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de la physique atomique, pour laquelle ils ont su me donner goût et cu-
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soit remercié. L’expertise et soutien technique de Daniel Dedouaire se
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la colocation, la cornemuse et le sodium. Merci aux amis d’ici ou de plus
loin, aux amis musiciens, aux amis scientifiques, aux amis historiens, aux
amis tout court, à tout ceux qui ont partagé mes joies et frustrations de
doctorant.
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Chapter 1

Introduction

1.1 Astrophysical, atmospheric & technical plas-
mas

Light atomic anions are typically encountered in the gaseous ionized me-
dia that form dilute plasmas. Their existence is governed by the subtle
balance between formation and destruction mechanisms. The former re-
quire electron-rich environments in order for, e.g. , electron attachment
to an atom to be probable. The latter authorize their survival only in
dilute, relatively cold conditions since anions are relatively fragile. Such
conditions are typical of the outer layers of stars, and it is no surprise
that interest in the physics of negative ions first arose from studies of
the absorption spectrum of the Sun photosphere1. The observed con-
tinuous absorption in the near-infrared (NIR) and visible (VIS) ranges
was indeed a puzzle for astronomers in the first decades of the twentieth
century, and the allegation that it might be due to metal atoms led to
unphysical consequences. In 1939, Wildt proposed that the NIR-VIS
opacity was due to the photodetachment of H− [1]. This proposal later
proved correct for the Sun and Sun-like stars and led to a rich history of
the study of H− photophysical properties [2]. Since hydrogen is ubiqui-
tous in our universe, the role of H− in space goes of course well beyond
stellar opacities, one paramount example of that being the importance
of H− in the formation of hydrogen molecules in the early universe [3].
Since they possess no bright absorption or emission line, the direct de-
tection of atomic anions in space is very difficult, if not impossible for
most species. This is nonetheless possible for molecular anions, but due
to the lack of spectroscopic data, it was not before 2006 that the first

1The photosphere is a star’s outer shell from which the light is radiated
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negative ion (CH−6 ) was detected in the molecular shell of an evolved
carbon star and in an interstellar molecular cloud [4].

The outer, ionized layers of planetary atmospheres (ionospheres) are
another class of dilute plasmas that contain negative ions. Since ele-
ments heavier than hydrogen are abundant, not only H− but also ions
such as O−, C− and molecular anions take part in the intricate chem-
istry of these environments. Detachment of an electron from the O−

and O−2 anions has for example a major influence on the density of
free electrons in the ionosphere, which affects in turn radio communica-
tion [5, 6]. On a more exotic perspective, large densities (∼ 200 cm−3)
of molecular negative ions have recently been detected in Titan’s at-
mosphere by instruments aboard the Cassini probe [7], some of which
reach mass-to-charge ratios as high as 10,000 amu/q. The subtle molec-
ular anion chemistry in this nitrogen-rich atmosphere was subsequently
modeled [8] and, interestingly, the presence of large fluxes of O− was
suggested and attributed to double charge exchange between nitrogen
molecules and fast O+ ions arriving from Saturn’s magnetosphere [9],
although laboratory-based measurements are required to confirm this.

While negative ions take part in the dynamics of astrophysical and
atmospheric plasmas, the role of metastable helium (1s2s 3S) is vastly
unexplored. Since helium is rare on Earth, its role in the atmosphere is
limited. Nonetheless, it was detected in the Earth upper ionosphere by
looking at the resonant scattering of solar light by He(1s2s 3S) atoms,
the so-called twilight 1083 nm airglow2, and its possible application to
remote sensing of photoelectron fluxes and neutral helium densities in
the upper atmosphere was considered [10, 11]. Since transfer of the large
internal energy of metastable helium (19.8 eV) through binary collisions
leads to Penning ionization of atoms or molecules in a very efficient way,
it was recently proposed that this process is important in the chemistry
of atmospheres and interstellar medium [12].

Plasmas containing helium possess important fractions of He(1s2s
3S) atoms, which further play a predominant role in their dynamics.
While radiative, de-excitation cascades from singlet excited states pop-
ulate the 1s2 1S ground state or the 1s2s 1S metastable state, all cascades
from triplet states populate the 1s2s 3S state. Although He(1s2s 3S) is
metastable, its radiative lifetime (7870 s [13]) is orders of magnitude
larger than its lifetime in plasma environments and it thus acts as an
effective ground state for the triplet manifold. Moreover, conversion of
1s2s 1S to 1s2s 3S by superelastic collision of thermal electrons is a very
efficient process and, since the inverse process is less likely, this results

2A wavelength of 1083 nm corresponds to the 1s2s 3S- 1s2p 3Po transition in helium
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in the presence of large fractions of metastable, triplet helium in the
plasma [14]. In addition, the high electron impact ionization cross sec-
tion of He(1s2s 3S) and its capability to efficiently ionize all atoms and
molecules through Penning ionization play an important role in ioniza-
tion processes.

Metastable helium is encountered in a wide range of technical plas-
mas and other technological applications. For example, it plays an im-
portant role in the dynamics of cold atmospheric pressure helium plas-
mas since: (i) it helps sustain the plasma and (ii) it creates molecular
radicals in the plasma plume which later interact with, e.g. , biological
samples for skin treatment and disinfection [15–17]. Note that some
negative ions are also involved in the chemistry of these plasmas [15].
Furthermore, the high reactivity of metastable helium confers it very
low penetration depth and thus makes it an ideal candidate for sur-
face treatment and analysis, which has spurred the field of metastable
de-excitation microscopy [18, 19]. Helium nanolithography makes use
of these “nano-grenades”, borrowing the word of Baldwin [20], to pre-
pare silicon wafers for chemical etching [21, 22]. This technique relies on
Penning ionization by metastable atoms to alter specific regions of a self-
assembled molecular layer, sitting on top of the wafer, so that chemical
etching occurs only in these areas. It reaches results on pair with, if not
better than, standard optical lithography in terms of edge resolutions.
Etching is also a domain of application for anion-rich electronegative
plasmas [23].

Another broad range of applications for the production and study of
negative ions relies on the fact that they are loosely bound and ejection
an electron is relatively easy. This property is used for example in tan-
dem accelerators to increase the kinetic energy of the particles. To do
so, a beam of anions is extracted from an ion source and accelerated by
a high positive voltage (HV). Anions are then converted into positive
ions by stripping on a gas target or a thin foil and, as the latter travel
from the HV region back to a grounded region, their energy is multiplied
by two or more depending on their charge.

A fast, intense beam of hydrogen or deuterium atoms obtained by
neutralization of a fast beam of negative ions will be a primary source
of plasma heating for thermonuclear fusion devices, with powers up to
50 MW being envisioned for ITER [24]. The current neutralization
scheme is based on stripping in a gas target, which cannot reach effi-
ciencies higher than ∼ 60%. Although their implementation is rather
simple, limitations associated with such schemes yield quite low (30%)
wall-plug efficiencies. Alternative neutralization techniques have thus
been proposed since higher efficiencies must be reached in the future to
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allow electricity production at tolerable costs. One of these proposals is
based on photodetachment of H− and is expected to bring better neutral-
ization efficiency (∼ 95%) and wall-plug efficiency of 50% [25]. However,
photodetachment is not very efficient for fast beams since the cross sec-
tion is relatively low and the interaction time between anions and light is
short. Techniques combining high-power laser, on the mega-watt scale,
and optical cavities have thus been proposed for DEMO, ITER’s planned
successor [25]. The formation of neutral beams by photodetachment of
fast anion beams has already been proved possible [26], however the
technical challenges for fusion applications are daunting, owing to the
tremendous laser powers required, the need for stable, long-term opera-
tion and the necessary resistance to large fluxes of fast neutrons, amongst
other issues [25, 27, 28]. In the perspective of photoneutralization devel-
opments, the present work on the photodetachment cross section of H−

certainly bears interest. The development of a neutral helium beamline
based on photodetachment, which reaches high neutralization efficien-
cies for comparably low laser powers, is also interesting, although not
directly in line with the requirements for fusion devices.

Besides their use for large-scale heating, neutral beams can also be
used for diagnosing thermonuclear fusion plasmas (see, e.g. , [29] for
ITER). Fast helium beams have been used at ASDEX Upgrade and
JET to measure plasma density and temperature by monitoring visi-
ble emission lines of neutral helium atoms penetrating the plasma [30].
The contamination of the beam by metastable helium was also taken
into account in the modeling. The scrape off plasma layer, i.e. the re-
gion just after the last closed flux surface in confined fusion devices, is
another target for diagnostics with helium through line ratio (LR) mea-
surements. It relies on the injection of an helium “puff” at the plasma
edge and on the time-dependent monitoring of the visible emission lines
of excited singlet and triplet helium atoms. The absolute line intensities
are then compared to the results from collisional radiative models and
the electron temperature and density profile of the scrape off layer can be
determined. As stressed by several authors, the successful application of
such techniques depends on the availability of accurate data on elemen-
tary reactions, amongst which electron impact excitation and ionization
play a major role [31]. In particular, the long relaxation time of He(1s2s
3S) is governed in parts by electron impact ionization, and the present
difference of about a factor of 2 between theoretical and experimental
data is certainly the cause of much uncertainty. In this respect, the
work described below dedicated to measuring the absolute cross section
of this process is assuredly significant. LR schemes have been imple-
mented and successfully tested during a test run of the Wendelstein 7-X
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fusion device [32] and on the TEXTOR-94 device [33].

1.2 Structure of negative ions

Let us now consider how, in a negative ion, electrons are bound to the
nucleus and how this binding differs from atoms and positive ions. In
atoms, the nucleus and electronic cloud bear charges that are opposite
in sign but identical in magnitude. Therefore, all electrons evolve in the
Coulomb potential of the nucleus, proportional to 1/r at large distance.
Anions are atoms with an extra electron and their electronic cloud bears
an excess negative charge compared to the nucleus. Due to the effective
screening of the nuclear charge, binding is mediated, at large distance,
by weaker, polarization forces which depend on the extent to which the
electrons are able to “share” the Coulomb field of the nucleus. As a
result, the attractive potential is only of short range and typically be-
haves asymptotically as 1/r4 [34]. The case of hydrogen is particular in
this respect since, because the H atom possesses a permanent dipole due
to `-degeneracy, the binding potential of H− behaves asymptotically as
1/r2. Another consequence of the screening of the nuclear charge is the
increased influence of electron-electron correlations on the structure and
dynamics of anions, since the relative weight of electron-nucleus attrac-
tion is lowered with respect to inter-electronic interactions. The impor-
tance of these many-electron correlation effects has attracted a number
of theoretical studies and experimental works in the past decades [34].

Despite Coulomb repulsion, the binding of an extra electron is ener-
getically favorable for most atoms and the energy gained in the process is
called the electron affinity. The absence of Coulomb interaction between
the extra electron and the nucleus results in binding energies lower than
for atoms or cations. For example, while the binding energy of oxygen
is 13.6 eV, its electron affinity is 1.46 eV, about an order of magnitude
lower. About 80% of the naturally occurring atoms can attach an extra
electron, however for some atoms like nitrogen or rare gases, this process
is not energetically permitted and they do not form stable anions [35].

Consequences of the short range binding potential are also dramatic
concerning the electronic structure of negative ions. It is well-known that
atoms and positive ions can host, in theory, an infinite number of states
whose energies converge to the ionization threshold. In stark contrast,
anions possess only one or few bound states. These are in general fine
structure states belonging to the same term, e.g. , the J = 1/2 and 3/2
levels of O−(2Po), or terms belonging to the same configuration, as for
example the (1s22s22p3 2Do) state of C−, lying some 1.23 eV above the
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(1s22s22p3 4So) ground state [36]. A noticeable consequence of this bare
structure is that, as we shall see later, negative ions do fragment as soon
as they absorb energy.

Contrarily to their modest bound states spectrum, negative ions pos-
sess in general a rich spectrum of quasi-bound states embedded in the de-
tachment continuum, i.e. with energies greater than the electron affinity
(see Fig. 1.1). When populated, these states spontaneously and rapidly
decay, or autodetach, by ejection of an electron mediated by Coulomb
repulsion. Their presence manifests itself as resonances in, e.g. , the
photodetachment cross section. Autodetaching states are in general as-
sociated with: (i) the excitation of a core electron, an example of that
being the 2s2p3 3D state of B− in which a 2s electron from the 2s22p2 1D
ground state is promoted to a 2p orbital; (ii) the excitation of more than
one electron, as for example the 1s22s22p33s2 state of O− [36]. These
states frequently lie energetically close to a bound state of the neutral
atom, the aforementioned excited state of B− being for example close to
the the first excited state of boron (2s2p2 4S). The study of such autode-
taching states, and the wealth of resonance behaviors and interference
effects associated with them, is an important field of investigations that
has been reviewed by, e.g. , Buckman and Clark [37].

Some autodetaching states are metastable against spontaneous de-
tachment and can lead to the formation metastable anions, i.e. anions
with energies above the atom ground state and possessing relatively long
lifetimes. A well-known example is He−(1s2s2p 4Po), whose energy lies
19.7 eV above helium’s ground state but 77 meV below its first, excited
1s2s 3S state [38]. Since selection rules for Coulomb autodetachment
are not fulfilled, its spontaneous decay to the neutral’s ground state oc-
curs via weak, relativistic interactions and the lifetimes of its various
fine structure components, ranging from 7.8 to 359 µs, are consequently
long by anion standards [39]. Although short on our timescale, these
lifetimes are in most cases sufficient for experimental investigation of
this metastable anion.

Most negative ions possess either a single bound state or a limited
set of bound states that are not coupled by dipole transitions. The Os−,
Ce− and La− ions are noticeable exceptions to this rule and present
dipole transitions which, for example, may be used for laser cooling [40–
42]. Due to the absence, for all other anions, of bright absorption and
emission lines, they cannot be studied with standard, state-of-the-art
spectroscopic techniques, making their detection in astrophysical envi-
ronment more difficult. Instead of bound-bound transitions, one has to
turn instead to bound-free transitions, i.e. photodetachment.
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Figure 1.1: Typical energy level scheme of an anion and an atom. The dotted
lines indicate photodetachment into the ground and first excited states of the
atom.

1.3 Photodetachment

The photoelectric effect is the emission of electrons from a material when
light is shone onto it. Discovered by, amongst others, Heinrich Hertz
and Philipp Lenard in the late 19th century and studied ever since,
this effect is significant in the history of modern physics. Indeed, its
explanation by Einstein in terms of light quanta, which led to his 1921
Nobel prize, and the parallel he made with Planck’s energy quantization
is at the origin of the revival of the corpuscular theory of light and did lay
foundations for the development of quantum theory [43]. The process
of photodetachment is nothing but the photoelectric effect as observed
for anions, written as

A− + γ −→ A(∗) + e−, (1.1)
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where γ represents a photon, e− an electron and A(∗) denotes an atom
that is possibly in an excited state. The most fundamental equation for
the photoelectric effect is the one relating the kinetic energy E of the
emitted electron, termed photoelectron, to the frequency ν of light,

E = hν −W, (1.2)

where W is the work function of the material, i.e. the electron affinity in
the present case, and h is the Planck constant, underlining the quantum
nature of this effect.

While the absorption of a photon of sufficient energy by an atom
or positive ion leads to the emission of a photoelectron and leaves an
ion behind, hence the term photo-ionization, the same process start-
ing from a negative ion and leaving a neutral atom behind is coined
photo-detachment. Although distinguishing these two processes may
seem anecdotal, the structural differences between each of the initial
and final systems yield largely different behaviors.

One of the most obvious differences is the region of the electromag-
netic spectrum where the photoelectric effect becomes energetically al-
lowed. For atoms and ions, it lies in the ultraviolet range and beyond
since the photon energy hν required to overcome the ionization poten-
tial W is large. Negative ions exhibit much weaker binding energies
and photodetachment is already allowed in the near infrared and visi-
ble ranges. This explains, in particular, why H− is responsible for the
continuous absorption of the Sun photosphere in these ranges despite H
atoms being much more abundant.

The behavior of photodetachment in regions not so far above thresh-
old, i.e. for photon energies close to W , is also much different from that
of photoionization. Because anions support a single bound state, or a
limited set of them, the density of states just below the detachment
threshold is essentially zero and so is the excitation cross section. The
necessity of continuity across the threshold thus implies that the pho-
todetachment cross section starts from zero and raises along with the
photon energy. Because atoms and positive ions possess an infinite num-
ber of bound states whose energies converge to the ionization threshold,
the density of states is non-zero below threshold and, consequently, the
photoionization cross section is non-zero and in general maximum right
above it, as shown in Fig. 1.2. The behavior of photodetachment at
threshold is well understood and governed by the Wigner law [44],

σ(E) ∝ E`+1/2 = (hν − EA)`+1/2, (1.3)

where ` is the orbital angular momentum quantum number of the ejected
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Figure 1.2: Photodetachment cross section of H− (full curve) and photoion-
ization cross section of He (chained curve) as a function of the ratio between
the photon energy hν and the work function W , standing for the electron affin-
ity or ionization potential respectively. Data is from Venuti and Decleva for
H− [47] and from Yan et al. for He [48].

electron, associated to a given partial wave, and EA is the electron affin-
ity. This type of behavior arises from the asymptotic behavior of the
bound and free single-electron wave functions as obtained analytically
for short-range potentials. A number of different partial waves, that is
a number of different ` values, contribute in general to photodetach-
ment but Eq. (1.3) shows that, close to threshold, the one with lowest
` predominates. We finally note that while the Wigner threshold law
neglects any interaction between the outgoing photoelectron and the
atom, some authors have developed extensions that account for multi-
pole forces and polarization effects, with the aim of extending its range
of validity [45, 46].

This brings us to the last important property of photodetachment.
Since the outgoing photoelectron sees a neutral core, there is virtually
no interaction between the two at sufficiently large distances. The pho-
toelectron is thus essentially described as a spherical outgoing wave.
Conversely, the outgoing photoelectron produced by photoionization is
interacting with the ionic core even as it recedes to infinity, a conse-
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quence of the long-range behavior of Coulomb potentials. The photo-
electron must be described in this case by a Coulomb wave.

As a final remark, let us note that the study of photodetachment is
also interesting from a radiative electron attachment perspective, since
the latter process can be viewed as the time-reversed version of the for-
mer. Determining photodetachment cross sections allows one to deter-
mine radiative electron attachment cross sections [49]. Electron attach-
ment is a major production channel for anions in space [50] and, since it
is harder to study experimentally, it is a motivation for photodetachment
cross section measurements.

1.4 Cross sections

Photodetachment and photoionization are quantum-mechanical effects,
described by non-relativistic quantum theory in the present case since
the electrons’ velocity in light anions and atoms is small compared to
the speed of light. A complete theoretical treatment requires deter-
mining the wave function of the anion |Ψi〉, the wave function of the
final “photoelectron + atom” system |ΨjE〉 and solving the Schrödinger
equation including the Hamiltonian of the radiation. We shall assume,
in the following and for the rest of the manuscript, that the light-field
Hamiltonian can be expressed classically and within the dipole approx-
imation since the number of photons involved is high and the size of
the anion is by far smaller than the wavelength of infrared, visible and
ultraviolet light. From this treatment, a set of quantities describing
photodetachment in its full dimensionality can be derived and bears
physical significance. These are the differential, partial and total cross
sections, which we shall briefly explain in the following. Cross sections
can also be derived in a similar manner for electron impact ionization
but will not be considered below. They are described, e.g. , in the book
of Burke [51].

Considering a negative ion in a well defined quantum state i and
an incoming flux φ of photons with angular frequency ω, these cross
sections essentially try to answer to the following question,

What is the probability, per unit time, that an electron will be ejected
with a kinetic energy E and along a direction k̂, leaving an atom in a

well defined state j?

The most direct answer is given by the fully differential cross section [51],

dσij
dΩ

= 4π2αa2
0ω| 〈ΨjE |ε̂ ·D|Ψi〉 |2, (1.4)
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where α is the fine structure constant and a0 the Bohr radius. The quan-
tity D is the dipole operator and ε̂ is the polarization of the radiation.
If expressed in its length form (L), the operator D reads

DL = −e
N∑
n=1

rn, (1.5)

where e is the elementary charge, rn are the coordinates of the n-th
electron and the summation runs over all N electrons of the system.
Both wave functions in Eq. (1.4) must be appropriately normalized and
normalization factors are, for brevity, assumed to be already included
within |Ψi〉 and |ΨjE〉. The wave function describing a photoelectron of
energy E = k2/2 must behave asymptotically as

Ψk(r) −−−→
r→∞

1

(2π)3/2

[
eik·r + f−(θ)

e−ik·r

r

]
(1.6)

for large distances r [52]. The vector r represents the position of the
photoelectron with respect to the nucleus and the vector k is the elec-
tron’s (linear) momentum. The quantity f− is the so-called scattering
amplitude for an angle θ between k and r, and also depends on the mag-
nitude of k. The photoelectron wave function is thus asymptotically the
superposition of a plane wave and an ingoing spherical wave.

When multiplied by the photon flux φ, the differential cross section
readily gives the emission rate Wij of a photoelectron with energy E
into an infinitesimal solid angle dΩ,

Wij = φ
dσij
dΩ

dΩ. (1.7)

If one needs not to know the direction of emission of the photoelec-
tron, e.g. , because this quantity cannot measured in one’s experiment,
the differential cross section is integrated over all solid angles Ω and we
obtain the partial cross section σij ,

σij =
x

dΩ
dσij
dΩ

, (1.8)

which is related to the probability to leave, upon photodetachment, the
atom in a specific quantum state j. Finally, the final state of the atom
may not be accessible, or interesting for that matter, and we may just
want to know what is the probability, per unit time, to photodetach
a negative ion initially in a well defined quantum state i with orbital
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angular momentum Li. Summation of the partial cross sections over all
final states j readily gives the total cross section σi,

σi =
∑
j

x
dΩ

dσij
dΩ

=
4π2αa2

0ω

3(2Li + 1)

∑
j

∣∣(ΨjE ||ε̂ ·DL||Ψi)
∣∣2, (1.9)

where the rightmost expression is valid for an unpolarized anion and the
term (a|ε̂ ·DL|b) represents the reduced dipole matrix element [53].

From the above expressions, we see that the (theoretical) knowledge
of the initial and final wave functions allows cross sections to be cal-
culated, following what we could call a “bottom-up” approach. Their
experimental determination follows instead a “bottom-down” approach,
where the photodetachment rate Wij is used to infer the cross section
and obtain information on the wave functions. We may further note
that, although the formulas given above are for a given initial state of
the anion, in some case a number of initial states can be altogether
populated and the total cross section, as measured in the experiment,
may depend on the initial population distribution. For meaningful com-
parison between theory and experiment, the cross sections for all initial
states must be calculated and summed with weights given by the ion
temperature that must be determined experimentally.

It is also important to note that all the above definitions are for
absorption of a single photon. Generalized cross sections can be derived
for n-photon absorption by means of perturbation theory and, when
multiplied by φn, give the detachment or ionization rates. However,
they hold only if the process is non-resonant. In the case of resonant
multiphoton ionization, a process that will be investigated in Sec. 3, the
cross section picture breaks down since the dynamics of a given system
at a time t does depend on its state at a former time t − dt. In that
case, one has to resort to resolving the full time-dependent Schrödinger
equation.

While the partial and total cross sections are scalar variables, the
differential cross section is a 3-dimensional quantity which is somewhat
tedious to manipulate. Fortunately, if the system is initially unpolar-
ized, its behavior can be reduced to that of two scalar parameters: the
asymmetry parameter β and the partial cross section σij [54, 55],

dσij
dΩ

=
σij
4π

[1 + βijP2 (cos θk)] . (1.10)

P2(cos θk) = (3 cos2 θk−1)/2 is the Legendre polynomial of 2nd order and
θk is the angle between the direction of emission of the photoelectron
and the quantization axis, chosen as the laser polarization axis. This
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a2× +b2× −2ab cos(δ)× =

s-wave d-wave interference term

Angular
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(β ' −1)
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Figure 1.3: Schematic partial waves contributions to the total photoelectron
angular distribution for detachment of a p-electron. The light polarization is
linear and along the vertical axis. Red regions correspond to higher differential
cross section values and blue regions to lower ones. We assumed that cos(δ`−1−
δ`+1) ' 1, as is typical for negative ions, and a = 2b. Distributions on the left
hand side are computed using Eq. (1.13) and that on the right hand side is
computed using Eq. (1.10).

equation is valid for one-photon transitions under linear polarization
only, although similar formulas can be derived for multiphoton transi-
tions and circular polarization and include higher-order and odd-order
Legendre polynomial terms [51, 54].

A more intuitive take on the photoelectron angular distribution, as
given by Eq. (1.10), can be obtained by looking at its connection with the
widely used partial wave expansion of the photoelectron wave function3,

ΨE =
∑
`′m′

i`
′
e−iδ`′

1

r
uE`′(r)Y`′m′(θ, ϕ)Y ∗`′m′(θk, ϕk). (1.11)

The photoelectron is represented here as a coherent superposition of
waves of different angular momenta, each defined by the quantum num-
bers `′ and m′. They are written as the product of a radial function
uE`′(r), two spherical harmonics Y`′m′ and a phase shift term e−iδ`′ . The
direction of emission of the photoelectron is determined by the spheri-
cal harmonic Y ∗`′m′(θk, ϕk), where the coordinates (θk, ϕk) are the angles
between the emission direction and the quantization axis.

Since the differential cross section is proportional to the squared
norm of the dipole matrix element, the photoelectron angular distribu-
tion is of the form

a2|Y`−1m|2 + b2|Y`+1m|2 − ab<
(
Y ∗`−1mY`+1me−i(δ`−1−δ`+1)

)
, (1.12)

3Expansion in terms of Legendre polynomials P` cos(θ) is also widely used and is
equivalent to the above formula.
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where ` and m are quantum numbers of the initial electron wave function
and we made use of the dipole selection rules `′ = ` ± 1 and m′ =
m. The symbol < stands for the real part. Of course, a complete
calculation must include the wave functions of the initial ion, of the
photoelectron and of the residual atom. However, since we are interested
in the angular distribution only, terms appearing in the calculation that
are not relevant for the present purpose are “hidden” in the parameters
a and b. Their dependence on quantum numbers and other variables of
the problem is further omitted for the sake of clarity. The interested
reader is referred to the work of Bethe [56] or Blatt and Biedenharn [54]
for insight on the mathematical details.

Considering an initially unpolarized ion and summing over all possi-
ble m values further reduces the angular distribution to

∑
m

[
a2|Y`−1m(θk, ϕk)|2 + b2|Y`+1m(θk, ϕk)|2

−2 ab cos(δ`−1 − δ`+1)Y ∗`−1m(θk, ϕk)Y`+1m(θk, ϕk)
]
, (1.13)

which, after some involved spherical harmonics algebra, is shown to
be proportional to the angular distribution given by Eq. (1.10), i.e. ,
1 + βP2(cos θk).

Hence, the angular distribution is governed by the squared norm of
the coherent superposition of partial photoelectronic waves. It bears
terms belonging to each of these waves, summed over all possible values
of m, and also includes a cross-product, interference term. This inter-
ference term can lead to unexpected consequences, an example of which
is shown in Fig 1.3. In this example, the superposition of an s-wave and
a d-wave following detachment of a p-electron gives rise to an angular
distribution which is identical to that of a p-wave with m = −1. This
behavior, possible because the difference in phase shift between s- and
d-waves is close to 0, was first studied by Cooper and Zare, who es-
tablished an expression for β in terms of radial dipole matrix elements
only [57].

1.5 Experimental overview

The experimental investigation of the structure and dynamics of negative
ions has given rise to a variety of experimental techniques [6, 36], some
of which are described in more details in the state-of-the art sections in
the main body of the manuscript. In most cases, experimental study is
made difficult by the low particle densities that can be attained when
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compared to neutral atoms and molecules, and which finds its origin in
the low production efficiencies and space-charge effects.

The present work, as most others, uses ion sources and small parti-
cle accelerator setups to produce a beam of relatively fast (keV) anions.
Advantages of the use of fast beams are manifold: the high velocity of
the particles counteracts space-charge effects and allows the extraction
of relatively high anion fluxes, straightforward mass-selection techniques
can be used to purify the beam, appropriate collimation ensures that all
particles share essentially the same velocity vector and detection of an-
ions or neutral atoms by single-particle detectors is greatly facilitated.
While a variety of ion sources can be used to produce negative ions, such
as sputtering or electrospray sources [36, 58], we have used duoplasma-
tron sources due to their availability in the laboratory.

Negative ions and atoms can be probed by impact of a variety of
projectiles including photons, electrons or heavier particles. In the work
presented in this thesis, experiments are always performed in a crossed-
beams geometry, where a fast anion or atom beam is intersected at right
angle by either a laser beam or an electron beam. The following dis-
cussion will consider the case of anion and laser beams, however similar
considerations apply to atom and electron beams. The crossed-beams
geometry facilitates the detection of neutral atoms and the collection
of the laser beam. However the experiment is single-pass, in the sense
that a given anion will interact only once with the laser, and the inter-
action volume is relatively small. This is not a problem as long as the
yields of the reaction are high enough, but it can be troublesome if the
anion flux is low or the cross section small. Experimental schemes with
inclined-beams geometries, where the laser intersects the ion beam at a
small incidence angle, or collinear geometries, where the incidence angle
is zero, are also widely used [26, 59]. In such configurations, the interac-
tion volume and thus the sensitivity are significantly larger. It however
comes at the expense of a few, additional complications since, for ex-
ample, the Doppler effect due to the high velocity of the anions must
be taken into account. Multi-pass experiments can be performed with
storage rings, in which anions can be stored for as long as thousands
of seconds [60–63]. Multi-pass schemes can also be achieved with ion
traps such as electrostatic traps or RF multipole traps [64, 65]. In these
setups, anions are repeatedly exposed to the laser light and their rate
of depletion is measured through lifetime measurements. Trapping thus
significantly enhances the sensitivity of the experiment and allows one to
study anions that can be produced only in small quantities. Moreover,
the long storage times attained with storage rings have proved partic-
ularly useful for measuring the lifetimes of metastable anions, such as
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He− [66]. The ability to cool trapped molecular anions, either by spon-
taneous emission or buffer gas cooling, is also a major advantage.

The two first parts of this thesis are dedicated to detachment and
ionization by absorption of photons. Branscomb and others [67] were
the first to pioneer photodetachment studies, using arc lamps and optical
filters to produce quasi-monochromatic light that intersected a beam of
anions in a crossed-beams configuration. The rapid development of laser
sources has since given rise to a variety of photodetachment experiments,
aiming at studying different properties of anions. Electron affinities
EA can be determined with high accuracy using laser photodetachment
threshold spectroscopy [68], in which the photodetachment yield across
the detachment threshold is measured and fitted with a Wigner law.
The photodetachment microscopy technique takes advantage of the in-
terference between the two paths of a slow photoelectron, emitted upon
photodetachment in the presence of a weak electric field, that lead to the
same position on the detector. It allows to determine EA with exquisite
accuracy [69]. Electron affinities can also be measured using the slow
electron velocity-map imaging technique, which relies on measuring di-
rectly the kinetic energy of slow photoelectrons with a velocity map
imaging spectrometer [70]. The measurement of photodetachment cross
sections has given rise to another ensemble of experimental techniques.
Total cross sections are determined, in general, from the yield of neutral
atoms produced by photodetachment of a fast anion beam in crossed-
beams or collinear-beams geometries. However, the absolute fluxes of
anions and photons, the detection efficiency and the overlap between
the laser and ion beams must be carefully determined. Measuring such
quantities is cumbersome and difficult, explaining the scarcity of abso-
lute cross section measurements. Methods based on the saturation of
neutral atom production for increasing laser intensities have been devel-
oped to overcome the need for detection efficiency measurement [71, 72].
By measuring the negative ion depletion inside a RF multipole trap and
scanning the laser across the trap volume, Hlavenka et al. were able to
determine absolute photodetachment cross sections without measuring
the interaction volume [73]. Resonant ionization spectroscopy has been
developed for state-selective experiments, i.e. to measure relative partial
photodetachment cross sections to a specific final state of the atom [74].
After photodetachment, the atomic state of interest is optically excited
to a Rydberg state via a resonant transition, the Rydberg state is field-
ionized and the positive ions are detected. This technique has been used,
for example, to determine the electron affinity of some anions [38, 74]
or study the autodetaching spectrum of He− [75]. Finally, relative dif-
ferential cross sections, related to photoelectron angular distributions,
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can been measured using photoelectron detection systems with low solid
angle acceptance and by rotating the angle between the laser polariza-
tion and the detection axis [59, 76]. If the detection system comprises an
energy analyzer, the photoelectron velocity distribution can also be mea-
sured [77]. More recently, velocity map imaging spectrometers have been
used to determine photoelectron velocity and angular distributions [78].

The present work contributes to the field of cross section measure-
ments by implementing another method for the determination of abso-
lute, total photodetachment cross section: the animated-crossed-beam
technique. This technique was originally developed for electron impact
ionization measurements [79], and does not rely on determining the in-
teraction volume. Partial and differential cross sections were measured,
as for most other recent works, using a velocity map imaging photoelec-
tron spectrometer. This spectrometer, built in-house, was designed to
allow the use of a fast anion beam and the detection of photoelectrons
perpendicular to the anion beam axis.

After photodetachment, the atom is left either in its ground state
or in an excited state and, since the final state is a fragmented one, a
wider ensemble of excited states can be populated compared to optical
pumping of ground state atoms. Indeed, dipole selection rules apply to
the total, atom plus photoelectron system and restrictions on the sym-
metry of the final atomic state are relaxed since the photoelectron also
carries some angular momentum and spin. For example, while dipole
selection rules prevent optical excitation of, e.g. , O(1s22s22p4 3Pe) to
O(1s22s22p4 1De) or O(1s22s22p4 1Se), these states can be populated
by photodetachment of O−(1s22s22p5 2Po). One may thus envision to
use photodetachment as a source of excited atoms, backed by the fact
that photodetachment cross sections are maximum for near-infrared and
visible light, where high-power lasers are commercially available. This
idea has already been mentioned in a number of works, starting from
Branscomb et al. in the 1960’s [80]. Moreover, production of fast beams
of ground state atoms by photodetachment in an inclined-beams geom-
etry has already been implemented elsewhere [26]. The contribution of
the present work to the field of fast neutral beams resides the implemen-
tation of a source of metastable helium atoms produced by photodetach-
ment of He−, presented in the last chapter of the manuscript. It is, to our
knowledge, the first metastable atom source based on photodetachment.

The last chapter of the present manuscript is also dedicated to prob-
ing atomic systems by electron impact. In such experiments, an imping-
ing electron brings sufficient energy to the atom or negative ion so that
it ejects one or two electrons. To do so, one must use an electron gun
that produces a beam of electrons which crosses an atom or ion beam,
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in general at right angle. Again, a variety of experimental methods exist
and, to name only a few, include the animated-crossed-beam technique
to determine total cross sections [81] and the reaction microscope tech-
nique to investigate fully differential cross sections [82]. The present
study is based on the animated-crossed-beam technique following which
the final atom or ion is detected irrespective of its particular electronic
state. From this, the total electron impact ionization cross section is
determined.

Electron impact allows to probe a different range of energies de-
posited in the system compared to photon impact, albeit with, in gen-
eral, a lower energy resolution. Electron kinetic energies typically range
from a few electron-volts to a few thousand electron-volts, and energy
resolutions usually range from a few tens of meV to about 0.5 eV. In
contrast, the energy of photons produced by commercial lasers is smaller
and hardly reaches more than 5 eV, albeit with resolutions better than
a few µeV. One further, major difference between photon and electron
impact is that while the photon is absorbed and the deposited energy is
strictly equal to its energy hν, the impinging electron is scattered by the
target and the deposited energy is a priori unknown and at most equal
to the projectile’s kinetic energy. The negative charge of the electron,
of course, also plays an important role.

1.6 Outline

The main body of the present manuscript is subdivided in three chapters.
The first and second chapters are dedicated to the photodetachment
and photoionization of anions and metastable atoms. The third chapter
investigates the electron impact ionization of anions and of metastable
atoms produced by photodetachment.

Chapter 2 is dedicated to the measurement of the photodetachment
cross sections of H− and O−. The adaptation of the animated-crossed-
beam technique (ACBT) to the measurement of absolute total photode-
tachment cross sections is first presented. All types of crossed-beam
configurations, including combinations of continuous or pulsed beams,
are considered and explicitly treated. Since standard ACBT is limited
to the measurement of one-photon cross sections, we also develop an
extension of the technique which allows to measure multiphoton gener-
alized cross sections, borrowing ideas from inverse problem theory. The
development of a velocity map imaging photoelectron spectrometer is
further detailed and its use to measure partial and differential cross sec-
tions explained. The values of the absolute total photodetachment cross
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section of H−, measured for photon energies in the range from 1.165 eV
to 1.771 eV, are presented and compared against available data. Re-
sults on the absolute total cross section of O−, measured for photon
energies ranging from 1.46 eV to 5.5 eV, are also detailed. The partial
and differential cross sections obtained from photoelectron distributions
are discussed and analyzed. Finally, results obtained with the multipho-
ton extension of the ACBT for the two-photon detachment of O− are
presented and the influence of photon statistics is discussed.

Chapter 3 considers the 4-photon double detachment of He− by in-
tense laser pulses with wavelengths in the visible part of the spectrum.
After outlining the experimental setup, the theoretical tools used to
model this highly non-linear process are presented, based on a sequential
picture of double detachment. The first, one-photon detachment step is
treated within R-Matrix theory while the second, resonance-enhanced
multiphoton ionization step is investigated by means of a time-dependent
effective Hamiltonian model further checked against ab initio R-Matrix
Floquet calculations. The influence of the laser wavelength, polarization
and pulse energy are explicitly treated. The theoretical results concern-
ing the one-photon detachment of He− are then presented, followed by
experimental and theoretical results concerning the double detachment
of He− via the He(1s2s 3S) transient state. The underlying, resonant
dynamics are discussed in details. Results on the double detachment
via the He(1s2p 3Po) transient state are finally presented and analyzed
in the light of the various resonance series at play. The cases of lin-
ear, circular and elliptical polarizations are studied and their important
influence on the above results is made clear.

The last chapter of the present manuscript (4) investigates the single
and double ionization of metastable helium (1s2s 3S) by electron impact,
along with the double ionization of He−. The first objective was to de-
velop an intense source of fast metastable atoms with high purity. This
source is based on the photodetachment of He− and, after presenting it,
its performances are analyzed in details. The apparatus for measuring
electron impact ionization cross sections is also briefly explained. Re-
sults on the electron impact single ionization cross section of metastable
helium are presented and compared against available experimental and
theoretical data. The two last sections are dedicated to the cross sec-
tions measured for double ionization of metastable helium and He− and,
since no other data is available for comparison, tentative explanations
on the mechanisms at play are given.
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Chapter 2

Photodetachment of H− and O−

2.1 State of the art

Past achievements concerning the photodetachment of the hydrogen and
oxygen anions are presented in this chapter. Results on the total pho-
todetachment cross section of H− by infrared and visible light are first
presented. The second section is dedicated to literature on the total,
partial and differential photodetachment cross sections of O−, for pho-
ton energies ranging from the infrared to the ultraviolet.

2.1.1 Hydrogen anion

The negative hydrogen ion H− is one of the simplest quantum-mechanical
three-body systems found in the study of atoms and ions. Its proto-
typical character has attracted numerous studies since the early days
of quantum mechanics [2], further motivated by its abundance in the
planetary and stellar atmospheres and its wide use in accelerators. Of
particular interest is its photodetachment, where electron correlations in
that weakly bound system play an important role and yield a behavior
differing from that of neutral atoms.

Since the early studies of, e.g. , Bates and Massey [83] and Chan-
drasekar [84], theory has made significant progresses. Over the years, a
number of calculations of the photodetachment cross section have been
performed reaching, overall, good agreement, e.g. , 3.5− 3.6× 10−21 m2

at 1064 nm [47, 85–93], except for a few studies [94–96].

On the experimental side, however, fewer studies have been per-
formed, owing to the challenges such an experiment raises. The ab-
solute integrated cross section was first measured by Branscomb and
Smith [97] in the mid-fifties, shortly followed by the measurement of the
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relative cross section by Smith and Burch [98]. Popp and Kruse [99]
later performed an absolute measurement with a low current hydrogen
arc. The first laser studies arose with the need to diagnose controlled
fusion plasmas, and confirmed the order of magnitude of the cross sec-
tion [100, 101]. Recently, Vandevraye et al. [72] carried out a new
measurement at the Nd:YAG laser wavelength, 1064 nm. Their result,
4.5(6)×10−21 m2, lies 1.5 σ above the value of 3.5 − 3.6 × 10−21 m2

obtained by most theoretical studies. This discrepancy calls for further
investigation to be carried out, as this cross section is a commonly used
benchmark for atomic theories and numerical methods [102].

2.1.2 Oxygen anion

The one-photon detachment total cross section of the oxygen negative
ion O−(1s22s22p5 2Po) between the ground state O(1s22s22p4 3P) and
first excited state O(1s22s22p4 1D) thresholds was first investigated some
sixty years ago by Branscomb and Smith [97] and then by Branscomb et
al. [49]. A third, absolute measurement by Smith [98] provided slightly
different cross sections, while the relative measurement of Branscomb
et al. [80] extended the photon energy range. Two later independent
absolute measurements [73, 103], albeit over a limited energy range,
confirmed the values of [80, 98]. These were thus considered as a ref-
erence and have since been used to normalize relative photodetachment
cross sections for other ions such as C−, B− and O−2 [104–107]. The
determination of photodetachment cross sections for the open-shell O−

ion remains a challenging task for theories, as electron correlations and
polarization effects play an important role. A number of attempts over
the past few decades (see [108] and references therein) yielded results
that vary widely and do not match the experimental data, neither in
magnitude nor in shape. The values of the latest and most extensive
calculation [108] lie significantly higher than those of [80, 98]. The pro-
nounced disagreement between theory and experiment and the use of
the latter for normalizing other quantities calls for further investigation.

The total cross section above the first excited state threshold (1D),
where a steep rise is expected due to the threshold opening, has only been
measured by Branscomb et al. [80]. Again, pronounced disagreements
exist between theory and experiment, and also between different theo-
retical calculations [108–111]. Such a photon energy range (> 3.5 eV) is
harder to reach from an experimental standpoint since tunable UV laser
sources are in general rarer and of increased complexity.

The partial cross sections σ3P and σ1D for leaving the oxygen atom
in its ground and first excited states are seldom encountered in the
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literature and the lack of experimental data may be attributed to chal-
lenges associated with the need for final-state selectivity and tunable UV
laser sources. With the noticeable exception of the work by Domesle et
al. [112], which provides branching ratios and asymmetry parameters
for a photon energy of 4.66 eV, work above the O(1D) threshold is only
theoretical [110, 113–115].

The differential cross section dσ/dΩ into a particular final state can
be described, as explained in Sec. 1.4, by an asymmetry parameter β
which conveniently reduces the former vectorial quantity to a single
scalar value, thereby simplifying representation and discussion. The
behavior of the asymmetry parameter for increasing photoelectron ener-
gies was studied by Cooper and Zare [57] and resulted in the well-known
homonymous formula. They demonstrated the presence of a broad in-
terference effect between the outgoing s and d partial waves which man-
ifests itself by a strongly asymmetrical emission, perpendicular to the
laser polarization, at intermediate electron energies. This effect has been
confirmed by all subsequent experiments [76, 77, 116]. In stark contrast
with the total cross section, agreement is excellent between theory and
experiment in the photon energy range covered by the experiments (1.46
– 2.7 eV) [57, 76–78, 116–119]. Data above the O(1D) threshold is lim-
ited to the work of Domesle et al. [112] and no theoretical results is
available in the literature.

When the photon energy is tuned below the electron affinity, de-
tachment is only possible by absorption of 2 or more photons. The two-
photon detachment of O− has not been widely studied and the agree-
ment between the few results available is not particularly good. The
only existing experiment gives a generalized cross section of

(
4.2 +1.9
−1.6

)
×

10−58 m4 s at a wavelength of 1064 nm [120]. An early calculation based
on perturbation theory and a one-electron model potential [109] yields,
after interpolation, a value of 1.8× 10−57 m4 s, which is more than four
times larger. The results obtained using an adiabatic theory [121] are
almost an order of magnitude larger than experiment. Clearly, there is
room for improvement.

2.2 Experimental techniques

2.2.1 Animated-crossed-beam technique

The aim of the present section is to develop a method for measuring
absolute total photodetachment cross sections σ with a crossed beams
experiment. In such an experiment, a fast ion beam is crossed at right
angle by a laser beam and the neutral atoms produced by photodetach-
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Figure 2.1: Crossed beam configuration where the laser beam (red) intersects
the ion beam at right angle. The interaction volume is the shaded red region.

ment are counted downstream. The anion current and laser power are
measured for normalization purposes and the cross section can be, in
principle, determined. However photodetachment occurs over a certain
interaction volume, defined by the overlap between the ion and laser
beams and shown in Fig. 2.1, which needs to be determined to account
for volume averaging effects. In most experiments, σ can be obtained
only by assuming a certain profile for the beams. A Gaussian profile
is usually assumed for the laser beam while the anion beam profile is
in general supposed uniform. The temporal profile of the laser pulses,
if any, must also be included. While these assumptions are in general
justified, they might not be suitable for measuring absolute cross sec-
tions, for which every possible source of error must be tracked down and
minimized in order to ensure the accuracy of the measurement.

Continous ion and laser beams

One way to overcome this problem is the so-called animated-crossed-
beam technique (ACBT), originally developed for electron-ion collisions
by Brouillard and Defrance [79, 122] and later adapted to laser-ion inter-
action (see Blangé et al. [123]). The underlying idea is simple: instead
of using two crossed static beams, one of the beams is moved across the
other. The dependence of the cross section on the profiles of the two
beams is then “erased” by integrating the signal over the beam displace-
ment, leaving only integrated quantities to be measured. Let us start
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from the detachment rate p,

p(x, y, z) = σΦ(x, y, z), (2.1)

where σ is the detachment cross section and Φ is the photon flux at
position (x, y, z) in the reference defined in Fig. 2.1. We assume that
anions are traveling along the x-axis at a constant velocity v, hence the
time coordinate t is related the x coordinate by x/v. The cumulated
detachment probability P obeys the following differential equation,

dP (x, y, z)

dx
=
p(x, y, z)

v
[1− P (x, y, z)] . (2.2)

Solving the above equation with appropriate boundary conditions and
taking the limit x→∞, one readily obtains the final detachment prob-
ability Pf , given by

Pf (y, z) = 1− exp

(
−
∫ +∞

−∞
σ Φ(x, y, z)

dx

v

)
. (2.3)

The origin of the reference frame is the center of the laser waist, i.e. ,
the point of maximum intensity.

Let us consider the linear regime of photodetachment, i.e. , reason-
ably low laser intensities, for which the argument of the exponential in
the above equation is small. In this case, the exponential can be ex-
panded around the origin in terms of a power series and, by keeping
only the two first terms of the series (e−x ' 1 − x), we obtain a linear
relation between the final detachment probability and the cross section,

Pf (y, z) ' σ
∫

Φ(x, y, z)
dx

v
. (2.4)

The counting rate N of the detector is the detachment probability, aver-
aged over the atomic beam section S and weighted by the neutral atom
detection efficiency η,

N ' ση
x

S

j(y, z)

e
dy dz

∫
Φ(x, y, z)

dx

v
, (2.5)

where j(y, z) is the local ion current density at a given position (y, z) on
the beam section, and e is the elementary charge. This formula is valid
for beams intersecting at right angle.

The variable measured in the experiment is the counting rate N(Y )
as a function of the vertical displacement Y of the laser beam. The
photon flux must thus read Φ(x, y − Y, z). Integration over Y then
yields
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∫
N(Y ) dY ' σ

e
η
v

s
S j(y, z) dydz (2.6)

×
s

Φ(x, y − Y, z) dxdY.

The photon flux Φ is the ratio of the laser intensity to the photon energy
~ω, hence the second integral on the right-hand side is nothing else than
the laser power Plaser divided by ~ω, which is independent of z. Thus
only j(y, z) depends on the spatial coordinates and its integration over
the ion beam section is simply the anion current Iion. We obtain the
following expression for the photodetachment cross section:

σ ' 1

η

~ω
Plaser

e v

Iion

∫
N(Y ) dY, (2.7)

where the numerical integration over the discrete experimental signal is
performed using Simpson’s rule.

The sole assumption of a linear photodetachment regime, yielding
the above formula, is much less stringent than that of a Gaussian laser
beam and a uniform atomic beam. By integrating the signal, we can
express the cross section in terms of a simple set of easily measurable
quantities. This highlights the ease of implementation and robustness of
the animated-crossed-beam technique method, which does not require
the laser and ion beam profiles to be fully characterized (e.g. M2 factor,
inhomogeneity).

In practice, the laser beam is vertically displaced by a tilted glass
plate, as shown in Fig. 2.2. The detachment rate is measured at different
tilt angles and the corresponding vertical spacing ∆Y can in principle be
determined by application of the Snell-Descartes law of refraction. We
verified that this is indeed the case by passing a razor blade, mounted
on a high-accuracy translation stage, across the laser beam at a distance
after the glass plate corresponding to the position of the ion beam. By
recording the transmitted power as a function of the blade position,
one can recover the vertical position of the beam center. The vertical
increment is subsequently obtained by repeating the measurement at
different angles of the plate. We also imaged the transverse profile of the
laser beam as seen by the anion beam with a beam-profiling camera and
recorded its vertical position for a series of tilt angles and for different
wavelengths. Both independent measurements validated the use of the
Snell-Descartes law. Changes of the refraction index with wavelength
are taken into account when computing the vertical displacement from
the tilt angle.
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Figure 2.2: Laser beam passing through a glass plate. Refraction within the
plate displaces the beam along the vertical axis.

Pulsed ion and laser beams

In the previous section, we considered the case of continuous laser and
ion beams, whose fluxes do not depend on time. However, pulsed laser
systems are ubiquitous in atomic and molecular physics. Pulsed ion
beams are also frequent, e.g. , when using a pulsed supersonic expansion
or when buffer-gas cooling is applied prior to the interaction with the
laser beam. The present section shows how the ACBT equations can be
modified in order to account for such situations.

The time-dependence of the two pulsed beams prompts the introduc-
tion of two time coordinates for the ions: (i) the coordinate t, relative
to the beginning of the ion burst; (ii) the coordinate τ , relative to the
center of the laser pulse envelope. The delay T between the beginning of
the ion burst (t = 0) and the center of the laser pulse envelope (τ = 0)
is an experimental parameter and in principle can be adjusted at will.
The coordinates t and τ are related through τ = t− T .

The yield N(Y, T ) of neutrals now depends on the delay T and equa-
tion (2.5) must be modified accordingly:

N(Y, T ) =
ησ

e v

∫
dt

x

S

dy dz j(y, z, t)

∫ +∞

−∞
dxΦ

(
x, y − Y, z, t− T +

x

v

)
. (2.8)

By integrating both sides of (2.8) over Y and T , we obtain an expression
similar to (2.6),

x
dY dT N(Y, T ) =

σ

e

η

v
× (2.9)∫

dt
x

S

dy dz j(y, z, t)

+∞y

−∞
dT dY dxΦ

(
x, y − Y, z, t− T +

x

v

)
.
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The integral of the photon flux Φ over T , Y and x reduces to the number
of photons per pulse, i.e. the laser pulse energy Elaser divided by the
photon energy ~ω. The integral of the current density j over t, y, and
z is the number of ions per pulse multiplied by the elementary charge,
eNion. Therefore equation (2.9) becomes:

σ =
v

η

[x
dT dY N(Y, T )

] ~ω
NionElaser

. (2.10)

In the case where only one of the beams is pulsed, e.g. , the laser beam,
the time delay T is to be removed from the above formulas and j(y, z)
is time-independent. The remaining time integration in Eq. (2.9) runs
over the photon flux and, along with the integrals over x and Y , yields
the laser pulse energy divided by ~ω. The cross section is thus given by

σ =
v

η

[x
dY N(Y )

] e~ω
IionElaser

. (2.11)

The ACBT can therefore accommodate the use of continuous beams,
pulsed beams and a combination thereof. If both beams are pulsed, it
comes at the expense of an additional scan of the delay between the ion
and laser pulses.

2.2.2 Multiphoton extension

The ACBT developed above deals with one-photon detachment, for
which the detachment rate is proportional to the photon flux. How-
ever, it cannot be straightforwardly applied to multiphoton processes,
as we shall see below. Extension of standard ACBT into the multipho-
ton regime is nonetheless possible using inverse problem theory, and at
the price of a few additional and reasonable assumptions.

ACBT breakdown

In the case of non-resonant multiphoton processes, the detachment rate
p is the product of the generalized n-photon detachment cross section
σ(n) with the n-th power of the photon flux Φ:

p(x, y, z, τ) = σ(n)Φn
(
x, y, z, τ +

x

v

)
, (2.12)

where the coordinates (x, y, z) are as defined in Fig. 2.1 and the time
τ = 0 corresponds to the maximum of the laser pulse envelope. As
before, v is the ion velocity. We consider in the following a continuous
ion beam and a pulsed laser beam, the latter being typical of multiphoton
experiments as the light intensities required are higher than for 1-photon
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processes. The final detachment probability P (y, z, τ), after the ion has
travelled through the laser spot, is given by

P (y, z, τ) = 1− exp

[
−1

v

∫ +∞

−∞
dx p(x, y, z, τ)

]
. (2.13)

As for the one-photon ACBT, we assume that the photon flux is suffi-
ciently low for n-photon detachment to occur in the perturbative regime.
Following the same steps as in Sec. 2.2.1, one can obtain an expression
for the cross section,

σ(n) =
e v

η

[∫
dY N(Y )

]
(2.14)

×
[x
S

dy dz j(y, z)

+∞y

−∞
dτ dY dxΦn

(
x, y − Y, z, τ +

x

v

)]−1

.

In the multiphoton case (n ≥ 2) the integral of Φn over τ , Y and x ap-
pearing in Eq. (2.14) does not reduce to the n-th power of the number of
photons per pulse and the cross section cannot be recovered as straight-
forwardly as in the standard ACBT. In the next subsection, we present
two alternative methods for expressing the cross section in terms of ac-
curately measurable quantities by introducing a small set of reasonable
assumptions listed below.

First, in the experiment we performed, the confocal parameter of
the laser beam (twice the Rayleigh length) is about 2 cm, 20 times larger
than the width of the ion beam along the z-axis. Therefore the variations
of the photon flux along z are negligible in the region where photode-
tachment occurs. Second, it is reasonable to assume that Φ(x, y, z, τ)
can be factorized into a temporal envelope g(τ) and a spatial profile
φ(x, y) which, as just explained, does not depend on z,

Φ(x, y, z, τ) ' φ(x, y)g(τ). (2.15)

Finally, we define ρy(y) as the normalized projection of the current den-
sity j(y, z) onto the y-axis,∫

dz j(y, z) = Iion ρy(y), (2.16)

where Iion is the ion beam current.

With the above assumptions, Eq. (2.8) for the yield N(Y ) can be
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written, in the case of a continuous ion beam, as

N(Y ) =
ησ(n)

e v
∆(n)Iion

×
∫
dy ρy(y)

∫ ∞
−∞

dxφn (x, y − Y ) , (2.17)

where ∆(n) is the integral of the n-th power of the time profile of the
laser pulse,

∆(n) =

∫ +∞

−∞
dτ gn(τ + x/v) =

∫ +∞

−∞
dτ gn(τ). (2.18)

Generalized two-photon cross sections

We present two alternative methods for expressing the generalized two-
photon cross section (n = 2 in Eq. 2.17) in terms of precisely measurable
quantities. Generalization of these methods to higher numbers of pho-
tons (n ≥ 3) is straightforward.

The first and simplest approach is to approximate the spatial distri-
bution of the photon flux by a Gaussian,

φ(x, y) =
1

~ω
2Elaser

πw2
0∆

e−2(x2+y2)/w2
0 , (2.19)

where w0 is the laser waist and ∆ =
∫
dτ g(τ). The choice of a Gaussian

distribution is justified by the fact that our pulsed laser operates near
the TEM00 mode. The integral of the square of the photon flux can now
be evaluated analytically and the generalized two-photon cross section
is thus given by

σ(2) =
ev

ηIion

(
~ω
Elaser

)2 ∆2

∆(2)
πw2

0

∫
N(Y )dY. (2.20)

Note that we have made no assumptions about the shape of the ion
beam.

The second method for expressing the integral of φ2, present in
Eq. (2.17), in terms of easily measurable quantities and without model-
ing the shape of the laser beam exploits the fact that the transit of the
ions through the laser focus amounts to a tomography of the intensity
profile, as shown in Fig. 2.3.

Let us first define a succession A of integral transforms, which trans-
forms a function f(x, y) into a function F (Y ) as follows:

F (Y ) = A[f(x, y)] =

∫
dyρy(y)

∫ +∞

−∞
dx f(x, y − Y ). (2.21)
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Figure 2.3: Idealized representation of the experiment. The detachment rate,
proportional to the square of the photon flux, is integrated along the ion trajec-
tory (dotted lines) to obtain the final detachment probability (thick curve), as
in (2.13). The latter is subsequently convolved with the normalized projection
ρy of the current density onto the y-axis (hatched area) to obtain the yield N
(shaded area) defined in (2.17).

Equation (2.17) with n = 2 can then be rewritten as

N(Y ) =
ησ(2)

e v
∆(2)IionA[φ2(x, y)]. (2.22)

It is reasonable to assume that φ is symmetric under rotation around
the light propagation axis z as our laser operates near the TEM00 mode.
The integral over the line of sight x can then be interpreted as the Abel
transform of the detachment probability p = σ(2)φ2 [124]. The standard
definition of the transform appears immediately when re-writing the
integral in cylindrical coordinates,

N(Y ) =
η

e v
∆(2)Iion

× 2

∫
dyρy(y)

∫ +∞

y−Y
dr

r p(r)√
r2 − (y − Y )2

. (2.23)

The path integral of an atom travelling in a straight line through the
laser spot corresponds to the Abel transform P (y−Y ) of the detachment
rate p(r) at a vertical position y−Y . The convolution with the normal-
ized current density ρy(y) in the second integral subsequently “blurs”
the transform P (y−Y ), similar to the point-spread function of an imag-
ing device [125]. It is possible to recover p(r) from the measured yield
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N(Y ) by numerically inverting the two integral transforms using one of
the techniques from the extensive range available [126].

The comparison of ρy with a point-spread function highlights the
importance of the respective sizes of the ion and laser beams. If the laser
beam is much narrower than the ion beam, the blurring effect becomes
too strong to recover the final detachment probability. The radius of
the ion beam along the vertical direction must be kept of the order of
or smaller than the waist of the laser beam. To do so, an aperture
of 100µm in height was used to define the ion beam, matching the ∼
120µm diameter of the laser spot.

Although an analytical formula can be obtained for inverting A, it is
in practice cumbersome and involves derivatives of the measured signal.
A more efficient method for performing the Abel inversion consists in
expanding the measured yield in a basis of functions ψm spanning the
“detection” space,

N(Y ) =

mmax∑
m=1

cmψm(Y ), (2.24)

and the detachment rate in a basis of functions ϕm spanning the “de-
tachment” space,

p(r) = A

mmax∑
m=1

cmϕm(r), (2.25)

where A is a constant. The two basis sets are related through

ψm(Y ) = 2

∫
dyρy(y)

∫ +∞

y−Y
dr

rϕm(r)√
r2 − (y − Y )2

. (2.26)

Comparing equations (2.26) and (2.23) gives

A =
e v

η∆(2)Iion
. (2.27)

Since the pulsed laser used for the present study operates near the
TEM00 mode, a basis of Gaussian functions with varying widths is ap-
propriate:

ϕm(r) = e−r
2/[a+(m−1)b]2 . (2.28)

The parameters a and b and the number mmax of functions define the
interval spanned by the widths of the functions and their density. They
are chosen so that the estimated width of the laser beam lies close to the
center of this interval and that the upper and lower limits lie sufficiently
far away.

The functions ψm are then computed from ϕm using (2.26). The Abel
transform of a Gaussian function is another Gaussian function [124]. If
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ρy is analytical and well-behaved, the convolution by ρy can be derived
analytically, otherwise it must be performed numerically. This is for
example the case when ρy is provided as a set of experimental data. The
ion beam in the experiment is well collimated so that we can assume that
ρy is a uniform distribution. Therefore, the basis functions ψm can be
expressed as the difference of two error functions,

ψm(Y ) =
πw2

m

2L

[
erf

(
Y + L/2

wm

)
− erf

(
Y − L/2
wm

)]
, (2.29)

with wm = a+ (m−1)b and where L is the width of the ion beam along
the y-axis. Since in practice N is measured for a discrete set of vertical
displacements (Y1, . . . , Yk), expansion (2.24) is written as

N = CΨ, (2.30)

where N is the row vector of data, C is the row vector of unknown coef-
ficients (c1, . . . , cmmax) and Ψ is the matrix with elements Ψij = ψi(Yj).
The problem of finding the coefficients C in (2.30) is in general under-
determined as the number mmax of basis functions is larger than the
number k of data. An approximate solution to (2.30) is found by using
the non-negative least-square (NNLS) algorithm [127, 128]. The NNLS
result was further checked using a Tikhonov regularization [129], whose
free, smoothing parameter q was chosen at the maximum curvature of
the L-curve [130]. After the coefficients C have been found, the expan-
sions of both N(Y ) and p(r) are known.

Integrating the photon flux over polar coordinates and over the pulse
duration, we obtain

2π∆

∫
dr r φ(r) =

Elaser

~ω
. (2.31)

Substituting φ(r) =
√
p(r)/σ(2) in (2.31), squaring both members and

rearranging, we finally obtain the expression of the generalized two-
photon cross section in terms of known quantities:

σ(2) =
e v

η Iion

(
~ω
Elaser

)2 ∆2

∆(2)

× 4π2

(∫
dr r

√∑
cmϕm(r)

)2

. (2.32)

The measured signal N(Y ) is included in this expression through the
coefficients cm. All other factors can be measured precisely and only
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reasonable assumptions concerning the ion and laser beams are neces-
sary.

Let us finally note that the generalization of the ACBT was derived
above for the case of a continuous ion beam and a pulsed laser beam,
but it is in principle applicable when both beams are pulsed.

2.2.3 Velocity map imaging

The present section introduces the velocity map imaging (VMI) tech-
nique. We also present the procedure used to extract the relative partial
and differential cross sections of the photodetachment of O− from VMI
images. The technique finds its origin in the development of photoelec-
tron and photoion imaging experiments, which aimed at recording the
3D velocity distributions of particles emitted, e.g. , upon photoionization
or photodissociation. Such imaging experiments relied on (i) the extrac-
tion of the charged fragments by a static electric field, which are then
sent onto a 2D position sensitive detector (PSD) typically consisting in
a stack of multichannel plates, a phosphor screen and a camera; (ii) the
reconstruction of the 3D distribution from the 2D image following kine-
matical considerations and numerical inverse transform techniques [131].
However, the energy and angular resolution of these early experiments
were strongly limited by the interaction volume, since particles emitted
at different locations but with the same velocity vector would hit the
detector at different positions, consequently blurring the image.

The VMI technique, first developed by Eppink and Parker [132] in
1997, came as an important breakthrough in imaging experiments since
it proved to be, to a large extent, volume-independent and did not re-
quire the use of grid electrodes which lower transmission and may al-
ter the particles’ trajectories. The VMI setup, schematically shown in
Fig. 2.4, relies on the use of an electrostatic “immersion” lens and a
position sensitive detector placed at its back focal length. As is stan-
dard in Fourier optics and within the paraxial approximation [125], if
the charged fragments are emitted in the front focal plane, their Fourier
transform will be formed on the back focal plane, hence the PSD will
image the particles’ momentum-space distribution. Conveniently, this
property is robust against small displacements of the emission point from
the exact focal length, yielding the approximate interaction-volume in-
dependence of VMI. The images recorded with the position sensitive
detector are, as for other imaging techniques, the 2D projection of the
initial 3D velocity distribution1. The initial distribution is then recon-

1The velocity distribution for a given fragment is usually called a Newton sphere
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Laser

A−

e−e−

Detector

Newton sphere

Figure 2.4: Schematic operation of a VMI system. The stack of electrodes
(gray plates) is the VMI electrostatic lens. A beam of anion A− is intersected,
at the lens focal point, by a laser beam. Photoelectrons e− are emitted, extracted
from the interaction region and accelerated onto the position sensitive detector.
The laser polarization, indicated by the arrows, is horizontal in order to ensure
cylindrical symmetry of the Newton sphere about an axis parallel to the plane
of the detector. The image on the PSD was measured for the photodetachment
of O−. The position of photoelectron impacts on the PSD is the forward Abel
transform (projection) of their initial 3D velocity distribution, represented by
the Newton sphere.
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structed from the recorded image by means of inverse Abel transforma-
tion, provided the former possesses cylindrical symmetry.

Further advantages of VMI systems lie in their 4π collection effi-
ciency, in their capability of imaging the complete Newton spheres of
all fragment types in a single experiment, thereby significantly reduc-
ing acquisition times, and, last but not least, in their relative simplicity
concerning building and implementation. Literature on velocity map
imaging is abundant and a good introduction by Eppink and Parker can
be found in [126].

We have used VMI to perform photoelectron spectrometry of the
photodetachment of O− and determine both branching ratios between
the various final states of the oxygen atom, related to partial cross sec-
tions, and 3D angular distributions, related to differential cross sections.
Details of the experimental VMI setup are presented in Sec. 2.3.2. Once
velocity map images are recorded with the PSD, they are processed in
order to recover the desired quantities. Details of the analysis proce-
dure are presented below, after a description of the main features of the
images and their physical meaning.

The raw images measured with the present setup show an arrange-
ment of concentric discs with bright edges (see Fig. 2.5) corresponding
to the 2D projections of the sumperimposed Newton spheres of the var-
ious fragments. In the present case, these fragments are photoelectrons
that leave the oxygen atom into its different final states. The radius R
of each disc is proportional to the photoelectron velocity v, that is,

v = αR, (2.33)

and the proportionality constant α is an experimental parameter to be
determined. The angular distribution of electron impacts across the
discs is reminiscent of the photoelectron angular distribution. Since we
use a fast O− beam, the center of the discs is shifted with respect to the
center of the detector by the ion velocity, thus preventing to use the full
size of the detector. Given the anions velocity of 2.5×105 m/s, the shift is
of the order of 1/4 of the distribution’s radius for 4 eV photoelectrons,
and reaches a value close to the distribution’s diameter for threshold
electrons. The raw image is slightly distorted, an effect we tentatively
ascribe to imperfect magnetic shielding of the spectrometer and small
inhomogeneities of the electric potential inside the detachment region. If
the Abel transform is performed on the raw image, the lack of circularity
strongly degrades the energy and angular resolution. The image must
therefore be circularized prior to Abel inversion.

The circularization procedure is based on the idea of Cavanagh et
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al. [78]. It consists in expressing the coordinates of the electron im-
pacts, thereafter termed events, in terms of polar coordinates (r, θ) and
scaling r with a scaling function f(r, θ). Let us start with an illustrative
example. If an image is, e.g. , a circle of radius a which is distorted
into an ellipse with semi major axis a and semi minor axis b, the radius
depends on θ as

r(θ) =

√
a2b2

b2 cos2 θ + a2 sin2 θ
. (2.34)

In order to retrieve the circle, all r coordinates must therefore be scaled
by

f(θ) = a/r(θ). (2.35)

The scaling function f(θ) does not depend on r for this specific case,
but does so in the general one.

In order to determine the scaling function for real images, we track
the radial position re of the bright outer edge of a disc, corresponding to
a given Newton sphere, for all angles θ. In practice, we obtain a set of ra-
dial positions re(θi) by fitting the radial distribution of events contained
within consecutive angular slices [θi, θi+1] with the Abel transform of
a Gaussian function whose widths and centers are fit parameters. The
discrete scaling function is then given by

fe(θi) = r̄e/re(θi), (2.36)

where r̄e is the average of all re(θi) values. In the case where several
Newton spheres coexist in the image, we use an ensemble of Gaussian
functions to fit the radial distributions and determine the ensemble of ra-
dial positions re(θi) = [r1e(θi), r2e(θi), . . .] and the corresponding scaling
functions fe(θi). A continuous scaling function f(r, θ) is subsequently
obtained by interpolation over all θi’s and over the mean radii r̄e of all
Newton spheres.

It should be noted that radial scaling modifies the local density of
events and, in particular, creates artificial angular structures in the im-
age that, after Abel inversion, may yield incorrect values of β parame-
ters. This effect is eliminated by scaling the number of events in each
image pixel by f2(r, θ), corresponding to the change in area induced by
the radial scaling. We verified that the combination of radial scaling
and density rescaling yields, indeed, correct β parameters by generating
artificial images through random generation of electrons velocities on a



38 Chapter 2. Photodetachment of H− and O−

set of Newton spheres with given velocities and β parameters. If distor-
sion is important, the offset of β due to circularization without density
rescaling can be as large as -0.2.

After circularization, the inverse Abel transformation of the pro-
cessed images is performed using the MEVELER code of Dick [133],
which showed good performances in terms of resolution, noise resistance,
and excellent behavior even for low numbers of events. It computes the
inverse image based on statistical and information criteria and possesses
the advantage not to introduce in the analysis more information than is
already contained in the raw image, compared to other methods which
do so by, e.g. , fitting [134].

An example of circularized and inverted images is shown in Fig. 2.5
and was obtained by photodetaching O− anions at a wavelength of
357.14 nm, where the oxygen atom is left either in its ground (3P) or first
excited (1D) state. The left half of the upper image is the circularized
image, the right half is the inverted image and the bottom graph is the
radial distribution of photoelectrons, corresponding to the integral of the
inverted image over all polar angles. Three different electron velocities
can be observed, which we can straightforwardly attribute, from left to
right, to the transitions from the J = 3/2 and J = 1/2 fine structure
components of O− to the 1D2 excited state of oxygen and from O− to
the ground 3P state of oxygen. The six different transitions between
the fine structure components of O− and O(3P) are not resolved in this
spectrum. The remaining part of the section explains how branching ra-
tios and asymmetry parameters can be extracted from the VMI images,
with illustrative examples based on the data presented in Fig. 2.5.

In order to obtain the branching ratios, one needs to compute the
intensity of the transitions to the various final atomic states. This is
done by fitting each peak in the velocity distribution, labeled by an
index i, with a Gaussian function and computing its integral Pi. The
branching ratio to a given final state j can then be obtained using

Rj =
Pj∑
i Pi

. (2.37)

The uncertainty on the branching ratio is taken as the 1σ standard devi-
ation computed from the relevant covariance matrix elements calculated
during the fitting procedure. For the distribution presented in Fig. 2.5,
we obtain for example

R3P =
P3P

P3P + P1D
= 0.898± 0.007, (2.38)

where P1D is the sum of the areas under both leftmost peaks in the
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Figure 2.5: Data for the photodetachment of O− at λ = 357.14 nm (3.47 eV).
(a) Circularized raw image (1024 × 1024 pixels). (b) inverse-Abel transform
image computed with the MEVELER algorithm [133]. The horizontal double
arrow indicates the direction of the laser polarization. The white circle indicates
the PSD edges. The Newton sphere of radius re is shifted with respect to the
center of the PSD by the ions’ velocity ~vion. (c) Radial distribution of the
electrons after Abel inversion.
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velocity distribution, so as to include both fine structure states of the
anion.

The asymmetry parameter β for each final state is given by the
ratio between the Q2(r) and Q0(r) radial distributions calculated by the
MEVELER program. Q0(r) is the total distribution, as shown in the
radial spectrum of Fig. 2.5, and Q2(r), when divided by r2, represents
the contribution of the 2nd-order Legendre polynomial to the angular
distribution. In practice, for each peak in the velocity distribution, β is
computed using

β =

∑
iQ2(ri)∑
iQ0(ri)

, (2.39)

which corresponds to the weighted mean of Q2/Q0, with weights given
by total velocity distribution, i.e., Q0. The summations runs over r
values around the peak center where Q0(r) is higher than, typically,
10% of the maximum value. In the cases where noise is important, the
peaks in the Q0 and Q2 distributions are fitted with functions of the
form

f(r) = e−(r−a)2/b2 × (cr + d). (2.40)

The area under the Gaussian function in the above equation is then used
to determine β. The accuracy ∆β on the value of the β parameter is
in principle limited by the angular resolution of the detection system,
given by ∆θ = 1/re with re being the radius, in pixels, of the Newton
sphere on the image. In our setup, ∆θ reaches values from, typically,
0.2◦ to 0.6◦. However, the image circularization and the Abel inversion
procedures cause further uncertainties and increase ∆β to about 0.05.
When the number of background electrons is large, the VMI images are
significantly altered and the uncertainty is estimated to reach ∆β = 0.1.
For the velocity distribution presented in Fig. 2.5, we obtain β3P =
−0.54± 0.05 and β1D = −0.11± 0.05.

Although not relevant for the present study, the energy resolution
∆E/E is of the order of 2% for the largest images and when potentials
on the VMI electrodes are carefully optimized. We did not optimize
potentials for each repeller voltage, thus resolution fluctuates from 2%
to 4% throughout the measurements. It also degrades close to thresh-
olds, where photoelectron velocities are low and images become small.
Although the present resolution does not reach the 0.5% resolution of
León et al. [135], it is considered as satisfactory since the ion beam
velocity prevents us from using the full detector size. Enhancing the
magnetic shielding and reducing the velocity spread of the ion beam
may further enhance the resolution for future studies.
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2.3 Experimental setups

2.3.1 Animated-crossed-beam setup

The experimental setup for measuring the total photodetachment cross
section of H− is presented in the following. The setup for studying
the photodetachment of O− is essentially the same and those differences
between the two apparatuses, e.g. , different laser systems, are described
at the end of the section.

Photodetachment of H−

The first stage of the experimental setup, sketched in Fig. 2.6, com-
prises a duoplasmatron source providing a 4 keV beam of H− anions.
After mass-selection by a permanent magnet, a set of planar deflec-
tors brings the beam to the interaction region, pumped to high vacuum
(3×10−8 mbar). Two diaphragms, located on either side of the ion-laser
interaction region, define the beam direction. These two diaphragms
have further been carefully aligned with the apertures of the quadrupo-
lar deflector and the channel electron multiplier (CEM) cone so that the
beam direction and the neutrals detection axis overlap.

The 1 mm H− beam is illuminated perpendicularly by the light of a
CW Ti:sapphire laser pumped by an Ar+ laser, the latter delivering a
maximum output power of 21 W in multiline operation. The Ti:sapphire
laser operates at the TEM00 mode and covers the 700-1000 nm wave-
length range with an output power of more than 3 W at the center of
the range. This range is further extended to 1064 nm by means of a
CW diode pumped solid state laser. The light is brought to the vacuum
chamber by a set of mirrors and focused by an f = 40 cm lens onto the
anion beam. A 10 mm thick glass plate mounted on a rotating stage is
placed just after the lens. By varying the angle of the plate, the angle
of incidence of the laser beam can be varied and its vertical position
after the plate can be modified at will, thus “animating” the beam (see
Fig. 2.2). The reflectivity of the AR coating on the glass plate changes
slightly with the incidence angle, thus changing the transmitted laser
power. However, since the laser power is measured after the plate, such
changes do no affect the measurement.

On the other side of the vacuum chamber, the light is collected by
a thermal powermeter measuring the laser power with 3% accuracy.
Powers ranging from 0.5 to 2 W are reached in the interaction region
throughout the wavelength range covered. A measurement of the laser
power before and after the vacuum chamber showed no difference; hence
the loss of photon flux due to the exit window of the chamber is contained
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Figure 2.6: Experimental setup. D: diaphragm; FC: Faraday cup; Q:
quadrupolar deflector; CEM: channel electron multiplier; L: lens; RP: rotat-
ing fused silica plate; PM: powermeter. The laser beam propagates along the
z-direction and its polarization is along the y-axis.

within the accuracy of the powermeter. This confirms the manufacturer
specifications, which give a reflectance of the coated window lower than
0.5% and an absorbance of the order of 0.1% (N-BK7).

After the second aperture, the ion beam enters the detection region.
It first passes through a quadrupolar deflector, where negative ions are
deflected on one side and collected in a Faraday cup connected to the in-
put of a calibrated electrometer. The neutral hydrogen atoms fly straight
through the quadrupole and are detected about 30 cm downstream by
a CEM.

Two parameters affect the detection of neutrals by the CEM: the
detection efficiency η and the counting rate N . The efficiency is esti-
mated to be 0.98 ± 0.02 according to Naji et al. [136], who measured
the efficiency of the exact same detector model. Furthermore, test mea-
surements for a 6 keV beam showed no significant increase of the detec-
tion efficiency, suggesting that η has reached the asymptotic regime of
efficiency versus particle energy, as expected from the CEM specifica-
tions. When too high (& 50 kHz), the second parameter, the counting
rate N , causes a non-negligible deadtime and degrades the pulse height
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Figure 2.7: Current (pA) measured by the Faraday cups FC1 and FC2 with
respect to the bias voltage (V) applied to the guard electrode of the cup. A bias
voltage of -100V is applied to each cup throughout the experiment. The offset
at negative voltages is the leakage current on FC1.

distribution. The main contribution to N comes from the collisional
detachment with the residual gas occuring between the first diaphragm
and the quadrupole. The ion beam intensity was therefore reduced to
∼ 50 pA in order to maintain the counting rate below its maximum
threshold. Typical values of 25 kHz are reached in operation.

When the quadrupolar deflector is switched off, a movable Faraday
cup (FC2) can be used to collect the negative ions in a straight line
aligned with the CEM entrance. The measured current, compared to the
current measured in FC1 when the quadrupole is on, gives an accurate
estimation of the alignment between the beam and detection axes. When
the agreement between the two currents measured is reached, the axes
overlap and we therefore ensure that no photodetached hydrogen atom
misses the detector, i.e. , that the normalization of the counting rate to
the H− current is consistent. After fine-alignment, an agreement better
than 1% was obtained between the two currents, which we take as the
uncertainty on the H− current value. A leakage current was observed
in the Faraday cup FC1, due to the neighboring high voltages of the
quadrupole. The cup current was therefore calibrated accordingly, prior
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to each measurement.

Each Faraday cup is equipped with a guard electrode biased by a
-100 V voltage. We checked the behavior of the measured current as
a function of the bias voltage, as shown in Fig. 2.7. For sufficiently
high negative voltages, typically below -50 V, a plateau is reached indi-
cating that all secondary electrons emitted by the ion-surface collisions
are confined within the cup, and therefore that the current measured
faithfully reproduces the incoming ion beam current. The remaining
difference between the currents measured by the two cups is solely the
leakage current on FC1 discussed above. Furthermore, the radius of the
ion beam is one third of the cup radius, hence excluding edge effects.

The rotating stage and powermeter are servo-controlled by an ex-
ternal computer. A data acquisition system monitors the Faraday cup
current, given by the analog output of the electrometer, and the CEM
counting rate. All the variables required to obtain the cross section can
thus be measured and stored in the computer. The experiment therefore
consists in moving the rotating stage to a given angle and sequentially
recording the laser power, neutrals count rate and negative ion current.

Photodetachment of O−

The one- and two-photon detachment cross sections of O− have been de-
termined by three experiments which make use of, essentially, the same
apparatus as the one described in the previous subsection, barring a few
alterations. Three different laser sets were used for these measurements
and are described in the following. Modifications concerning the anion
beam are only minor and presented at the end of the subsection.

Two series of measurements were run for the one-photon detachment
cross section. The first makes use of a set of CW lasers to span a rela-
tively wide range of wavelengths. Light between 700 nm and 845 nm is
provided by a tunable Ti:Sapphire laser pumped by an Ar+ laser. The
lines from the same Ar+ laser cover the range from 457.9 nm to 514.5 nm.
A diode-pumped solid-state laser supplies light at a wavelength of 532 nm
and a diode laser at 405 nm. Laser powers in the interaction region
range from 60 mW to a few hundred mW. The second measurement
spans a significantly broader wavelength range thanks to the use of a
pulsed OPO laser system, going from threshold (848.6 nm) to 225 nm.
It produces nanosecond pulses with an energy in the mJ range and at
repetition rate of 30 Hz. The light pulses are intense enough to saturate
photodetachment and their energy must be lowered prior to the inter-
action region for the ACBT to be applicable. The combination of a λ/2
plate mounted on a high-accuracy rotation stage and a polarizing beam
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splitter serves as an attenuator whose transmittance can be adjusted
at will by rotating the waveplate. The pulse energy is measured with
a pyroelectric energy meter. All the optical elements used are coated
with broadband anti-reflection (AR) coatings, and several sets of optics
were needed to span wavelengths ranging from 225 nm to 848.6 nm. We
verified that transmission losses due to absorption and reflection on the
exit laser window are negligible and thus that the measured laser pulse
energy is indeed the one seen by the ions inside the vacuum chamber.

Two-photon experiments require higher intensities, only attainable
with pulsed lasers, and are limited to below the one-photon threshold
(848.6 nm). We used a Q-switched Nd:YAG laser providing nanosecond
pulses with an initial energy of about 500 mJ, which is reduced to a
few mJ by the combination of three methods: (i) varying the delay
between the optical pumping of the Nd:YAG rod and the opening of
the Q-switch; (ii) selecting the reflection of the beam on a bare glass
plate; (iii) combining a λ/2-plate and a polarizing beam splitter. The
pulsed Nd:YAG laser is inherently a multimode laser, producing chaotic
light which can affect the measurement of multiphoton cross sections
[137–139]. To assess the importance of this in our experiment, we also
operated the Nd:YAG laser with a single mode by injecting the light of
a seeding laser (temperature-controlled laser diode) into its cavity. The
time-envelope of the output pulse was monitored with a fast photodiode,
and deviation from the single mode regime due to temperature variations
of the diode clearly appeared as intensity beatings. The fast photodiode
has a rise time of 1 ns, according to the manufacturer.

On the ion side, oxygen anions are produced from the same duoplas-
matron source used for H−, fed with N2O gas. The second diaphragm
defining the direction of the beam in the interaction and detection re-
gions is now rectangular (1 mm along z, 100 µm along y). Its width is
of the order of the laser spot size so as to maximize the signal-to-noise
ratio. An electrostatic deflector located before the diaphragms is also
switched on and off in order to pulse the ion beam and limit the number
of background atoms hitting the CEM, hence limit CEM aging. A duty
cycle of 10% is chosen to maintain sufficient beam intensity so that the
beam current can be reliably measured.

After the interaction region, detection of the neutral atoms must be
modified when using pulsed lasers. Their low repetition rates indeed
drastically reduces the photodetachment signal, which becomes much
smaller than the background one, impeding the use of time-gated mea-
surements. The neutrals are counted during a narrow time window
(∼ 20 ns) delayed with respect to the laser shot by the neutrals’ time of
flight (∼ 2.3 µs). A second, identical window delayed in time is used to
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determine the background signal. The background mainly arises from
collisional detachment with the residual gas and is below 1 kHz for an
ion beam current of ∼ 10 pA. Note that counting rates must be corrected
for the Poisson distribution of the photodetachment events in order to
obtain the exact mean detachment rate. Finally, a multi-channel plates
(MCP) detector was used in the two-photon cross section experiment,
instead of the CEM used otherwise. Its detection efficiency is estimated
to be 56 % by comparing its count rate with that of a CEM whose effi-
ciency is known [136].

2.3.2 Velocity map imaging setup

We have built a velocity map imaging (VMI) spectrometer aimed at
measuring low-energy photoelectrons. The design of the electrostatic
lens is taken from León et al. [135], who carefully optimized the lens
dimensions and added guarding and shielding electrodes so as to obtain
optimal focusing and thus reach one of the best resolution available with
∆E/E = 0.5%. The reason for that choice is that, while we do not aim
at measuring high resolution photoelectron spectra, the use of fast beams
prevents one to use the full size of the detector which, in turn, worsens
the energy resolution. The design of León et al. was therefore chosen in
order to maintain good resolution even for small images while keeping
the setup complexity sufficiently low. A detailed drawing of the present
VMI lens can be found in Appendix B.

A schematic view of the experiment is presented in Fig. 2.8. Oxygen
anions are produced from the same duoplamastron source that was used
in the previous experiments, mass selected and accelerated to 5 keV. The
anion beam is pulsed by switching on and off a deflector (DH1) using a
fast, high-voltage switch. When the deflector is off, the ions fly straight
to a Faraday cup (FC1) and the ion current can be monitored. When
the deflector is on, ions fly through the chicane (DH1 and DH2) and are
collimated by two diaphragms of diameter 2 mm and 1 mm respectively,
housed in a re-referencing tube. The deflector is switched on for about
400 ns and its delay with respect to the laser pulse is chosen so that the
center of the ion bunch reaches the center of the VMI at the same time
as the laser pulse. Beam pulsing is implemented in order to lower the
number of background electrons, mainly arising from collisions between
anions and residual gas, and thus to limit detector aging.

The fast anion beam enters the VMI perpendicularly to the lens axis.
Photoelectrons are emitted within the interaction region at the center of
VMI, where the anion beam is crossed at right angle by the laser beam.
They are extracted towards the detector, perpendicularly to the laser-
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Figure 2.8: Schematic view of the velocity map imaging experiment. DH1

and DH2: electrostatic horizontal deflectors; FC: Faraday cup; Re-ref: re-
referencing tube; VMI: velocity map imaging spectrometer. The VMI electrodes
are labeled according to the inset on the right, which shows a vertical slice
through the lens. R: repeller; D: deflector; L1: extractor; L12, L23: guarding
electrodes; S: shielding electrodes.

ion plane, by the ∼ 50 V/cm electric field created by the repeller and
extractor electrodes. After traveling through the lens and a 37.5 cm–
long flight tube, the electrons hit a PSD detector and the positions of
the impacts are recorded [140].

The perpendicular detection geometry combined with the use of a
fast beam of oxygen anions (5 keV, 2.5 × 105 m/s) prompts two mod-
ifications to the design of the VMI lens. First, the ion beam traveling
through the VMI is substantially deflected by the extraction field. In
order to compensate for that deflection, the repeller electrode is split
into two concentric discs, as in the setup of Johnson et al. [141]. The
inner disc acts as the standard repeller electrode, providing a homoge-
neous extraction field to repel photoelectrons. The outer disc serves as a
deflector which counteracts the upwards deflection above the inner disc
by downwards deflection before and after. The deflector voltage can be
adjusted so that the anions exit the VMI following the same trajectory
along which they entered. The exiting anions are collected downstream
on a Faraday cup and the deflector voltage is optimized by maximiz-
ing the measured current. The second modification is prompted by the
fact that photoelectrons are emitted within the moving frame of the ion
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and their velocity in the lab frame is therefore the vectorial sum of the
photodetachment velocity and the anions velocity. As a result, photo-
electrons are emitted more off-axis than in the case of slow particles or
collinear injection and the diameter of the aperture in the extracting
electrode had to be enlarged to 20 mm, instead of 14 mm in the original
design.

The voltage VR on the repeller ranges from -150 V for low energy
photoelectrons to -1200 V for 4 eV photoelectrons. For each value of VR,
the voltages V1 and V2 on L1 and L2 are coarsely optimized so as to ob-
tain reasonable energy resolution. We found that, in most cases, setting
V1 = 0.89VR and V2 = 0.66VR fulfills the present needs. Guarding elec-
trodes are set to V12 = (V1 + V2)/2 for L12 and V23 = V2/2 for L23. The
L3 and shielding electrodes are grounded. Voltage on the deflector is
higher than that of L1 and is optimized on the measured ion current. It
is subsequently adjusted in order to maximize the photoelectron signal.

Along with these modifications of the original VMI design, we have
added a re-referencing tube in order to minimize adverse effects due
to the deceleration of ions as they enter the VMI lens. When the ion
bunch flies through the tube, it is rapidly switched from the ground to a
high voltage whose value lies between that of the extractor and deflector
electrodes. This effectively re-references the ion bunch from the ground
to the VMI voltage and, when the ions exit the tube, the potential
gradient at the VMI entrance is almost suppressed and deceleration
strongly reduced. However, in regard of the high beam energy (5 keV)
and the comparably small VMI voltages (150 V – 1200 V), we have
seen no particular improvement on the energy resolution when the re-
referencing tube is used.

The screening of magnetic fields is critical for photoelectron spec-
troscopy, therefore the VMI lens and flight tube are surrounded by two
concentric µ-metal cans and tubes. The repeller electrode is manufac-
tured with ARCAP non-magnetic alloy and all other electrodes are made
of non-magnetic stainless steel. The setup is placed in a stainless steel
chamber pumped to high vacuum (10−8 mbar).

Light pulses are produced by the OPO laser system also used for the
animated-crossed-beam experiment described above. At the exit of the
OPO, light passes through a λ/2 plate and a polarizing beam splitter.
This combination provides control over the laser pulse energy and sets
the polarization of the light parallel to the plane of the imaging detector.
In the infrared and visible range, light is focused by an f = 40 cm lens
onto the anion beam at the center of the VMI. It enters and leaves the
vacuum chamber through laser windows. All optics are AR-coated.

In the ultraviolet range, scattered photons hitting the VMI elec-
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trodes, in particular the repeller, are an important source of background
photoelectrons which, in turn, strongly affect the measured images. In
order to reduce background as much as possible, we have disposed a
series of baffles along the laser beam path (10 before the entrance of the
VMI and 5 after). Each baffle has a 4 mm hole at its center, where light
passes through, and is coated with colloidal graphite to reduce reflection.
The µ-metal shields are also coated with colloidal graphite. In addition,
the f = 40 cm lens was removed and the laser windows were tilted at
an angle to prevent light reflected onto the windows from penetrating
inside the VMI. For wavelengths below 280 nm, we have also replaced
the repeller electrode by a grid with 90% transparency and a positively
biased plate located ∼ 5 mm underneath. This design strongly reduces
the number of background photoelectrons [141, 142] while maintaining
good focusing properties. Note that the positive bias on the plate must
be kept low enough, roughly 300 V higher than the repeller voltage, in
order not to modify the electrical potential seen by the photodetached
electrons in the interaction region.

The correlation between brightness and amplitude (COBRA), posi-
tion sensitive detector [140] is used to image photoelectrons. It consists
in a stack of 2 microchannel plates (MCP), a waveform digitizer, a phos-
phor screen and a CMOS camera. The arrival time of photoelectrons
onto the detector can be measured by COBRA but is not required in
the present study and therefore not recorded. Injecting the anion beam
perpendicularly to the VMI axis yields a detection system simpler than
that used for collinear injection [78, 135], where the voltage on the MCP
must be rapidly lowered before the ion pulse hits the detector. Mea-
surements are performed at 30 Hz, the repetition rate of our laser, and
images are processed in real time. Each image is 512 × 512 pixels in
size and the position of each electron hit is determined with sub-pixel
accuracy using a centroiding algorithm. We work, in average, with 3 or
4 electrons per laser shot and data for each wavelength is acquired until
about 100,000 events are recorded.
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2.4 Photodetachment of H−: total cross section

The absolute total photodetachment cross section of H− was measured
using the ACBT in a wavelength range from 700 nm to 1064 nm. Raw
results as obtained from the experiment are shown in Sec. 2.4.1. The
measured total cross section is presented in Sec. 2.4.2 and compared
against available experimental and theoretical data.

2.4.1 Animated-crossed-beam result

At each wavelength, the laser beam is scanned across the ion beam while
counting neutrals and monitoring the anion current and laser power.
This procedure is repeated many times in order to secure good statistics.
The resulting data, corrected for the laser power and the ion current, are
shown in Fig. 2.9 for a laser wavelength of λ = 850 nm (1.4586 eV). On
either side of the graph, the displacement of the laser beam is larger than
the ion beam radius and the two beams do not overlap. Switching the
laser on and off at large displacements did not change the neutrals count-
ing rate of the CEM, thus ensuring that only the background counts are
present. As the vertical displacement moves towards 0, there is an in-
creasing overlap between both beams and the photodetachment signal
rises on top of the background signal. The background is estimated by
averaging three points at each extremity of the graph and then sub-
tracted from the total counts to obtain the net photodetachment signal,
from which the cross section can be computed according to Eq. 2.7.

Figure 2.9 shows 40 scans of the vertical position at λ = 850 nm.
For each, a value of the cross section is computed and the total cross
section is the mean value, 3.96×10−21 m2. The standard deviation of the
mean [143] is 0.02×10−21 m2, about 0.5% of the mean, highlighting the
excellent repeatability of our measurements and providing the statistical
error. Uncertainties arising from systematic effects are estimated as fol-
lows: the powermeter accuracy of 3% is given by the manufacturer; the
vertical displacement of the laser beam is known with 2% precision, as
estimated from the comparison of measured and calculated values; the
1% error on the current measurement is obtained by comparing the cur-
rent measured by the two Faraday cups FC1 and FC2 and corresponds
to the calibration accuracy of the electrometer; an uncertainty of 1% on
the ions’ velocity is given by the small variations of the source’s acceler-
ation voltage (4 kV); the uncertainty of 2% on the detection efficiency
of the CEM has been previously established by Naji et al. [136]. Each
of these values provide an upper limit a+ and a lower limit a− to the
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Figure 2.9: Normalized count rate of the channel electron multiplier for
different vertical displacements of the laser beam. The measured count rate was
divided by the H− current and the laser power to obtained the normalized count
rate.

exact value a. As no further information is available about the proba-
bility distribution of a amongst the interval, we consider [a−, a+] as a
one- standard deviation confidence interval. The associated uncertainty
is consequently, following NIST’s guidelines [143], (a+ − a−)/2 and the
total error ∆σ is the quadrature sum of the various uncertainties. The
above procedure was repeated by steps of 50 nm in the 700-1000 nm
range, with an additional measurement at 1064 nm, yielding the results
presented in Table 2.1 and compared to the existing data in Figs. 2.10
and 2.11 (circles).

2.4.2 Total cross section

As shown in Fig. 2.10, the present measurement agrees well with the
absolute measurement of Popp and Kruse [99]. These authors used the
spectrum of a well-characterized hydrogen-arc lamp and, by modeling
the partial local thermal equilibrium within the arc, could infer absolute
values for the photodetachment cross section. The wavelength depen-
dence of our measured cross section matches the relative measurement
of Smith and Burch [98], which is put on an absolute scale for compar-
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Photon energy (eV) σ (10−21 m2) ±∆σ (10−21 m2)

1.1654 3.48 0.15
1.2398 3.74 0.17
1.3051 3.82 0.17
1.3776 3.96 0.17
1.4586 3.96 0.17
1.5498 3.91 0.17
1.6531 3.90 0.17
1.7712 3.74 0.16

Table 2.1: Present photodetachment cross sections (10−21 m2) as a function
of the photon energy (eV).

ison, using one of the most robust theoretical data available, namely
that of Venuti and Decleva [47]. Smith and Burch performed the mea-
surement of the photodetachment cross section of the D− ion within
a crossed-beam configuration. The light source was a carbon projec-
tion arc lamp combined with narrow bandpass filters, providing intense,
quasi-monochromatic light. The measurement of the free electron cur-
rent, the ion current and the light power yielded a relative value for the
cross-section. These two methods are different from the present exper-
iment, and the good agreement both in shape and magnitude therefore
gives confidence in the validity of the values obtained.

A measurement of the photodetachment cross section has been re-
cently performed by Vandevraye et al. [72] with a pulsed Nd:YAG laser,
and is also shown in Fig. 2.10. The cross-section was measured by means
of several saturation-based techniques, thus avoiding the approximation
of the linear regime. To obtain the cross section, the spatial and tem-
poral profiles of the photon flux had to be assumed Gaussian while the
ion density was assumed uniform. Although justified, these assump-
tions are not exact and may therefore introduce discrepancies. This
measurement lies at the higher limit of compatibility with the results
of Popp and Kruse [99] compiled in their table. Note that the value of
3.6(3) × 10−21 m2 quoted in [72] was obtained from the crossed beam
values of Smith and Burch [98] scaled by Popp and Kruse [99].

For the sake of completeness, one must mention the first absolute
measurement made by Branscomb and Smith [97] in the mid-fifties.
They measured the integrated cross section of the photodetachment of
H− by illuminating the anion beam at right angle with a tungsten lamp
combined with a set of sharp cutoff filters. The cross section being inte-
grated over a wide range of photon energies, no direct comparison can be
made. The authors however computed the ratio of their cross section to
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Figure 2.10: Experimental photodetachment cross section (10−21 m2) as a
function of the photon energy (eV). The empty circles and the triangle are,
respectively, the present work and the work of Vandevraye et al. [72]. The full
squares are from Popp and Kruse [99] and the discs are the relative measure-
ment of Smith and Burch [98] set on an absolute scale using the calculation
of Venuti and Decleva [47] (shown by the full line). The absolute, wavelength-
integrated measurements of Branscomb and Smith [97] lie within ±10% of the
calculation of Chandrasekhar [84] multiplied by 1.01 (dashed line), as depicted
by the shaded area.

the values obtained by Chandrasekhar [84], obtaining an average of 1.01
±0.10. Therefore, the cross section computed by Chandrasekhar, mul-
tiplied by 1.01, is plotted in Fig. 2.10 along with a shaded area defining
a 10% interval around the theoretical curve. It appears to be fully com-
patible with the measurements of Popp and Kruse [99] and Vandevraye
et al. [72].

The absolute photodetachment cross section was also investigated by
Bacal and Hamilton [100] and Nishiura et al. [101] by means of lasers in
an attempt to monitor the production of H− and D− ions within fusion
plasmas. The fraction of photodetached ions as a function of the laser
pulse energy was measured, and a subsequent fit with the theoretical
photodetachment probability, depending on the cross section, ensured
the validity of the method. However, the important spread of the data
points allows to confirm only the order of magnitude of the cross section.
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Figure 2.11: Photodetachment cross section (10−21 m2) as a function of the
photon energy (eV). The empty circles are the present work. The curves are
theoretical values from Park et al. [95] in the length (dashed) and accelera-
tion (densely dotted) gauges, Venuti and Decleva [47] (full thick), Stewart [86]
(full thin), Wishart [87] (long dash-dotted), Saha [88] (dash-dotted), Broad and
Reinhardt [89] (dash-doubly dotted), Ajmera and Chung [90] (dotted), Chan-
drasekhar [84] (doubly dotted).

As shown in Fig. 2.11, the agreement of the present measurement
with most theoretical results is excellent over the whole wavelength
range covered by the experiment, particularly with that of Ajmera and
Chung [90] and of Venuti and Decleva [47]. The latter is a state-of-the-
art calculation which was internally validated by the perfect matching
of the cross section values obtained within the different gauges (length,
velocity and acceleration), and its accuracy is estimated to be better
than 0.001 ×10−21 m2. The value computed at 1064 nm (1.1653 eV)
is σ = 3.52 × 10−21 m2 and agrees within error bars with the present
value σ = 3.48(15) × 10−21 m2. The value of Vandevraye et al. [72] is
σ = 4.5(6)× 10−21 m2 and lies 1.5 σ above that of Venuti and Decleva.

A few theoretical values depart from the commonly obtained cross
section. In particular the adiabatic approximation in hyperspherical co-
ordinates, adopted both by Fink and Zoller [96] and Park et al. [95], led
to the significantly higher results shown in Fig. 2.11. Park et al. gave
a detailed account of the possible causes of the discrepancy, accounting
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for the lower reliability of the adiabatic hyperspherical approximation
in the regions of the configuration space where the gauges used have
the largest weight. It also applies to Fink and Zoller’s calculation, who
obtained results identical to Park et al. within numerical accuracy. The
adiabatic hyperspherical approach was later extended from single chan-
nel to coupled channels calculations by, e.g. , Masili and Starace [92].
Including no more than 4 channels, their computed photodetachment
cross section converged to the values of Stewart [86], which lie in the
range of most theoretical works. The early work of Chandrasekhar [84]
also departs from the commonly obtained values. This pioneering cal-
culation was performed with a model potential without explicitly taking
into account electron correlations.

2.5 Photodetachment of O−: the full picture

2.5.1 One-photon total cross section

Results for the total one-photon detachment cross section of O− are
shown in Fig. 2.12 and compared against available experimental data [73,
80, 98, 103]. The cross section measured with CW lasers is shown by
the light brown inverted triangles. Values measured with the OPO laser
system are represented by the blue squares and span photon energies
ranging from 1.46 eV to 5.51 eV by steps of 0.062 eV (500 cm−1), and
by even smaller steps close to thresholds. The present measurements
thus extends by more than 1.5 eV the range over which experimental
data is available. The error bars shown in Fig. 2.12 represent the 2σ
statistical uncertainty, where σ is the standard deviation of the mean.
Uncertainties arising from systematic effects are estimated to lie below
7% and include uncertainties on the detection efficiency (4%), laser pulse
energy (5%), ion current (1%), ion velocity (1%) and laser beam vertical
displacement (2%), as in Sec. 2.4.1.

The present data is in good self mutual agreement over the com-
mon photon energy range covered. Just above threshold, the present
measurements are also in agreement with that by Lee et al. [103]. For
photon energies above 2.2 eV however, the measured cross sections are
about 20% larger than the three other experiments and increases with
energy while the experimental data of [73, 80, 98] present a plateau with
a slightly negative slope.

The measurements by Smith and by Branscomb et al. were per-
formed in a crossed beam configuration [80, 98]. The light from a carbon
arc lamp was sent through quasi-monochromatic filters onto a beam of
O− and the cross section was inferred by carefully measuring the pho-
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Figure 2.12: Total photodetachment cross section of O−. Full squares: ab-
solute values from the present experiment with the OPO laser, full triangles:
absolute measurement of Hlavenka et al. [73], full inverted triangles: absolute
values of the present experiment with CW lasers, full circles: absolute mea-
surement of Smith [98], open circles: relative measurement of Branscomb et
al. [80], crosses: absolute measurement of Lee and Smith [103]. The vertical
dashed line shows the O( 1D) threshold. The insets show results from the present
experiment around the O( 3P) and O( 1D) thresholds, from left to right. The
vertical dotted lines indicate the position of the various fine-structure thresh-
olds, numbered as in Fig. 2.15.

toelectron current [97]. The origin of the differences with the present
experiment is yet not understood. The recent experiment of Hlavenka et
al. [73] yields values for the cross section matching those of earlier work.
It is based on negative ion depletion in a multipole trap and thus avoids
the possible loss of photoelectrons just mentioned. As in the present
work, the measurement relies on scanning the laser beam across the ion
trap in order to avoid having to determine the interaction volume but
the assumptions made concerning the ion density are more stringent.
The quoted uncertainty seems rather low, considering the typical accu-
racy of powermeters and the laser beam deflection technique employed
to scan the trapping volume.

For the sake of completeness, one must mention the early absolute
measurements by Branscomb and Smith [97] and later by Branscomb
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et al. [49], performed with a similar experimental setup. These early
values were omitted from a subsequent publication by the same authors
[80] and are thus not reproduced here. Their magnitudes are lower than
those of the present experiment, while their shape is very similar.

The opening of the first excited state (1D) threshold manifests itself
as a steep rise in the cross section above 3.43 eV. The present cross
section does not match that measured by Branscomb et al. [80], which
was put on an absolute scale using the data of Smith [98]. As stated
by Branscomb et al. , calibration of their apparatus was challenging for
photon energies above 3.7 eV because of stray photoelectrons produced
by UV light on the walls of the vacuum chamber. Detection of these
stray photoelectrons may change the observed cross section and, while
no uncertainty is given, the difference of more than 2.5×10−22 m2 (25%)
between the measured cross section and a crude theoretical estimate was
regarded by the authors as non contradictory [80]. The present results
above the O(1D) threshold also lie within 25% of the values of Branscomb
et al. . For photon energies above 3.93 eV, no other experimental data
is available.

The present results obtained with the OPO laser are compared in
Fig. 2.13 against theoretical calculations. The cross section from a R-
Matrix Floquet (RMF) calculation falls in reasonable agreement with
our results below the O(1D) threshold [117]. The calculation employs
a restricted configuration interaction (CI) description of the anion and
atomic target which includes pseudo-orbitals chosen to optimize the po-
larizability of ground state oxygen. The CI basis is voluntarily limited
to essentially Hartree-Fock wave functions for the three physical atomic
states in order to keep the RMF calculation simple. The electron affin-
ity of O− and polarizability of ground state oxygen are well reproduced
but the energies of the two first excited states of oxygen (1D, 1S) are
not accurate. This is evident in Fig. 2.13 where the opening of the
O(1D) threshold occurs at a significantly higher photon energy. Despite
this energy difference, the magnitude of the experimental cross section
is reasonably well reproduced while its shape deviates from the RMF
results by a steeper rise above both thresholds and a more gentle slope
at higher energies. A standard R-matrix calculation was also performed
and its results in the length form are essentially identical to the RMF
ones, which use the most appropriate gauge in each region of configura-
tion space [117]. Results in the velocity gauge, shown in Fig. 2.13, lie
some 25% lower. The dotted curve is the result, in the length form, of
the calculation by Zatsarinny and Bartschat using the B-spline R-matrix
method [108]. Results in the velocity gauge are in relatively good mu-
tual agreement with the length ones. Their calculation includes a large
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number of accurate target states so as to describe as well as possible
the oxygen ground and low-lying excited states. The calculated cross
section lies about 15% higher than the present measurement below the
O(1D) threshold, but is only 6% higher above the O(1D) threshold, a
value that matches the experimental uncertainty. We may note that the
amplitude of the step corresponding to the opening of the O(1D) channel
is smaller in the calculation than in the experiment. Agreement with
the early calculation of Robinson and Geltman [109] is surprisingly good
below the O(1D) threshold, considering that the calculation is based on
a one- electron model potential adjusted to the experimental electron
affinity. The cross section above the O(1D) threshold is much higher
than the present data and may reflect, as suggested by Robinson and
Geltman, the fact the polarizability α of oxygen is different between
O(3P) and O(1D). Due to the lack of available data, the experimental
value of α for the oxygen ground state was used for both final states
in their calculation. Finally, let us note that most theoretical results
presented here are 20% to 35% larger than the previous experimental
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cross sections [73, 80, 98, 103]. There is no agreement in shape either,
in particular above 2.2 eV where previous experimental data are nearly
constant with photon energy while theoretical values increase monoton-
ically.

One must mention that the photodetachment cross section of O−

was calculated in a number of other theoretical works, ranging from
semiempirical calculations to equation-of-motion coupled-cluster Dyson
orbitals or density functional theory calculations [111, 114, 115, 144–
146]. They substantially differ from the data presented in Figs. 2.12
and 2.13 both in shape and magnitude.

The good agreement reached between the results obtained with CW
and pulsed OPO lasers illustrates the robustness of the animated-crossed-
beam technique and validates its use with pulsed laser sources. The CW
experiment is indeed performed mainly with CW Ar+ and Ti:Sa lasers
operating at the TEM00 mode and providing a light beam of superior
quality, with a spatial profile very close to Gaussian and excellent power
stability. In the OPO laser system, light pulses are generated through
a series of nonlinear processes in optical crystals and, as such, the light
beam quality is strongly reduced. The spatial profile is far from Gaus-
sian and strongly varies with the wavelength. Pulse-to-pulse energy
fluctuations reach standard deviations of more than 30% and important
fluctuations in the time profile of a single laser pulse can also be observed
since the Nd:YAG pump laser is multimode. In theory, the ACBT does
not set restrictions on the laser intensity profile as long as it remains
constant throughout a vertical scan. It also stands when pulsed lasers
are used, as shown in Sec. 2.2.1. Moreover, pulse-to-pulse fluctuations
of the time profile of the laser pulses can be averaged out by measuring
over a sufficiently large number of pulses, as in the present work. The
excellent mutual agreement between the CW and pulsed measurements
certainly confirms such considerations.

The insets in Fig. 2.12 show details of the cross section around the
O(3P) and O(1D) thresholds. The positions of the various fine structure
thresholds are indicated by the vertical dotted lines, numbered accord-
ing to Fig. 2.15, and the most intense fine structure transitions can be
observed as sharp rises in the cross section curve. Note that the region
around the O(3P) threshold has been measured in much greater detail
by Neumark et al. [147] and Suzuki and Kasuya [148], and reaching such
a level of detail is certainly not the goal of the present study. The cross
section can be fitted by a sum of Wigner threshold laws [44] associated
to each fine structure threshold and including only s-wave contributions
since these are predominant for low energy photoelectrons. Such a fit
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function reads

σ(ε) = A

3/2∑
J=1/2

PJ
2∑

J ′=0

RJJ ′(ε− EJJ ′)1/2, (2.41)

where ε is the photon energy, A a proportionality constant and PJ is the
initial population of the fine structure component O−(2PJ). A and PJ
are fit parameters. RJJ ′ and EJJ ′ are the branching ratio and transition
energy of the JJ ′ transition from the initial O−(2PJ) state to the final
O(3PJ ′) or O(1DJ ′) states. Transition energies are computed using elec-
tron affinities and energy levels from [149] and [150]. Branching ratios2

RJJ ′ to the O(3P) and O(1D) states are obtained from [78, 151, 152].
The fit of the measured cross section with Eq. (2.41) can be used to
estimate the initial populations PJ of the fine structure components of
O−. They are found to be 0.34±0.02 and 0.66±0.02 for the J = 1/2 and
J = 3/2 components respectively when fitting the ground state thresh-
old. The fit of the O(1D) threshold yields populations of 0.30±0.14 and
0.70± 0.14 for J = 1/2 and J = 3/2 respectively.

2.5.2 One-photon partial cross sections

Term-resolved partial cross sections

The branching ratio R1D to the O(1D) final state, obtained from VMI
measurements, is represented in Fig. 2.14(a). It raises rapidly above
threshold and soon reaches a plateau-like region where, on average, pho-
todetachment leaves 21.6% of the oxygen atoms in the 1D state and the
rest in the ground state. For a photon energy of 3.20 eV (λ = 266 nm),
the present branching ratio of 0.21± 0.02 agrees within error bars with
the value of 0.24±0.04 measured by Domesle et al. [112]. The solid line
in Fig. 2.14(a) represents a tentative fit of the branching ratio using

R1D(ε) = C

3/2∑
J=1/2

PJ
(ε− EJ2)1/2

1 + b(ε− EJ2)a
, (2.42)

where PJ is the initial population of the J-th fine structure component
of O−, taken from Sec. 2.5.2, EJ2 is its energy difference with respect
to the the O(1D2) state of oyxgen and a, b and C are fit parameters.
The rationale behind this choice of function is that R1D(ε) tends to
a Wigner threshold law for low photoelectron energies and is almost

2Details on these branching ratios and on the populations PJ will be presented in
Sec. 2.5.2
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Figure 2.14: (a) Branching ratio to the O( 1D) final state and (b) total and
partial photodetachment cross sections. (a) Full triangles: present measure-
ment, disc: measurement of Domesle et al. [112], full line: fit of the present
data (see text). The inset is magnified view of the data at threshold. Uncertain-
ties are 1σ values coming from the least-square fitting procedure of the peaks
in the photoelectron velocity distribution. (b) Full squares: total cross section,
crosses: partial cross section to the O( 3P) state, empty squares: partial cross
section to the O( 1D) state. The dashed lines indicate, from left to right, the
positions of the O( 3P) and O( 1D) thresholds.



62 Chapter 2. Photodetachment of H− and O−

constant in the high energy region. Note that while the partial cross
section to O(1D) must follow a Wigner law at threshold, this is not the
case for the branching ratio. However, since the partial cross section
to O(3P) remains essentially flat across the O(1D) threshold region, the
partial cross section and branching ratio to O(1D) exhibit essentially the
same behavior and R1D raises, in good approximation, according to the
Wigner law. The best fit is obtained for a = 0.61, b = 8.1×10−3 cm−0.61

and C = 6.8× 10−3 cm1/2.

The partial photodetachment cross sections to the O(3P) and O(1D)
final states can be straightforwardly obtained from the total cross section
and the fit of the branching ratio,

σ1D = R1D σ, (2.43)

σ3P = (1−R1D) σ. (2.44)

They are represented in Fig. 2.14(b) along with the total cross section.

Fine structure-resolved branching ratios

For a given final term (3P or 1D), branching ratios3 also exist between the
various fine structure components of both the initial anionic state (J =
1/2, 3/2) and the final atomic state (see Fig. 2.15). It is well established
that these ratios are not a simple product of the statistical weights of the
initial and final states [68, 151]. For detachment of a p-electron close to
threshold, they can be expressed as ratios between geometrical factors
GJJ ′ obtained through angular momentum conservation and coupling
between the atomic target and the outgoing photoelectron [152]. Such
geometrical factors read

GJJ ′ = (2J ′ + 1)
∑
λ

(2λ+ 1)

{
L′ S λ
1
2 J ′ S′

}2{
L′ S λ
J `0 L

}2

, (2.45)

where the quantum numbers (L, S, J) and (L′, S′, J ′) are relative to
the anion and the atom, respectively. `0 is the initial orbital quan-
tum number of the electron and is 1 for a p-electron. Numerical val-
ues of the branching ratios, calculated from these geometrical factors
as RJJ ′ = GJJ ′/

∑
J ′ GJJ ′ , are given in Table 2.2 for the ground state.

Since the first excited state (1D2) has only one fine structure component,

3The related quantity of intensity ratios is sometimes favored in the literature, and
represent the intensity of a given J → J ′ transition relative to the J → 2 transition.
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Figure 2.15: Sketch of the fine structure energy levels of O− and of the
ground and first excited states of O. The arrows depict the various fine structure
transitions, labeled by numbers and ordered by increasing energy. The numbers
next to the arrows are the transition intensities, given by PJRJJ ′ in Eq. (2.41).
The population distributions of the initial anion state and final atomic state are
shown on the right. All quantities are normalized so that their sum for a given
term is 1. The scheme is not to scale, however transition energies are indicated
on the right and were computed using [149] and [150].

both ratios are obviously 1 in this case. We may finally note that, follow-
ing the symmetry and orthogonality properties of the 6j symbols [153],

∑
J ′

GJJ ′ =
1

(2S + 1)(2L+ 1)
=

1

6
, (2.46)

independent of the initial fine structure component J and of the values
of (L′, S′). Therefore, close to threshold, the difference between the
photodetachment cross sections of the J = 3/2 and J = 1/2 states is
due only, through the Wigner law, to differences in threshold energies.
This difference is, to the first order, proportional to ∆E/

√
ε, where

∆E is essentially the fine structure splitting of O− (0.02 eV) and ε is
the photon energy. It therefore rapidly vanishes with increasing photon
energies.

For the oxygen ground state (J ′ = 0, 1, 2), branching ratios simi-
lar to those of Table 2.2 have been measured up to photon energies of
2.54 eV [77, 78, 119]. The purely geometrical picture is strictly valid
only if a single partial wave contributes to detachment [152], as is the
case close to threshold where s-wave detachment predominates. How-
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J\J ′ 2 1 0

3/2 0.69 0.25 0.06

1/2 0.28 0.5 0.22

Table 2.2: Fine structure branching ratios for the oxygen ground state. The
sum over J ′ for each J is 1.

ever, increasing photon energies see the onset of d-wave detachment and
the ratios determined from Eq. (2.45) should not be valid since geomet-
rical factors cannot be separated from radial dipole matrix elements in
the various summations involved in the calculation of the cross sections.
Pan and Starace showed that the geometrical picture still holds far from
threshold if one-electron dipole matrix elements are term-independent
and Cavanagh et al. observed, following their experimental results, that
this must be the case for ground state oxygen [78, 152]. Interestingly,
we note that term independence is a characteristic of central poten-
tial models and the sustained validity of the geometrical approach may
therefore be associated to the excellent agreement between the present
total cross section and the model potential calculation of Robinson and
Geltman [109].

In the present VMI measurement, fine structure transitions are re-
solved up to ∼ 0.3 eV above threshold. The transition intensities and
the branching ratios can be obtained, as for the term resolved quan-
tities, by fitting the fine structure peaks in the photoelectron velocity
distribution with Gaussian functions and computing their areas. The
corresponding results show no deviation from the geometrical distribu-
tion and branching ratios match the theoretical ones within 15–20 %
for the brightest transitions and 30% for the less intense one. Moreover,
since they have been experimentally verified, theoretical branching ratios
for the O(3PJ ′) channels can be used to estimate the initial populations
of the fine structure components of O−. Doing so, we obtain 0.69± 0.01
and 0.31± 0.01 for the J = 3/2 and J = 1/2 components, in agreement
within error bars with the populations determined by fitting the total
cross section close to the O(3P) and O(1D) thresholds (see Sec. 2.5.1).
Identical values are obtained when considering data close to the O(1D)
threshold, albeit with an uncertainty that is twice larger (0.02).

The measured fine structure population distribution departs from a
purely statistical mixture (2:1), which would correspond to production
from an infinitely hot source. The distribution can be used to estimate
the temperature of the ion source, given, via the Boltzmann distribution,
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by

T = − ∆E

k ln (2R)
, (2.47)

where ∆E is the fine structure splitting of O−, k is the Boltzmann
constant and R is the ratio between the populations of the J = 1/2
and J = 3/2 components. The above equation yields an ion source
temperature of 2382 ± 787 K, a value we consider as reasonable. We
have further measured the fine structure populations for different ion
source conditions, and found that the populations depend only weakly
on the discharge current. This is expected since we are already in the
asymptotic regime of Eq. (2.47).

Finally, it is interesting to note that, although the branching ratios
are not statistical, since the initial fine structure distribution is close to
statistical, the population distributions of the final O(3P′J) and O(1DJ ′)
states also are. From the measured populations and theoretical branch-
ings ratios, we obtain, e.g. , 0.56± 0.03 for the J ′ = 2 component of the
ground state, 0.33 ± 0.04 for its J ′ = 1 component and 0.11 ± 0.04 for
J ′ = 0. This is to be expected since, for an initial statistical distribution,
the symmetry and orthogonality properties of the 6j symbols give∑

J

(2J + 1)GJJ ′ =
2J ′ + 1

(2S′ + 1)(2L′ + 1)
. (2.48)

Hence we are able to completely define the initial state of the anion
and the final state of the atom, down to the fine structure populations.
These results are shown in Fig. 2.15 along with transition intensities,
relative to the most intense 3/2 → 2 transition, calculated using geo-
metrical factors and experimental initial O− populations. Such a level
of detail can be reached, as we show here, either through velocity map
imaging or by examining the total cross section at threshold.

2.5.3 One-photon differential cross section

The differential cross section for emission of a photoelectron of energy ε
from an unpolarized atom or ion by linearly polarized light and under
the dipole approximation can be written as

dσf (ε)

dΩ
=
σf (ε)

4π
[1 + βf (ε)P2(cos θ)] . (2.49)

In the above equation, σf is the partial cross section to a given final state
f , βf is the asymmetry parameter, P2(cos θ) =

(
3 cos2 θ − 1

)
/2 and θ is

the photoelectron ejection angle with respect to the quantization axis.
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Therefore, under the above assumptions, the 3D differential cross section
boils down to a single scalar parameter β. Discussion below is based on
the latter.
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Figure 2.16: Asymmetry parameter for photodetachment of O− leaving O in
the 3P ground state. Full squares: present experiment, full triangles: Cavanagh
et al. [78, 119], full circles: Hanstorp et al. [116], diamonds: Breyer et
al. [77], crosses: Hall and Siegel [76], empty square: Domesle et al. [112].
Dotted line: model of Hanstorp et al. [116], dashed line: Cooper and Zare [57],
full and chain lines: R-matrix results in the length and velocity forms.

The measured asymmetry parameter for photodetachment of O−

leaving the oxygen atom in its ground state is shown in Fig. 2.16 and
compared against available experimental and theoretical data. The
present results follow the general trend established by Cooper and Zare [57],
with isotropic emission at threshold (β = 0), emission preferentially per-
pendicular to the polarization axis (β ' −1) for intermediate photoelec-
tron energies and emission preferentially parallel to the polarization axis
at higher energies (β ' 1). The convergence of the asymmetry param-
eter to β = 1 at higher photoelectron energies, which is the signature
of a pure d-wave behavior, is not observed in the energy range spanned
by the experiment. This curve, characteristic of the photodetachment
of electrons with ` ≥ 1, is the result of an interference between the
competing s and d outgoing waves.

For photoelectron kinetic energies below 1.5 eV, the present data
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agrees with all four existing measurements within error bars [76–78, 116,
118, 119]. Hall and Siegel pioneered measurements of the photoelectron
angular distribution by photodetaching a beam of O− inside the cavity of
an Ar+ laser and collecting photoelectrons with a hemispherical energy
analyzer of low solid angle acceptance [76]. By measuring the yield of
photoelectrons while rotating the polarization of the laser light with a
λ/2 plate, the angular distribution could be retrieved. A similar setup
was later used by Breyer et al. [77]. Hanstorp et al. were able to
measure β by using an Ar+ laser and a ring dye laser to photodetach O−

ions inside a graphite tube drilled with thin holes, and outside of which
a channel electron multiplier was used to collect photoelectrons [116].
Again, rotating the polarization of the laser light while recording the
electron yield allows one to determine the angular distribution. Recently,
Cavanagh et al. [78, 118, 119] have measured the asymmetry parameter
for photoelectron energies ranging from threshold to 1.2 eV using a high
resolution velocity map imaging spectrometer.

In the higher energy region, the sole data available is the measure-
ment of Domesle et al. at a wavelength of 266 nm (4.66 eV) [112]. They
obtained β by measuring the photoelectron time of flight (TOF) inside
a magnetic-bottle spectrometer and subsequently modeling trajectories
with Monte Carlo methods. Their result (0.0 ± 0.1) is in disagreement
with our measurement (−0.177 ± 0.05). The reason for such a discrep-
ancy is unclear. If we note that good agreement is reached for the O(1D)
channel, where distribution is strongly asymmetrical (β ' −1), we may
speculate that the fitting of the experimental electron TOF distribution
with the Monte Carlo model is appropriate only for directional emission,
and fails in the case of emission close to isotropic due to non isotropic
spurious effects.

The present results fall in fair agreement with the results of Cooper
and Zare [57], who established the eponymous formula for the asym-
metry parameter and computed β using radial dipole matrix elements
obtained from the model potential of Robinson and Geltman [109]. The
Cooper and Zare formula is further simplified by the formula due to
Hanstorp et al. [116], under the assumption that radial dipole matrix
elements follow the Wigner threshold law,

β = 2A2ε
A2ε− 2c

1 + 2A2
2ε

2
, (2.50)

where ε is the photoelectron energy. The parameter A2 is related to the
ratio between the radial dipole matrix elements coupling the initial state
to the s and d continua, and the parameter c is the cosine of the phase
shift difference between the s and d outgoing waves. We have fitted
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Figure 2.17: Asymmetry parameter for photodetachment of O− leaving O
in the 1D state. Full squares: present experiment, empty square: Domesle et
al. [112], shifted by -0.01 eV for clarity. Dotted line: best fit to the present
results using the model of Hanstorp et al. [116].

the available experimental data below 2 eV with the above formula,
obtaining A2 = 1.132 eV−1 and c = 0.940, values close to those of
Hanstorp et al. [116]. Agreement between the fit and the present values
is satisfactory at low energies and degrades for photoelectron energies
above 1.5 eV. This energy is already well beyond the range of validity
of the Wigner threshold law used to derive Eq. (2.50), and such an
extended agreement may be due to the fact that the Wigner law is used
only to determine a ratio between two dipole matrix elements [116].

The asymmetry parameter obtained from the same ab initio, R-
Matrix calculation used to determine the total cross section [117] is also
shown in Fig. 2.16. Results from calculations using the length and veloc-
ity forms of the dipole matrix, shown by the full and chain lines, both
fall in good agreement with the present measurement over the whole
energy range covered. Length form results lie a few percent above the
experimental values at higher photoelectron energies and velocity form
data are a few percent lower, but the two remain within error bars. As
a final note, we mention that the asymmetry parameter was also com-
puted using density functional theory by Liu and Ning [146], however
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its shape largely differs from that represented in Fig. 2.16.

Data concerning the asymmetry parameter for photodetachment leav-
ing oxygen in its first excited state O(1D) is much scarcer, and is rep-
resented in Fig. 2.17. As expected, the β parameter follows the general
trend given by the Cooper and Zare formula for p-electron photodetach-
ment. At a wavelength of 266 nm (4.66 eV), the agreement is excel-
lent between the present β parameter (−0.90 ± 0.10) and the value of
−0.90± 0.10 measured by Domesle et al. [112]. The dotted line repre-
sents our best fit of the present results using the formula of Hanstorp et
al. [116], with parameters A2 = 0.727 eV−1 and c = 0.963.

2.5.4 Two-photon total cross section

The two-photon detachment of the oxgyen anion was studied at the
Nd:YAG laser wavelength, λ = 1064 nm, using the extension of the
animated-crossed-beam technique we developed earlier. Results related
to the extension itself are first presented, followed by the experimental
value of the two-photon generalized cross section. The influence of the
photon statistics is discussed in details at the end of the section.

In Fig. 2.18, we show an example of the measured detachment yield
as a function of the vertical position of the laser beam, normalized for the
laser pulse energy and the ion current. The corresponding basis expan-
sion is shown by the full line and relies on a set of 300 Gaussian functions
with widths corresponding to laser waists from 30µm to 200µm. We in-
tentionally chose an oversized basis to test the robustness of the method.
The NNLS algorithm and the Tikhonov regularization method give the
same expansion coefficients to within 2%. They are non-zero only for
two functions with widths corresponding to laser waists of 60µm and
60.7µm, in excellent agreement with an independent measurement of
the waist. Indeed, by passing a razor blade at the focal point and mea-
suring the transmitted energy, we estimated the radius of the laser spot
to be 60µm. Using (2.20), the value obtained for the cross section is
σ(2) = 1.49× 10−57 m4s, while (2.32) gives σ(2) = 1.50× 10−57 m4s.

The uncertainties arising from systematic effects are listed in Table
2.3. The finite response time of the fast photodiode yields an uncertainty
in the ratio ∆2/∆(2), which is estimated to lie below 2%. The energy
meter has a 3% calibration accuracy according to the manufacturer,
and a comparison with another energy meter gives a 5% uncertainty.
The latter thus provides a conservative estimate for the pulse energy
error. The uncertainty in the coefficients of the expansion is lower than
3%. The 3% uncertainty in the height L of the slit, which enters the
determination of the basis functions Ψm in equation (2.29), results in
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Figure 2.18: Number of neutrals per laser pulse (triangles) as a function of
the vertical displacement Y of the laser beam. The data is an average over 31
vertical scans. It has been normalized for the laser pulse energy and the ion
beam current, and was subsequently symmetrized. The full line is the result
obtained from the basis expansion.

an uncertainty from 7% to 15% in the cross section depending on the
quality of the measurement. The total error is then computed following
the NIST guidelines [143], and is a simple quadrature sum of the different
uncertainties.

The experimental generalized two-photon detachment cross section
is shown in Fig. 2.19 and compared against available data. The dot-
dashed, broken and full curves correspond respectively to the results
of an R-Matrix Floquet calculation for the ML = 0 and | ML |= 1
magnetic sublevels of the initial O−(2Po) state and their statistically
averaged sum [117]. The characteristics of the RMF calculations are
the same as for one-photon detachment results presented above. The
averaged sum displays a maximum for a photon energy in the region
of 0.95 eV, corresponding to a photoelectron energy of about 0.234 eV,
coming mainly from the |ML |= 1 contribution which is dominant over
most of the energies considered here. The results of the perturbation
theory calculation by Robinson and Geltman [109] also display a similar
maximum albeit some 10% larger than in the R-matrix Floquet case.
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Relative uncertainty

Vertical displacement Y 2%

Ions velocity v 1%

Power/energy meter Plaser/Elaser 5%

Detection efficiency η 5%

Photodiode rise time 2%

Slit height L 7 to 15%

Table 2.3: Experimental uncertainties arising from systematic effects.
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Figure 2.19: Generalized cross section for two-photon detachment of
O−(1s22s22p5 2Po). The dot-dashed and broken lines are the results of an
R-matrix Floquet calculation for the ML = 0 and | ML |= 1 sublevels of
the initial anion state respectively, while the solid line is their statistical av-
erage [117]. The full triangles are the results from perturbation theory based on
a one-electron model potential [109]. The thin solid line is the results obtained
from the adiabatic-theory approach [121]. The full circle is the experimental
value of [120] while the full square is our new absolute experimental result.
The error bars are the combined statistical and systematic uncertainties.
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The results of Gribakin and Kuchiev [121, 154] are about twice those of
the RMF calculation. They were obtained from an analytical formula
for the n-photon detachment cross sections (n ≥ 2) of negative ions,
derived from an adiabatic-theory approach. This expression should give
better results when more photons are absorbed.

At the photon energy of 1.165 eV, corresponding to the Nd:YAG
laser wavelength, the RMF calculations yield a generalized cross sec-
tion of 1.55 × 10−57 m4 s, some 20% smaller than that obtained using
perturbation theory [109] and thus much larger than the older exper-
imental value [120]. Our new measurement gives a generalized cross
section of (1.50 ± 0.16) × 10−57 m4 s, almost four times larger than the
previous experiment and thus in very good agreement with the results
of our R-Matrix Floquet calculations and those obtained by Robinson
and Geltman [109].

Let us now consider the influence of the photon statistics on the ex-
perimental generalized cross section. It is well established that temporal
fluctuations of the intensity due to mode beating enhance the efficiency
of n-photon ionization and detachment [137–139]. In the limit of an infi-
nite number of modes, the enhancement factor reaches n!. Pulsed, high
power lasers exhibit in general a large number of modes and previous
studies of two-photon detachment have taken the photon statistics into
account by dividing the value of the cross section extracted from the data
by two [120]. Our Nd:YAG laser also operates in the multimode regime,
but can be seeded to force single-mode operation. It is further possible
to characterize the distribution of the modes by measuring the temporal
profiles of the laser pulses. Figure 2.20 (a) shows such profiles measured
with a 25 GHz photodiode connected to a 3 GHz oscilloscope, with the
full line corresponding to the unseeded case and the dashed line to the
seeded one. Figure 2.20 (b) shows the norm of the Fourier transform of
the difference between the temporal envelope of a single pulse and the
mean temporal envelope, averaged over 500 pulses. In the seeded case,
the temporal envelope is smooth, as expected for single-mode operation,
and, in the Fourier spectrum, the single peak centered at the origin is
reminiscent of the Fourier transform of the envelope. In the multimode
case (full line), intensity modulations due to mode beating appear on
the temporal profile and, in the Fourier spectrum, 8 additional peaks are
observed at integer multiples of the 237 MHz frequency, which matches
the free spectral range of the cavity. The laser pulse therefore consists
of at least 9 modes.

The generalized cross section extracted from the data is (1.59 ±
0.27)×10−57 m4s in the multimode case and (1.50±0.16)×10−57 m4s in
the single mode case, therefore, surprisingly, no effect of photon statis-
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Figure 2.20: (a) Temporal profile of the pulses from the seeded (dashed) and
unseeded (full) Nd:YAG laser, and (b) norm of the Fourier transform of the
difference between the temporal profile of a single pulse and the mean tempo-
ral profile, averaged over 500 pulses. The temporal profile of the seeded laser
has been shifted in time for clarity. The vertical dashed lines indicate integer
multiples of the free spectral range of the laser cavity.
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tics is observed within the error bars. The possible reasons for such an
absence are twofold. First, the number of modes is low, hence deviations
due to photon statistics may be lower than n!. As an example, the ex-
periment of Lecompte et al. [138] considered the 11-photon ionization
of xenon for an increasing number of modes and approximately reached
the n! factor when more than 100 modes were present in the cavity. Sec-
ond, in the present crossed-beam configuration, the traversal time of the
anions through the diameter of the square of the spatial intensity profile
is about 273 ps while the intensity modulations due to mode beating
have a period higher than ∼ 1 ns. As the ions travel through the laser
spot, the pulse envelope is essentially constant, and photon statistics do
not influence the two-photon detachment process.

2.6 Conclusion

The animated-crossed-beam technique (ACBT), originally developed for
electron-ion collisions, was used to measure absolute, total photodetach-
ment cross sections. We demonstrated that it can be adapted to the
laser-atom case irrespective of whether the beams are pulsed or continu-
ous. It provides with a direct link between the one-photon cross section
and easily measurable quantities: laser power, ion current and integrated
detachment signal. The absence of any assumption on the shape of the
interacting beams makes for a robust and reliable technique, capable of
providing benchmark data. Its attractive features can be extended to
the case of multiphoton ionization and detachment at the price of an
increased mathematical complexity and a few necessary assumptions on
the shape of the beams, which, we believe, are less stringent than in
usual techniques. The extension relies on the deconvolution and Abel
inversion of the detachment signal through a basis expansion.

In a first step, the one-photon detachment cross section of H− was
measured in the 700-1064 nm wavelength range. The results obtained
with the ACBT are found to be in excellent agreement with most of the
previous experimental determinations and with recent, compelling theo-
retical studies. This, we believe, confirms the benchmark capabilities of
the technique. In a second step, the one-photon total detachment cross
section of O− was measured and the results obtained are significantly
larger than those from previous experiments, but in agreement with the
most recent, ab initio R-Matrix Floquet calculation [117]. This resolves,
in turn, a long lasting discrepancy between theory and experiment and
has important implications since the O− photodetachment cross sec-
tion was often used to put relative cross sections for other negative ions
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on an absolute scale. The cross section behavior around the opening
of the O(1D) threshold has been measured in details for the first time
and the available experimental data was extended up to just below the
O(1S) threshold. The two-photon generalized detachment cross section
was measured at the Nd:YAG frequency and falls in excellent agreement
with the same RMF calculation, thus resolving another long-standing
discrepancy.

A VMI spectrometer was designed and built so as to permit the use
of a fast anion beam and a perpendicular detection geometry. It allowed
us to study photoelectrons emitted upon the one-photon detachment
of O− and measure the branching ratio between the ground and first
excited states of oxygen and the asymmetry parameters of each chan-
nel. Branching ratios fall in fair agreement with the single experimental
data point available, and, sufficiently far above the O(1D) threshold,
indicate that photodetachment leaves about 20% of the atoms in the
O(1D) excited state while the rest is in the ground state. Fine structure
branching ratios were also measured close to thresholds and fall in fair
agreement with previous works. Their theoretical values were further
used to determine the initial fine structure population distribution of
O−, which corresponds to a temperature of above 2000 K. Asymmetry
parameters were measured for both O(3P) and O(1D) final states and up
to photon energies of 5.5 eV. They exhibit the characteristic behavior
of p-electron detachment, resulting in electron emission perpendicular
to the laser polarization axis at intermediate photoelectron energies.
Agreement is good with most other experimental and theoretical works
and we could, again, substantially extend the photon energy range over
which experimental data is available.

The present work shows that, by combining both the animated-
crossed-beam technique and velocity map imaging technique with widely
tunable broadband laser systems, one can determine the complete set
of parameters governing photodetachment in an absolute manner. The
resulting data gives information on even minute details, such as fine
structure branching ratios, and provides with stringent tests of theo-
retical methods both for benchmark anions and for open-shell systems
which still somewhat challenge theories.





Chapter 3

Double photodetachment of He−

in strong laser fields

3.1 Introduction

3.1.1 State of the art

Helium can not attach an extra electron and form a stable negative ion,
and the same is true of all rare gas atoms. It possesses nevertheless a
rich spectrum of quasi-bound states with energies higher than the helium
ground state, and thus embedded in the detachment continuum. One of
these states, He−(1s2s2p 4Po), is metastable against spontaneous decay
back to He(1s2 1S) since the ejection of an electron does not fulfill the
selection rules for Coulomb autodetachment. Indeed, the total spin S is
not conserved and decay occurs only via weak spin-orbit and spin-spin
interactions. Furthermore, spontaneous decay to other states of helium
is not permitted since it lies 77.5 meV below the first excited state
He(1s2s 3S) [38]. The He− anion is thus metastable, with lifetimes from
7.8 µs to 359 µs depending on the fine structure component considered
(J =1/2, 3/2 or 5/2) [39]. This is sufficiently long for most studies to be
carried out and, because it is a doubly-excited system in which electron-
electron correlations are important, it has received a lot of attention over
the years [36].

Double photodetachment (DPD) is the absorption of one or several
photons by a negative ion and the ejection of two electrons. While double
photoionization, its counterpart for atoms, has been extensively studied,
data is scarcer concerning double photodetachment, in particular on the
experimental side [36]. Notwithstanding experimental challenges, and in
particular producing sufficient anion densities, the important structural
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differences between negative ions and atoms are expected to alter the
dynamics of double electron ejection and makes the study of DPD and
its comparison with double photoionization attractive.

If its energy is chosen above the double detachment threshold1, a
single photon is sufficient to induce DPD through the direct or sequen-
tial emission of two electrons and these processes have been studied for
a number of anions [6, 155–157]. We consider in the following pho-
ton energies below the double detachment threshold, for which DPD
can only occur through multiphoton absorption. Because the electron
affinity is much lower than the first ionization potential, multiphoton
DPD involves, in general, the one-photon single detachment of the an-
ion followed by the multiphoton ionization of the intermediate atom.
The second, multiphoton ionization step is efficient only for high light
intensities hence multiphoton DPD is best observed with pulsed, high
energy lasers. Early work on double photodetachment involved moder-
ately strong fields (∼ 1010 W/cm2) and aimed either at studying excess
photon detachment, i.e. , the absorption by the system of more photons
than is energetically required, or at performing the spectroscopy of au-
toionizing states embedded in the continuum [158, 159]. The detection
of positive ions following photodetachment is also at the basis of reso-
nant ionization spectroscopy, although in this case the atom is optically
excited to a Rydberg state and ionized by a static electric field [74].
This technique has been used a number of times to explore autoionizing
states of He− [75, 160–162]. Yet, in all the above studies, the produc-
tion of positive ions is only a means to study the negative ion and the
ionization dynamics of the second electron are not considered in detail.
More recently, a number of works were devoted to the search for genuine
strong field effects in double photodetachment [163–168]. Within the
much higher light intensities reached with modern femtosecond lasers
(> 1013 W/cm2), additional DPD dynamics were observed involving
rescattering of the first photoelectron onto the atomic target [168]. In-
terestingly, the influence of the magnetic quantum number ML on strong
field DPD has also been discussed within the frame of Ammosov-Delone-
Krainov or Keldysh-like models [166, 167], and it was shown to be of
some importance in the saturation of the second, ionization step.

Within a purely sequential picture and for moderately strong fields,
the DPD of He− first proceeds by the one-photon detachment of the an-
ion, leaving helium atoms in the 1s2s 3S and 1s2p 3Po states which can
then ionize by absorption of n additional photons. Therefore DPD of
He− can be viewed as a means to (i) produce excited, triplet states of he-

1That is, the sum of the electron affinity and first ionization potential of the atom
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lium which are hard to produce with other, conventional methods and
(ii) study their subsequent photoionization. While photoionization of
ground state helium has been extensively studied and is today very well
understood both theoretically and experimentally [169], little is known
concerning the photoionization of its excited states. Early experiments
by Stebbings et al. [170] gave a first account of the photoionization cross
sections from the 1s2s 1,3S states, along with theoretical work by, for ex-
ample, Burgess and Seaton [171] and by Jacobs [172]. Later, Gisselbrecht
et al. [173] used high-harmonic generation techniques to measure pho-
toionization cross sections of the 1s2p and 1s3p singlet states, obtaining
satisfactory agreement with theoretical work by Chang and Zhen [174]
and Chang and Fang [175].

Data concerning multiphoton ionization (MPI) of excited states of
helium are even scarcer. In 1974, Dunning and Stebbings [176] used a
2-photon ionization scheme, but focused on the determination of single-
photon ionization cross sections of 3Po states. Lompré et al. [177] inves-
tigated two-photon ionization of the 1s2s 1,3S excited states of helium for
two wavelengths, a phenomenon Haberland et al. [178] also considered
in a narrow wavelength region around 500 nm where the process is res-
onantly enhanced. More recently, Madine and van der Hart [179, 180]
used R-matrix Floquet theory (RMF) to examine the competition be-
tween multiphoton ionization of inner and outer shell electrons of the
1s2s 1S and 1s3s 1S states of helium in a vacuum ultraviolet radiation
field.

3.1.2 Double detachment of He−

A schematic view of the double detachment process and the energy lev-
els involved is shown in Fig. 3.1. Two different wavelength ranges are
considered: the range from 530 nm to 560 nm (range I, dotted arrows),
where the 1s2s 3S transient state gives the dominant DPD contribution,
and the range from 685 nm to 730 nm (range II, full arrows), where
DPD proceeds via the 1s2p 3Po transient state.

In both ranges, the first step, shown on the left, involves the one-
photon detachment of He− and leaves an helium atom in the 1s2s 3S
and 1s2p 3Po states. In range I, the helium atom must absorb at least
three photons to ionize from the 1s2s 3S state and two photons to do so
from the 1s2p 3Po state. It is well known that ionization efficiency can
be enhanced by intermediate resonant states, e.g. , one of the many high-
lying 1sns and 1snd states that can be reached by two-photon absorption
from the 1s2s 3S state. Absorption of one further photon leads to the
emission of an electron in the ` = 1, 3 continua, and the whole process
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Figure 3.1: Schematic energy level diagram of He− and He. The dotted
arrows show the pathway responsible for double detachment of He− via the 1s2s
transient state and its (2+1) REMPI in wavelength range I. The solid arrows
show the pathway via the 1s2p state and its (1+1+1) and (2+1) REMPI in
wavelength range II.

may be described as following a (2+1) resonance-enhanced multiphoton
ionization (REMPI) scheme. One may thus expect double detachment
to proceed preferentially through REMPI of the 1s2s transient state2,
even though the number of photons required is higher than through the
non resonant, 2-photon ionization of the 1s2p state.

In range II, the helium atom must absorb at least three photons
to ionize from both the 1s2s 3S and 1s2p 3Po states. High-lying 1snp
and 1snf states can be reached by resonant two-photon absorption from
the 1s2p 3Po state, from which absorption of one further photon leads
to the emission of an electron in the ` = 0, 2, 4 continua. The whole
process thus follows a (2+1) REMPI scheme. Figure 3.1 also reveals
the existence of another possible REMPI scheme: for λ ≈ 706.7 nm,
the photon energy ω ≈ 1.7543 eV coincides with the energy difference
between the field-free He(1s2p 3Po) and He(1s3s 3S) states. The latter
is in one-photon resonance with the 1s11p state which can emit a pho-
toelectron in the ` = 0, 2 continua by absorbing one further photon.
Such a (1+1+1) REMPI scheme is rare in atomic multiphoton ioniza-
tion since the most studied initial state, the ground state, is far below
the excited states. The presence of two intermediate resonant states
instead of only one significantly enriches the ionization behaviour. The

2It should be clear that, although we shall omit to specify the term sometimes, all
1sn` states belong to the triplet symmetry
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competition between the two REMPI schemes is also interesting as their
respective importance depends on the magnetic quantum number ML

of the initial state 1s2p 3Po. For ML = ±1, only the well-known (2+1)
scheme is allowed while for ML = 0, the (1+1+1) process is also permit-
ted. We shall see that these different pathways and properties induce a
very unusual behavior in the double photodetachment rates as a func-
tion of the laser wavelength, which extends quite far from the resonance
between the field-free He(1s2p 3Po) and He(1s3s 3S) states due to their
one-photon dynamic Stark mixing.

3.2 Experimental setup

The first stage of the experimental setup, sketched in Fig. 3.2, com-
prises a duoplasmatron source fed with He gas and producing an He+

beam that is mass selected by a permanent magnet and accelerated to
4 keV. The beam is then passed through a cesium vapour cell, where sin-
gle and double charge transfer converts He+ ions into He(1s2s 1,3S) and
He−(1s2s2p 4Po) respectively. The production of He− requires a large
target density for multiple collisions to occur, resulting in a conversion
efficiency of around 1%. After the vapor cell, a double deflection, using
electrostatic plates, cleans the beam of its neutral and positive com-
ponents. The remaining He− beam is passed into the laser interaction
region which is pumped to a high vacuum of about 10−8 mbar. Although
He− is metastable, the lifetimes of its various fine structure components,
359 µs for J = 5/2, 12.3 µs for J = 3/2 and 7.8 µs for J = 1/2 [39], are
sufficiently long to allow the use of conventional beam transport tech-
niques. Contamination of the beam by ground state helium atoms due
to spontaneous detachment only occurs at the percent level.

The 1 mm ion beam is illuminated perpendicularly by nanosecond
pulses from a tunable dye laser pumped by the second or third harmon-
ics of a Nd:YAG laser. Coumarin 500 and Pyridine 1-2 dyes were used to
cover wavelength ranges from 530 nm to 560 nm (range I) and 685 nm to
730 nm (range II) respectively. A pyroelectric detector constantly mon-
itors the pulse energy, which can be attenuated using a half-wave plate
mounted on a high accuracy rotation stage and a polarizing beamsplit-
ter cube, both placed at the output of the dye laser. The λ/2-plate is
servo-controlled by the detector to ensure a constant pulse energy along
the dye gain curve. Laser light is then focused onto the ion beam inside
the vacuum chamber by an f = 40 cm lens and collected, at the exit
of the chamber, by the pyroelectric detector. The size of the waist at
focus is about 54 µm, resulting in a peak intensity of 3.9× 1010 W/cm2
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Figure 3.2: Experimental setup. Cs: cesium vapor cell; PD: planar de-
flector; FC: Faraday cup; CD: cylindrical deflector; IR: interaction region;
Q: quadrupolar deflector; MCP: multichannel plates; Ti:Sa: Ti:Sapphire laser
beam; Dye: dye laser beam. Double arrows indicate convergent lenses. The
laser beams propagate along the z direction and their polarizations, when lin-
ear, are along the y axis.

for 8 mJ pulses. A λ/4-plate can be disposed between the lens and the
attenuator to change the polarization of the laser beam from linear to
circular or elliptic. No mirrors are used after it in order to avoid spurious
depolarization.

Ions traverse the laser spot (twice the waist) in about 250 ps, which is
much shorter than the pulse duration whose full width at half maximum
is 4.8 ns. During their transit, a few He− ions are converted into He+

by double detachment. Because of the spatial and temporal profiles of
the laser and ion beams, the measured signal is averaged over the focal
volume and integrated over the pulse duration.

The resulting He+ ions are subsequently analyzed in energy by a
quadrupolar deflector [181] coupled with a 60◦ cylindrical deflector in
order to ensure the detection of laser-induced double detachment events
only. Negative ions are collected at the opposite side of the quadrupole
in a Faraday cup. In addition to the energy analysis, a temporal gat-
ing of the 60◦ deflection and the signal acquisition is performed: the
cylindrical deflector is switched on only during a narrow time window
centred around the time of flight of laser-produced He+, whose hits on
the multi-channel plates are subsequently recorded in coincidence with
a square signal of a few tens of nanoseconds, appropriately delayed with
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respect to the laser pulse. The energy selection and temporal gating
reduce the background to less than 3 counts per hundred laser shots, as
determined in a shifted time window of the same duration.

The use of multi-channel plates allows the detection of single ions.
As a result of this extreme sensitivity, however, it is not possible to dis-
tinguish between single and multiple ion formation within the same laser
shot. A correction must be applied to the measured rate to account for
the Poisson probability distribution of multiple double photodetachment
events,

Ncorr = −Np ln(1−Nmeas/Np), (3.1)

where Nmeas (Ncorr) is the measured (corrected) number of events mea-
sured after Np laser pulses. The corrected results are further normalized
by the measured He− current. In the spectra presented below, the ion-
ization yield at each wavelength is recorded over more than 1000 laser
pulses. The overall uncertainty is of the order of 5-10% and is dom-
inated by counting statistics with small contributions from the pulse
energy readout and variations in the laser pulse shape.

In order to assess the sequential nature of the double detachment
process, light from a tunable, CW Ti:Sapphire laser was focused onto
the anion beam before it entered the interaction region in order to pho-
todetach He− ions prior to their exposure to the dye laser light. The
Ti:Sapphire laser was tuned to λ = 1005 nm in order to maximize
the detachment cross section to the He(1s2p 3Po) state, which reaches
3.6 × 10−19 m2 [182, 183], and thus produce, in vast majority (99%),
atoms in the 1s2p state. The atoms then fly to the interaction region
where they are intersected by the dye laser beam. The 5 mm spatial
separation between the light beams ensures that the detachment and
REMPI events are sequential. During transit between the two laser
foci, about 10% of the He(1s2p 3Po) states decay spontaneously into
He(1s2s 3S).

When detecting He+ ions, we must be able to discriminate between
the two color process, with detachment by the Ti:Sapphire laser and
ionization by the dye laser, and the dominant one color process, where
detachment and ionization occur within the same dye laser pulse. To do
so, a bias of 100 V is applied to the region of interaction with the dye
laser. He+ ions produced by double detachment in this region gain an en-
ergy of 200 eV while those produced by ionization of incoming He atoms
gain only 100 eV. He+ ions produced by either the Ti:Sapphire laser
or collisions with the residual gas outside the interaction region gain no
energy. The subsequent energy analysis performed by the quadrupolar
and cylindrical deflectors readily separates the various contributions.
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3.3 Theoretical methods

Double photodetachment (DPD) is treated theoretically in two separate
steps. First, an R-Matrix calculation treats the single photodetachment
of He− and provides partial cross sections to the various final states and
magnetic sublevels of the atom. Multiphoton ionization (MPI) of He
is then treated within the R-Matrix Floquet (RMF) theory framework,
which provides ab initio, non perturbative and time-independent data.
In order to model the experiment in details, an effective Hamiltonian
treatment of MPI is developed, checked against RMF and then used to
simulate the experimental DPD yields. Atomic units (~ = 1, e = 1,me =
1) are used unless otherwise stated.

3.3.1 R-Matrix theory for single photodetachment

One-photon detachment of He− has been studied in some detail over the
past few decades, with particular emphasis on resonances with doubly
excited states (see for example the review article [36] and references
therein). In the wavelength ranges spanned by the present study (685-
730 nm and 530-560 nm), no such resonances are accessible and the cross
section is smooth. Overall, there is relatively good agreement between
the various theoretical and experimental results in this region [182–190].
Previous studies have however dealt only with linear polarization, whilst
our present goal is to study double detachment under arbitrary elliptical
polarization. Moreover, while partial cross sections into the He(1s2s
3S) and He(1s2p 3Po) states have been considered by some authors,
no information exists on partial cross sections to the various magnetic
sublevels of a given term, e.g. He(1s2p 3Po) with ML = 0,±1. Such
partial cross sections are not anecdotal since, as we shall see in the next
chapters, the dynamics of resonance-enhanced multiphoton ionization of
He(1s2p 3Po) strongly depend on the magnetic quantum number ML.

The required partial cross sections σj can be calculated by first es-
tablishing a formula relating them to reduced dipole matrix elements,
which do not depend neither on polarization nor on ML, and later cal-
culating these matrix elements with the R-Matrix method. Let us first
investigate how the σj ’s can be expressed, via angular momentum al-
gebra, in terms of matrix elements coupling the initial and final states.
We assume L-S coupling and consider only dipole-allowed transitions.
Since the initial state, 1s2s2p 4Po, has a total spin Si = 3/2, the dipole
selection rules impose that the residual atom must be left in a triplet
state. For ease of notation, we therefore do not explicitly specify the
spin quantum numbers in what follows.
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We consider an initial state of the unpolarized anion, denoted by
|αiLiMLi〉, where Li is the orbital angular momentum of the state i, MLi

its magnetic quantum number and where αi represents all other numbers
required to specify the state. The final state in channel c |αcLc`LML〉 is,
asymptotically, the product of the wave functions of the residual atomic
state |αcLcMLc〉 and of the ejected electron |εc`m`〉, coupled to give a
total angular momentum L and total magnetic quantum number ML.
The partial cross section for photodetachment to a particular magnetic
sublevel MLc averaged over the initial magnetic sublevels is given in the
length form by,

σLc,MLc
(ε̂) =

4π2αa0ω

2Li + 1

∑
MLi

∑
L,ML,L′

√
(2L+ 1)(2L′ + 1)

∑
`,m`

(
Lc ` L
MLc m` −ML

)(
Lc ` L′

MLc m` −ML

)
×〈αcLc`L′ML|D(ε̂)|αiLiMLi〉

∗ 〈αcLc`LML|D(ε̂)|αiLiMLi〉 , (3.2)

which is derived from the general expression of the dipole matrix ele-
ments given by Burke [51]. α is the fine-structure constant, a0 is the
Bohr radius, ω is the photon angular frequency and D(ε̂) is the dipole
length operator for a given polarization vector ε̂. The dipole matrix ele-
ments for arbitrary elliptical polarization can be related to the reduced
dipole matrix elements (αcLc`L||D||αiLi) using the Wigner-Eckart the-
orem,

〈αcLc`LML|D(ε̂) |αiLiMLi〉 = (αcLc`L||D||αiLi)× (−1)−L−ML

×
[(

L 1 Li
−ML 0 MLi

)√
cos 2ε−

(
L 1 Li
−ML ±1 MLi

)√
2 sin ε

]
(3.3)

whereD is the tensor operator corresponding to D(ε̂). The polarization
vector ε̂ is expressed within the “natural” frame of reference of Tumaikin
and Yudin [191, 192],

ε̂ = e0

√
cos 2ε− e±1

√
2 sin ε. (3.4)

where e0,±1 are spherical unit vectors [53] and the ellipticity angle ε
can take the values −π/4 ≤ ε ≤ π/4. On the right-hand side, the
helicity of the vector e±1 corresponds to the sign of ε. The polarization
is linear when ε = 0, left circular when ε = π/4 and right circular
when ε = −π/4. Similarly, the complex conjugate of the dipole matrix
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element appearing in Eq. (3.2) is calculated from the reduced dipole
matrix element using

〈αcLc`L′ML|D(ε̂) |αiLiMLi〉∗ = (αcLc`L
′||D||αiLi)∗ × (−1)−L

′−MLi

×
[(

L′ 1 Li
−ML 0 MLi

)√
cos 2ε+

(
L′ 1 Li
−ML ∓1 MLi

)√
2 sin ε

]
. (3.5)

The present expression for ε̂ differs from the usual choice for ellip-
tical polarization which reads ε̂ = −e+1 sin(ε+ π/4) + e−1 cos(ε+ π/4)
and corresponds to a choice of the quantization axis (ẑ) along the light
propagation axis, typical of circular polarization. However, when ε = 0,
this usual expression is in contradiction with the convention for linear
polarization, in which the electric field vector is chosen as the quantiza-
tion axis (ε̂ = e0). Conveniently, the natural frame bridges the linear
and circular conventions together by performing a continuous rotation
of the reference frame as the ellipticity angle evolves from 0 to π/4,
going from ẑ along ~E to ẑ along the light propagation direction. The
reference frame thus depends on the ellipticity angle, although compari-
son with standard conventions is straightforward in the limiting cases of
linear and circular polarization. Since the choice of the reference frame
is arbitrary, any other frame would yield identical results for the partial
photodetachment cross sections, keeping in mind that the ML values are
projections of the angular momentum along the quantization axis and
must thus be appropriately rotated for meaningful comparison.

The cumulated photodetachment probability to a particular final
state |αcLcMLc〉 is readily obtained from the partial cross sections by
solving the rate equation dN(t)/dt = −σφ(t)N(t) with appropriate
boundary conditions,

Pαc,Lc,MLc
(t) =

σαc,Lc,MLc

σ

[
1− e−

∫ t
−∞ dTσφ(T )

]
, (3.6)

where φ(T ) is the instantaneous photon flux and the total cross section
σ is obtained by summing the partial cross sections over all quantum
numbers. Note that the intensity, or photon flux, required for double
detachment is very high and therefore, in the region where it occurs,
the exponential term on the right hand side of the above equation is
essentially zero, i.e. , photodetachment is saturated.

In order to compute the partial cross sections (3.3) and hence the
cumulated photodetachment probability, we require the reduced dipole
matrix elements (αcLc`L||D||αiLi), which are independent of the po-
larization. These can be extracted from standard R-matrix calculations
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using the UK APAP (Atomic Processes for Astrophysical Plasmas) suite
of computer codes [193]. In the rest of the section we give details on the
calculation, together with some illustrative results to assess the reliabil-
ity of the reduced dipole matrix elements thus obtained.

In the R-matrix approach, configuration space is divided into two
regions by a sphere encompassing the charge density of all states of the
residual atom included in the calculation. Within this sphere, the states
of the (N + 1)-electron system are represented by a discrete set of anti-
symmetrized basis functions built from linear combinations of the resid-
ual atomic states coupled with a set of continuum orbitals representing
the ejected electron, supplemented by a number of bound or short-range
correlation configurations. The (N + 1)-electron Hamiltonian is diag-
onalized in this basis, and the resulting eigenvalues and eigenvectors
are used to construct the inverse logarithmic derivative matrix or R-
matrix on the boundary of the inner region. In the outer region, the
ejected electron moves far from the target while the other electrons re-
main bound. Exchange between the ejected and bound electrons can
then be neglected, so that the wavefunctions for the full system can be
represented by a standard close-coupling expansion involving products
of the residual atomic states and a set of unknown functions represent-
ing the ejected electron. These unknown functions satisfy an infinite
set of coupled second-order differential equations, with the appropriate
asymptotic boundary conditions determining if the solutions represent
a bound state of the initial anion or a continuum state of the atom plus
ejected electron. The initial bound state and final continuum states
are then determined by matching the solutions in the inner and outer
regions at their common boundary. For the initial bound state, this
matching can only be performed at discrete energies, which are found
by an iterative search algorithm.

Since the initial He− anion has a 4Po symmetry, after photodetach-
ment the residual oxygen atom can only be left in a triplet state. The
present calculation includes the five lowest triplet states of helium, whose
wave functions were obtained using the CIV3 atomic structure computer
code [194, 195]. The energies and excitation thresholds thus obtained
are presented in table 3.1, where they are compared with those of a
more accurate calculation [196] and with the values recommended by
the National Institute of Standards and Technology (NIST). Oscillator
strengths and transition probabilities are compared with the NIST val-
ues in table 3.2.

In the R-matrix calculation, the inner region extends out to 40 a0,
and 30 continuum orbitals per angular momentum ` are used to represent
the ejected electron. The (N + 1)-electron Hamiltonian in the inner
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Table 3.1: Energies and excitation thresholds for the five lowest triplet
states of helium. The theoretical values are compared with the accurate, non-
relativistic energies taken from Drake [196] and the thresholds recommended by
the National Institute of Standards and Technology (NIST) [150].

Present (au) Drake (au) Present (au) NIST (au)

1s2s 23S -2.17513 -2.17523 0.0 0.0

1s2p 23Po -2.13294 -2.13316 0.04219 0.04206

1s3s 33S -2.06866 -2.06869 0.10647 0.10653

1s3p 33Po -2.05798 -2.05808 0.11714 0.11714

1s3d 33D -2.05562 -2.05564 0.11951 0.11958

Table 3.2: Oscillator strengths f and rates A in length (L) and velocity (V)
forms for dipole allowed transitions involving the five lowest triplet states of
helium, compared with the values recommended by NIST [150]. The figures
in parentheses are the powers of ten by which the preceeding number must be
multiplied.

Transitions f A (sec−1)
Present NIST Present NIST

1s2s – 1s2p L 0.5421 0.5394 0.1033 (8) 0.1022 (8)
V 0.5320 0.1014 (8)

1s2s – 1s3p L 0.5744 (-1) 0.6448 (-1) 0.8442 (7) 0.9475 (7)
V 0.6378 (-1) 0.9373 (7)

1s2p – 1s3s L 0.7019 (-1) 0.6951 (-1) 0.2795 (8) 0.2785 (8)
V 0.6786 (-1) 0.2703 (8)

1s2p – 1s3d L 0.6161 0.6102 0.7100 (8) 0.7070 (8)
V 0.6085 0.7012 (8)

1s3s – 1s3p L 0.9126 0.8914 0.1114 (7) 0.1074 (7)
V 0.8693 0.1061 (7)

1s3p – 1s3d L 0.1095 0.1120 0.1179 (5) 0.1292 (5)
V 0.1055 0.1136 (5)
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region is diagonalized for the initial 4Po symmetry and the three final
symmetries 4Se ,4Pe, 4De allowed by the dipole selection rules. In the
outer region, imposing decaying boundary conditions on the solutions
of the coupled second-order differential equations in the 4Po symmetry
yields an electron affinity of about 75.5 meV for the initial He− state.
This compares favourably with the value of 77.5 meV obtained both by
experiment [38] and by a more extensive calculation [197], and is slightly
better than that of an earlier R-matrix calculation [182], in which the
computed electron affinity was then slightly adjusted to agree with the
accurate value. While such small differences may be important close to
threshold, they have little effect on the overall cross sections in the range
of photon wavelengths (500-800 nm) considered in this study, and we do
not perform such an adjustment here.

3.3.2 R-Matrix Floquet theory for multiphoton ionization

R-Matrix Floquet theory [198, 199] allows atomic processes in a laser
field to be described in an ab initio and non-perturbative way. The the-
ory has been successfully applied to the investigation of multiphoton ion-
ization, laser-assisted scattering, harmonic generation and laser-induced
continuum states. Details of the theory together with particularly il-
lustrative examples of its application can be found in the recent books
[200] and [51]. Here, only those features that are relevant to the current
study will be outlined.

The wave function of an (N + 1)-electron system in a linearly po-
larized laser field described in the dipole approximation by the vector
potential A0ε̂ cosωt can be expressed in terms of a Floquet-Fourier ex-
pansion

Ψ(XN+1, t) = e−iEt
∞∑

n=−∞
e−inωtΨn(XN+1), (3.7)

whereXN+1 is the set of space and spin coordinates of allN+1 electrons.
Inserting (3.7) into the time-dependent Schrödinger equation

i
∂

∂t
Ψ(XN+1, t) =[

HN+1 −
i

c
A(t) ·

N+1∑
e=1

∇e +
N + 1

2c2
A2(t)

]
Ψ(XN+1, t)

yields an infinite set of time-independent coupled equations for the Flo-
quet components Ψn(XN+1). These equations can be solved efficiently
using the R-matrix approach of partitioning configuration space into
sub-regions with locally adapted gauges and reference frames.
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The inner region is defined as the sphere of radius a encompassing
the N -electron states Φi(XN ) retained in the calculation to describe
the residual ion. The components Ψn(XN+1) are expanded in a basis of
fully antisymmetrized wave functions built from Φi(XN ) and continuum
orbitals un` satisfying a fixed logarithmic boundary condition at r = a.
The most appropriate gauge to use in this region is the length gauge,
in which the interaction of the atomic system with the laser field is
proportional to the distance of the electrons from the nucleus. The cor-
responding Hamiltonian is diagonalized in the Floquet (N + 1)-electron
basis. The amplitudes of the eigenvectors at r = a and the eigenval-
ues are used to calculate the R-matrix elements, i.e. the inverse of the
logarithmic derivatives in the reaction channels.

In the outer region, the photoelectron moves far from the nucleus
while the other electrons remain bound. Since the radiative interac-
tion in the length gauge diverges at large distances, a transformation to
the velocity gauge is performed on the photoelectron, while the interac-
tion of the field with the other electrons is still described in the length
gauge. In the outer region, exchange of the photoelectron with the re-
maining bound electrons is negligible so that (3.7) reduces to an infinite
set of ordinary differential equations that can be solved using a close-
coupling approach combined with a log-derivative propagation method.
At sufficiently large distances, the solutions are matched to Siegert out-
going boundary conditions defined in the acceleration frame where the
close-coupling equations are asymptotically uncoupled and propagated
inwards using an asymptotic expansion technique. The matching is pos-
sible only at particular complex quasi-energies E, whose real part gives
the Stark-shifted energy of the dressed atomic states and whose imag-
inary part is minus half the dressed state ionization rate. The quasi-
energies for each state are found by an iterative search in the complex
energy plane, usually starting from the zero-field values, and followed
adiabatically as the laser frequency or intensity changes. Near reso-
nance, this can require very small steps and hence a very large number
of individual calculations. This is also true when the imaginary part of
the state being followed is extremely small, for example the 1s2p state.

As the photon energy is relatively small, the residual He+ ion can
be assumed to be left in its ground state. Since the initial state is
He(1s2p 3Po), the set of N -electron states Φi(XN ) is limited to He+(1s).
Due to this approximation, the ionization potentials of He(1s2p 3Po) and
He(1s3s 3S), respectively 3.5333 eV and 1.8637 eV, are underestimated
by 0.05 eV and 0.005 eV. The radius of the inner region was taken to be
6 a0. Seven Floquet components (5 absorption and one emission) were
retained in expansion (3.7), together with angular momenta ` up to 11.
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Figure 3.3: Real part of the RMF quasi-energies for ML = ±1 and dressed
Rydberg states from n = 8 to n = 14, as a function of the laser angular fre-
quency at a fixed intensity of 3.6×1010 W/cm2. The dashed line indicates the
zero-field energy of the 1s2p state and the thick dot-dashed line in the upper
right corner is the two-photon ionization threshold.

The inner region solutions were propagated to 65 a0 where they were
matched to outgoing Siegert boundary conditions.

The real part of the quasi-energies obtained are shown in Fig. 3.3
for ML = ±1 and Fig. 3.4 for ML = 0 as a function of the photon
energy ω. In Fig. 3.3, the horizontal line corresponds to the energy
of He(1s2p 3Po) state while the slanted lines correspond to the energy
of the Rydberg He(1snp) and He(1snf) states dressed by two photons.
Figure 3.4 also includes the He(1s3s 3S) state dressed by one photon. A
detailed explanation of these figures will be given in section 3.6, but one
can already see major differences between the ML = ±1 and ML = 0
cases, hinting at different physical behaviours depending on the value of
the magnetic quantum number. For ML = 0, the presence of the 1s3s
state dressed by one photon gives rise to a very large avoided crossing
around ωr = 0.06282 a.u. between the 1s2p and 1s3s energy curves,
reflecting the strong interaction between these two states which is absent
in the ML = ±1 case. The energy of He(1s2p 3Po) is shifted down for
ω < ωr and up for ω > ωr, in contrast to the ML = ±1 case where the
energy is always shifted down. The Stark shift of the Rydberg states
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Figure 3.4: Real part of the RMF quasi-energies for ML = 0 and dressed Ry-
dberg states from n = 8 to n = 16, as a function of the laser angular frequency
at a fixed intensity of 3.6×1010 W/cm2. The horizontal dashed line indicates
the zero-field energy of the 1s2p state, while the oblique dashed line represents
the zero-field energy of the 1s3s state shifted down by ω. The thick dot-dashed
line in the upper right corner is the two-photon ionization threshold.

(present as a series of lines with slope −2ω) is negligible.
The RMF calculation corresponds to a well-defined intensity but a

simple time-dependent picture can be built using a naive two-state model
involving the strongly interacting 1s2p and 1s3s states. This is justified
by the observation that in the RMF calculation the Rydberg states are
not appreciably perturbed by the field. The field-dressed wave functions
can be written as

|ψ+(t)〉 = sin θ(t) |2p〉+ cos θ(t) |3s〉 , (3.8)

|ψ−(t)〉 = cos θ(t) |2p〉 − sin θ(t) |3s〉 , (3.9)

with

θ(t) =
1

2
arctan

(
Ω(t)

∆

)
, 0 ≤ θ(t) ≤ π/2. (3.10)

The detuning ∆ is defined by ∆ = E3s− ω−E2p while Ω(t) is the Rabi
frequency

Ω = E0(t) 〈3s| ε̂ · r |2p〉 (3.11)



3.3. Theoretical methods 93

with E0(t) the amplitude of the electric field at time t, ε̂ the polarization
vector and r the radial coordinate of the electron. Defining E0 = (E3s−
ω + E2p)/2, the energies of the two states are given by

E± = E0 ±
1

2

√
Ω2(t) + ∆2 (3.12)

which tend to E0 ± |∆|/2 as the electric field and hence Ω(t) tends to
zero.

We first consider ∆ > 0, corresponding to photon energies below
the 1s2p-1s3s resonance. For vanishing fields, θ tends to 0 and the 1s2p
state corresponds to |ψ−〉 while the 1s3s state corresponds to |ψ+〉. As
the electric field increases, the energy of the 1s2p evolves adiabatically
as E−, i.e. is shifted down with respect to the field-free energy. As the
Rydberg states are not appreciably perturbed by the field, this results
in a blue shift of the 1s2p-1snp resonances. When the photon energy
is above the 1s2p-1s3s resonance, we have ∆ < 0 and hence θ = π/2
for vanishing fields. The 1s2p state thus corresponds to |ψ+〉 and its
energy evolves adiabatically as E+, inducing a red-shift in the resonance
positions.

This naive approach provides some insight on the mechanisms tak-
ing place in the ionization process under study. In particular, the sign
of the shift is determined uniquely by the laser frequency ω, while its
amplitude varies in time following E0(t). The change from blue to red
shift is expected to leave a strong signature in the experimental ion-
ization spectra, along with major differences between the ML = 0 and
ML = ±1 cases.

The next section is dedicated to a more realistic model of the exper-
iment.

3.3.3 Effective Hamiltonian theory for multiphoton ion-
ization

The RMF theory is a powerful tool for studying multiphoton ioniza-
tion of complex atoms but may require lengthy computation, especially
close to resonance. It is therefore not adapted to a detailed modeling of
an actual experiment where ionization rates over a large range of laser
intensities are required. A more practical and versatile approach is pro-
vided by effective Hamiltonian (EH) theory [201], whose scope goes well
beyond atom-laser interactions, as shown in the comprehensive reviews
by Killingbeck and Jolicard [202, 203].

The underlying idea of EH theory is twofold. First, the Hilbert
space is partitioned into two different subspaces: the model space P,



94 Chapter 3. Double photodetachment of He− in strong laser fields

containing the most relevant states of the problem, which in our case
are the quasi-resonant bound states, and its orthogonal complement Q,
spanning the rest of the Hilbert space. Second, the exact Hamiltonian
is “folded” into a smaller, effective Hamiltonian which couples explicitly
only those states belonging to the model space. The effect of states in
the Q-space is treated through additional perturbative matrix elements,
illustrating the semi-perturbative nature of the EH approach. The choice
of which states to include in the model space is of critical importance
since the effective Hamiltonian aims at preserving the main physical
properties of the process under study while treating perturbatively or
even omitting the remaining states.

We have built two effective Hamiltonian aiming at describing the
REMPI of the He(1s2s 3S) and He(1s2p 3Po) states respectively. For
the 1s2s state, the P-space includes the 1s2s 3S, 1sn 3S and 1snd 3D
states with n spanning the 4–27 range. In the case of the 1s2p state,
the P-space includes the 1s2p 3Po, 1s3s 3S, 1s3d 3D, 1snp 3Po and 1snf
3Fo states, with n spanning the range 6–45. The Q-space is truncated to
a finite size and includes 3S, 3D and 3G states together with high-lying
3Po and 3Fo states with n up to 70. Continuum states with ` = 0 − 5
are included up to energies where bound-free couplings are negligible.
The energy of the 1s2p 3Po, 1s3s 3S and 1s3d 3D states, respectively
−0.133154, −0.0686816 and −0.0556288 a.u. are taken from the NIST
database [150], while the energy of the Rydberg states is calculated from
their principal quantum number and quantum defect [196].

The effective Hamiltonian Heff gives rise to the following eigenvalue
equation:

Heff |ψp〉 = E |ψp〉 , (3.13)

where the wave function |ψp〉 spans the model space and the complex
eigenvalue E has a real part ideally identical to an eigenvalue of the exact
Hamiltonian. A complete and rigorous derivation of general effective
Hamiltonians has been given by Durand [204] while the application of
EH theory to multiphoton ionization is described by Baker [201]. A
detailed account on the derivation of an effective Hamiltonian for the
present problem is given in Appendix A. The effective Hamiltonian,
valid up to the second-order in the atom-field interaction, is written as

Heff = PH0P + PV P + P

(
S + Ω− i

Γ

2

)
P (3.14)

where V is the exact atom-field interaction operator and H0 the exact
“free” Hamiltonian, containing the field-free atomic Hamiltonian and the
light-field Hamiltonian. The eigenvalues of the bound states of H0 will
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be denoted by Ei = Ei−mω, where Ei is the energy of the field-free bound
states and m is the number of photons absorbed. By convention, m is 0
for 1s2s 3S and 1s2p 3Po, 1 for 1s3s 3S and 1s3d 3D , and 2 for the Rydberg
states in the model space. The eigenvalues of the continuum states of
H0 are, similarly, e = ε − 3ω, where ε is the photoelectron energy. P
is the Feshbach projection operator, projecting the wave function onto
the P-space:

P =
∑
i∈P

|i〉 〈i| . (3.15)

The operators S, Ω and Γ are perturbations of the states in the model
space due to those in Q-space. Their physical significance is standard
in second-order perturbation theory: S and Ω are two-photon transi-
tion operators connecting quasi-resonant bound states via, respectively,
the non-resonant bound states and the ionization continuum states (Q-
space), while Γ is the ionization width of the model space states. They
are given by

S =
∑
k∈Q

V |k〉 〈k|V
Ei − Ek

, (3.16)

Ω = P
∫

de
V |e〉 〈e|V
Ei − e

, (3.17)

Γ = 2π V |e〉 〈e|V
∣∣∣
e=Ei

, (3.18)

where |e〉 is an ionization continuum state, identified by the photoelec-
tron energy ε, its angular momentum ` and magnetic quantum number
m`. Similarly, |k〉 is a bound state in Q-space identified by the principal,
angular and magnetic quantum numbers n, ` and m`. P

∫
represents a

Cauchy principal value integration.

In practice, the calculation of the various elements of Heff is per-
formed within the dipole and rotating-wave approximations [205], justi-
fied by the moderate laser intensities involved and the treatment of only
quasi-resonant bound states. The interaction of the j-th electron with
the laser field is given by the dipole moment operator ε̂ · rj , with ε̂ the
polarization vector and rj the radial coordinate of the electron.

The two-photon dipole matrix elements between the 1s2p and 1sn`
bound states are calculated using perturbation theory:

V
(2)

2pn` =
E 2

0

4

∑
k

〈1sn` | ε̂ ·R | k〉〈k | ε̂ ·R | 1s2p〉
E1s2p + ω − Ek

, (3.19)
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where E0 is the amplitude of the electric field, R = r1 +r2, and the sum
is over all intermediate bound and continuum states coupled to the ini-
tial and final states. The one-photon dipole matrix elements appearing
in (3.19) are obtained from a two-electron Coulomb Discrete Variable
Representation (DVR) [206] calculation which is able to furnish accu-
rate energies for a large number of states, as well as their oscillator
strengths. In this method, the two-electron wavefunctions are expanded
in a basis of antisymmetrized linear combinations of the product of two
one-electron DVR basis functions, themselves constructed from zeroes
of a reference Coulomb function. Diagonalizing the two-electron Hamil-
tonian in this basis yields a set of energies and wavefunctions, of which
the lowest correspond to the physical bound states while the others are
pseudostates representing higher lying excited states and the continuum.
The infinite sum appearing in (3.19) is then replaced by a finite sum over
these states and pseudostates.

The dipole moments connecting Rydberg and continuum states are
calculated using Quantum Defect theory (QDT) [207]. Their angular
parts are given by straightforward angular momentum algebra whereas
their radial parts ∫ ∞

0
drR∗ε`(r)r

3Rn̄`(r) (3.20)

are obtained by numerical integration of the bound and continuum QDT
radial wave functions:

rRn̄`(r) = K(n̄, `)Wn̄,`+1/2(2r/n̄), (3.21)

rRε`(r) = s(ε, `; r) cos[πδ`(ε)] + c(ε, `; r) sin[πδ`(ε)] (3.22)

where δ`(ε) is the quantum defect extrapolated to positive photoelectron
energy ε; s(ε, `; r) and c(ε, `; r) are the normalized regular and irregu-
lar Coulomb functions [153]; K(n̄, `) is a normalization factor [207] and
Wn̄,`+1/2(2r/n̄) a Whittaker function. In order to avoid divergence at
r = 0, the irregular Coulomb and Whittaker functions are also multi-
plied by a cut-off factor [1− exp(−τ`r)]2`+1 [171]. In QDT, the effective
principal quantum number n̄ is given by the difference of the principal
quantum number n and the associated quantum defect δ`(n). The values
used here are calculated from Ritz’s expansion with coefficients taken
from Drake [196]. Coulomb and Whittaker functions are calculated us-
ing the routines by Barnett [208] and Noble [209] respectively, while
quadratures are performed with the standard Quadpack routines [210]
requesting a 10−6 relative accuracy. We have verified that this numeri-
cal approach allows the fast generation of bound-free dipole moments for
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photoelectron energies ranging from 0 to a few a.u. and Rydberg bound
states up to n = 98, the limit of the Whittaker function routine.

It is then straightforward to obtain the numerical values of the two-
photon matrix elements

Γij =
πE 2

0

2
〈j| ε̂ · r |e〉 〈e| ε̂ · r |i〉

∣∣∣
e=Ei

(3.23)

from the one-photon dipole matrix elements. The matrix element

Ωij =
E 2

0

4
P
∫

de
〈j| ε̂ · r |e〉 〈e| ε̂ · r |i〉

Ei − e
(3.24)

requires an additional Cauchy principal value integration, performed nu-
merically. The computational costs can be reduced by making extensive
use of the n̄−3/2 scaling of single photon bound-bound and bound-free
dipole moments.

Dipole matrix elements 〈j|ε̂ · r|i〉 are considered above without spec-
ifying the polarization vector ε̂. As we aim at studying multiphoton
ionization under arbitrary elliptical polarization, they should in princi-
ple be calculated for all ε̂ vectors. Such calculations are prohibitive but
can be greatly simplified, as for the photodetachment of He−, by virtue
of the Wigner-Eckart theorem. It is indeed sufficient to notice that the
reduced matrix elements (n′`′||D||n`) and (e`′||D||n`) are independent
of ε̂, and thus need be computed only once. Dipole matrix elements can
then be obtained from their reduced counterparts using Eq. (3.3). More-
over, since two-photon matrix elements are sums or integrals of products
of two one-photon terms, similar observations apply. For example, the
coupling Ωij can be obtained with

Ωij =
E 2

0

4

∑
`′

p`′,m`′`j ,m`j
(ε)p`i,m`i

,`′,m`′
(ε)ΩR

i`′j , (3.25)

where ΩR
i`′j is a “reduced” matrix element given by

ΩR
i`′j = P

∫
de

(j||D||e`′)(e`′||D||i)
Ei − e

, (3.26)

and the factor p`,m`,`′,m`′
(ε) results from the Wigner-Eckart theorem,

p`,m`,`′,m`′
(ε) = (−1)−`

′−m`′

×
[(

`′ 1 `
−m`′ 0 m`

)√
cos 2ε−

(
`′ 1 `
−m`′ ±1 m`

)√
2 sin ε

]
.(3.27)
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Note that the reduced matrix element ΩR
i`′j depends on the partial wave

`′. In the above 3 equations, ε denotes the ellipticity angle. We may
finally note that, beyond its usefulness for polarization, the Wigner-
Eckart theorem also allows matrix elements to be determined for all
magnetic sublevels m` of a given state in a single calculation.

3.3.4 Detailed modeling of the experiment

The experimental process is, of course, time-dependent, hence its mod-
elling must set the static EH picture developed above “in motion”.
The helium atom travelling through the laser pulse experiences a time-
varying intensity envelope I(t). Hence the quantities V,Ω,Γ and S in
the EH theory also vary, V being proportional to

√
I(t) and S,Ω and Γ

to I(t). Up to second-order in perturbation theory, the effective Hamil-
tonian Heff derived from the time-independent eigenvalue equation also
satisfies the time-dependent Schrödinger equation:

i~
d |ψp(t)〉

dt
= Heff(t) |ψp(t)〉 (3.28)

as shown by, e.g. , Baker [201] . A formal solution may then be written
as

|ψp(t+ ∆t)〉 = e−iHeff(t)∆t/~ |ψp(t)〉 . (3.29)

The wave function is propagated in time from -2×107 a.u. to 2×107 a.u. ,
in steps of ∆t ≤ 104 a.u., by numerically approximating the matrix ex-
ponential e−iH∆t using routines from ExpoKit [211]. When considering
REMPI of the 1s2s state, the model space wave function is given by

|ψp(t)〉 =c0
2s(t) |2s0〉

+

27∑
n=4

c0
ns(t) |ns0〉+

1∑
m`=−1

cm`
nd (t) |ndm`〉

 , (3.30)

where the 1s orbital has been omitted in the |n`m`〉 basis vectors for
brevity. In the case of REMPI of the 1s2p state, the wave function reads

|ψp(t)〉 =
∑
m`

[
cm`

2p (t) |2pm`〉+ c0
3s(t) |3s0〉+ cm`

3d (t) |3dm`〉

+
45∑
n=6

(
cm`
np (t) |npm`〉+ cm`

nf (t) |nfm`〉
) ]
. (3.31)
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The summations over m` run over the appropriate range for each basis
vector. For linear polarizaton, selection rules (∆m` = 0) permit only
those states with the same magnetic quantum number as the initial state
to be populated. This in turn keeps the sizes of the wave function and
the effective Hamiltonian small, e.g. , 83× 83 for the 1s2p state. In the
general case of elliptic polarization, looser selection rules (∆m` = 0,±1)
yield a significantly larger wave function and effective Hamiltonian, with
a size up to 409× 409 for the 1s2p state.

Initial conditions are obviously c2s0(t = 0) = 1 and c2pm`
(t = 0) = 1

for propagations from the 1s2s and 1s2p states respectively. All other
coefficients are zero. Note that 3 independent propagations must be
performed for each of the 3 magnetic sublevels (m` = 0,±1) of the 1s2p
state. Although the wave function is initially normalized to unity, its
norm may decrease with time due to the non-hermiticity of Heff. This
loss of normalization corresponds to an outgoing flux of electrons and its
value after the propagation is the ionization probability P+

i of a given
intial state |i〉. The values of the coefficients cn` at a particular time t
provide the instantaneous amplitudes of the diabatic bound states.

In order to compute the double detachment probability PDPD one
must treat, in principle, detachment and ionization as two sequential
events. PDPD is related to the product of the instantaneous detachment

probability dP 0(t)
dt

∣∣
t=t0

, evaluated at a time t0, by the ionization prob-

ability P+
i (t0), obtained from the numerical propagation of the atomic

wave function starting at a time t0. Moreover, since detachment may
occur at any time t0, the product must be integrated over t0 and we
obtain

PDPD =

∫ +∞

−∞
dt0P

+
i (t0)

dP 0(t)

dt

∣∣∣
t=t0

. (3.32)

Following the above equation, propagation of the atomic wave function
must be performed for a large number of starting times t0 to compute
P+
i (t0), thus making the modeling computationally intensive. However,

3-photon ionization occurs at intensities that are much higher than those
required for efficient photodetachment, i.e. at later times. Therefore the
ionization probability P+

i is essentially independent of the time at which
the atom is created by photodetachment since, in any case, multipho-
ton dynamics will start much later. In other words, P+

i (t0) is in good
approximation constant over the time region where instantaneous de-
tachment probability is non-negligible, hence

PDPD ' P+
i (t0 → −∞)× P 0(t0 → +∞). (3.33)
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In this case, a single propagation of the wave function is sufficient to
compute the double detachment probability, and the detachment and
ionization events are considered independent. Note that the validity
of this approximation has been successfully verified experimentally (see
Sec. 3.6.2).

In the experiment, the laser operates near the TEM00 mode, with
a Gaussian spatial profile. The time profile of the pulse, g(τ), has been
measured by a fast photodiode and its analytic fit, used in the modeling,
is given by the piecewise function

g(τ) =


cos2(π τ

7.81) if 0 > τ ≥ −3.9,

e−(τ/2.29)2
if τ ≥ 0,

0 otherwise,

(3.34)

where τ is in nanoseconds. This profile has a full width at half maximum
of 4.8 ns. The confocal parameter of 2.62 cm, large compared to the
diameter of the atomic beam, allows the waist size w0 to be taken as
constant across the atomic beam. The intensity profile is thus given by

I(t;x, τ) ' I0 g(τ + t) e−2(x2+(vHet)
2)/w2

0 , (3.35)

where I0 is the peak intensity of the pulse, t the travel time through
the laser beam, and vHe the velocity of the atom. The x-direction is
perpendicular to the direction of both the laser and atomic beams. The
parameter τ refers to the point on the pulse envelope experienced by
the atom when at the center of the laser beam (t = 0). The time of
flight of the atoms through the laser spot (250 ps) is much shorter than
the pulse duration, hence the evolution of the pulse envelope during the
time-propagation of the Hamiltonian can be assumed negligible, that is:
g(τ + t) ∼ g(τ). Since the effective Hamiltonian Heff(t) depends on the
instantaneous intensity, it and thus the ionization probability P+

i (x, τ)
depend parametrically on x and τ .

To reproduce the experimental ionization spectra, a large number of
propagations must be performed for different values of x and τ , taking
into account the following experimental conditions:

i. the incoming He− beam has a 1 mm diameter, which is much larger
than the laser waist. The modeled ion signal must be averaged over
the atomic beam cross section;

ii. the signal must be time-integrated over the pulse duration;

iii. the photodetachment of He−, producing neutral helium, is not
uniform across the beam cross section. Therefore the distribution
of neutral helium is not uniform either.
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The above considerations, along with the assumption of independent
detachment and ionization, lead to the following expression for the sim-
ulated yield N1s2s for double detachment via the 1s2s state:

N1s2s =

∫
∆t

dτ

∫ R

0
dx w(x)P+

1s2s(x, τ)P 0
1s2s(x, τ) ΦHe− , (3.36)

where ∆t is the pulse duration, R the atomic beam radius, P+
1s2s the

probability to ionize neutral helium in the 1s2s state, P 0
1s2s the proba-

bility to photodetach He− in the 1s2s channel and ΦHe− the incoming
He− flux; w(x) is the weight associated with the position x in the atomic
beam, obtained from simple geometrical considerations:

w(x) = 4
√
R2 − x2. (3.37)

The ω-dependence of N,P+ and P 0 has been omitted from the notation
for clarity. The limits t0 → −∞ and t0 → +∞ in the arguments of P+

1s2s

and P 0
1s2s, shown in Eq. (3.33), have been omitted for the same reason.

Similarly, the double detachment yield via the 1s2p state is the sum
of the contributions of its various magnetic sublevels,

N1s2p =
∑
m`

∫
∆t

dτ

∫ R

0
dx w(x)P+

1s2p,m`
(x, τ)P 0

1s2p,m`
(x, τ) ΦHe− ,

(3.38)
where P 0

1s2p,m`
is the probability photodetach He− into the 1s2p (m`)

magnetic sublevel and P+
1s2p,m`

the probability to ionize it.

Let us now estimate the photodetachment probability P 0
αcLcMLc

into
any of the 4 possible final states. As explained above, we suppose that
the detachment and ionization steps are independent and thus that P 0

is, in good approximation, the asymptotic value of the cumulated pho-
todetachment probability,

P 0
αcLcMLc

' PαcLcMLc
(t→∞;x, τ). (3.39)

The cumulated probability PαcLcMLc
is given by Eq. (3.6) and now para-

metrically depends on x and τ since the light intensity and photon flux
also do. Replacing the photon flux in Eq. (3.6) by a Gaussian profile
identical to Eq. (3.35) and taking the limit t → ∞, the above equation
becomes

P 0
αcLcMLc

(x, τ) ' σLc,MLc

σ

[
1− exp

(
−I(0;x, τ)

~ω
×
√
π

2

w0

vHe
× σ

)]
(3.40)
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where I(0;x, τ)/~ω is the photon flux and
√

π
2w0/vHe the interaction

time. We recall that σLc,MLc
is the partial photodetachment cross section

to a particular state of the atom and σ is the total cross sections. Both
depend on the photon energy ω. Since REMPI occurs in regions of
space and time where detachment is saturated, the exponential term
in the above equation is essentially 0 and the probability is equal the
branching ratio,

P 0
αcLcMLc

(x, τ) ∼ σLc,MLc

σ
. (3.41)

Let us finally note that the simulated results are further multiplied
by 0.56 to account for the MCP detection efficiency.

3.4 Single detachment of He−

We have studied theoretically the one-photon, single detachment of He−

under elliptic polarization and in the wavelength range from 500 nm
to 800 nm. As shown in figure 3.5, presenting the total photodetach-
ment cross section for linear polarization, the agreement with the earlier
work is very good. Branching ratios to the different ML sublevels of the
He(1s2s 3S) and He(1s2p 3Po) final states in the range from 685 nm to
730 nm were calculated from reduced matrix elements using Eq. (3.2).
The branching ratios are in fact only weakly dependent on the wave-
length. A representative set is presented in Fig. 3.6, for different light
polarizations at λ = 690 nm. They correspond to partial cross sections
of 19.5 × 10−22 m2 and 10.4 × 10−22 m2 for the 1s2s and 1s2p states
respectively, falling in good agreement with those calculated by Rams-
bottom and Bell [182]. The population of the 1s2s state (R2s = 0.66)
is nearly twice that of the 1s2p state (R2p = 0.34), and this sharing is
independent of the ellipticity. The 1s2p state is slightly less populated
at shorter wavelengths (R2p = 0.34 for λ = 685 nm) and more populated
at longer wavelengths (R2p = 0.4 for λ = 730 nm).

The branching ratio to the 1s2s state with a single, isotropic sublevel
ML = 0 obviously does not depend on the ellipticity. The 1s2p state
has three magnetic sublevels with ML = 0,±1. The branching ratio for
ML = 1 and ML = −1 respectively increases and decreases slightly as
the ellipticity angle goes from 0 to π/4. The branching ratio for ML = 0
is essentially independent of ellipticity, with only a slight (5%) increase
between linear and circular polarization. For linear polarization (ε = 0),
the three sublevels are almost equally populated, with 34% in each of
the ML = 1 and −1 states and 32% in the ML = 0 state. For left
circular polarization σ+ (ε = π/4), the ML = 1 state is preferentially
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Figure 3.5: Total cross section for the photodetachment of He− as a function
of the photon wavelength. Full line: R-matrix calculation using the length
form of the dipole matrix elements; dashed line: R-matrix calculation using
the velocity form of the dipole matrix elements; broken line: reference [182];
circles: experimental results from reference [190].

populated with 39% of the total 1s2p population, compared to 34% in
ML = 0 and 27% in ML = −1. This may be expected since the dipole
transition selection rule is ∆ML = +1. For right circular polarization
σ− (ε = −π/4), the opposite behavior is observed with the ML = −1
state being more populated.

The branching ratios to the various magnetic sublevels of the 1s2p
state depend on the choice of the reference frame, since ML values rep-
resent the projection of the orbital angular momentum onto the quan-
tization axis z. Furthermore, the natural reference frame, within which
polarization is expressed following Eq. (3.4), rotates in the lab frame
with the ellipticity angle, hence magnetic quantum numbers for differ-
ent polarizations correspond to projections onto quantization axes with
different orientations. Such dependence however does not affect the final
conclusions since all calculations to determine measurable quantities are
performed within the same frame, and final results are summed over all
ML values, i.e. all orientations, before being compared to experiment.
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Figure 3.6: Branching ratios for the photodetachment of He− into the He(1s2s
3S) and He(1s2p 3Po) states. Full thin line: 1s2s state, dashed line: 1s2p state.
Branching ratios to the various magnetic sublevels of the 1s2p state are also
shown, and corresponding ML values are labeled on the right-hand side of the
graph. Dotted line: ML = −1, full thick line: ML = 0, dash-dotted line:
ML = +1.

As noted previously, for linear (ε = 0) and circular (ε = ±π/4) polariza-
tions, the natural frame coincides with the standard choice of reference
frame and comparisons with other data are straightforward. Moreover,
calculations within other reference frames would yield results equivalent
to the present ones and which can be compared to one another after
appropriate rotation by means of Wigner D matrices [53].

The behavior of the branching ratios for magnetic sublevels is estab-
lished here for the photodetachment of He−, but the the trends observed
most certainly hold for other anions. The magnitude of the photode-
tachment cross sections depends on the reduced dipole matrix elements,
but their dependence on magnetic number ML and polarization ε̂ derives
from angular momentum algebra. Relatively small variations between
different anions or final states are expected to arise since matrix ele-
ments and geometrical factors are entangled in the various summations
of Eq. (3.2).
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3.5 Double detachment via He(1s2s 3S)

The experimental double photodetachment (DPD) spectrum of He− is
shown in Fig. 3.7(a) for photon energies ranging from 2.22 eV (558.5 nm)
to 2.4 eV (529.8 nm) and for linear polarization. It represents the aver-
age number of He+ ions created from an incoming He− beam of 1 nA
by a 6 mJ laser pulse. The two series of peaks readily observed can
be attributed to the following mechanism: He− is photodetached into
the He(1s2s 3S) channel; population transfer occurs from the 1s2s state
to the Rydberg 1sns and 1snd states due to a two-photon resonance
and the latter states subsequently ionize by the absorption of an addi-
tional photon. Two-photon resonances are narrow and allow efficient
population transfer only for zero or small detunings. Therefore, the
enhancement of He+ production is restricted to near the 1s2s–1sns or
1s2s–1snd resonances, yielding the narrow peak series observed in the
spectrum. These peaks series thus confirm that double detachment oc-
curs by photodetachment and (2+1) REMPI of He(1s2s 3S), as shown
in Fig. 3.1.

The spectrum displayed in Fig. 3.7(a) shows Rydberg resonances
spanning n = 7 to n = 12, corresponding to the wavelength range
we could cover with the Coumarin 500 dye. Higher n-values of these
Rydberg series have been studied in details by Wall et al. [212], up
to n = 115, using a two-photon laser excitation and static field ion-
ization scheme. On the low photon energy side, a continuous, slowly
rising background is observed. It is attributed to the onset of the (1+1)
REMPI of the 1s2p state through a one-photon resonance with the 1s3d
state, located at λ = 587.7 nm (2.110 eV). Although we are still far
detuned from this resonance, contribution of this (1+2)-photon process
to the double photodetachment yield should be non-negligible compared
to the (1+3)-photon process examined here. Complementary measure-
ments and modeling are however required to confirm this.

The DPD spectrum simulated with the effective Hamiltonian model
is shown in Fig. 3.8(a) and is similar to its experimental counterpart,
although the amplitude of the peaks is not well reproduced by the model.
Such a discrepancy is probably due to a difference between the idealized
interaction volume, as used in the simulation, and the experimental one.
A simulation run for a 68 µm laser waist (Fig. 3.9) is, for example, in
much better quantitative agreement with experimental amplitudes. The
chaotic nature of the laser pulses, generated from a multimode Nd:YAG
laser, must also affect the multiphoton dynamics. This effect is however
expected to be small, as demonstrated for the 2-photon ionization of O−

(see Sec. 2.5.4).
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Figure 3.7: Experimental double photodetachment spectrum as a function
of the photon energy. Top graph (a): linear polarization. Bottom graph (b):
circular polarization. Data shown is the number of He+ ions produced by a
6 mJ laser pulse and for a He− beam of 1 nA .
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Figure 3.8: Simulated double photodetachment spectrum as a function of the
photon energy. Top graph (a): linear polarization. Bottom graph (b): circular
polarization.
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Figure 3.9: Details of the 1s9d peak in the double photodetachment spectrum.
Full circles: experiment, full line: simulation with a 68 µm laser waist. Data is
for linear polarization and 6 mJ laser pulses. The vertical dotted line indicates
the position of the field-free 1s2s-1s9d two-photon resonance. For larger photon
energies, the 1s2s state is Stark shifted and resonance condition is met for a
given laser intensity, as indicated by the intensity scale. The given intensity
corresponds to a given radius with respect to the center of the laser profile,
as indicated by the radius scale. This radius defines an effective interaction
cylinder, within which production of He+ can occur.

The detailed profile of the peaks in the DPD spectrum, such as the
one corresponding to the 1s2s-1s9d resonance shown in Fig. 3.9, provides
additional information on the ionization dynamics of the transient neu-
tral. Note that in this case simulation was performed for a 68 µm laser
waist in order to match the width of the experimental peak. The size of
the waist has not been measured for the present wavelength range and
deviations from the 54 µm waist measured for range II are possible. The
width of the peak is much larger than the laser bandwidth of 0.05 cm−1

(6.2×10−6 eV) and it shape is asymmetrical, with a pronounced spread
towards higher photon energies. Mechanisms leading to this type of pro-
file are threefold, and have been partly discussed by other authors [212].
We first note that the 1s2s state is blue-shifted by the AC Stark shift,
which in turn depends on the intensity, while the Rydberg series remain
essentially unperturbed. Therefore, even if the laser is blue-detuned
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from the 1s2s-1s9d resonance, the increasing intensity experienced by
the helium atom moving through the laser focus will dynamically bring
it to resonance and population transfer still efficiently occurs. Further-
more, as the laser is further blue-detuned, the exact resonance condition
is met at increasing intensities, until the value required exceeds the laser
peak intensity. Assuming a Gaussian profile, the intensity at which res-
onance occurs corresponds to a specific radius with respect to the center
of the profile. This radius combined with the transverse width of the ion
beam define an effective interaction cylinder, within which production
of He+ can occur. The volume of this cylinder shrinks as detuning be-
comes larger, consequently decreasing the He+ signal. Finally, close to
a zero-field resonance, population transfer to the Rydberg state occurs
early on as the atom crosses the laser focus. Therefore, the duration of
the interaction between the Rydberg state and the laser field is long and
the ionization probability high. Blue-detuning results in delayed popula-
tion transfer, reduced interaction time and therefore reduced ionization
probability, also resulting in a drop in the He+ yield.

Turning to circular polarization, Fig. 3.7(a-b) provides a particularly
illustrative example of dipolar selection rules. In the case of left circular
polarization, selection rules for a two-photon transition give ∆ML =
+2. Excitation from the 1s2s state (ML = 0) to a Rydberg 1sns state
(M ′L = 0) is therefore forbidden, and the 1sns peak in the He+ spectrum
disappears. The same argument applies in the case of right circular
polarization, for which the two-photon selection rule is ∆ML = −2,
hence leading to the same spectrum.

The evolution of double photodetachment yield as the polarization
is tuned from linear to left circular is shown in Fig. 3.10. Measurements
were performed both for the 1s2s – 1s9d and 1s2s – 1s9s resonances, cor-
responding to photon energies of 2.2999 eV and 2.2942 eV respectively,
by stepwise rotation of the λ/4 plate while recording the corresponding
He+ signal. The effective Hamiltonian approach was used to simulate
the experiment for the same photon energies, and the final results are
scaled by 0.8 and 1.02 respectively in order to best fit the experimental
values. We first note that the shape of the simulation curves follows the
experimental data very well. The 1s9d peak amplitude increases as the
polarization gets closer to circular, a fact that can be attributed to in-
creasing coupling strength and ionization rate. For example, inspection
of the value of the matrix element coupling the 1s2s state to the 1s9d
state shows that, while the reduced matrix elements are identical, geo-
metrical factors arising from the polarization are 1.22 times higher for
circular polarization than for linear polarization – see, e.g. , Eqs. (3.3)
and (3.25). In sharp contrast, the amplitude of the 1s9s peak drops to
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Figure 3.10: Experimental and simulated double photodetachment yield as
a function of the ellipticity angle. Triangles are experimental data for λ =
539.08 nm and correspond to resonance with the Rydberg 1s9d state. Circles
are experimental data for λ = 540.43 nm and correspond to resonance with the
Rydberg 1s9s state. Both full lines are the result of simulations for the same
wavelengths, and have been scaled by 0.8 and 1.02 for the 1s9d and 1s9s states
respectively.

zero as the polarization becomes circular, a direct result of the dipole
selection rules.

3.6 Double detachment via He(1s2p 3Po)

The double photodetachment (DPD) of He− has been studied in the
wavelength range from 685 nm to 730 nm, where it is enhanced by
resonances in the transient atom involving the 1s2p 3Po state. A first
insight on the underlying intricate dynamics is provided by inspection
of the dressed-states quasi-energies for a fixed intensity. The DPD spec-
tra, involving time-dependent population transfers and shifts, are then
presented and theory is confronted to experiment. This combination
further provides detailed information on the dependence of the yields on
the pulse energy and laser polarization. Finally, the possibility for non
sequential DPD is investigated experimentally.
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3.6.1 Multiphoton ionization within the dressed states
picture

Diagonalizing the effective Hamiltonian gives a set of complex quasi-
energies E of the form

E = E0 + ∆E − i
Γ

2
, (3.42)

where E0 + ∆E is the Stark-shifted energy of the dressed atomic state
and Γ its total ionization rate. In order to assess our choice of model
space and to validate the associated computer code, we first performed
a comparison of the quasi-energies obtained using the model with those
obtained from RMF calculations. The agreement was satisfactory, in-
dicating that the main physical properties of the ionization process are
accounted for.

We now consider the field-dressed atomic states used for the modeling
of the experiment3. They can be identified by plotting the real part
of the quasi-energies as a function of the photon energy ω as in Figs.
3.11a and 3.11b, including the 1s2p (ML = ±1) and (ML = 0) states
respectively. The dashed curves correspond to the field-free energy of
the 1s2p state and of the 1s3s state shifted down by one photon energy
while the full curves are the results of the EH calculation. For the case
ML = ±1 at an intensity of 3.6×1010 W/cm2, the 1snp and 1snf Rydberg
states can be populated by a two-photon transition from the initial 1s2p
state, and are represented by the lines of slope −2ω. The value of n can
be determined by extrapolating the lines to ω = 0. The thick dot-dashed
line indicates the 2-photon ionization threshold. The horizontal line is
the energy of the initial dressed 1s2p 3Po(ML=±1) state, Stark-shifted
down compared to its field-free value. The Stark shift of the Rydberg
states is extremely small, of the order of 5× 10−5 a.u.

At resonance, i.e. when E2p + 2ω = En`, the diabatic dressed-
state energies intersect. The adiabatic energies exhibit avoided cross-
ings whose distance of closest approach is proportional to the strength
of the interaction between the states. The coupling of the initial state
with the 1snf Rydberg states is stronger than with 1snp states. This
implies that multiphoton ionization proceeds preferentially through the
(2+1) REMPI scheme, with two-photon excitation to the 1snf states
followed by one-photon ionization into the ` = 2 and ` = 4 continua.
Branching ratios calculated using the RMF and QDT approaches indi-
cate a propensity (∼ 97%) for the photolectron to be ejected in the ` = 4
channel.

3We consider in this subsection the case of linear polarization only. Quasi-energies
would be different for elliptic or circular polarization.
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Figure 3.11: Real part of the EH quasi-energies as a function of the laser
angular frequency at a fixed intensity of 3.6×1010 W/cm2. Rydberg states from
n = 6 to n = 22 are included. The horizontal dashed line corresponds to the
field-free energy of the 1s2p state while the oblique dashed line corresponds to
that of the 1s3s state shifted down by ω. The thick dot-dashed line in the upper
right corner is the two-photon ionization threshold. The insert is a magnified
view of the crossing highlighted in the small box.
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For the case ML = 0, shown in Fig. 3.11b, the dressed-state en-
ergies exhibit a much richer structure. In addition to the initial state
and the two Rydberg series, resonances with the 1s3s 3S state are also
present. The initial 1s2p 3Po(ML=0) state interacts strongly with the
1s3s 3S state resulting in a very large avoided crossing centred around
ωr = 0.06447 a.u. and extending over a broad range of photon energy.
As the 1s3s 3S state is populated by absorption of one photon, its energy
curve has a slope of −ω away from the crossing. The presence of this
physical intermediate state implies that the ionization preferentially oc-
curs following a (1+1+1) REMPI scheme, via the 1snp Rydberg states.
Branching ratios obtained from our RMF and QDT calculations indi-
cate a 30% probability for the photoelectron to be ejected in the ` = 0
channel and a 70% probability to be in the ` = 2 channel.

One further consequence of the strong interaction between the 1s2p
and 1s3s states is that the Stark shift of the 1s2p (ML=0) state is of
opposite sign on either side of the resonance: below the resonance, the
energy is shifted down, while above the resonance it is shifted up. A
manifestation of this difference will be seen in the ionization spectra
presented below.

The ionization rates, related to the imaginary part of the quasi-
energies by (3.42), are plotted in Fig. 3.12a as a function of the photon
energy ω for ML = ±1. The plateaus correspond to the one-photon
ionization rates of the Rydberg states while the non-resonant three-
photon ionization rate of the 1s2p 3Po(ML=±1) initial state is about
three or four orders of magnitude smaller. In the region of two-photon
resonances between the initial and the Rydberg states, the ionization
rates cross over a range of ω whose width characterizes the interaction
strength. The one-photon ionization rate of the 1snf is lower than that
of 1snp due to the centrifugal barrier, but the two-photon 1s2p–1snf
interaction is stronger than the 1s2p-1snp interaction.

Ionization rates for ML = 0, shown in Fig. 3.12b, present plateaus
corresponding to the Rydberg states, while the 1s2p 3Po(ML=0) and
1s3s 3S ionization rates are negligible on the scale of the figure. The
presence of the 1s3s 3S state again significantly enriches the picture: the
number of resonances is increased and the strong one-photon interaction
with the 1s2p 3Po(ML=0) initial state broadens the range of ω over
which the crossings occur. EH calculations show that the asymmetry
of the crossings is due to two-photon couplings between Rydberg states
via the continuum.
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Figure 3.12: Total ionization rates of the dressed states for n = 7 up to n =
16, as a function of the laser angular frequency at a fixed intensity of 3.6×1010

W/cm2. The insert is a magnified view of the narrow region highlighted by the
box.
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3.6.2 Experimental and modeling results

The dynamical counterpart of the time-independent results presented
so far is obtained by propagating the wave function in time according
to scheme (3.29). It is combined with R-Matrix results for the single
photodetachment of He− in Eq. (3.38) in order to obtain the double
photodetachment yield. As an example, the simulated results computed
for a pulse energy of 6 mJ and linear polarization are plotted in Fig. 3.14,
while the corresponding experimental spectrum is shown in Fig. 3.13. In
both spectra, a series of double peaks is visible: the peak at lower pho-
ton energy corresponds to photodetachment to the 1s2p state followed
by a (1+1+1) REMPI process via the 1snp state, which is favourable
for ML = 0; the peak at higher photon energy also corresponds to pho-
todetachment to the 1s2p state, followed in this case by a (2+1) REMPI
process via the Rydberg 1snf state, favourable for ML = ±1. It should
be noted that the assignment of the peaks corresponds to their major
contributors: it is of course possible to ionize for example via a 1snf
Rydberg state for ML = 0, albeit with a small probability.

Multiphoton ionization dynamics

As for the He(1s2s 3S) case, the precise position of each resonance de-
pends on the laser intensity which influences the Stark shift of the initial
1s2p 3Po and the intermediate 1s3s 3S states, while that of the Rydberg
states is very small. The peaks are asymmetric with the sharp rise cor-
responding to zero-field resonances between the 1s2p 3Po and Rydberg
states. In this case, transfer of population occurs early in the prop-
agation through the laser field, maximising the interaction time and
the probability of ionization. Above the zero-field resonance and for
ML = ±1, the atom needs to experience a field strong enough to induce
a downward Stark-shift to bring it into resonance with a Rydberg state.
This effect will extend over a wider range of frequencies as the pulse
energy increases. Since the laser beam profile is Gaussian, the Stark in-
duced resonance will occur twice, during the onset and the falloff of the
laser intensity experienced by the atom, whose population is transferred
back to the initial state by adiabatic rapid passage [205]. The ioniza-
tion yield is smaller since the interaction of the Rydberg state with the
laser field is greatly reduced, explaining the tail of the peaks towards
higher frequencies as a result of this dynamic blue-shift. For ML = 0,
the physics is more complicated due to the existence of the one-photon
resonance with the 1s3s 3S state at ~ωr = 1.754379 eV. As illustrated
by the two-state model in section 3.3.2, for ω < ωr, the Stark shift of
the initial state leads to resonances with Rydberg states at higher pho-
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Figure 3.13: Experimental double photodetachment spectrum for a laser pulse
energy of 6 mJ and linear polarization. The vertical dashed line indicates the
1s2p-1s3s resonance.
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Figure 3.14: Simulated double photodetachment spectrum for a laser pulse
energy of 6 mJ and linear polarization. The shaded curve is the contribution
from ML = ±1 states and the full line is the weighted sum of the contributions
from ML = 0 and ML = ±1 states.
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Figure 3.15: Experimental double photodetachment spectra for 8, 6 and 2 mJ
laser pulses and linear polarization. The vertical dashed line indicates the 1s2p-
1s3s resonance.
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Figure 3.16: Simulated double photodetachment spectra for 8, 6 and 2 mJ
laser pulses and linear polarization.
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ton energies, while the inverse is true for ω > ωr, leading to a dynamic
red-shift. Hence the asymmetry of the peaks in the ionization yield is
reversed as the 1s2p-1s3s resonance is crossed. The two successive one-
photon transitions lead to more complex population dynamics, resulting
in an ionization yield larger than for ML = ±1. This is clear from the
comparison between the total spectrum and the separate spectrum for
ML = ±1 presented in Fig. 3.14.

Although there is qualitative agreement between the simulated and
experimental spectra presented in Figs. 3.13 and 3.14, small discrep-
ancies exist in the width of the tails and the magnitudes of the yields,
with the simulated 1snp peaks wider than the measurement and the
1snf peaks larger at low energy. This may be due to imprecisions in
some couplings in our semi-perturbative EH model, for instance those
involving the continuum which are not possible to validate ab initio.
The multimode nature of the laser pulse may also alter the multiphoton
dynamics. However, this effect must be small since, as demonstrated in
Sec. 2.5.4, the duration of the transit of the ions through the laser pulse
is shorter than intensity fluctuations due to mode beating. Furthermore,
the heights of the measured peaks decrease rapidly with increasing ω,
which is not reproduced to the same extent in our model. These dis-
crepancies remain to be explained.

Figures 3.15 and 3.16 show the variation of the double detachment
yield with respect to the pulse energy, which determines the peak laser
intensity experienced by the ions and atoms. As one would expect, the
amplitude of the ion signal increases with the pulse energy, a conse-
quence of the increased ionization probability and interaction volume.
The tail of the peaks is broadened since the Stark shift of the 1s2p ini-
tial state is larger. A thorough analysis of the pulse energy-dependence
of the ion signal reveals no simple scaling, illustrating the complex in-
terplay between the (1+1+1) REMPI and (2+1) REMPI mechanisms.
We remark that the tails of the peaks in the simulation do not decay as
rapidly as in the experiment, particularly for the highest pulse energy of
8 mJ. Their shape depends on the intensity of the field experienced by
the atoms as they traverse the laser beam. A more accurate knowledge
and control of the laser pulses would therefore be essential in order to
improve the simulation.

The influence of polarization

The double photodetachment spectra for linear and circular polariza-
tions are compared in Fig 3.17 and significant differences can be ob-
served, especially on the high photon energy end. Let us investigate
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Figure 3.17: Experimental double photodetachment spectra as a function of
the photon energy. Top graph (a): linear polarization. Bottom graph (b):
circular polarization. The vertical dashed lines indicate the position of the 1s2p-
1s3s resonance. Resonances with Rydberg states are observed up to n = 35. The
laser pulse energy is 6 mJ.

how polarization affects double detachment dynamics, and in particu-
lar how it modifies the respective contributions of the various magnetic
sublevels of the 1s2p state. The part of the spectrum corresponding
to resonances with n = 13 states is shown in Fig. 3.18, along with the
simulated contributions from the ML = 0,±1 magnetic sublevels. The
most striking difference between linear and circular polarization is the
major change of shape of the ML = 0 and ML = −1 contributions to the
He+ yield, which reverse. For linear polarization, selection rules allow
the 1s2p (ML=0) state to couple to the 1s3s state, which itself couples
to the 1s13p state, thus yielding a broad, intense peak reminiscent of the
strong 1s2p AC Stark shift and the strong enhancement of ionization by
the (1+1+1) channel. In the case of left circular polarization, coupling
to the 1s3s state becomes allowed for the ML = −1 magnetic sublevel,
and the contributions of the various magnetic sublevels change accord-
ingly. Therefore, the loose attribution of the 1snp peaks to ML = 0 and
the 1snf peaks to ML = ±1 for linear polarization changes to ML = −1
and ML = 0, 1 respectively for left circular polarization.
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Figure 3.18: Details of the double photodetachment spectrum around the
1s2p–1s13p (left peak) and 1s2p–1s13f (right peak) resonances. Top graph (a):
linear polarization; bottom graph (b): circular polarization. Full circles: ex-
perimental data, dash-dot-dot line: simulated ML = −1 contribution, dash-dot
line: simulated ML = 0 contribution, dotted line: simulated ML = +1 con-
tribution. For linear polarization, ML = +1 and ML = −1 contributions are
identical therefore only twice the ML = −1 contribution is shown. Simulated
data are scaled by 0.7.

Apart from the changes in the different ML contributions, other dif-
ferences in the shape of the peaks are readily observed in the DPD
spectra, as is evident on the high photon energy side of Fig. 3.17 and
in Fig. 3.18). Such differences arise from two different effects and differ
for the 1snp and 1snf peaks. Let us consider first the 1snp peaks. The
non resonant AC Stark shift of the initial state is smaller in the case of
circular polarization, hence, since Rydberg series are unperturbed, the
blue shift will be smaller and the peaks will spread less towards higher
photon energies. However, the 1s2p state will experience significant red-
shift above the 1s2p-1s3s resonance due to its interaction with the 1s3s
state. The spread of the 1snp peak is therefore the result of a compe-
tition between the non-resonant and resonant AC Stark shifts, so that
a smaller non-resonant contribution leads to an increased red-shift, and
therefore an increased spread of the peak towards lower photon energies.
All couplings being equal otherwise, the variation of the peak amplitude
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between the linear and circular polarization, best seen in Fig. 3.18, is the
result of the different initial populations of the ML sublevels as produced
by photodetachment. This effect is not observed to the same extent in
the experimental spectrum.

Let us now consider the 1snf peak. For linear polarization, contri-
butions from ML = −1 and ML = +1 are strictly equivalent. This is
no longer true in the case of circular polarization, and the ML = +1
sublevel gives the dominant contribution while the ML = 0 one is very
similar to that of the ML = ±1 sublevels for linear polarization. Inves-
tigating changes in matrix elements due to modified geometrical factors
shows that, compared to ML = ±1 for linear polarization, the non-
resonant AC Stark shift of the 1s2p state is identical for ML = 0 and
twice larger for ML = 1. Matrix elements coupling the 1s2p states with
ML = 0, 1 to Rydberg 1snf states are also significantly larger for circular
polarization, and so are the ionization widths of the 1snf states. Finally,
the ML = 1 sublevel is slightly more populated by photodetachment in
circular polarization. Such increases explain why the 1snf peak becomes
larger and significantly broadens when switching from linear to circular
polarization.

Finally, the evolution of the double detachment yield as a function of
the light polarization is shown in Fig. 3.19. The experimental yield was
measured for a photon energy of 1.767 eV, chosen to probe the minimum
between the 1s2p-1s12f and 1s2p-13p resonances, where the influence of
the polarization is most prominent. Simulation is also performed at the
minimum, located at slightly lower photon energy (1.766 eV). The dou-
ble detachment signal is dominated by the 1s2p-1s13p resonance, and
contributions of the various magnetic sublevels clearly evolve from dom-
inant contribution of ML = 0 to ML = −1. The onset of contribution
from ML = +1 as the polarization becomes more circular is reminiscent
of the broadening and increase in magnitude of the 1s2p–1snf peaks
observed previously, with n = 12 here.

Sequential vs. non-sequential

The above treatment considers photodetachment and REMPI as two se-
quential events. Indeed, detachment is very efficient and occurs at low
intensity, i.e. , early in the pulse. The onset of REMPI requires much
higher intensities and occurs later, when detachment is fully saturated.
Hence the two processes are, in good approximation, decoupled. Given
the satisfactory agreement between the shape of the simulated and mea-
sured ion yields, this approximation appears reasonable. However, when
the photon energy is tuned exactly at the 1s2p–1s3s resonance, popu-
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Figure 3.19: Experimental and simulated double photodetachment yield as
a function of the ellipticity angle. Full circles: experimental yield, full line:
simulated yield, dash-dot-dot line: ML = −1 contribution, dash-dot line: ML =
0 contribution, dotted line: ML = +1 contribution. The experimental yield is
for a photon energy of 1.767 eV (701.72 nm) and the simulated one for 1.766 eV
(702.05 nm). Simulated yields are scaled by 0.65 to match experimental values.
The laser pulse energy is 6 mJ.

lation transfer to the 1s3s state can occur very early in the pulse, at
intensities comparable to those of photodetachment. The 1s3s state be-
ing resonantly coupled to the 1s11p state, population transfer to the
Rydberg states can thus also occur early in the pulse and the sequential
treatment may be doubtful in this specific case.

In order to assess the sequential nature of the double detachment
process close the 1s2p–1s3s resonance, we have performed a two-laser
experiment where helium atoms are first prepared in the 1s2p state by
photodetachment by a CW laser, and subsequently ionized downstream
by the second, pulsed dye laser used previously. The two laser beams are
spatially separated, and we select those He+ that come from detachment
by the first laser and ionization by the second only.

The resulting double detachment spectrum is shown in Fig. 3.20
and compared against the one-laser spectrum, where detachment and
ionization occur within the same laser pulse. Because production of
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Figure 3.20: Double photodetachment spectrum around the 1s2p–1s3s reso-
nance. Dot-dashed line: two-color, sequential measurement, multiplied by 35;
full line: one-color measurement. The vertical arrow indicates the exact posi-
tion of the 1s2p–1s3s resonance. The laser pulse energy is 6 mJ.

helium atoms is less efficient in the two-laser case, the corresponding
spectrum was scaled to match the single-laser measurement. No stark
difference is observed between the two spectra, suggesting that no strong
non-sequential channels exist. In fact, this even suggests that the de-
tachment and ionization steps are essentially independent events. The
experiment was run for linear polarization and we have also observed
that, whether the two laser polarizations are parallel or perpendicular,
the same spectra are obtained within error bars.

3.7 Conclusion

The double photodetachment of He− in moderately strong laser fields
has been successfully studied in a joint experimental and theoretical in-
vestigation, which shed light on its underlying, intricate dynamics. The
experiment relies on counting He+ ions produced by few-mJ, nanosec-
ond laser pulses in a fast He− beam as a function of the laser wave-
length and polarization. The theoretical work treats double detachment
in two, sequential steps. The single detachment step is studied within
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R-matrix theory and we calculated the partial cross sections to the vari-
ous final atomic states and their magnetic sublevels for any polarization
state. Subsequent resonance-enhanced ionization of the neutral atom
is studied by means of EH models, designed to account for all possible
polarizations. They allow lightweight calculations with which the exper-
imental interaction volume can be faithfully reproduced. The validity
of the effective hamiltonians have further been checked against ab initio
R-Matrix Floquet calculations, with successful outcome.

The double detachment spectra show peak series attributed to res-
onances between the initial state of the transient atom and Rydberg
series. In the wavelength range from 530 nm to 560 nm, the 1s2s state
produced by photodetachment is coupled, via a two-photon transition,
to Rydberg 1sns and 1snd states. In this case, we could show that double
detachment proceeds through single detachment and (2+1) REMPI of
the neutral. The profile of the resonance peaks in the DPD spectra was
further related to the AC Stark shift of the initial state of the transient
atom and the corresponding intensity dependence of the exact energy
of the two-photon resonance. In the range from 685 nm to 730 nm, the
1s2p state of the atom is resonantly coupled by one photon to the 1s3s
state and by two photons to the 1snp and 1snf Rydberg series. Double
detachment proceeds in this case through single detachment and both
(1+1+1) and (2+1) REMPI of the atom, and the respective weights
of these channels strongly depend on the magnetic quantum numbers
of the initial atomic state. The striking reversal of the asymmetry of
the 1snp resonance peaks as the laser crosses the 1s2p-1s3s resonance is
attributed to the strong 1s2p-1s3s mixing.

The influence of the laser polarization is manifest in the 1s2s case,
where 1sns resonances disappear for circular polarization as a result of
selection rules. Changes of the profile of the peaks in the double de-
tachment spectrum induced by polarization can further be explained in
terms of geometrical factors. In the 1s2p case, the magnetic quantum
number ML strongly influences double detachment and determines the
ionization pathway in the neutral. Changing the polarization from linear
to elliptic and circular substantially modifies the various ML contribu-
tions, which could be computed with the theoretical model. Differences
in the shape of the double detachment spectra are further explained by
geometrical factors and the slight orientation of the atom produced by
photodetachment. Finally, the sequential nature of double detachment
was assessed by a two-laser experiment and no evidence was found of
the presence of non-sequential channels.





Chapter 4

Electron impact ionization of
He(1s2s 3S) and He−

4.1 State of the art

Helium is considered a benchmark for the study of electron scattering
and, as such, has been the subject of much investigation. Although
processes involving the ground state are now generally well understood,
this is not always the case for the first excited state, He(1s2s 3S). For
the particular case of electron impact ionization, there has been only
one experiment spanning a significant energy range, performed more
than forty years ago [213] and whose results are in sharp disagree-
ment with the most accurate calculations performed over the last twenty
years [214–217]. The benchmark character of this problem has also mo-
tivated a large number of model calculations, ranging from Born-type
to distorted wave [213, 214, 218–223], although the results vary widely
in shape and magnitude. The difference of up to 60% in the total cross
section between experiment and state-of-the-art calculations is not ac-
ceptable as metastable helium plays an important role in a wide range
of environments, from plasma physics to Bose-Einstein condensates [20],
and there has consequently been many calls for further experimental in-
vestigation [214, 215, 217, 221, 224, 225]. This discrepancy also raises
uncertainties on theoretical values of the cross sections for higher-lying
excited states, which are in great demand since no experimental cross
sections are available.

Electron impact double ionization (EIDI) has been studied in some
details for the helium ground state and is still the subject of a number
of ongoing works. The total, partial and fully differential cross sections
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have been determined experimentally and, for a small number of electron
energies, theoretically, casting light on the mechanisms at play [226–231].
However, data concerning both the first excited state and the helium
negative ion He− are non-existent. The absence of experimental results
ensues from the difficulty to produce He(1s2s 3S) and He− with sufficient
density and purity. EIDI is also very challenging for theoretical methods,
and in particular ab initio techniques, since they must tackle a four-body
Coulomb scattering problem, leaving three electrons in the continuum.
This fact explains why, for all but the simplest, two-electron systems
in their ground state [231, 232], the determination of EIDI total cross
sections is limited to experimental work and semi-empirical methods (see
[233] and references therein).

Measuring the electron impact single and double ionization cross sec-
tions of metastable helium is challenging, which explains the absence of
other measurements since the work of Dixon et al. [213]. Difficulties
that must be addressed are twofold: first, the source of metastable he-
lium must have a high purity while keeping sufficient brightness; second,
the measurement of absolute cross section is very sensitive to experimen-
tal inaccuracies. Over the past few decades, the animated crossed beam
technique and the corresponding experimental set-up were developed in
the lab [79, 234] and have allowed accurate and absolute values of cross
sections for electron-impact ionization of atoms and molecules to be
measured. However, the first difficulty can only be tackled by designing
a new source of pure metastable helium since no existing setup matches
the present requirements.

The production of helium atoms in the 1s2s 3S state is challenging
since optical dipole excitation from the ground state is forbidden. Elec-
tron impact excitation of ground state helium is widely used, either in a
gas discharge or using an electron gun [235, 236], but produces a beam
of ground state helium containing minute fractions of singlet (1s2s 1S)
and triplet (1s2s 3S) metastable atoms. Neutralization of fast He+ ions
onto alkali vapor produces fast atoms in the 1s2 1S, 1s2s 1,3S and 1s2p
1,3P excited states with a population distribution that has been charac-
terized for all alkali targets [235, 237–241]. While generally acceptable,
such a distribution is inappropriate when turning to state-specific mea-
surements. As an alternative, we propose in the following to use the
photodetachment of He−(1s2s2p 4Po), which leaves helium in the 1s2s
3S state only provided that the photon energy is tuned below the 1s2p
3P threshold, i.e. , below 1.1 eV. (see, e.g., Xi and Froese Fischer [183]).
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1Figure 4.1: Experimental setup. VC: sodium vapor cell; M1: magnet mass
selector; SD1,2: spherical deflector; PD: planar deflector; M2: magnetic ana-
lyzer; FC1,2: Faraday cup; CEM: channel electron multiplier. Only the major
parts of the apparatus are shown here, for a more detailed sketch of the electron
impact apparatus (starting after M1), see, e.g., [234].

4.2 Experimental setup

4.2.1 Metastable helium source

The production of a fast beam of metastable helium atoms follows three
steps, of which the two latter are represented in the sketch of the exper-
imental setup in Fig. 4.1. First, He+ ions are extracted from a duoplas-
matron source fed with He gas and accelerated to 8 keV. Second, the He+

beam is passed through a Na vapor cell where it is converted into He−

by double charge exchange with sodium atoms with an efficiency of the
order of 1%. Downstream, a magnet selects the He− component of the
beam and injects it into the electron impact ionization setup. Although
He−(1s2s2p 4P) is metastable, the lifetimes of its J = 1/2, 3/2 and
5/2 fine-structure components are sufficiently long (7.8 µs, 12.3 µs and
359.0 µs respectively [39]) to permit the use of conventional beam trans-
port and detection techniques. In a third step, after passing through
several deflectors, the anion beam interacts collinearly with the light
from a CO2 laser. Photodetachment occurs along this path (17.5 cm)
and leaves helium atoms in the 1s2s 3S state only.

The ion beam kinetic energy of E = 8 keV is chosen in order to max-
imize the ionization signal and results from considerations concerning (i)
the electron impact ionization signal itself, (ii) the He− beam current,
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(iii) the He− detachment efficiency and (iv) the He+-He− conversion ef-
ficiency. The ionization signal K is inversely proportional to the atoms’
velocity (E−1/2) and proportional to the current of metastable atoms.
This current is in turn proportional to the detachment efficiency, which
scales as E−1/2 in the linear regime, and the anion current. The anion
current itself scales as E3/2 due to space-charge effects [242]. Therefore,
the final signal loosely depends on the kinetic energy of the particles
(E1/2) and higher energies give in principle higher signals. Let us now
consider the He+-He− conversion efficiency, which influences the avail-
able He− current. The cross section for formation He− by double charge
exchange with alkali vapor depends on the kinetic energy of the incident
He+ ions. It presents a maximum around a few keV whose precise po-
sition for Na cannot be determined to better than between 6 keV and
10 keV since data for this atom are scarce and contradictory (see Hooper
et al. [243] and references therein). The conversion efficiency measured
by Hooper et al. in this range is around 1.5% and does not vary by
more than 20%, but drops rapidly above it. Similar peak efficiencies
have been measured for other alkali atoms such as Cs or Rb [244, 245].
Therefore, the maximum electron-impact ionization signal is reached for
kinetic energies lying in the range of maximum He+-He− conversion ef-
ficiency and, in the same time, being sufficiently high so that the E1/2

scaling factor is favorable. While no extensive tests were carried out
to determine the optimal beam energy, the 8 keV value appears as a
reasonable compromise between these various constraints.

We may further note that the He+-He− conversion efficiency also de-
pends on the temperature of the sodium cell, which determines in turn
the Na vapor thickness or line density. If too small, the probability of oc-
currence of two sequential collisions is low, and so is the efficiency. If too
high, the probability that He− ions are stripped in a third collision with
Na atoms raises, thus lowering the conversion efficiency. The present ex-
periment was run at low-temperature, so as to limit the cell temperature
to below 350 ◦C and avoid both rapid depletion of the amount of liquid
sodium in the oven and reduce sodium deposition on the electrodes of
the source and ion optics.

Detachment of He− is realized by interaction with the light beam
from a CO2 laser which generates 10 W of light with λ = 10.6 µm and
an M2 factor smaller than 1.2. It is loosely focused onto the atomic
beam by the combination of a divergent (f = −10 cm) and a convergent
(f = 20 cm) lens, at mid-distance between the exit of the spherical
deflector SD1 and the electron beam. The optics were chosen and placed
so that the spot size (1.3 mm) is close to the atomic beam diameter
(2 mm) and the Rayleigh range (10.4 cm) is large enough to maintain
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sufficient intensity throughout the detachment region. The laser beam
enters the vacuum chamber through an AR-coated Germanium window,
reaches the atomic beam via a hole drilled in the spherical deflector
SD1 and leaves the vacuum chamber through another AR-coated ZnSe
window in order to be collected by a powermeter.

After detachment, the metastable atoms fly straight through the col-
lision region and analysis magnet (M2) and are collected onto a Faraday
cup (FC1). Due to the collinear detachment arrangement, the laser
beam still overlaps the atom beam. In order to simultaneously allow
the laser beam to exit the vacuum chamber and measure the current
of neutral atoms, the Faraday cup consists in a guard electrode and a
polished Al surface oriented at 45◦ with respect to the direction of the
incident beams. While the neutrals hit the Al surface, the laser beam is
be reflected out of the vacuum chamber as the reflectivity of Aluminum
is 95% for λ = 10.6 µm. The current of neutrals is determined by mea-
suring, on the Al plate, the current generated by secondary electrons
emitted upon atom impact and leaving the surface under the action of
the electric field of the guard electrode, set to a high positive voltage.
These two currents are linked by the proportionality constant γ, which
stands for the average number of secondary electrons emitted per neu-
tral impact. In order to determine γ, we have measured the He− current
I− and the secondary electron current Is for increasing laser powers. For
this measurement, the planar deflector PD is switched off so that the
anions reach the Farady cup FC2 located inside the analysis magnet.
The attenuation of the He− beam due to photodetachment corresponds
to the increase of the neutrals’ current, therefore we have the following
relation,

Is(P )− Is(0) = γ [I−(0)− I−(P )] , (4.1)

where Is(0) and I−(0) are the currents when the laser is switched off and
Is(P ) and I−(P ) those for a given laser power P . However, one must also
take into account the fact that the part of the secondary electron current
due to neutrals produced by spontaneous detachment and collisions with
the residual gas will decrease as the anion current is attenuated by the
laser. Doing so, we obtain the equation

Is(P ) = γ [I−(0)− I−(P )] + δI−(P ), (4.2)

where δ is defined as Is(0)/I−(0). In practice, the coefficients γ and δ are
determined by fitting the left hand side of the above equation to its right
hand side for 7 laser powers. An example is shown in Fig. 4.2, for which
we obtain γ = 3.51 and δ = 0.222. We have repeated this procedure



130 Chapter 4. Electron-impact ionization of He(1s2s 3S) and He−

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70 80 90 100

C
ur

re
nt

(n
A

)

P/Pmax (%)

Fit
I−
Is

Figure 4.2: Anion and secondary electron currents as a function of ratio
between applied and maximum laser power. Crosses: anion current, stars:
secondary electron current, full line: fit of Is(P ) using Eq. (4.2).

frequently throughout the several weeks of measurements, and found
γ = 3.44 in average, with very little variation (3%).

In order to characterize the interaction between the ion and laser
beams and further investigate the performances of the metastable atom
source, we have measured the He− detachment efficiency for increasing
overlap distances Z between the laser and the ions. To do so, a set
of 3 deflectors spaced by known distances and placed along the beams
path were used to vary Z. The first deflector is located right after the
cylindrical deflector (SD1), the second is shown in Fig. 4.1 as PD and the
third is located after the electron gun. If no deflectors are switched on,
the anion beam travels to the Faraday cup FC2 and the overlap distance
is maximal. Switching on one of the deflectors, e.g. PD, the anion beam
is deflected out of the light path earlier and Z is significantly reduced
(by 90 cm for PD). The current of metastable atoms is measured when
each of these deflectors is individually turned on, and provided that
the incoming He− current is known, the detachment efficiency A(Z) is
readily obtained. The measured values of A(Z) are shown in Fig. 4.3.

Since A(Z) is an average over the volume of interaction between the
two beams, characterization is best performed by comparison with a
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simple modeling of the detachment process. The detachment efficiency
can be written, in its most general form, as

A(Z) =

Rx

−R
dx dy ρ(x, y)

[
1− exp

(
−
∫ Z

z0

dz

v
σφ(x, y, z)

)]
, (4.3)

where v is the ions’ velocity and σ the photodetachment cross section of
11.5× 10−21 m2 taken from Ramsbottom and Bell [182]. The anion and
laser beams propagate along the z direction and start overlapping at a
position z0 corresponding, in the experiment, to the exit of the spherical
deflector SD1. The anion beam is collimated by two diaphragms (R =
1 mm) before the interaction region, therefore its normalized profile ρ
can be approximated by a uniform distribution over a disc of area πR2,

ρ(x, y) =

√
(R2 − x2)(R2 − y2)

πR2
. (4.4)

Deviation of the photon flux φ from a Gaussian profile is given by its
M2 factor, and φ thus reads

φ(x, y, z) =
1

~ω
2Plaser

πw2(z)
e−2(x2+y2)/w2(z), (4.5)

where the beam radius w(z) is expressed in terms of the waist radius w0

and the Rayleigh range zR,

w(z) = w0

√
1 +

(
z

zR

)2

, with zR =
πw2

0

M2λ
. (4.6)

The M2 factor is taken as 1.2, given by the manufacturer, the waist
radius w0 is defined by the lenses set and is slightly adjusted in the
calculation to match experimental data, the laser power Plaser is chosen
as 8 W in order to account for reflection and absorption by the entrance
window and collimation by the hole in the spherical deflector SD1. The
integrals in Eq. (4.3) are computed numerically using the QUADPACK
routines [210].

The measured and calculated detachment efficiencies are shown in
Fig. 4.3. An overall good agreement is observed and suggests that the
main properties of the overlap region are well reproduced by the model.
The efficiency reaches ∼ 45% after the deflector PD, which corresponds
to the working conditions when measuring cross sections. This value
is very high compared to common standards and can be explained by
two factors. First, the photodetachment cross section of He− is large,
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Figure 4.3: Detachment efficiency as a function of the overlap distance Z,
referenced to the laser focus. The circles are experimental data. The full line
is the simulated efficiency for a laser power of 8 W and a waist radius of
0.825 mm.

reaching 10−20 m2 at the CO2 laser wavelength [183]. Second, the pho-
todetachment rate is inversely proportional to the photon energy which,
for λ = 10.6 µm (0.117 eV), is 20 times lower than for visible light
(500 nm, 2.48 eV). Therefore, all other quantities being equal, the de-
tachment efficiency is strongly enhanced when using long-wavelength
infrared radiation.

As a result of the high detachment efficiency and relatively intense
He− beam, the present source is able to generate a bright, fast beam of
metastable atoms. He− currents of 15 nA are routinely achieved in the
collision region and yield currents of metastable helium, as measured
in amperes, of 6 nA. This corresponds to neutral particle densities of
5×103 cm−3. Such densities can certainly be increased by enhancing the
detachment efficiency with a longer overlap distance, as seen in Fig. 4.3,
a reduced ion beam velocity or a higher laser power. Interestingly, high
power CO2 lasers are commercially available for industrial applications
and can easily deliver more than 100 W. On the ion side, high current
He− sources have been developed for applications in particle accelerators
and thermonuclear fusion devices and may certainly be used to further
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increase densities [246].

Finally, we note that although free from other excited states, the
metastable beam is contaminated by ground state atoms due to sponta-
neous detachment and stripping on residual gas. Spontaneous detach-
ment occurs along the 17.5 cm-long interaction region, located 2 m after
the Na vapor cell, and neutralizes 2.3%, 1.7% and 0.08% of the incoming
anions initially in the J = 1/2, 3/2 and 5/2 respectively. Neutralization
of the incoming He− ions thus occurs at the level of 1%, assuming that
the fine structure states of He− are statistically populated during the
charge exchange process. The amount of neutralization by stripping
collisions with the residual gas can be estimated from the electron im-
pact ionization signal measured when the laser is switched off and using
both the neutralization fraction due to spontaneous detachment and the
known ionization cross section of ground state helium [247]. We deter-
mined that collisions with the background gas convert about 3.5% of
the incoming anion beam into ground state helium. Therefore, in total,
about 4.5% of the anion beam is neutralized into ground state helium.

4.2.2 Electron impact ionization setup

The atom source being now well characterized, we can turn to the elec-
tron impact ionization experiment. The absolute cross section is mea-
sured with the animated-crossed-beam technique (ACBT), originally de-
veloped for electron impact ionization by Defrance et al. [79, 122], which
we used to determine photodetachment cross sections in Part 2. We re-
call that its main advantage lies in the fact that the form factor, related
to the interaction volume, needs not be determined. The corresponding
experimental setup has already been described in some length elsewhere
(see [234] and references therein), thus only its major features will be
outlined below.

As it passes through the collision region, the incoming metastable
atom beam is intersected at right angle by the ribbon-shaped electron
beam from an electron gun with an indirectly-heated cathode. The ki-
netic energy of the electrons is determined by the potential difference
between the cathode and the biased interaction region. It is further
corrected to account for a contact potential difference, determined by
fitting the measured ionization cross section of Ne+ at threshold. The
energy spread of the electron beam is estimated to be 0.5 eV (FWHM).
The ACBT relies on sweeping one of the beams across the other, there-
fore the electron beam is moved vertically across the atom beam in a
linear see-saw motion by means of electrostatic deflection. The collision
region is brought to a high positive voltage (1000 V) which allows to
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separate the electron impact ionization signal from the background. In-
deed, He+ ions formed in this region will gain a kinetic energy of 1 keV,
thus reaching E = 9 keV, while He+ ions produced by collision with
the residual gas up- and down-stream gain no energy (E = 8 keV). The
9 keV ions produced by electron impact are mass- and energy-selected
by the analyzing magnet M2, subsequently deflected by a 90◦ spherical
deflector (SD2) and counted with a channel electron multiplier (CEM).

During one sweep of the electron beam, the He+ ions are counted
and the electron beam current Ie and secondary electron current Is,
related to the current of metastable atoms by γ, are measured. The
total number of He+ ions K produced during the sweep is related to the
cross section σ by

σ =
vevn

(v2
e + v2

n)1/2

γe2

IsIe

uK

η
, (4.7)

where ve and vn are the velocities of the electrons and atoms respectively,
e is the elementary charge, u is the sweeping speed and η is the detection
efficiency. The sweeping speed u of ∼ 8 m/s is determined by measuring
the travel time of the electron beam between two wires located above
and below the atomic beam, and separated by a known distance. The
detection efficiency for 9 keV He+ ions is 0.95± 0.05, as estimated from
the known detection efficiency for protons at 5 keV [136]. Sweeping of
the electron beam is performed at 2× 383 Hz and the final cross section
is an average over measurements lasting from a few minutes to more
than 1 hour.

Two corrections to Eq. (4.7) must be considered in order to account
for spurious experimental effects. First, some anions are detached inside
the spherical deflector SD1, where the neutrals produced do not have
the correct trajectory to reach the collision region. Using the model
of the laser-atom overlap developed in the previous section, we have
determined that this effect decreases γ by 3%. Second, electron impact
ionization of ground state atoms contaminating the metastable beam
will also contribute to the He+ signal. By performing a measurement
when the laser was switched off, we could determine that the ground
state contribution amounts to less than 1% of the measured ionization
yield.

Uncertainties arising from systematic effects are estimated as follows:
the uncertainty of 1.5% on the sweeping speed, 0.5% on the kinematic

factor vevn/
(
v2

e + v2
n

)1/2
and 1.5% on the electron current have been pre-

viously estimated [234] ; the uncertainty of 5% on the detection efficiency
reflects the uncertainty on the estimate made from proton detection effi-
ciency [136] ; the observed 3% standard deviation around the mean value
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of γ gives a conservative estimate of its uncertainty; the uncertainty of
6% on the secondary electron current is obtained by comparison with
a calibrated current source. The total systematics are thus 8.6%, as
obtained by taking the quadrature sum of all uncertainties.

4.3 Ionization cross sections

4.3.1 Single ionization of metastable helium

The results for electron impact ionization of He(1s2s 3S) are presented
in Fig. 4.4 along with existing theories and experiment. Only one ab-
solute measurement is available over a wide electron energy range, by
Dixon et al. [213], and it lies much higher than the present results. In
their experiment, a fast beam of metastable atoms was first formed by
charge exchange between fast He+ ions and cesium vapour and subse-
quently crossed perpendicularly by an electron beam. The cross section
was determined under the assumption that, after charge exchange, 80%
of the beam is in the 1s2s 3S state while the remaining atoms are in
the ground state. This assumption was later weakened by Reynaud et
al. [237] and Neynaber and Magnuson [238] who showed that, for a
1 keV He+ beam, the neutral beam emerging after charge exchange con-
sists in 60.5% of He(1s2s 3S), 23.5% of He(1s2s 1S) and 16% of He(1s2

1S). We have therefore computed a rough estimate of the corresponding
correction to the 4 keV data of Dixon et al. by using the 1 keV popula-
tions and the ionization cross section of He(1s2s 1S) from Ralchenko et
al. [216]. The correction is found to be small, the larger ionization cross
section of He(1s2s 1S) counterbalancing the reduced He(1s2s 3S) frac-
tion, and certainly cannot account for the large discrepancy observed
with the present experiment. The origin of such a large difference re-
mains unclear.

A handful of absolute experiments were performed (see [248] and
references therein) prior to the experiment of Dixon et al. [213], how-
ever they are limited to electron energies ranging from the metastable
ionization threshold (4.77 eV) to the ground-state ionization threshold
(24.59 eV). Indeed, the thermal-energy beams used contained predom-
inantly ground state atoms and therefore ionization of the small frac-
tion of metastable atoms was masked by ground state ionization above
24.59 eV. The cross sections obtained vary greatly in shape and magni-
tude (see, for example, Long and Geballe [248]) and vastly differ from
the present cross section.

Before turning to comparison with theory, we may stress that, in
both the present experiment and that of Dixon et al. , the measured sig-
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Figure 4.4: Electron impact ionization cross section of He(1s2s 3S). Full cir-
cles: present work; full triangles: absolute measurement of Dixon et al. [213];
dotted line: CCC calculation [216]; dashed line: TDCC calculation [214]; dash-
dotted line: RMPS calculation [217]; full line: CCC and Born calculation [215];
dash-dot-dotted line: contribution of autoionization and ionization with excita-
tion to the total cross section [215]. The vertical lines indicate the position of
the various thresholds. The error bars are the 2σ statistical uncertainties.
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nal is the sum of three contributions: (i) ionization of the outer electron
leaving the He+ ion in its ground state; (ii) ionization of the inner elec-
tron leaving the He+ ion in an excited state; (iii) excitation to doubly
excited states of He and subsequent autoionization.

On the theoretical side, the electron impact ionization of He(1s2s 3S)
is a benchmark process that has been the object of a number of theoreti-
cal calculations of ever-increasing sophistication. Numerous examples of
model calculations can be found in the literature and use, with increasing
degree of sophistication, the semi-classical Deutsch-Märk formalism, a
formula based on the Binary-Encounter-Bethe model, Born-type meth-
ods or the perturbative distorted-wave method [213, 214, 218–223]. A se-
ries of ab-initio calculations has also been performed in the recent years,
the results of which are represented in Fig. 4.4. Several convergent-close-
coupling (CCC) calculations were dedicated to computing the electron
impact ionization cross section [215, 216, 224], and systematically fall
more than a factor 1.5 below the experimental data of Dixon et al. [213].
In order to assess the validity of the CCC calculations, R-matrix method
with pseudo state (RMPS) and time-dependent close-coupling (TDCC)
calculations were also performed [214, 217]. The present measurement
lies higher than the RMPS calculation of Bartschart [217], but matches
the TDCC calculation of Colgan and Pindzola [214] up to electron ener-
gies of 100 eV and is in excellent agreement with the calculation of Fursa
and Bray [215] over the whole energy range covered. Fursa and Bray
performed a frozen-core CCC calculation which was smoothly scaled, in
the range from 30 eV to 120 eV, by the ratio between multi-core and
single-core Born calculations in order to account for ionization with ex-
citation and excitation to doubly excited states of helium followed by
autoionization, up to n = 3. Above 120 eV, the cross section is the one
obtained from the multi-core Born calculation. The difference between
the frozen-core calculation, comprising the CCC calculation matched, at
higher energies, with frozen-core Born calculations, and the multi-core
calculation is also shown in Fig. 4.4. It is apparent that the contribu-
tion of autoionization and ionization with excitation is non-negligible,
and amounts to about 30% of the total cross section at an energy of
1000 eV. While ionization through doubly excited states is negligible
for ground state atoms [249], the present measurement suggests along
with [215] that it contributes to the ionization cross section for excited
states. Surprisingly, the most recent frozen-core CCC calculation of
Ralchenko et al. [216] deviates from the frozen-core CCC calculation of
Fursa and Bray [215] at intermediate energies.

The high-energy behavior of the ionization cross section is best ob-
served in the Bethe plot presented in Fig. 4.5. Again, agreement with



138 Chapter 4. Electron-impact ionization of He(1s2s 3S) and He−

0

50

100

150

200

250

300

350

400

450

10 100 1000

H
e+

(1
s)

H
e(

2s
2 ,

1 S
)

H
e+

(2
s)

E
eσ

(1
0−

20
eV

m
2 )

Ee (eV)

Figure 4.5: Bethe plot of the electron impact ionization cross section of
He(1s2s 3S). Full circles: present work; full triangles: absolute measurement of
Dixon et al. [213]; full line: CCC and Born calculation of Fursa and Bray [215];
dash-dot-dotted line: contribution of autoionization and ionization with exci-
tation to the total cross section, as calculated by Fursa and Bray [215]. The
vertical lines indicate the position of the various thresholds. The error bars are
the 2σ statistical uncertainties.

the calculation of Fursa an Bray is excellent [215]. The importance of
the autoionization and ionization with excitation channels is evident at
high energies, where the frozen-core Born calculation fails to reproduce
the experimental asymptotic behavior. The shape of the cross section
measured by Dixon et al. is similar to the present data but its magnitude
is larger.

4.3.2 Double ionization of He−

The cross section for the electron impact double ionization (EIDI) of
He− is readily measured with the apparatus described above. It suffices
to switch the CO2 laser and deflector PD off and run the experiment
while measuring the He− current on the Faraday cup FC2 instead of
the secondary electron current on FC1. The present results are shown
in Fig. 4.6, and no other experimental data or ab initio calculations
are available for comparison. The magnitude of the cross section is
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higher than for other light atomic anions [233], for which σ lies below
8×10−21 m2. This may be expected since He− is a weakly bound anion,
with a double ionization potential of 4.84 eV, and two of its electrons
reside in the outer shell (1s2s2p).

The dotted curve in Fig. 4.6 corresponds to the generic shape func-
tion for EIDI cross sections of negative ions, established by Rost and
Pattard [250] and given by the formula

σ(E) = σM

(
E

EM

)β ( β + 1

β E
EM

+ 1

)β+1

, (4.8)

where E = Ee − I is the excess energy of the system measured from
the double ionization threshold I, σM is maximum of the cross section,
located at an energy EM , and β is the Wannier exponent. The values of
EM and σM are determined from a fit of the cross section using the func-
tion of Ralchenko et al. [216]. The Wannier exponent determines the
power law behavior of the cross section at threshold (σ(E) ∝ Eβ), as de-
rived both classically and quantum mechanically, and its value depends
on the final, fragmented state only. A value of β = 2.83 corresponds
to the EIDI of a negative ion [251]. Equation (4.8) provides an ad hoc
shape for the EIDI cross section which reduces to the Wannier law close
to threshold and behaves as the classical 1/E asymptotic limit for high
energies. It was first shown to match surprisingly well the ionization
cross sections of a large number of atomic targets (H, He, C, N, O, Ar,
Ne) by charged projectiles such as electrons, positrons, protons and an-
tiprotons [252]. Subsequent work considered its application to the EIDI
of negative ions and the experimental cross sections for H−, O− and C−

were, again, well accounted for [250]. The authors stressed that their
formula can be used as a tool to determine the degree of importance
of direct EIDI against indirect EIDI processes such as excitation to au-
toionizing states. Indeed, since Eq. (4.8) only accounts for direct EIDI,
deviations from this universal shape such as those observed for C− in-
dicate the presence, and possibly prevalence, of indirect EIDI channels.

Departure from the analytical shape at intermediate energies, as seen
in Fig. 4.6, may indicate the onset of indirect EIDI mechanisms. In the
same energy region, a plateau can be observed in the Bethe plot shown
in Fig. 4.7. Note that deviations from the analytical shape close to
threshold may not be regarded as significant since, in this electron en-
ergy range, an accurate measurement is very difficult with the present
setup. The mechanism underlying indirect EIDI is presently unknown,
although we can note that departure from the direct EIDI shape is im-
portant in the energy region of triply excited states of He− and doubly
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Figure 4.6: Electron impact double ionization cross section of He−(1s2s2p
4Po). Full circles: present work; dotted line: analytical formula of Rost and
Pattard [250]. The error bars are the 2σ statistical uncertainties.
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Figure 4.7: Bethe plot of the electron impact double ionization cross section
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excited states of He. The excitation-autoionization mechanisms respon-
sible for the enhancement of the single ionization of the metastable atom
may thus partly cause the suppression of the double ionization of He−.
Note however that the possible onset of indirect process lies below the
energy of the first doubly excited state of He. It is interesting to note
that experimental and theoretical works on the double photodetachment
of He− have evidenced the important role played by autoionizing triply
excited states of He− and doubly excited He states, provided that the
photon energy is tuned between the He+(1s) and He+(2s) thresholds
(38 eV – 44 eV) [157, 253–255]. While some channels lead to an en-
hancement of the He+ production, a few others such as the detachment
through the He(2s2p 3Po) transient state have been shown to favor the
production of neutral helium [253]. In regard of the quenching of He+

production observed in the present data, such channels may also play a
role in the double ionization by electron impact.

As a final remark, we note that the present cross section does not
match those derived from semi-empirical formulas for EIDI such as that
of Shevelko and Tawara [233, 256].

4.3.3 Double ionization of metastable helium

The electron impact double ionization cross section of He(1s2s 3S), mea-
sured with the exact same setup as for single ionization but detecting
He2+ ions instead, is shown in Fig. 4.8. It is compared to the cross
section for the double ionization of He(1s2 1S) measured by Bahati et
al. [226] and Shah et al. [257]. Surprisingly, the magnitude of the
cross section for the metastable state is similar to that for the ground
state, although it lies 19.6 eV above it. This violates the classical Thom-
son scaling law which states that cross sections scale as the inverse of
the square of the ionization potential Ip. In the present case, the EIDI
cross section of He(1s2s 3S) should thus be 1.8 times larger than that of
He(1s2 1S). The 1/I2

p scaling law has been verified for a number of sys-
tems, and is used in most semi-empirical formulas describing EIDI cross
sections [233, 258–260]. We have no clear explanation for the present
deviation.

The EIDI cross sections of metastable and ground state helium fur-
ther exhibit a similar high energy behavior, as seen in the Bethe plot
presented in Fig. 4.9 where both cross sections reach a plateau. The
plateau for He(1s2s 3S) exhibits a slightly negative slope. As discussed
by Bahati et al. [226], the sign of the plateau for He(1s2 1S) is un-
clear since, while the results of Shah et al. [257] show a slight, negative
slope, other experimental results (not shown) find a plateau with a slight
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positive slope. The slope is related to the double photoionization cross
section and must thus be, in theory, strictly positive [261].

Theoretical input concerning the physical mechanisms underlying
EIDI is scarce in general, and limited to the work of Defrance et al. [262]
in the present case. They calculated the EIDI cross section of He(1s2 1S),
He(1s2s 1,3S) and of the corresponding isoelectronic ions up to carbon
within the framework of a shake-off model and first Born approximation.
The calculated cross sections for the ground state and metastable triplet
state both lie below 5× 10−24 m2 and differ by more than a factor of 2,
in stark contrast with the present results. The large deviation between
theory and experiment suggests that shake-off is either not the dominant
process in the present energy range or not properly estimated with this
model because of, e.g. , limitations in the description of electron-electron
correlations in the target atom.

Simple considerations concerning the behavior of the cross section
with respect to the electron energy can provide further hints on a ten-
tative ionization mechanism. Let us first note that the ionization cross
section of H(2s) has a shape very similar to that of He(1s2s 3S) when the
latter is computed within the frozen-core approximation, i.e. , neglect-
ing the influence of excitation and ionization of the 1s electron. Hence,
correlations between the 1s and 2s electrons may not significantly affect
the energy dependence of the ionization cross section of He(1s2s 3S), as
long as the 1s electron is a spectator. In a second step, we consider the
double ionization process and assume that it proceeds through the suc-
cessive knockout of the two electrons. This assumption is nothing but
that of a two step 1 or two step 2 mechanism, both of which have been
discussed for ground state helium [263]. We then suppose, following the
above argument, that the two ionization events are uncorrelated. Within
this simplistic picture, the double ionization cross section σDI may be
thought as the product of the single ionization cross section σ2s of H(2s)1

with the single ionization cross section σ1s of He+(1s). Such a product
is represented in Fig. 4.10 by the dash-dotted curve, which was scaled to
the maximum of the experimental data. We first notice that agreement
is surprisingly good for such a primitive model. On the low energy side,
between threshold and ∼102 eV, the modeled cross section lies higher
than experimental data. Such a discrepancy may be explained, if the
2s electron is ejected first, by the loss of an energy ∆Ee by the projec-
tile during the first knockout step. The multiplication leading to σDI

should then be σ2s(Ee)× σ1s(Ee −∆Ee), where Ee is the energy of the
incident electron. For energies below 102 eV, this effect will cause σ1s

1or, similarly, that of He(1s2s 3S) within the frozen-core approximation
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to be smaller and, consequently, the EIDI cross section to be lower. As
the energy of the incident electron increases, the loss ∆Ee amounts to a
smaller fraction of the total energy and this effect becomes less impor-
tant. We may also note that the present model can account, to some
extent, for the similar amplitudes of the EIDI cross sections for ground
and metastable helium. Indeed, it suffices to note that in both cases
the bottleneck for double ionization is the ejection of the 1s electron
evolving in the residual He+ core, which is significantly more difficult
than ejection of the first 1s or 2s electron. As a final word of caution, it
is important to remind that such a model is crude, and while the agree-
ment with the experimental cross section is interesting, it may very well
be accidental.

As for the EIDI of He−, the cross sections calculated from semi-
empirical, analytical formulas do not reproduce well the measured one.
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Figure 4.10: Cross section from a tentative double knockout model for the
electron impact double ionization of He(1s2s 3S) as a function of the projectile
energy (see text). Full circles: present work; dashed line: frozen-core CCC cal-
culation for electron impact single ionization cross section of He(1s2s 3S) [216],
scaled by 3.1×103; full line: CCC calculation for the electron impact ionization
of He+(1s) [264], scaled by 27; dash-dotted line: cross section of a tentative
“double knock-off” ionization mechanism. The error bars are the 2σ statistical
uncertainties.
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4.4 Conclusion

In an effort to measure the electron impact ionization cross section of
metastable helium, a novel source capable of producing an intense, fast
and pure beam of He(1s2s 3S) atoms was designed and built. It is
based on the photodetachment of a He− beam, which leaves helium in
its 1s2s 3S state only. Excellent production efficiencies are reached and
can in principle be scaled up for applications requiring larger yields and
densities. It may also pave the way to measurements of other quantities,
such as the photoionization cross section of He(1s2s 3S).

The cross section for single ionization by electron impact was mea-
sured using the animated-crossed-beam technique and the correspond-
ing apparatus, developed over the past decades in the laboratory. The
present results are in excellent agreement with the calculation of Fursa
and Bray [215] and lie much lower than previous experimental data [213].
They resolve a long-lasting discrepancy and support the validity ab ini-
tio methods for the 1st excited state of helium. The present work also
confirms the role of doubly excited states and suggest that they should
be included in future accurate reference data [216]. In view of the in-
creased importance of such states compared to their negligible role in
ground state ionization, comparisons between the present data and fully
ab initio multi-core calculations would be interesing, as was already per-
formed for ground state helium [247].

Cross sections for the double ionization of He− and He(1s2s 3S) have
also been measured for the first time. The former is high compared to
common values and shows evidence of indirect double ionization mech-
anisms at intermediate electron energies. The latter is surprisingly low,
matching in amplitude the cross section of ground state helium. A tenta-
tive mechanism was proposed based on crude considerations concerning
the energy behavior of the double ionization cross section.





Chapter 5

Conclusion & perspectives

5.1 Conclusion

The work presented in this thesis explored different facets of the pho-
toionization and electron impact ionization of negative ions and atoms.
We first investigated the simplest form of photodetachment in much de-
tails: the one-photon detachment, in the perturbative regime, of the light
atomic anions of hydrogen and oxygen. To do so, the animated-crossed-
beam technique was developed for laser-ion interactions, including its
extension to the multiphoton regime, and provided with absolute total
cross sections that do not rely on modeling the overlap region between
the laser and ion beams. A first benchmark measurement was carried out
to determine the absolute total photodetachment cross section of H−,
falling in excellent agreement with compelling theoretical results. Pho-
todetachment of O− was later studied, within the same framework, both
using CW and pulsed lasers. The good mutual agreement confirmed the
validity of the ACBT for pulsed laser systems. Combining together the
animated-crossed-beam technique, the velocity map imaging technique
applied to photoelectron spectroscopy and a broadband tunable OPO
laser, we were able to determine the total, partial and differential cross
sections in a absolute manner and over an unprecedented range of photon
energies (1.48 eV – 5.5 eV). These quantities give altogether a complete
picture of the photodetachment of O− from threshold to the ultravi-
olet region. Overall, good agreement with previous works is obtained
for asymmetry parameters β and branching ratios. However, discrep-
ancies are observed for the total cross section and prompts for further
experiments to be carried out. Our results fall in fair agreement below
the O(1D) threshold with a recent R-Matrix Floquet calculation. The
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two-photon generalized cross section was also measured at the Nd:YAG
laser frequency and, in combination with the same RMF calculation, a
long-lasting discrepancy was resolved.

The second part was dedicated to the 4-photon double detachment
of He − , which is a non-perturbative, highly non-linear process. The
intricate photon-induced dynamics could be disentangled only by com-
bining experiment with both theoretical methods, namely R-Matrix and
R-Matrix Floquet theory, and an accurate time-dependent modeling of
the experiment by means of an effective Hamiltonian model. We could
show that double detachment proceeds through the one-photon detach-
ment of He− followed by the resonance-enhanced multiphoton ionization
of the transient atomic states 1s2s 3S or 1s2p 3Po, depending on the pho-
ton energy. Series of Rydberg states, along with the 1s3s 3S state, could
be identified as the major source for resonance-enhancement, which was
further found to be ML-dependent. We considered explicitly the in-
fluence of the laser peak intensity and polarization and showed that it
modifies coupling strengths, AC Stark shifts and dipole selection rules,
thus altering double detachment dynamics. The second, ionization step
was found not to depend strongly on the first, single detachment step.
Double detachment thus proved a valuable tool for producing atoms in
states that are difficult to reach with other, more conventional methods,
and then study multiphoton dynamics in situ.

This observation naturally brings us to the third part of the work
presented above, dedicated the electron impact single and double ion-
ization of metastable helium and He−. Such a difficult, state-selective
experiment prompted the development of a source of fast metastable
helium atoms with high purity that did not exist in the literature. It is
based on the photodetachment of He− by a CO2 laser, which produces
helium in its 1s2s 3S state only, and does so with a very large efficiency
(≥ 40%). With this source, we could reach the high level of purity (95%
1s2s 3S – 5% ground state) and reasonably large fluxes (6 nA) required
for electron impact ionization measurements. We then explored a long
lasting discrepancy concerning the absolute, total cross section for elec-
tron impact single ionization of metastable helium, which we could solve.
Absolute double ionization cross sections for metastable helium and the
helium negative ion were also recorded for the first time to our knowl-
edge. Tentative explanations on their shape and anomalous features was
given.
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5.2 Perspectives

From a practical perspective, several improvements to the experimental
setups described above would enhance the quality and ease of measure-
ments. Developing a better magnetic shield for the velocity map imaging
spectrometer would most certainly result in better energy resolutions, al-
lowing to separate for example different photodetachment channels that
cannot be resolved at the moment. Merging together the ACBT and
VMI setups would result in faster cross section measurements, eventually
allowing “one-shot” experiments where all total, partial and differential
cross sections could be determined together. Finally, developing a reli-
able and accurate technique to determine in situ the absolute detection
efficiency of channel electron multipliers would help reduce uncertainties
on absolute measurements.

The measurement of all quantities governing the photodetachment of
O− on a broad photon energy range further paves the way to systematic
studies of the photodetachment of anions of interest. An obvious target
is H−, for which we measured the total cross section only from 1.165 eV
to 1.77 eV. Since it is a system of choice for testing theoretical methods,
providing benchmark values is certainly desirable for photon energies
above 2.2 eV, where no experimental data are available. In this respect,
the OPO light source makes a measurement from threshold (0.755 eV) to
5.5 eV possible. Furthermore, the measurement of partial cross sections
is not required since the 1s state of hydrogen is the only final state
energetically allowed and, since photodetachment consists in detachment
of an s-electron, the asymmetry parameter is expected to be constant
and equal to 2. Photodetachment for higher photon energies can be
envisioned using synchrotron light sources and one could go up to the
resonance series converging to the n = 2 and n = 3 states of neutral
hydrogen [36]. Angular distributions of photoelectrons in these channels
are subject to rapid variations and are poorly studied [47].

Beyond studying the photodetachment of H−, investigating the pho-
todetachment of other anions such as C−, Si− or Na− is a perspective
for future work. C− bears some interest in astrophysics and its total
photodetachment section is only poorly known. In particular, available
experimental total cross sections are put on an absolute scale using the
absolute cross section for O− measured by Smith and Branscomb et
al. [80, 98], with which we did not find agreement. The photodetach-
ment of Si− is similar to that of C− and quite eventful, one of its main
feature being a broad shape resonance around 5 eV where the total cross
section falls down to a near-zero value [265]. Only the total cross section
has been measured in the vicinity of the resonance, and neither partial
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nor differential data are available. Experimental data away from that re-
gion are also non existent. Therefore, a complete measurement is much
needed to better understand this anion. The experimental procedure
presented above is not limited to studying atomic anions, and its ap-
plication to molecular anions is in principle quite straightforward. The
first molecule one could envision to study is the hydroxyl anion OH−

which is important for, e.g. , interstellar chemistry. It is probably the
anion for which the most detailed cross section studies exist (see [73]
and references therein), and would be in this respect a necessary step in
applying the ACBT+VMI+OPO procedure to molecular systems.

Multiphoton single detachment is another field of investigation that
we only superficially considered. With the proposed multiphoton ex-
tension of the animated-crossed-beam technique, systematic studies are
feasible. The largest concern in this perspective is the need for tunable,
high-energy pulsed lasers in the infrared in order for the photon energy
to be well below the detachment threshold. The spectral distribution of
such lasers must be, if not well-controlled, at least well-characterized,
since photon statistics effects become more important as the number of
photons absorbed increases. One could investigate predictions made by
Gribakin and Kuchiev on the properties and energy-behavior of multi-
photon detachment cross sections [121, 154]. First of all their analytical
formula for generalized total cross sections for n-photon detachment is
expected to become more accurate for higher n. This allegation could
be verified by studying the two, three and four photodetachment of the
series O−, F−, Cl−, for which experimental data exist but may be un-
reliable [266]. Second, Gribakin and Kuchiev gave closed formulas for
the angular distributions of photoelectrons emitted upon multiphoton
detachment. Such distributions have been measured only for the multi-
photon detachment of a few anions such as F− and I− [267, 268], and
other species or higher photon numbers could be investigated with our
VMI spectrometer. The influence of laser polarization on these cross
sections is also largely unexplored.

The double detachment of He− in moderately strong laser fields was
studied above, and by comparing theory and experiment we could inves-
tigate its underlying dynamics in details. This work may thus lay ground
for studying the double detachment of He− in very intense fields, as ob-
tained with high-energy femtosecond lasers. The present understanding
of sequential dynamics could help, for example, disentangling possible
non-sequential processes occurring in the strong-field regime. Another
perspective of future work could include investigating the photoelectron
distributions following double detachment. The preliminary work we
performed has shown that they depart from the description in terms of
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asymmetry parameters due to the presence of intermediate resonances.
Photoelectron spectroscopy may also serve, when combined with two-
color experimental schemes, as a way to investigate multiphoton dynam-
ics within the detachment continuum.

Finally, the development of a source of metastable helium atoms with
high purity makes possible detailed studies of , e.g. , its photophysical
properties. Experimental data are indeed scarce for this system due to
the aforementioned production difficulties. Targets include, for example,
the full cross sections set for single photoionization of He∗. The study of
the chemical reactivity of He∗ can also be envisioned, motivated by the
importance of Penning ionization in cold plasma environments. Finally,
the present source of metastable helium atoms paves the way to the
production atoms in higher-lying states by resonant excitation. With
such a scheme, the electron impact ionization cross section of excited
states of helium belonging to the triplet manifold could be measured.
Such data could serve, as for that of He(1s2s 3S), as a benchmark for
theoretical methods. The production of metastable atom beams is cer-
tainly not limited to helium, and we performed some preliminary work
on the production of a O(1D) beam. Once the source is operational, a
measurement of electron impact ionization cross section of metastable
oxygen could be envisioned since such data is demanded by the planetary
science community.





Chapter A

Effective Hamiltonian theory

The effective Hamiltonian (EH) method, also called “Essential states
method” by some authors [200], can be used to treat in a semi- pertur-
bative manner resonance-enhanced multiphoton ionization (REMPI). It
considers explicitly, i.e. in a non- perturbative way, the quasi-resonant
bound states involved in the REMPI process. Other (off-resonance)
bound states and continuum states are treated with perturbation the-
ory up to any desired order. While extensive literature is available on
EH theory and its wide range of applications, we feel that its derivation
for the specific case of REMPI lacks a detailed, unified presentation.
For more general information on EH theory, the reader may consider
reading the comprehensive topical reviews by Killingbeck and Jolicard
[202, 203].

The EH derivation presented below is based on the wave-operator
method of Durand [204] and, while other derivation techniques exist,
we believe it is the one providing the most intuitive and trouble-free
approach. We also borrow from the deep insights found in Baker’s article
about the physical significance of EH for REMPI [201].

Atomic units are used throughout this appendix.

A.1 Preliminary Definitions

We consider an atom, prepared in a well-defined quantum state, in
the presence of a laser field of angular frequency ω. The exact time-
dependent Hamiltonian H(t) of the system can be expressed as:

H(t) = HA +HF + V (t).
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HA is the Hamiltonian of the isolated atom, HF that of the laser field
and V (t) is the time-dependent atom-field interaction. Merging HA and
HF into H0, the “free” Hamiltonian, we obtain :

H(t) = H0 + V (t). (A.1)

We denote by |a〉 |m〉 = |a,m〉 the discrete eigenstates of the free Hamil-
tonian H0. |a〉 is a discrete eigenstate of the atomic Hamiltonian and
|m〉 an eigenstate of the laser field Hamiltonian. The discrete eigenvalue
spectrum of H0 is given by

H0 |a,m〉 = (Ea −mω) |a,m〉 , (A.2)

where Ea is the energy of the atomic state. The ionization continuum
states are designated as |ε,m〉 where ε is the photoelectron energy. The
continuum eigenvalue spectrum of H0 is thus

H0 |ε,m〉 = (ε−mω) |ε,m〉 . (A.3)

The integer m can be chosen as the number of absorbed photons. We
further make the following assumptions:

i. The system is well into the multiphoton regime and tunnel ioniza-
tion can be neglected.

ii. The rotating-wave approximation (RWA) holds.

iii. The following closure relation holds,

∑
m

|m〉 〈m|
(∫

de |e〉 〈e|+
∑
a

|a〉 〈a|
)

= 1.

A.2 Hilbert space partitioning

Let us start from the time-independent Schrödinger equation,

H |ψ〉 = E |ψ〉 .
The first, essential step is to partition the Hilbert space spanned by a
complete set of basis vectors, which is given in our case by the eigenvec-
tors of the free Hamiltonian H0. Let us call P a small subspace of the
Hilbert space, spanned by some of these basis vectors. This is the space
“of interest”, or model space. The rest of the basis vectors is grouped
into the orthogonal complement of P, denoted Q and called the outer
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space. The Feshbach projection operators associated with these two sub-
spaces are respectively P and Q, with P + Q = 1 given by the closure
relation. They can be expressed in terms of the basis vectors as:

P =
∑
i∈P

|pi〉 〈pi| , (A.4)

and
Q =

∑∫
j∈Q

|qj〉 〈qj | . (A.5)

The vectors |pi〉 are a given set of discrete states |a, n〉. The vectors |qj〉
are both discrete and continuum states, i.e. |a′, n〉 and |ε, n〉, orthogonal
to the |pi〉 vectors. The integral-sum symbol thus denotes a sum over
all outer space bound states and an integral over all continuum states.
We also refer to the dimensions of the P and Q spaces as:

N(P) = card(P), N(Q) = card(Q).

The goal of building an effective Hamiltonian is to replace the infinite
set of coupled equations contained in the Schrödinger equation by a
small, finite-size set of such equations which preserves a given number
N(P) of eigenvalues of the exact Hamiltonian. Figures A.1 and A.2
represent this “folding” procedure which drastically reduces the size of
the Hamiltonian matrix while preserving the desired eigenvalues. In
mathematical terms, the effective Hamiltonian thus obeys the equation,

Heff |ψp〉 = E |ψp〉 ,

where we defined the model space wave function |ψp〉 = P |ψ〉.

A.3 Wave operator method

For the effective Hamiltonian approach to be relevant, there must exist
a non trivial transformation operation leading from the exact to the
effective Hamiltonian. The most general transformation is given by the
following canonical equation,

WHeff = HW, (A.6)

where W is unknown. We shall define it as the wave operator. The
so-called intermediate normalization of the wave operator is verified in
the present case (see Durand [204]), hence:

PW = P. (A.7)
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Figure A.1: Hilbert spaces of the exact and effective Hamiltonians. They
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Figure A.2: Matrix representation of the exact and effective Hamiltonians.
The hatched lines represent the non-zero parts of the matrices
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Multiplying Eq. (A.6) by P on the left and using the intermediate nor-
malization property, we obtain

PHeff = PHW, (A.8)

where Heff acts only on the P subspace, thus PHeff = Heff. Replacing
in Eq. (A.6) yields the generalized Bloch equation,

HW = WPHW. (A.9)

We recall that the exact Hamiltonian can be separated in a free part
and an interaction part,

H = H0 + V,

where H0 is real and diagonal hence H0 commutes with P and PH0Q =
0. Replacing in (A.9) and multiplying by P on the right yields

WPVWP − VWP = H0WP −WPH0WP

= H0WP −WPH0(P +Q)WP,

= H0WP −WPH0P,

= H0WP −WH0P,

= [H0,W ]P, (A.10)

which gives a set of N(P) coupled equations. For each of these equa-
tions, we multiply by Q on the left,

Q (WPVW − VW ) |pi〉 〈pi| = Q (H0W −WH0) |pi〉 〈pi|
= Q (H0 − Ei)W |pi〉 〈pi| .

Notice the use of Ei = Ei −mω, as defined in Eq. (A.2), to denote the
energies of the eigenvectors of H0 belonging to the P subspace.

In order to obtain an expression for the wave operator, we wish to
multiply the above equation by (H0 − Ei)−1 and use the fact that Q
commutes with H0 to isolate QW . However, at least one eigenvalue of
H0 is to equal Ei. In order to avoid divergence we instead multiply by
(H0 − Ei − iβ)−1, where β is real and nonzero, and then take the limit
β → 0. We also recast the set of N(P) coupled equations in its compact
form, based on projection operators. It leads to the final expression for
the (reduced1) wave operator,

QWP =
β→0

∑
i∈P

Q

Ei −H0 + iβ
(VW −WPVW ) |pi〉 〈pi| . (A.11)

1In the literature the operator QW is sometimes called the reduced wave opera-
tor [203, 269]
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In the following developments, equations are always to be taken in the
limit β → 0. It is useful to recall Green’s operator spectral representa-
tion,

Q

Ei −H0 + iβ
=
∑
j∈Q

|qj〉 〈qj |
Ei − Ej + iβ

.

Now, the wave operator can be found recursively from Eq. (A.11). Let
us write it as a (perturbative) expansion,

W = W (0) +W (1) +W (2) + . . . (A.12)

An obvious choice for W (0) is the P operator. Indeed, in this case the
effective Hamiltonian is simply the exact Hamiltonian truncated to the
P subspace and all states from the outer space are neglected. Higher-
order terms in W will progressively add contributions from those states
lying in the Q space, which act as perturbers. To see that, we start
by replacing W by P on the right hand side of Eq. (A.11) to obtain
QW (1)P ,

QW (1)P =
∑
i∈P

Q

Ei −H0 + iβ
V |pi〉 〈pi| . (A.13)

In a similar fashion, one can replace W by P +W (1) on the right hand
side of Eq. (A.11) to obtain QW (2)P and keep terms only up to the
second order in V ,

QW (2)P =
∑
i∈P

Q

Ei −H0 + iβ
V

Q

Ei −H0 + iβ
V |pi〉 〈pi| (A.14)

−
∑
i∈P

∑
j∈P

Q

(Ei −H0 + iβ)(Ej −H0 + iβ)
V |pj〉 〈pj |V |pi〉 〈pi| .

This procedure can be, of course, repeated until the desired perturbation
order is reached.

Finally, we can use the above equations for the wave operator to
write an expression for the effective Hamiltonian Heff. To do so, let us
start from Eq. (A.8),

PHeffP = Heff = PHWP

= P (H0 + V )WP

= PH0WP + PV (Q+ P )WP

= PH0P + PV P + PV QWP.
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Replacing QW by Q(W (0) + W (1)), where W (1) is taken as the right
hand side of Eq. (A.13), one obtains the EH valid up to the 2nd order
in V ,

Heff =
β→0+

PH0P + PV P + PV
∑
i∈P

Q

Ei −H0 + iβ
V |pi〉 〈pi| , (A.15)

where we recalled that all expressions must be taken in the limit β → 0.
Similarly, replacing QW by Q(W (0) +W (1) +W (2)) gives the EH valid
up to the 3rd order in V , and so on.

To summarize, we have found the expression for an effective, finite-
size Hamiltonian acting onto a subspace P of the Hilbert space and
whose aim is to model the action of the exact Hamiltonian on the com-
plete Hilbert space. In other words, we reduced a infinite set of coupled
equation to a small set of such equations. Note that no assumption has
been made concerning the hermicity of Heff, which may thus be either
hermitian or non-hermitian.

A.4 Time-dependent Schrödinger equation

The case of a stationary effective Hamiltonian, derived from the time-
independent Schrödinger equation, was considered above. However,
REMPI processes are intrinsically dynamical. It is thus necessary to
write a few words on the time-dependence of Heff. The time-dependent
Schrödinger equation for the exact Hamiltonian reads

i
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 .

In the usual separation H = H0 + V , the free Hamiltonian H0 is time-
independent. Time-dependence of the Hamiltonian is contained within
the interaction term V (t) and the same is true of the effective Hamilto-
nian. One may then naively write, using Eq. (A.15), that

Heff(t) = PH0P + PV (t)P + PV (t)
∑
i∈P

Q

Ei −H0 + iβ
V (t) |pi〉 〈pi| .

(A.16)
This is correct up to the 2nd order in W (W (0)+W (1)), but not for higher
orders. Indeed, derivation of the wave operator and effective Hamilto-
nian from the time-dependent Schrödinger equation slightly differs from
the time-independent case. In the former case, Eq. (A.10) becomes

W (t, 0)PV (t)W (t, 0)P − VW (t, 0)P = [H0,W (t, 0)]P + i
∂W (t, 0)

∂t
P,

(A.17)
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as demonstrated by, e.g. , Jolicard and Killingbeck [203]. The wave
operator W (t, 0) now depends on the time t elapsed since the interaction
has been switched on at a remote time t = 0. The difference with
the time-independent case lies in the appearance of the time-derivative
of the wave operator on the right hand side. One can demonstrate
that it yields an additional term containing the time derivative of the
interaction operator V in the expression of W (n) with n ≥ 2 (see Faisal
[270]). The work presented in the main body of the thesis used effective
Hamiltonians derived from an expansion of the wave operator up to
n = 1, for which the expression (A.16) is correct.

A.5 Effective Hamiltonian sub-operators

Let us now focus on the significance of the different operators included
in the definition of the effective Hamiltonian up to to the 2nd order
(m ≤ 1), given by Eq. (A.15). The first term on the right hand side,
PH0P , contains obviously the energies of the states belonging to the
model space. The term PV P represents one-photon couplings between
these states. The third term represents two-photon couplings via states
of the outer space. Using the spectral representation of Green’s operator,
it becomes

V
Q

Ei −H0 + iβ
V =

∫
de

V |e〉 〈e|V
Ei − e+ iβ

+
∑
j

V |j〉 〈j|V
Ei − Ej + iβ

, (A.18)

where we now separate contributions from the bound and continuum
states belonging to the Q subspace, denoted |j〉 and |e〉 respectively.
The summation

∑
i∈P is omitted for brevity.

Let us now recall the mathematical relation [205]

lim
β→0±

∫
dx

1

x+ iβ
= P

∫
1

x
∓ iπ

∫
dxδ(x),

where P denotes principal value integration and δ(x) is Dirac’s delta
function. Equation (A.18) thus becomes

lim
β→0±

V
Q

Ei −H0 + iβ
V = Ω∓ i

Γ

2
+ S. (A.19)

Γ is a real positive value representing an ionization rate. In order for
the norm of the model space wave function to decrease upon ionization,
we must of course choose the term −iΓ/2, and thus the limit β → 0+.
This limit can also be related, in the context of scattering theory, to
boundary conditions on the continuum wave function [201].
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The matrix elements for Ω, Γ and S are given by

Ωab = P
∫
de
〈b|V |e〉 〈e|V |a〉

Ea − e
, (A.20)

Γab = 2π × 〈b|V |e〉 〈e|V |a〉
∣∣∣
e=Ea

, (A.21)

Sab =
∑
j∈Q

〈b|V |qj〉 〈qj |V |a〉
Ea − Ej

, (A.22)

and, in the particular case a = b, they represent (i) the AC Stark shift of
the state |a〉 due to its interaction with the continuum, (ii) the ionization
width of |a〉, (iii) the AC Stark shift of |a〉 due to non-resonant bound
states. The corresponding effective Hamiltonian reads

Heff = PH0P + PV P + P

(
Ω− i

Γ

2
+ S

)
P, (A.23)

which is the expression we used in the main body of the thesis. We imme-
diately notice that the operator iΓ/2 will introduce imaginary numbers
in both the diagonal and non-diagonal elements of the effective Hamil-
tonian matrix, which is therefore non hermitian. The non-hermicity of
Heff is a consequence of the elimination of the continuum states from
the model space.





Chapter B

Velocity map imaging lens

A picture of the VMI lens is shown in Fig. B.1 and its detailed draw-
ing in Fig. B.2. The electrodes shown by the solid lines are made of
non-magnetic stainless steel and are 1 mm thick. They are spaced by
distances, referenced to the middle of each electrode, that were opti-
mized by León et al. [135]. The repeller (lowest, hatched electrode)
is made of ARCAP non-magnetic alloy. A series of PEEK insulators
are placed between the electrodes (not shown). They are traversed by
a threaded rod (dash dot line) which is screwed on both ends. Two
aluminum plates (blue dotted lines) are placed below the lens and their
bottom is covered with µ-metal. Two µ-metal cylinders surround the
lens and rest on these plates.

Figure B.1: Picture the VMI lens.
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Figure B.2: Detailed drawing of the VMI electrostatic lens (see text). All
dimensions are in mm. The red dot indicates where the laser and ion beams
intersect.
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A 50, R899 (1994).

http://dx.doi.org/10.1088/0953-4075/27/5/008
http://dx.doi.org/10.1088/0953-4075/27/5/008
http://dx.doi.org/10.1103/PhysRevLett.30.815
http://dx.doi.org/10.1093/mnras/120.2.121
http://dx.doi.org/10.1093/mnras/120.2.121
http://dx.doi.org/10.1103/PhysRevA.4.939
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.4607
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.4607
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.47.4849
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.2638
http://dx.doi.org/10.1103/PhysRevLett.32.1286
http://dx.doi.org/ 10.1088/0022-3700/13/9/012
http://dx.doi.org/10.1088/0022-3700/20/14/010
http://dx.doi.org/10.1088/0022-3700/20/14/010
http://dx.doi.org/10.1088/0953-4075/38/22/004
http://dx.doi.org/10.1088/0953-4075/38/22/004
http://dx.doi.org/10.1088/0953-4075/39/20/004
http://dx.doi.org/10.1088/0953-4075/39/20/004
http://dx.doi.org/10.1063/1.1135188
http://dx.doi.org/10.1088/0953-4075/32/5/021
http://dx.doi.org/10.1088/0953-4075/32/5/021
http://dx.doi.org/10.1103/PhysRevA.53.3169
http://dx.doi.org/10.1103/PhysRevA.50.2257
http://dx.doi.org/10.1103/PhysRevA.50.2257
http://dx.doi.org/10.1103/PhysRevLett.55.692
http://dx.doi.org/10.1103/PhysRevLett.55.692
http://dx.doi.org/10.1103/PhysRevA.50.R899
http://dx.doi.org/10.1103/PhysRevA.50.R899


177

[187] M. Bylicki, J. Phys. B At. Mol. Opt. Phys. 30, 189 (1997).

[188] D.-S. Kim, H.-L. Zhou, and S. T. Manson, Phys. Rev. A 55, 414
(1997).

[189] C. A. Nicolaides and T. Mercouris, J. Phys. B At. Mol. Opt. Phys.
29, 1151 (1996).

[190] D. J. Pegg, J. S. Thompson, J. Dellwo, R. N. Compton, and G. D.
Alton, Phys. Rev. Lett. 64, 278 (1990).

[191] A. M. Tumaikin and V. I. Yudin, Sov. Phys. JETP 71, 43 (1990).

[192] A. V. Taichenachev, A. M. Tumaikin, V. I. Yudin, and G. Nien-
huis, Phys. Rev. A 69, 033410 (2004).

[193] “UK APAP (Atomic Processes for Astrophysical Plasmas) net-
work,” http://www.apap-network.org/.

[194] A. Hibbert, Comput. Phys. Commun. 9, 141 (1975).

[195] K. M. Dunseath and M. Terao-Dunseath, J. Phys. B At. Mol. Opt.
Phys. 46, 235201 (2013).

[196] G. Drake, ed., Springer Handbook of Atomic, Molecular, and Op-
tical Physics, Vol. 1 (Springer New York, New York, NY, 2006).

[197] A. V. Bunge and C. F. Bunge, Phys. Rev. A 30, 2179 (1984).

[198] P. G. Burke, P. Francken, and C. J. Joachain, J. Phys. B At. Mol.
Opt. Phys. 24, 761 (1991).
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W. Schmitt, H. Kollmus, R. Mann, and J. Ullrich, Phys. Rev.
Lett. 82, 2496 (1999).

[264] I. Bray, I. E. McCarthy, J. Wigley, and A. T. Stelbovics, J. Phys.
B At. Mol. Opt. Phys. 26, L831 (1993).

[265] G. F. Gribakin, A. A. Gribakina, B. V. Gul’tsev, and V. K. Ivanov,
J. Phys. B At. Mol. Opt. Phys. 25, 1757 (1992).

[266] C. Blondel and R. Trainham, J. Opt. Soc. Am. B 6, 1774 (1989).

[267] I. Kiyan and H. Helm, Phys. Rev. Lett. 90, 183001 (2003).

[268] C. Blondel and C. Delsart, Nulc. Instrum. Meth. B 79, 156 (1993).

[269] P. Durand and I. Paidarová, Int. J. Quantum Chem. 58, 341
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ACBT animated-crossed-beam technique. 18, 19, 24, 26–29, 34, 50,
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AR anti-reflection. 41, 45, 48, 129

ASDEX axially symmetric divertor experiment. 4

CEM channel electron multiplier. 41, 42, 44–46, 50, 134

CI configuration interaction. 57

COBRA correlation between brightness and amplitude. 49

CW continuous wave. 41, 44, 55, 56, 59, 83, 147

DEMO DEMOnstration Power Plant. 4

DPD double photodetachment. 77–79, 81, 83, 84, 105–109, 114–119,
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DVR discrete variable representation. 20

EH effective Hamiltonian. 19, 20, 84, 93, 94, 98, 105, 110, 112, 117,
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ITER international thermonuclear experimental reactor. 3, 4
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JET joint european torus. 4

MCP multi-channel plates. 46, 49, 82, 83, 102
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MPI multiphoton ionization. 79, 84, 89, 93

OPO optical parametric oscillator. 44, 48, 55–59, 147, 149, 150
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REMPI resonance-enhanced multiphoton ionization. 80, 81, 83, 94,
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TEM00 transverse electromagnetic mode 00. 30–32, 41, 59, 100

TEXTOR tokamak experiment for technology oriented research. 5
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