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Abstract: In this paper, we propose a burning magneto-hydrodynamic (MHD) plasma model
for the Tokamak reactor. Our proposal considers both electro-magnetic and material physical
fields. While the electro-magnetic domain is ruled by Maxwell equations, the material physical
domain is described by kinetic theory. The transport model is built at microscopic level and
extended at the macroscopic one, by computation of the moments of the Boltzmann equation.
A macroscopic fluid-like model is then derived for suitable control analysis of the physical
model. The fusion reaction does not preserve mass, hence the reaction is included from the
very beginning of the modelling. The thermonuclear reaction is embedded from the microscopic
scale and couples mass and energy balances. An entropy balance is derived from the Gibbs–
Duhem equation and the irreversible entropy production is discussed in the case of thermonuclear
reactions.
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1. INTRODUCTION

Thermonuclear fusion is a safe and available candidate
energy source to overcome the future energetic challenges.
A prospective reactor to conduct the fusion reaction is
the Tokamak design, where hydrogen isotopes (the com-
bustibles) are magnetically confined and heated up to the
required temperature. A Tokamak is a torus-shaped de-
vice that magnetically confines and heats plasma to reach
fusion reaction conditions. At steady-state operation, sta-
bility and reactions conditions have to be maintained. For
a detailed description of the Tokamak concept and the
associated technological and operational challenges, the
reader is referred to (Wesson and Campbell, 2004) and
the references therein.

Advanced control strategies that rely on physics-based
models are required to achieve high efficiency. A major
control challenge concerns plasma profiles control (Pironti
and Walker, 2005). The objectives are to follow den-
sity, temperature and current profiles to ensure magneto-
hydrodynamics stability, high confinement modes and en-
ergy efficiency of the fusion reaction. Reliable physic-based
models can address those control and diagnosis issues.

Plasma are multi-physics systems defined in different do-
mains (electro-magnetic and material) with nonlinear cou-
plings. The kinetic theory of gases describes the behavior
of particles within the plasmas but has the disadvan-
tage of being computationally intractable. On the other

hand, fluid-like macroscopic models described by nonlinear
partial differential equations are a good compromise for
control purposes given the system complexity. Braginskii
(1965) derived a fluid model from the kinetic theory that
has been extended by Blum (1989) for numerical simu-
lations and real-time applications such as tracking and
control. Witrant et al. (2007) used a diffusion model for
the control of current profile within the Tokamak. In later
developments, a structured port-Hamiltonian single-fluid
3-D model has been proposed (Vu et al., 2016a) and
passivity based control (Vu et al., 2016b) has successfully
been applied for the current profile control by using with
a diffusion-resistive model. Those models do not take into
account the fusion reaction. For steady state operation,
where the plasma sustains the fusion reaction, burning
plasma models are required. Boyer and Schuster (2014,
2015) proposed an adaptive nonlinear control for density
and energy. They successfully applied their 0D control
strategy to a 1D radial study case.

In this paper, we propose a port-based fluid-like model for
burning plasma in Tokamak reactors. The fusion reaction
is developed from the microscopic level of description with
the gas kinetic theory. Then we derive a multi-fluid model
by defining macroscopic variables. As a result, we get
continuity, momentum and energy balances equations for
each species within the plasma. A one fluid-like model
is derived (de Groot and Mazur, 1984) satisfying the
port-based approach identified in (Duindam et al., 2009).
To complete the model, we compute the internal energy
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developments, a structured port-Hamiltonian single-fluid
3-D model has been proposed (Vu et al., 2016a) and
passivity based control (Vu et al., 2016b) has successfully
been applied for the current profile control by using with
a diffusion-resistive model. Those models do not take into
account the fusion reaction. For steady state operation,
where the plasma sustains the fusion reaction, burning
plasma models are required. Boyer and Schuster (2014,
2015) proposed an adaptive nonlinear control for density
and energy. They successfully applied their 0D control
strategy to a 1D radial study case.

In this paper, we propose a port-based fluid-like model for
burning plasma in Tokamak reactors. The fusion reaction
is developed from the microscopic level of description with
the gas kinetic theory. Then we derive a multi-fluid model
by defining macroscopic variables. As a result, we get
continuity, momentum and energy balances equations for
each species within the plasma. A one fluid-like model
is derived (de Groot and Mazur, 1984) satisfying the
port-based approach identified in (Duindam et al., 2009).
To complete the model, we compute the internal energy
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1. INTRODUCTION

Thermonuclear fusion is a safe and available candidate
energy source to overcome the future energetic challenges.
A prospective reactor to conduct the fusion reaction is
the Tokamak design, where hydrogen isotopes (the com-
bustibles) are magnetically confined and heated up to the
required temperature. A Tokamak is a torus-shaped de-
vice that magnetically confines and heats plasma to reach
fusion reaction conditions. At steady-state operation, sta-
bility and reactions conditions have to be maintained. For
a detailed description of the Tokamak concept and the
associated technological and operational challenges, the
reader is referred to (Wesson and Campbell, 2004) and
the references therein.

Advanced control strategies that rely on physics-based
models are required to achieve high efficiency. A major
control challenge concerns plasma profiles control (Pironti
and Walker, 2005). The objectives are to follow den-
sity, temperature and current profiles to ensure magneto-
hydrodynamics stability, high confinement modes and en-
ergy efficiency of the fusion reaction. Reliable physic-based
models can address those control and diagnosis issues.

Plasma are multi-physics systems defined in different do-
mains (electro-magnetic and material) with nonlinear cou-
plings. The kinetic theory of gases describes the behavior
of particles within the plasmas but has the disadvan-
tage of being computationally intractable. On the other

hand, fluid-like macroscopic models described by nonlinear
partial differential equations are a good compromise for
control purposes given the system complexity. Braginskii
(1965) derived a fluid model from the kinetic theory that
has been extended by Blum (1989) for numerical simu-
lations and real-time applications such as tracking and
control. Witrant et al. (2007) used a diffusion model for
the control of current profile within the Tokamak. In later
developments, a structured port-Hamiltonian single-fluid
3-D model has been proposed (Vu et al., 2016a) and
passivity based control (Vu et al., 2016b) has successfully
been applied for the current profile control by using with
a diffusion-resistive model. Those models do not take into
account the fusion reaction. For steady state operation,
where the plasma sustains the fusion reaction, burning
plasma models are required. Boyer and Schuster (2014,
2015) proposed an adaptive nonlinear control for density
and energy. They successfully applied their 0D control
strategy to a 1D radial study case.

In this paper, we propose a port-based fluid-like model for
burning plasma in Tokamak reactors. The fusion reaction
is developed from the microscopic level of description with
the gas kinetic theory. Then we derive a multi-fluid model
by defining macroscopic variables. As a result, we get
continuity, momentum and energy balances equations for
each species within the plasma. A one fluid-like model
is derived (de Groot and Mazur, 1984) satisfying the
port-based approach identified in (Duindam et al., 2009).
To complete the model, we compute the internal energy
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and entropy balance equations. The system is closed with
respect to Onsager’s reciprocal relation for irreversible
systems (Boozer, 1992; Onsager, 1931). We discuss the
mass non-conservative and exothermic properties of the
fusion reaction according to the irreversible production of
entropy.

The paper is organized as follows. In Section 2, the electro-
magnetic domain described by Maxwell equations is intro-
duced. A first macroscopic multi-fluid model is derived
from a kinetic point of view in Section 3. The model
includes the fusion reaction from the very beginning. In
Section 4, a one fluid-like model is derived from the previ-
ous section. In Section 5 a port-based approach is achieved
by computing the internal energy and the entropy.

2. ELECTRO-MAGNETIC DOMAIN

In a Tokamak reactor three types of coils may generate
the electro-magnetic fields. Their objectives are twofold: to
confine the plasma within a toroidal shape, and to induce
current to heat the plasma. The coils act as the primary
circuit of a transformer while the plasma itself acts as a
secondary circuit. The electro-magnetic domain is defined
in a fixed frame and is modeled by Maxwell equations:

−∂ B

∂t
= ∇× E, and ∇×H = j +

∂ D

∂t
, (1)

where B, E, H and D are the magnetic flux, electric
field, magnetic field and electric flux, respectively. The
total current is denoted by j and include the inductive
ohmic current and the non-inductive current generated by
poloidal coils and antennae oriented towards the plasma
(Wesson and Campbell, 2004), respectively. Maxwell equa-
tions (1) are subject to constraints:

∇.D = ρe, and ∇.B = 0, (2)

where ρe is the plasma total charge. The closure equations
or constitutive relations link the electric flux with the
electric field; and the magnetic flux with the magnetic field
such that:

D = εE, and B = µH, (3)

where ε and µ are the permittivity and the permeability
tensors, respectively.

Particles inside the Tokamak vessel are subject to forces
induced by the electro-magnetic domain. In the presence
of electric field and magnetic flux, the force applied to a
particle of charge q and velocity v, the Lorentz force, is
given by:

F = q(E + v ×B). (4)

This represents the main coupling in our model.

3. MICROSCOPIC TO MACROSCOPIC TRANSPORT
FORMULATION

From a microscopic point of view, the fusion reaction is
well understood and its description can be derived from the
theory of gases (Chapman and Cowling, 1970). However,
when considering the plasma control analysis and design
in Tokamak reactors, the microscopic level of description
is not well-suited to describe the transport phenomena.

3.1 Thermonuclear fusion reaction

The fusion reaction is the result of collisions between
two light atoms with enough kinetic energy to overcome
the Coulomb barrier. A heavier element is generated and
a huge amount of energy is released. Fusion is a non-
conservative mass reaction and the mass defect is respon-
sible for the release of energy. This energy is converted into
kinetic energy and distributed in inverse proportion to the
reaction products’ weight. The deuterium-tritium (D-T)
fusion reaction is used for preliminary experiments in the
existing Tokamak reactors (Wesson and Campbell, 2004).
The products of this reaction are a helium atom and a neu-
tron, and the released energy is Efus = δm c2 = 17.6MeV ,
where the Einstein relation has been considered with c the
speed of light in vacuum and δm the mass deficit.

We consider a reaction between two particles in a perfectly
mixed gas. The total number of reaction in a elementary
volume at time t is given by the double integral (Chapman
and Cowling, 1970):

R =

∫∫
f1(v1)f2(v2)|v1 − v2|σ(v1 − v2) dv1dv2, (5)

where fk and vk for k ∈ {1, 2} are the particle density
distributions and velocities, respectively. The reactant
cross-section is denoted by σ. At steady state, the plasma
is described as a Maxwellian distribution. The reaction
rate (5) becomes:

R = n1n2
(m1m2)

3/2

(2πκbT )3

∫
|v|σ(v)e

(
− m1m2

m1+m2

v2

2κbT

)
dv, (6)

where mk, k ∈ {1, 2}, T and κb are the particle masses,
temperature, and Boltzmann constant, respectively. Re-
action occurs if particles have enough kinetic energy, ex-

pressed as v2

2 (m1m2)/(m1 + m2) where v is the relative
velocity. From this equation, the cross-section is identified
such that the reaction rate takes the form (Thompson,
1957):

R = n1n2〈σv〉DTr. (7)

In the literature, for the deuterium-tritium reaction, the
cross-section 〈σv〉DTr is usually approximated by scale
laws (Bosch and Hale, 1992; Hively, 1977).

3.2 Boltzmann equation

In a plasma, each particle is defined by a position x and a
velocity v at a time t such that the distribution function
fk(x, v, t) describes all k species. The particle behavior is
ruled by the Boltzmann equation:

∂ fk
∂t

+ v∇fk +
Fk

mk

∂ fk
∂v

= νk Jfus. (8)

The plasma is magnetically confined. Hence particle mo-
tions are influenced by external forces. Here we neglect the
gravity field and consider the Lorentz force Fk = qk(E +
uk × B). The particle charges and average velocities are
denoted by qk and uk, respectively. The right hand side
of the Boltzmann equation (8) usually denotes the colli-
sion operator. Here we consider the fusion reaction as a
Boltzmann operator (Dellacherie and Sentis, 2000) such
that:

Jfus = R = nD nTr 〈σv〉DTr, (9)
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as defined in (7). Signed stoichiometric coefficients for the
reaction are denoted by νk.

The description of plasma by macroscopic non-equilibrium
variables is sought for control purposes. We therefore
introduce macroscopic averaged values for each specie. The
particle density nk(x, t) (m

−3), that describes the number
of particles per unit volume is defined as follows:

nk(x, t) =

∫
fk(x, v, t)dv. (10)

The average fluid velocity uk(x, t) (ms−1) and the pressure
tensor Pk(x, t) (N m−2) are given by:

uk(x, t) =
1

nk(x, t)

∫
vfk(x, v, t)dv, (11)

and

Pk(x, t) =
mk

3

∫
(v − uk)(v − uk)fk(x, v, t)dv. (12)

The temperature Tk(x, t) (J, ev) is derived from the aver-
aged particle velocity and is given by

Tk(x, t) =
mk

3nk

∫
(v − uk)

2fk(x, v, t)dv, (13)

such that the scalar pressure Pk(x, t) can be expressed as
a function of temperature 1 :

Pk(x, t) = nk(x, t)Tk(x, t). (14)

The temperature Tk is the averaged velocity of the particle
k. The energy density εk(x, t) (W m−3) is expressed as:

εk(x, t) =
mk

2

∫
v2fk(x, v, t)dv =

�k
2
|uk|2+

3

2
nkTk, (15)

and is the sum of the particles kinetic energy and thermal
energy. The heat flux Qk(x, t) (W m−2) is given by:

Qk(x, t) =
mk

2

∫
v(v − uk)

2fk(x, v, t)dv. (16)

The heat flux can be expressed qualitatively as the tem-
perature times the fluid velocity.

Using the averaged quantities defined above, one can
derived the balance equations by computing the moments
of Boltzmann equation (8).

3.3 Balance equations

In this section we compute the zeroth, first and second mo-
ments of the Boltzmann equation (8) to derive the mass,
momentum and, energy balance equations, respectively.

Continuity equation The continuity equation is obtained
by pre-multiplying the Boltzmann equation by the particle
mass mk and then integrating it w.r.t. the velocities. With
definitions (10) and (11), one obtains:

∂ �k
∂t

+ uk ∇�k = −�k ∇uk + νk mk

∫
Jfus dv, (17)

where �k = mknk is the particle mass density. On the left
hand side of the continuity equation (17), one can identify
the material derivative. The last term on the right hand
side results from the mass non-conservative (mass defect)
property of the fusion reaction.

1 We consider here that the the Boltzmann constant κb is equal to
one (Pk = nkκbTk).

Momentum balance The momentum balance equation
is the first moment of Boltzmann equation: one multiply
(8) by mkv and then integrate w.r.t. the velocity. With
definitions (10)-(12), one obtains:

�k

(
∂ uk

∂t
+ uk∇uk

)
= −∇Pk + Fk nk

+νk mk

∫
(v − uk) Jfus dv.

(18)

The contribution of the fusion reaction to the momentum
balance appears as the last term in the right hand side of
the equation.

Energy balance The energy balance equation is given by
the second moment of the Boltzmann equation.
∂ εk
∂t

+ uk ∇εk = −∇(nk Tk uk)−∇Qk + qknkukE

+ νk mk

∫
v2

2
Jfus dv.

(19)

The fusion reaction term is given by the last term on the
right hand side of the equation above.

Heat balance The total energy density is the sum of
the kinetic and the thermal energy. It is more convenient
(Braginskii, 1965) to remove the kinetic part such that we
gets the heat balance equation:

3

2

(
∂ (nk Tk)

∂t
+ uk∇(nkTk)

)
= −Pk∇uk −∇Qk

+νk mk

∫
1

2
(v − uk)

2 Jfus dv.

(20)

Entropy balance and discussion The ideal gas law can be
applied to plasmas, hence the relation between the entropy
S and the temperature T holds (Braginskii, 1965):

S = ln

(
T 3/2

n

)
, (21)

where n is the total particle density. One can derive the
entropy directly from the multi-fluid model assuming that
the total entropy S is the sum of the substantial entropy
Sk. In the present contribution, we have made the choice
to derive the total entropy and the irreversible entropy
production using the one-fluid formulation described later.

4. FLUID-LIKE FORMULATION

The transport model derived in the above section is a
set of 3 × N balances equation, where N is the number
of present species within the plasma (Braginskii, 1965).
A one-fluid model is sufficient and more convenient for
control purposes. In this section, we derive a single-fluid
model for burning plasma.

4.1 Fluid-like variables

We first introduce hydrodynamics variables. The summa-
tions are carried over the N species that compose the
plasma.

The total mass density � (kgm−3) is given by the sum of
all densities:

� =
N∑

k=1

mknk, (22)
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as defined in (7). Signed stoichiometric coefficients for the
reaction are denoted by νk.

The description of plasma by macroscopic non-equilibrium
variables is sought for control purposes. We therefore
introduce macroscopic averaged values for each specie. The
particle density nk(x, t) (m

−3), that describes the number
of particles per unit volume is defined as follows:

nk(x, t) =

∫
fk(x, v, t)dv. (10)

The average fluid velocity uk(x, t) (ms−1) and the pressure
tensor Pk(x, t) (N m−2) are given by:

uk(x, t) =
1

nk(x, t)

∫
vfk(x, v, t)dv, (11)

and

Pk(x, t) =
mk

3

∫
(v − uk)(v − uk)fk(x, v, t)dv. (12)

The temperature Tk(x, t) (J, ev) is derived from the aver-
aged particle velocity and is given by

Tk(x, t) =
mk

3nk

∫
(v − uk)

2fk(x, v, t)dv, (13)

such that the scalar pressure Pk(x, t) can be expressed as
a function of temperature 1 :

Pk(x, t) = nk(x, t)Tk(x, t). (14)

The temperature Tk is the averaged velocity of the particle
k. The energy density εk(x, t) (W m−3) is expressed as:

εk(x, t) =
mk

2

∫
v2fk(x, v, t)dv =

�k
2
|uk|2+

3

2
nkTk, (15)

and is the sum of the particles kinetic energy and thermal
energy. The heat flux Qk(x, t) (W m−2) is given by:

Qk(x, t) =
mk

2

∫
v(v − uk)

2fk(x, v, t)dv. (16)

The heat flux can be expressed qualitatively as the tem-
perature times the fluid velocity.

Using the averaged quantities defined above, one can
derived the balance equations by computing the moments
of Boltzmann equation (8).

3.3 Balance equations

In this section we compute the zeroth, first and second mo-
ments of the Boltzmann equation (8) to derive the mass,
momentum and, energy balance equations, respectively.

Continuity equation The continuity equation is obtained
by pre-multiplying the Boltzmann equation by the particle
mass mk and then integrating it w.r.t. the velocities. With
definitions (10) and (11), one obtains:

∂ �k
∂t

+ uk ∇�k = −�k ∇uk + νk mk

∫
Jfus dv, (17)

where �k = mknk is the particle mass density. On the left
hand side of the continuity equation (17), one can identify
the material derivative. The last term on the right hand
side results from the mass non-conservative (mass defect)
property of the fusion reaction.

1 We consider here that the the Boltzmann constant κb is equal to
one (Pk = nkκbTk).

Momentum balance The momentum balance equation
is the first moment of Boltzmann equation: one multiply
(8) by mkv and then integrate w.r.t. the velocity. With
definitions (10)-(12), one obtains:

�k

(
∂ uk

∂t
+ uk∇uk

)
= −∇Pk + Fk nk

+νk mk

∫
(v − uk) Jfus dv.

(18)

The contribution of the fusion reaction to the momentum
balance appears as the last term in the right hand side of
the equation.

Energy balance The energy balance equation is given by
the second moment of the Boltzmann equation.
∂ εk
∂t

+ uk ∇εk = −∇(nk Tk uk)−∇Qk + qknkukE

+ νk mk

∫
v2

2
Jfus dv.

(19)

The fusion reaction term is given by the last term on the
right hand side of the equation above.

Heat balance The total energy density is the sum of
the kinetic and the thermal energy. It is more convenient
(Braginskii, 1965) to remove the kinetic part such that we
gets the heat balance equation:

3

2

(
∂ (nk Tk)

∂t
+ uk∇(nkTk)

)
= −Pk∇uk −∇Qk

+νk mk

∫
1

2
(v − uk)

2 Jfus dv.

(20)

Entropy balance and discussion The ideal gas law can be
applied to plasmas, hence the relation between the entropy
S and the temperature T holds (Braginskii, 1965):

S = ln

(
T 3/2

n

)
, (21)

where n is the total particle density. One can derive the
entropy directly from the multi-fluid model assuming that
the total entropy S is the sum of the substantial entropy
Sk. In the present contribution, we have made the choice
to derive the total entropy and the irreversible entropy
production using the one-fluid formulation described later.

4. FLUID-LIKE FORMULATION

The transport model derived in the above section is a
set of 3 × N balances equation, where N is the number
of present species within the plasma (Braginskii, 1965).
A one-fluid model is sufficient and more convenient for
control purposes. In this section, we derive a single-fluid
model for burning plasma.

4.1 Fluid-like variables

We first introduce hydrodynamics variables. The summa-
tions are carried over the N species that compose the
plasma.

The total mass density � (kgm−3) is given by the sum of
all densities:

� =
N∑

k=1

mknk, (22)
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and the relative mass fractions

ωk =
mknk

�
(23)

gives the particle proportions in the plasma. The barycen-
tric fluid velocity v is equal to the momentum per mass
unit p (ms−1):

v = p =
N∑

k=1

mknkuk

�
, (24)

and describes the fluid velocity at the center of mass. The
diffusion flow Jk (m−2 s−1) of species k is defined with
respect to the barycentric fluid velocity:

Jk = ρk(uk − v). (25)

The plasma is affected by a current density j (Am−2):

j =
N∑

k=1

qknkuk, (26)

where qk represents the effective charge of species k. The
total pressure P (N m−2) is given by the sum of all partial
pressures:

P =

N∑
k=1

Pk, (27)

and the total heat flux Q (W m−2) is given by

Q =
N∑

k=1

Qk. (28)

The total energy per mass unit E (W kg−1) is given by:

E =
1

�

N∑
k

εk. (29)

The fusion reaction does not preserve the mass, therefore
the following relation holds:

N∑
k

∫
νkmkJfusdv = −δmR, (30)

where δm is the mass deficit. Furthermore, for each reac-
tion, energy is released. We have

N∑
k

∫
νk

v2

2
mkJfusdv = EfusR, (31)

with Efus the energy released by a single fusion reaction.

From these definitions, we now derive a one-fluid burning
plasma transport balance system of equations.

4.2 Balance equations

We aim to develop a N + 3 system of balance equations,
with N equations to characterize the species, plus one
equation for the continuity equation, one for the momen-
tum balance, and one the energy balance.

Continuity equation Starting from (17), we use the
material derivative equation of the fluid defined as

D .

Dt
=

∂ .

∂t
+ v∇. (32)

and the properties defined in (30). We further use the
relation

N∑
k

Jk = 0 (33)

which physically means that the sum of the diffusion flows
is equal to zero. Summing (17) over all species k, one gets:

D�

Dt
= −�∇v −Rδm. (34)

Alternatively, one can use the specific volume (v = 1/�)
to express the continuity equation as:

�
D v

Dt
= ∇v + vδm R. (35)

Species balance equation From (17), we use the material
derivative (32), the diffusion flow (25) and the mass
fraction (23) definitions, and derive the species balance
equations:

�
D ωk

Dt
= −∇Jk + νkmkR+ ωkδmR. (36)

Momentum balance equation Assuming that the small
collision time hypothesis holds (Braginskii, 1965), the
material derivative ∂·

∂t + uk∇· is approximated by the
material derivative defined with respect to the barycentric
velocity: ∂·

∂t + v∇·. Hence, we get a fluid-like momentum
balance by summing equation (18) over all species. Using
definitions (26) to (28), we obtain:

�
Dv

Dt
= −∇P+ j ×B. (37)

Energy balance equation Again we assume the small
collision time hypothesis and summing (15) over all species
one gets:

�
D E
Dt

= −
∑
k

∇(Pkuk)−∇Q+ jE + Efus R. (38)

5. PORT-BASED FORMULATION

Following the approach proposed in (Duindam et al., 2009,
chap. 3), we aim to write the balance equations within a
port-based formalism. For a quantity α of density ρ, the
generic balance equation is of the form:

∂ ρα

∂t
= −∇fα + σ, (39)

where fα is the flux of α per surface area and σ is the input
source term. In a moving material domain with respect to
the velocity v, the balance equation is now expressed as:

ρ
Dα

Dt
= −∇(f − ρvα) + σ = −∇fR

α + σ, (40)

where fR
α is the relative flux and the time derivative D

Dt is
the material derivative defined in equation (32).

We now express the balance equations of a burning plasma
using this formalism. Table 1 summarizes the balance
equations for the port-based burning plasma model.

5.1 Closure equations

Momentum We assume the plasma to be a non-elastic
fluid (Braginskii, 1965; de Groot and Mazur, 1984). Hence
the relative momentum flux fR

p is the sum of a scalar
pressure P and a stress tensor τ responsible for the
viscosity:

fR
p = PI + τ, (41)

where I is the identity matrix. The scalar pressure is
related to the density and the temperature with the ideal
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balance α fR σ

Species ωk Jk (νkmk + ωkδm)R
Specific volume v −v v δm R
Momentum p = v P j ×B

Total energy E
∑

k
Pkuk+Q jE+EfusR

Internal energy u fR
u σu

Entropy s fR
s σs

Table 1. Quantities for burning plasma balance
equations

gas law. In the work of Braginskii (1965), a methodology
is given to compute the stress tensor τ .

Internal energy The total energy is given by the sum of
the kinetic and internal energies:

E =
v2

2
+ u(s, v, ωk). (42)

The specific internal energy is given by u and is function of
s, v and ωk the specific entropy, the specific volume and the
mass fraction, respectively. From the total energy in (42),
we want to derive the internal energy balance equation
under the form given in (40). Therefore, we differentiate
(42) by considering the material derivative:

�
D E
Dt

= v�
D v

Dt
+ �

D u

Dt
. (43)

With the momentum balance (37), the energy balance
(38), and some algebra one gets:

fR
u = fR

E − vfR
p = fq. (44)

The internal relative heat flux is set to be equal to the
conduction heat flux per unit area fq. The internal energy
source term is given by:

σu = jE + EfusR− (P + τ)∇v. (45)

The internal energy increases with the Joule effect, the
pressure and viscosity, and the energy released from the
fusion reaction.

5.2 Irreversible entropy production

Here we follow the approach used in (Duindam et al., 2009,
chap. 3), which was considered in the context of plasma
transport without the fusion reaction in Vu et al. (2016a).

For macroscopic systems at thermodynamic equilibrium,
the internal energy U is a function of the entropy S, volume
V and the mass of each components Mk. Upon internal
energy differentiation, one gets Gibbs’ equation for the free
energy:

dU = TdS − PdV +

N∑
k

µkdMk, (46)

where we have used the constitutive relations:

T =

(
∂U
∂S

)

V,Mk

, P = −
(
∂U
∂V

)

S,Mk

, (47)

µk =

(
∂U
∂Mk

)

S,V,Mj �=k

(48)

for the temperature, the pressure and the chemical poten-
tial, respectively.

Our plasma model is a distributed parameter system.
Hence we have to introduce local extensive variables: the

specific entropy s = S/M , the specific volume v = V/M ,
and the mass fraction ωk = Mk/M . We assume local
thermodynamic equilibrium (de Groot and Mazur, 1984)
and derive a local version of Gibbs–Duhem free energy:

du = Tds− Pdv +

N∑
k

µkdωk. (49)

This expression is equivalent to:

�
D s

Dt
=

1

T

(
�
D u

Dt
+ P �

D v

Dt
−

N∑
k=1

µk �
D ωk

Dt

)
, (50)

where the entropy dynamics is put on the left hand side
of the equation.

The idea is now to express the entropy as a function
of other thermodynamic variables. Therefore substituting
into (50), the balance equation for internal energy (44),
the continuity equation (35), and the balance equations
for the species (36), the entropy takes the form of (40)
with the relative entropy flux:

fR
s =

1

T

(
fq −

N∑
k=1

µk Jk

)
, (51)

and the irreversible entropy production:

Tσs = − 1

T

(
fq −

N∑
k=1

µk Jk

)
∇T

︸ ︷︷ ︸
Tσheat

− τ∇v︸︷︷︸
Tσviscous

−
N∑

k=1

Jk ∇µk

︸ ︷︷ ︸
Tσdiff

+ jE︸︷︷︸
TσJoule

−
N∑

k=1

µkν
kmkR

︸ ︷︷ ︸
Tσreac

−
N∑

k=1

(µkωk + P v)R δm

︸ ︷︷ ︸
Tσdef

+ δmc2 R︸ ︷︷ ︸
Tσrel

.

(52)

According to the second law of thermodynamics, the en-
tropy source term denotes the irreversible entropy produc-
tion (52). This irreversibility arises from different physical
phenomena. The first term (Tσheat) is the heat conduc-
tion, the second one (Tσviscous) is the heat transfer from
the mechanical domain due to viscosity, the third one
(Tσdiff) is due to diffusion, and the fourth one (TσJoule)
is the entropy generation related to the Joule effect. The
last terms are related to the fusion reaction, (Tσreact)
is common for all reactions (Duindam et al., 2009), the
last two generation terms encode the mass defect and the
relativistic properties of the thermonuclear fusion reaction,
respectively.

5.3 Transport coefficients

Onsager’s theory (Onsager, 1931) implies the existence of
a linear application, called a transport matrix, that maps
the relation between the effort and flow variables. The
irreversible entropy production given in (52) implies that
the efforts and flows are given by:

e = (T v VE µk)
�
, and f = (fq τ j Jk)

�
, (53)

where the variable VE represents the plasma electric po-
tential E = ∇VE . This variable is a reliable measure and
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balance α fR σ

Species ωk Jk (νkmk + ωkδm)R
Specific volume v −v v δm R
Momentum p = v P j ×B

Total energy E
∑

k
Pkuk+Q jE+EfusR

Internal energy u fR
u σu

Entropy s fR
s σs

Table 1. Quantities for burning plasma balance
equations

gas law. In the work of Braginskii (1965), a methodology
is given to compute the stress tensor τ .

Internal energy The total energy is given by the sum of
the kinetic and internal energies:

E =
v2

2
+ u(s, v, ωk). (42)

The specific internal energy is given by u and is function of
s, v and ωk the specific entropy, the specific volume and the
mass fraction, respectively. From the total energy in (42),
we want to derive the internal energy balance equation
under the form given in (40). Therefore, we differentiate
(42) by considering the material derivative:

�
D E
Dt

= v�
D v

Dt
+ �

D u

Dt
. (43)

With the momentum balance (37), the energy balance
(38), and some algebra one gets:

fR
u = fR

E − vfR
p = fq. (44)

The internal relative heat flux is set to be equal to the
conduction heat flux per unit area fq. The internal energy
source term is given by:

σu = jE + EfusR− (P + τ)∇v. (45)

The internal energy increases with the Joule effect, the
pressure and viscosity, and the energy released from the
fusion reaction.

5.2 Irreversible entropy production

Here we follow the approach used in (Duindam et al., 2009,
chap. 3), which was considered in the context of plasma
transport without the fusion reaction in Vu et al. (2016a).

For macroscopic systems at thermodynamic equilibrium,
the internal energy U is a function of the entropy S, volume
V and the mass of each components Mk. Upon internal
energy differentiation, one gets Gibbs’ equation for the free
energy:

dU = TdS − PdV +

N∑
k

µkdMk, (46)

where we have used the constitutive relations:

T =

(
∂U
∂S

)

V,Mk

, P = −
(
∂U
∂V

)

S,Mk

, (47)

µk =

(
∂U
∂Mk

)

S,V,Mj �=k

(48)

for the temperature, the pressure and the chemical poten-
tial, respectively.

Our plasma model is a distributed parameter system.
Hence we have to introduce local extensive variables: the

specific entropy s = S/M , the specific volume v = V/M ,
and the mass fraction ωk = Mk/M . We assume local
thermodynamic equilibrium (de Groot and Mazur, 1984)
and derive a local version of Gibbs–Duhem free energy:

du = Tds− Pdv +

N∑
k

µkdωk. (49)

This expression is equivalent to:

�
D s

Dt
=

1

T

(
�
D u

Dt
+ P �

D v

Dt
−

N∑
k=1

µk �
D ωk

Dt

)
, (50)

where the entropy dynamics is put on the left hand side
of the equation.

The idea is now to express the entropy as a function
of other thermodynamic variables. Therefore substituting
into (50), the balance equation for internal energy (44),
the continuity equation (35), and the balance equations
for the species (36), the entropy takes the form of (40)
with the relative entropy flux:

fR
s =

1

T

(
fq −

N∑
k=1

µk Jk

)
, (51)

and the irreversible entropy production:

Tσs = − 1

T

(
fq −

N∑
k=1

µk Jk

)
∇T

︸ ︷︷ ︸
Tσheat

− τ∇v︸︷︷︸
Tσviscous

−
N∑

k=1

Jk ∇µk

︸ ︷︷ ︸
Tσdiff

+ jE︸︷︷︸
TσJoule

−
N∑

k=1

µkν
kmkR

︸ ︷︷ ︸
Tσreac

−
N∑

k=1

(µkωk + P v)R δm

︸ ︷︷ ︸
Tσdef

+ δmc2 R︸ ︷︷ ︸
Tσrel

.

(52)

According to the second law of thermodynamics, the en-
tropy source term denotes the irreversible entropy produc-
tion (52). This irreversibility arises from different physical
phenomena. The first term (Tσheat) is the heat conduc-
tion, the second one (Tσviscous) is the heat transfer from
the mechanical domain due to viscosity, the third one
(Tσdiff) is due to diffusion, and the fourth one (TσJoule)
is the entropy generation related to the Joule effect. The
last terms are related to the fusion reaction, (Tσreact)
is common for all reactions (Duindam et al., 2009), the
last two generation terms encode the mass defect and the
relativistic properties of the thermonuclear fusion reaction,
respectively.

5.3 Transport coefficients

Onsager’s theory (Onsager, 1931) implies the existence of
a linear application, called a transport matrix, that maps
the relation between the effort and flow variables. The
irreversible entropy production given in (52) implies that
the efforts and flows are given by:

e = (T v VE µk)
�
, and f = (fq τ j Jk)

�
, (53)

where the variable VE represents the plasma electric po-
tential E = ∇VE . This variable is a reliable measure and
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thus commonly used for diagnosis and control purposes
(Vu et al., 2016b; Witrant et al., 2007). There exists a
symmetric positive semi-definite matrix Γ such that:

f = Γ∇e. (54)

As a first approximation, a port-based model requires to
find the diagonal coefficients in Γ:

Γ = diag (χ κ η γk) , (55)

where χ, κ, η and γk are the thermal diffusion, the viscos-
ity, the resistivity, and the material diffusion coefficients,
respectively. Those transport coefficients are functions of
state variables. One set of transport coefficients can be
identified from the plasma control literature:

• The thermal diffusion coefficient χ is function of the
magnetic field and the temperature (Witrant et al.,
2007);

• The viscosity coefficient can be approximated by a
method developed in (Braginskii, 1965);

• The resistivity coefficient is function of the magnetic
field and the temperature (Sauter et al., 1999); and,

• The material transport coefficients can be derived
from Fick’s law (de Groot and Mazur, 1984).

The cross terms in the Onsager’s matrix may introduce
coupling terms and have been investigated for the toroidal
plasma by (Boozer, 1992) and (Garbet et al., 2012).

6. CONCLUSION

We have proposed a port-based burning plasma model
for steady state operation in Tokamaks. This model is
defined in both electro-magnetic and material domains.
The originality of this contribution lies in the consideration
of the fusion reaction developed from the microscopic level
to the macroscopic level. Irreversible entropy production is
discussed, and more specifically, the contribution of the fu-
sion reaction to entropy generation. Further developments
are concerned with the port-Hamiltonian formulation of
this model by developing Stokes–Dirac structures (van der
Schaft and Maschke, 2002). Then control applications will
be investigated using thermodynamics properties of the
system and approaches such as passivity-based control and
power-shaping (Vu et al., 2016b).
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