask them to provide their
re-encryption factors related to problematic ciphertexts, proceeding by following
the mixers in backwards order. This is extremely simple but may raise privacy
concerns in some cases. Still, if the penalty of a cheating mixer is high enough,
it is sufficient to deter from any temptation. A privacy-friendly solution would
be, in case of problem, to ask the mixers to produce a traditional ZK proof of
their correct behavior. Again, even if this is not desired due to the computational
burden that it would bring, the perspective that this will happen and result in
cheater detection can be expected to deter mixers from adopting any malicious
behavior. A malicious vote submission device could also submit an invalid ballot
as an input to the mix-net, in order to trigger the full proof process and slow
down the mixing. Whether this is realistic or not is application dependent: ballots
submitted to a mix-net are typically identifiable, and this may be enough to
deter anyone from adopting this strategy, which offers fairly low benefits. Besides,
when ballots are encoded by a DRE (as in STAR-Vote for instance), an invalid
ballot also becomes a sign of a serious hacking in the system, which would trigger
deep investigation anyway.

4 STAR-Vote

4.1 STAR-Vote’s risk limiting audit

As explained in Section 1.2, our motivation for marked mix-nets comes from the
risk limiting audit process in STAR-Vote. We provide more details about the
process proposed in the original paper, discuss how it can be adapted to use our
marked mix-net, and the benefits that result from it. In order to simplify our
discussion, we only focus on the aspects of STAR-Vote that are relevant to the
RLA.

STAR-Vote ballots are prepared by ballot marking devices (BMD) all inter-
connected, inside each voting office, to a controller and an urn. When a voter
prepares a ballot, two records are produced:

1. A paper record, which contains (among other things) the voter choices in
human readable form, as well as a random, high-entropy, unique ballot id

(or bid). This bid is printed on the paper, but not otherwise known to the
voters, election officials, or mix servers.

2. An electronic record, which contains (among other things):
– An encryption of the voter choices, under the form of a counter set to “0”

or “1” encrypted for each option that the voter can select. As a Texas
election can contain 100 races, this can make a few hundreds ciphertexts.

– An encryption of H(bid‖r) for each race r to which the voter participates.
So, for each race r included in the ballot, ciphertexts of the form
E(y,H(bid||r)), E(y, v) are produced, in which E(y, v) encrypts the content
of the vote v for race r.

The paper record is placed into an urn, making it human readable but
anonymous, while the electronic record is fully encrypted but cannot be considered
to be anonymous (including because various logs can make it quite easy to match
the timing at which a ciphertext is produced and the one at which a voter is seen
to produce his ballot).

When the polls are closed, the electronic record is used to compute the election
tally very fast, by decrypting the homomorphic aggregation of the ciphertexts.

The mix-net permutes the E(y,H(bid||r)), E(y, v) tuples race by race (they
are considered as a single big ciphertext from the mix-net point of view), and
the outputs are then decrypted, revealing the plaintext items H(bid||r), v.

This structure defeats “pattern attacks”, also called “Italian attacks” [20],
since it isn’t obvious from the output which votes are from the same ballot (for
different races) as long as the bid is not known.

The risk-limiting audit examines randomly selected paper ballots one at a
time until enough evidence has been gathered to confirm the nominal (initial,
reported) election outcome, or until all paper ballots have been examined. In the
latter case, a full recount has been performed by the RLA.

When a paper ballot is selected, its bid is read. This allows H(bid||r) to be
recomputed for each race, which allows the appropriate entries to be identified in
the decrypted mix-net output, together with the corresponding vote v. The voter
selections on the paper ballot for each race can then be examined for equality
with the value v.

4.2 Using a marked mix-net

STAR-Vote prescribes the use of a verifiable mix-net, for privacy reasons more
than for verifiability reasons, since the output of the mix-net is already verified
both against the homomorphic tally (at the global level) and through the RLA
(at the ballot level). We suggested above that the use of a marked mix-net could
provide a more efficient and simpler choice.

The specific structure of the messages mixed in STAR-Vote suggests further
tweaks. First we may question the benefits of mixing tuples of ciphertexts instead
of single ciphertext. STAR-Vote has distinct ciphertexts in order to be able to
reuse the ciphertexts used in the homomorphic tally as part of the inputs of
the mix-net, which provides some guarantees of consistency between the inputs

of the mixnet and homomorphic tally. Having two ciphertexts per ballot and
per race however potentially doubles the computational power that is required
to decrypt the outputs of the mix-net, a task that we would like to keep short.
The consistency guarantee may also not be critical since, in case of investigation,
evidence of the discrepancies can still be collected.

The reuse of the ciphertexts produced for the homomorphic tally as inputs for
the mix-net also raises difficulties for our marked mix-net described above, since
plaintexts need to be OAEP3 processed before encryption. We therefore suggest
to modify the STAR-Vote design to have one single ciphertext per ballot and per
race, which can then be conveniently processed through the OAEP3 transform,
as specified in Figure 2.

The use of the OAEP3 transform does not raise any difficulty when the
message space of the encryption scheme is large enough (for instance, when G
is the subgroup of quadratic residues modulo a large p). However, the use of
elliptic curve might raise some difficulties. Indeed, while the OAEP3 expansion
is quite low (it does not require any strong redundancy, like OAEP for instance),
there is still a length increase that comes from the randomness that is added,
and which may look unnecessary in the context of an encryption scheme like
ElGamal, which is already randomized. This randomness is however useful for at
least two reasons: in general, it guarantees the non-malleability, by preventing
an adversary to compute a table of all possible OAEP3 outputs in case of small
message space and, in the context of a mixnet, it prevents the invisible inclusion
in the mixing process of ciphertext copies.

We may however observe that the messages that we need to encrypt all
contain a single unique component that is indistinguishable from a sequence
of random bits: H(bid‖r). We therefore suggest that the inputs of the mixnet
could be computed as: E(y,OAEP3(v‖0µ;H(bid‖r))), where the message part of
the inputs of OAEP3 is v‖0µ and H(bid‖r) is used as fresh randomness. It can
be observed, as did Abe, Kiltz and Okamoto for instance [1], that the OAEP3
transformation does not guarantee non-malleability with respect to the random
part of the OAEP3 inputs (such non-malleability is provided by their OAEP-4X
transformation). However, we really need the non-malleability with respect to
the 0µ part, which is sufficient to detect malicious behaviors. As a result, the
message expansion resulting from the input pre-processing of the marked mix-net
is only of µ bits, where µ can be just a small constant.

The modifications that we propose for the STAR-Vote RLA are summarized
in Figure 3.

4.3 Benefits of the approach

The proposed approach considerably simplifies the risk-limiting process from an
algorithmic point of view: it avoids the need to run a full verifiable mixnet for
the sole purpose of the risk-limiting audit.

It also considerably decreases the computational power that is required from
the mixers: their task can now be almost entirely precomputed and, in particular,
no online modular exponentiation is required. This may enable to close the

1. The ballot marking device produces a submission secure encryption
E(y, OAEP3(v‖0µ; H(bid‖r))) instead of the encryption E(y, H(bid‖r)).

2. The marked mix-net of Figure 2 is used to process these ciphertexts (except
for Step 3, which is performed as above), instead of a verifiable mix-net.

Fig. 3. Proposed changes in the STAR-Vote RLA.

election audit process faster, reduce the computing infrastructure costs, and also
reduce the organizational burden.

The latency before the beginning of the paper comparison phase of the RLA
may not change, however: if a covert adversary setting is accepted, the mixers of
the verifiable mix-net may simply shuffle the ciphertexts and pass them along,
which would cost as much as our marked mix-net, and only start computing their
proofs of shuffle after that, knowing that they will eventually need to produce
them for audit. Note that, in a traditional adversary setting, proofs would need
to be provided and verified before the beginning of the decryption phase, and
the strong latency would be back.

5 Conclusions

We have described a new type of mix-net that offers weaker verifiability properties
than a traditional verifiable mix-net, yet preserves privacy even when all public
keys are known and when all but one mix server may act maliciously.

Our marked mix-net is considerably more efficient than a fully verifiable
mix-net in terms of computational load: the online working load of each mixer is
only 2 multiplications per ElGamal ciphertext, while recent proof of shuffle (e.g.,
[26,4]) require several online exponentiations per ciphertext. We can then expect
to decrease the computational load by a factor at least 100. We believe that this
is an appealing feature in large scale elections.

We suggest that STAR-Vote, and possibly other voting schemes, need not
use a verifiable mix-net and may use the marked mix-net presented here instead.
However, before any deployment, a rigorous analysis of the security properties of
the marked mix-net would be needed.

Acknowledgement

We thank the anonymous reviewers for their helpful comments and suggestions.
The first author is grateful to the Belgian Fund for Scientific Research (F.R.S.-

FNRS) for its financial support provided through the the SeVoTe project. The
second author gratefully acknowledges support for his work on this project
received from the Center for Science of Information (CSoI), an NSF Science
and Technology Center, under grant agreement CCF-0939370, and from the

Department of Statistics, University of California, Berkeley, which hosted his
sabbatical visit during this work.

References

1. Abe, M., Kiltz, E., Okamoto, T.: Chosen ciphertext security with optimal ciphertext
overhead. In: Advances in Cryptology - ASIACRYPT 2008. LNCS, vol. 5350, pp.
355–371. Springer (2008)

2. Adida, B.: Advances in Cryptographic Voting Systems. Ph.D. thesis, MIT (2006)
3. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols

for realistic adversaries. In: Theory of Cryptography TCC. LNCS, vol. 4392, pp.
137–156. Springer (2007)

4. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: Pointcheval, D., Johansson, T. (eds.) Proc. EUROCRYPT 2012, LNCS, vol.
7237, pp. 263–280. Springer (2012)

5. Bell, S., Benaloh, J., Byrne, M.D., DeBeauvoir, D., Eakin, B., Fisher, G., Kortum,
P., McBurnett, N., Montoya, J., Parker, M., Pereira, O., Stark, P.B., Wallach, D.S.,
Winn, M.: STAR-vote: A secure, transparent, auditable, and reliable voting system.
USENIX Journal of Election Technology and Systems (JETS) 1(1) (8 2013)

6. Ben-Nun, J., Fahri, N., Llewellyn, M., Riva, B., Rosen, A., Ta-Shma, A., Wikström,
D.: A new implementation of a dual (paper and cryptographic) voting system. In:
E-VOTE (2012)

7. Benaloh, J., Jones, D., Lazarus, E.L., Lindeman, M., Stark, P.B.: Soba: Secrecy-
preserving observable ballot-level audit. In: EVT-WOTE 2011. USENIX (2011)

8. Boneh, D.: The decision Diffie-Hellman problem. In: Proceedings of the Third
Algorithmic Number Theory Symposium. LNCS, vol. 1423, pp. 48–63. Springer-
Verlag (1998)

9. Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with helios. In:
Shacham, H., Teague, V. (eds.) Electronic Voting Technology Workshop/Workshop
on Trustworthy Elections. Usenix (2011)

10. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Advances in Cryptology - CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer
(2003)

11. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Verifiable elections
that scale for free. In: Public-Key Cryptography – PKC 2013, LNCS, vol. 7778, pp.
479–496. Springer (2013)

12. Chaum, D.: Untracable electronic mail, return addresses, and digital pseudonyms.
Comm. ACM 24(2), 84–90 (February 1981)

13. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. J. Cryptology 1(1), 65–75 (1988)

14. Culnane, C., Ryan, P.Y.A., Schneider, S., Teague, V.: vvote: A verifiable voting
system. ACM Trans. Inf. Syst. Secur. 18(1), 3:1–3:30 (Jun 2015)

15. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inform. Theory IT-31(4), 469–472 (July 1985)

16. Lundin, D., Ryan, P.Y.A.: Human readable paper verification of prêt à voter. In:
Computer Security - ESORICS 2008. LNCS, vol. 5283, pp. 379–395. Springer (2008)

17. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Public Key Cryptography, PKC 2001. LNCS,
vol. 1992, pp. 104–118. Springer (2001)

18. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended ab-
stract). In: Davies, D.W. (ed.) Advances in Cryptology - EUROCRYPT ’91. LNCS,
vol. 547, pp. 522–526. Springer (1991)

19. Phan, D.H., Pointcheval, D.: OAEP 3-Round - a generic and secure asymmetric
encryption padding. In: Advances in Cryptology - Proceedings of ASIACRYPT ’04.
pp. 63–78. No. 3329 in LNCS, Springer (2004)

20. Popoveniuc, S., Stanton, J.: Undervote and pattern voting: Vulnerability and a
mitigation technique. In: In Preproceedings of the 2007 IAVoSS Workshop on
Trustworthy Elections (WOTE 2007) (2007)

21. Ren, J., Wu, J.: Survey on anonymous communications in computer networks.
Comput. Commun. 33(4), 420–431 (Mar 2010)

22. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: Voting with transparent verifiability
and coercion-mitigation. In: Financial Cryptography and Data Security Workshops
- VOTING 2016. LNCS, vol. 9604, pp. 176–192. Springer (2016)

23. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Advances in
Cryptology–EUROCRYPT’95. pp. 393–403. Springer (1995)

24. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure
applications. Proc. IEEE 94(12), 2142–2181 (Dec 2006)

25. Shamir, A.: How to share a secret. CACM 22(11), 612–613 (Nov 1979)
26. Terelius, B., Wikström, D.: Proofs of restricted shuffles. In: Bernstein, D.J., Lange,

T. (eds.) Progress in Cryptology - AFRICACRYPT 2010. LNCS, vol. 6055, pp.
100–113. Springer (2010)

27. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From Helios to Zeus.
The USENIX Journal of Election Technology and Systems 1(1), 1–17 (2013)

28. Verificatum: http://www.verificatum.org/ (2015)
29. Verificatum: Complexity analysis of the verificatum mix-net vmn version 3.0.2.

http://www.verificatum.com/files/complexity-3.0.2.pdf (Jul 2016)
30. Wikström, D.: Simplified submission of inputs to protocols. In: Security and Cryp-

tography for Networks, 6th International Conference. LNCS, vol. 5229, pp. 293–308.
Springer (2008)

31. Wikström, D.: Electronic election schemes and mix-nets. http://www.csc.kth.se/
~dog/research/ (2015)

http://www.verificatum.com/files/complexity-3.0.2.pdf
http://www.csc.kth.se/~dog/research/
http://www.csc.kth.se/~dog/research/

	Marked Mix-Nets

