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1. INTRODUCTION

One classical approach to study thermodynamics is
through contact geometry, as an analogue of symplectic
geometry for classical mechanics, reported for example in
(Hermann, 1973) and (Mrugala et al., 1991), but dating
back to the work by Gibbs and later, by Caratheodory. In
the context of control systems analysis and feedback design
for thermodynamic systems, contact geometry was consid-
ered, through a lift of a given control system, in (Eberard
et al., 2007), (Favache et al., 2009), (Favache et al., 2010),
(Ramirez et al., 2013), and more recently in (Wang et al.,
2015). Stability analysis and feedback stabilization prob-
lems were successfully addressed for control systems using
the contact geometry approach. As discussed in (Favache
et al., 2010), both the energy and entropy functions can
serve as the generating potential of the contact lift. The
aforementioned results are key to understand stability
and stabilization problems for thermodynamic systems:
By lifting the n-dimensional controlled dynamics to a
(2n + 1)-dimensional dynamical systems endowed with a
contact structure, i .e., a differential one-form encoding
thermodynamics evolution constraints, it is possible to
restrict stability and stabilization problems to admissible
evolutions in an extended vector field. A related point of
view on admissible evolution criteria, developed indepen-
dently in (Hoang and Dochain, 2013), can be related to
the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
to study stability and stabilization problem, resides in the
construction of suitable Lyapunov stability arguments in
an extended phase space.

From a more general perspective, the contact geometric,
also known as the Thermodynamic Phase Space (TPS),
approach has its importance in the field of nonequilibrium
thermodynamics, relating classical thermodynamics and
dynamic systems far from equilibrium, see for example
the contribution proposed in (Grmela, 2002), built on

material from (Arnold, 1989), that shows that the ther-
modynamic reciprocity relations are encoded within this
framework. Contact geometry also serves as the basis for
the geometrothermodynamics approach to nonequilibrium
thermodynamics, see for example the original contribution
(Quevedo, 2007) and applications presented in (Quevedo
and Tapias, 2014), where the TPS is endowed with a
metric, in the spirit of Weinhold and Ruppeiner (Quevedo,
2007), i.e., by using the Hessian of the thermodynamic
potential as a metric. An indefinite Riemannian metric
was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
to study stability and stabilization problem, resides in the
construction of suitable Lyapunov stability arguments in
an extended phase space.

From a more general perspective, the contact geometric,
also known as the Thermodynamic Phase Space (TPS),
approach has its importance in the field of nonequilibrium
thermodynamics, relating classical thermodynamics and
dynamic systems far from equilibrium, see for example
the contribution proposed in (Grmela, 2002), built on

material from (Arnold, 1989), that shows that the ther-
modynamic reciprocity relations are encoded within this
framework. Contact geometry also serves as the basis for
the geometrothermodynamics approach to nonequilibrium
thermodynamics, see for example the original contribution
(Quevedo, 2007) and applications presented in (Quevedo
and Tapias, 2014), where the TPS is endowed with a
metric, in the spirit of Weinhold and Ruppeiner (Quevedo,
2007), i.e., by using the Hessian of the thermodynamic
potential as a metric. An indefinite Riemannian metric
was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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evolutions in an extended vector field. A related point of
view on admissible evolution criteria, developed indepen-
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the contact geometry point of view, see for example the
exposition in (Haslach Jr., 1997). The difficulty however,
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construction of suitable Lyapunov stability arguments in
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2007), i.e., by using the Hessian of the thermodynamic
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was also introduced on the TPS in (Mrugala, 1996), a
construction later used in (Preston and Vargo, 2008) to
study geometric properties of constitutive surfaces defined
for different thermodynamical potentials.

Leaving for further discussions the full review of ge-
ometrothermodynamics proposed in (Quevedo, 2007), and
in particular the interpretation of phase transitions in
terms of the metric on the TPS, the present contribution
seeks to consider key problems studied in the aforemen-
tioned contributions, namely stability and feedback stabi-
lization by using a metric on the TPS. As such, we follow
the discussion in (Preston and Vargo, 2008), referring the
interested reader to (Mrugala, 1996) for the technical de-
tails about almost-contact structures in this context. The
objective is show that by complementing the ”classical”
contact geometry construction with a suitable choice of
metric, it is possible to simplify the stability analysis. Our
focus is mainly about stability, and for the time being,
we assume that the Hessian of the generating potential
is non-degenerated. Using the decomposition construction
proposed in (Guay and Hudon, 2016), and introducing the
notion of a Riemannian within that context, as done previ-
ously in (Bennett et al., 2015), conditions for stability are
derived, assuming that the metric, constructed using the
Hessian of the generating potential, is non-degenerated.
In essence, the proposed approach seeks to identify, in the
extended phase space, the dissipative gradient structure
with respect to a given metric.
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This note is organized as follows. Necessary background
on the TPS endowed with a metric is given in Section
2. In Section 3, the lift of controlled dynamical systems
and stability results from the literature are considered
using the metric on the TPS. An example is given in
Section 4. Conclusions and future areas for investigation
are discussed in Section 5.

2. BACKGROUND

We first briefly summarize the formalism of contact geom-
etry for thermodynamics. We follow the exposition given
in (Preston and Vargo, 2008), complemented by material
from the expositions in (Grmela, 2002) and (Ramirez et al.,
2013). A complete exposition of contact geometry can be
found in (Arnold, 1989) and (Libermann and Marle, 1987).

We denote the n extensive variables by xi, i = 1, . . . , n,
and the thermodynamical potential by x0, for example
the energy x0 = E(x) or the Entropy x0 = S(x). The
n intensive variables are denoted by pi and are dual
to the extensive variables by the relations pi = ∂E

∂xi or

pi = ∂S
∂xi , depending on the choice of thermodynamical

potential 1 . The thermodynamic phase space (TPS) is
the (2n + 1)-dimensional vector space endowed with the
canonical contact structure

θ = dx0 +

n∑
i=1

pidx
i.

Definition 1. A one-form θ on a 2n+1-dimensional mani-
fold T is a contact form if θ ∧ (dθ)n �= 0 is a volume form.
Then the pair (T , θ) is called a contact manifold.

For a given set of canonical coordinates and any partition I
and J of the set of indices {1, . . . , n}, for any differentiable
function φ(xI , pJ) of n variables, i ∈ I, j ∈ J , the formulas

x0 = φ−
∑
i∈I

pi
∂φ

∂pi

xi =− ∂φ

∂pi
, i ∈ I,

pj =
∂φ

∂xj
, j ∈ J, (1)

define a Legendre submanifold Σφ of R2n+1.

Let the function of chosen extensive variables F (x) be a
thermodynamical potential and let Σφ be the correspond-
ing Legendre submanifold defined by the relations (1). The
thermodynamic metric on the Legendre submanifold Σφ is
defined as

ηF = Hess (F )dx⊗ dx, (2)

with elements

1 Generally speaking, any thermodynamic potential could be used,
internal energy, entropy, Helmholtz free energy, or the Gibbs free
energy. Those representations are related by Legendre transforma-
tions (Callen, 1985). The proper choice of a potential depends on
the particular problem at hand. We do not make a particular choice
here and in the sequel, and the thermodynamic potential is denoted
by F (x).

(ηF )ij =
∂2F

∂xi∂xj
dxi ⊗ dxj . (3)

Historically, as related in (Quevedo, 2007) and (Preston
and Vargo, 2008), the Weinhold metric ηU corresponds
to the metric obtained when the chosen thermodynamical
potential is the internal energy U , while the choice of the
entropy leads to the Ruppeiner metric ηS . The choice of
a metric to study properties of contact manifold leads
to interesting investigations, for example: Compatibility;
Metric Invariance; Curvature properties; Symplectization.
Here, we focus on the used of a metric for stability studies
in the sense given by (Favache et al., 2009). As such, our
interest lies in the study of the dynamics of the contact
vector field associated with the contact structure (T , θ).

Definition 2. A vector field X on (T , θ) is a contact vector
field if and only if there exits a differentiable function ρ
such that

LX θ = ρθ. (4)

To every contact vector field X , one associates the function
K(x0,x,p), called the contact Hamiltonian. Conversely,
to every function K, there corresponds the contact vector
field XK given as

XK =

(
K −

n∑
i=1

pi
∂K

∂pi

)
∂

∂x0
+

∂K

∂x0

(
n∑

i=1

pi
∂

∂pi

)

+

n∑
j=1

(
∂K

∂xj

∂

∂pj
−

∂K

∂pj

∂

∂xj

)
. (5)

The corresponding dynamical system in the contact phase
space is given as

ẋ0 =K −
n∑

i=1

pi
∂K

∂pi

ẋi =−∂K

∂pi

ṗi = pi
∂K

∂x0
+

∂K

∂xi
. (6)

For a given controlled dynamical system

ẋ = f(x) + g(x)u,

with x ∈ Rn, a lift of a n-dimensional vector field to
the contact phase space was introduced in the context of
control irreversible systems in (Eberard et al., 2007), and
extended in the contributions (Favache et al., 2009, 2010;
Ramirez et al., 2013; Wang et al., 2015). In particular, in
(Ramirez et al., 2013), the drift part of the dynamics f(x)
was given by

ẋ = f

(
x,

∂U

∂x

)
,

and the contact lift was generated by the contact Hamil-
tonian function

K =

(
∂U

∂x
− p

)T

f

(
x,

∂U

∂x

)
.

The key argument to suggest such form of contact Hamil-
tonian is that a contact Hamiltonian defined this way
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vanishes on the Legendre submanifold generated by U(x).
A contact Hamiltonian based on the energy was also used
by (Eberard et al., 2007) while an entropy-based lift was
employed in (Favache et al., 2010)

The key problem considered in the present note consists
in assessing the stability of an isolated equilibrium in
the TPS, i .e., to study the stability of an equilibrium of
the (2n + 1)-dimensional dynamical system (6) restricted
to the Legendre submanifold. Following the contribution
by Favache et al. (2009), we first recall the notion of
equilibrium points in the TPS.

Proposition 3. ((Favache et al., 2009)). Consider a contact
manifold (T , θ) and a contact vector field XK , generated
by the contact Hamiltonian function K(x0,x,p). Consider
a state in the extended phase space (x̄0, x̄, p̄) ∈ (T , θ).
Then (x̄0, x̄, p̄) ∈ {(x0,x,p)|XK(x0,x,p)} if an only if
the following conditions are fulfilled:

∂K

∂pi
|(x̄0,x̄,p̄) = 0, i = 1, . . . , n,

K(x̄0, x̄, p̄) = 0,

∂K

∂xi
|(x̄0,x̄,p̄) =−p̄i

∂K

∂x0
|(x̄0,x̄,p̄), i = 1, . . . , n.

A sufficient stability result based on a linearization was
derived in (Favache et al., 2009). Alternate expressions for
Lyapunov stability of contact vector fields were derived
or used in (Ramirez et al., 2013) and (Wang et al., 2015)
using the concept of availability function, introduced in
the control literature by Ydstie and Alonso (1997).

As demonstrated in the study (Favache et al., 2009),
deriving a Lyapunov stability argument in the extended
phase space might be difficult, as the thermodynamic
constraints encoded in the structure of the (6) is not of a
gradient form, and involves the computation of the Hessian
of the generating function and of the contact Hamiltonian.
Following the decomposition approach to study stability
proposed in (Guay and Hudon, 2016), we seek in the
sequel to identify such gradient structure for the dynamical
system (6), using the information given by a metric, in this
case the generating potential.

3. STABILITY AND STABILIZATION WITH A
METRIC

We consider the problem of studying the stability of
dynamical systems of the form

ẋ = f(x),x ∈ Rn, (7)

to which a thermodynamical potential F (x) ∈ R is
associated. We assume that the vector field f(x) is of class
Ck, with k ≥ 2. We assume that there exists an isolated
equilibrium point x̄ such that f(x̄) ≡ 0. To simplify the
exposition, we further assume the following properties for
the potential F (x):

A1. F (x) is convex and positive definite;
A2. F (x) reaches a minimum at equilibrium, i .e., F (x̄) =

0;
A3. The Hessian of F (x) is non-degenerate and positive

definite in a neighborhood of an equilibrium x̄.

3.1 Lift to the contact space

Following (Eberard et al., 2007; Favache et al., 2009, 2010;
Ramirez et al., 2013; Wang et al., 2015), we first define a
contact Hamiltonian K to lift the dynamical system (7)
with respect to the thermodynamical potential F (x). The
contact Hamiltonian is hence given by

K =

(
∂F

∂x
− p

)T

f(x), (8)

and we can construct the contact vector field (5)

ẋ0 =

(
∂F

∂x
− p

)T

f(x)− pT ∂K

∂p

ẋ= f(x)

ṗ=
∂

∂x

((
∂F

∂x
− p

)T

f(x)

)
. (9)

This (2n+ 1) vector field leaves the contact one-form

θ = dF +
n∑

i=1

pidx
i

invariant. More importantly in the context of our study,
and following Proposition 3 from (Favache et al., 2009),
we have the following result characterizing an isolated
equilibrium in the extended phase space.

Proposition 4. An isolated equilibrium of the dynamical
system (7) f(x̄) ≡ 0 coincides with an isolated equilibrium
(x̄0, x̄, p̄) on Σφ of the extended system (9).

Proof. We apply directly the conditions from (Favache
et al., 2009) reported in Proposition 3. First, for f(x̄) ≡ 0,

∂K

∂pi
|(x̄0,x̄,p̄) = −fi(x̄) = 0.

Then,

K(x̄0, x̄, p̄) =

(
∂F

∂x
− p̄

)T

· 0= 0.

Finally, since K is not an explicit function of x0, we must
verify that

∂K

∂x
|(x̄0,x̄,p̄) = 0.

Expanding K as

K =

(
∂F

∂x

)T

f(x)− pTf(x),

and taking the derivative with respect to x, we have

∂K

∂x
=

∂2F

∂x2
f(x) +

(
∂f

∂x

)T (
∂F

∂x
− p

)
.

By assumption, the Hessian of F (x) is non-degenerated,
and since f(x̄) ≡ 0, the first term vanishes. Since on the
Legendre manifold of thermodynamic equilibrium state, by
definition, p and ∂F

∂x coincide, ∂K
∂x ≡ 0, and an equilibrium

of (7) coincides with an equilibrium of (9).
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A contact Hamiltonian based on the energy was also used
by (Eberard et al., 2007) while an entropy-based lift was
employed in (Favache et al., 2010)

The key problem considered in the present note consists
in assessing the stability of an isolated equilibrium in
the TPS, i .e., to study the stability of an equilibrium of
the (2n + 1)-dimensional dynamical system (6) restricted
to the Legendre submanifold. Following the contribution
by Favache et al. (2009), we first recall the notion of
equilibrium points in the TPS.

Proposition 3. ((Favache et al., 2009)). Consider a contact
manifold (T , θ) and a contact vector field XK , generated
by the contact Hamiltonian function K(x0,x,p). Consider
a state in the extended phase space (x̄0, x̄, p̄) ∈ (T , θ).
Then (x̄0, x̄, p̄) ∈ {(x0,x,p)|XK(x0,x,p)} if an only if
the following conditions are fulfilled:

∂K

∂pi
|(x̄0,x̄,p̄) = 0, i = 1, . . . , n,

K(x̄0, x̄, p̄) = 0,

∂K

∂xi
|(x̄0,x̄,p̄) =−p̄i

∂K

∂x0
|(x̄0,x̄,p̄), i = 1, . . . , n.

A sufficient stability result based on a linearization was
derived in (Favache et al., 2009). Alternate expressions for
Lyapunov stability of contact vector fields were derived
or used in (Ramirez et al., 2013) and (Wang et al., 2015)
using the concept of availability function, introduced in
the control literature by Ydstie and Alonso (1997).

As demonstrated in the study (Favache et al., 2009),
deriving a Lyapunov stability argument in the extended
phase space might be difficult, as the thermodynamic
constraints encoded in the structure of the (6) is not of a
gradient form, and involves the computation of the Hessian
of the generating function and of the contact Hamiltonian.
Following the decomposition approach to study stability
proposed in (Guay and Hudon, 2016), we seek in the
sequel to identify such gradient structure for the dynamical
system (6), using the information given by a metric, in this
case the generating potential.

3. STABILITY AND STABILIZATION WITH A
METRIC

We consider the problem of studying the stability of
dynamical systems of the form

ẋ = f(x),x ∈ Rn, (7)

to which a thermodynamical potential F (x) ∈ R is
associated. We assume that the vector field f(x) is of class
Ck, with k ≥ 2. We assume that there exists an isolated
equilibrium point x̄ such that f(x̄) ≡ 0. To simplify the
exposition, we further assume the following properties for
the potential F (x):

A1. F (x) is convex and positive definite;
A2. F (x) reaches a minimum at equilibrium, i .e., F (x̄) =

0;
A3. The Hessian of F (x) is non-degenerate and positive

definite in a neighborhood of an equilibrium x̄.

3.1 Lift to the contact space

Following (Eberard et al., 2007; Favache et al., 2009, 2010;
Ramirez et al., 2013; Wang et al., 2015), we first define a
contact Hamiltonian K to lift the dynamical system (7)
with respect to the thermodynamical potential F (x). The
contact Hamiltonian is hence given by

K =

(
∂F

∂x
− p

)T

f(x), (8)

and we can construct the contact vector field (5)

ẋ0 =

(
∂F

∂x
− p

)T

f(x)− pT ∂K

∂p

ẋ= f(x)

ṗ=
∂

∂x

((
∂F

∂x
− p

)T

f(x)

)
. (9)

This (2n+ 1) vector field leaves the contact one-form

θ = dF +
n∑

i=1

pidx
i

invariant. More importantly in the context of our study,
and following Proposition 3 from (Favache et al., 2009),
we have the following result characterizing an isolated
equilibrium in the extended phase space.

Proposition 4. An isolated equilibrium of the dynamical
system (7) f(x̄) ≡ 0 coincides with an isolated equilibrium
(x̄0, x̄, p̄) on Σφ of the extended system (9).

Proof. We apply directly the conditions from (Favache
et al., 2009) reported in Proposition 3. First, for f(x̄) ≡ 0,

∂K

∂pi
|(x̄0,x̄,p̄) = −fi(x̄) = 0.

Then,

K(x̄0, x̄, p̄) =

(
∂F

∂x
− p̄

)T

· 0= 0.

Finally, since K is not an explicit function of x0, we must
verify that

∂K

∂x
|(x̄0,x̄,p̄) = 0.

Expanding K as

K =

(
∂F

∂x

)T

f(x)− pTf(x),

and taking the derivative with respect to x, we have

∂K

∂x
=

∂2F

∂x2
f(x) +

(
∂f

∂x

)T (
∂F

∂x
− p

)
.

By assumption, the Hessian of F (x) is non-degenerated,
and since f(x̄) ≡ 0, the first term vanishes. Since on the
Legendre manifold of thermodynamic equilibrium state, by
definition, p and ∂F

∂x coincide, ∂K
∂x ≡ 0, and an equilibrium

of (7) coincides with an equilibrium of (9).
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3.2 Metric, decomposition, and stability in the contact
space

We are now studying stability of the dynamical system
XK

ẋ0 =

(
∂F

∂x
− p

)T

f(x)− pT ∂K

∂p

ẋ= f(x)

ṗ=
∂

∂x

((
∂F

∂x
− p

)T

f(x)

)
,

around the equilibrium (x̄0, x̄, p̄). DevelopingXK , we have
the dynamics:

ẋ0 =

(
∂F

∂x

)T

f(x)

ẋ= f(x)

ṗ=
∂2F

∂x2
f(x) +

(
∂f

∂x

)T (
∂F

∂x
− p

)
. (10)

Inspired by the metric proposed in (Preston and Vargo,
2008), but restricted to the Legendre submanifold, we
propose the Riemannian metric to be of the form

ηF = (x0)2dx0 ⊗ dx0 +
∂2F

∂xi∂xj
dxi ⊗ dxj + dpi ⊗ dpj .

Associated with this metric, we define an extended volume
form

µηF
=

√
det ηF dx0 ∧ dx1 ∧ . . . ∧ dxn ∧ dp1 ∧ . . . ∧ dpn.

For notation sake, we re-label the 2n+1 state variables as
ξ ∈ R2n+1, such that

ξ =
[
x0 x1 . . . xn p1 . . . pn

]T
,

and the volume form is given as

µηF
=

√
det ηF dξ1 ∧ dξ2 ∧ . . . ∧ dξ2n+1.

The elements of the vector field (10) are thus denoted
Xi(x,p), for i = 1, . . . , 2n+ 1.

Following the construction given in (Guay and Hudon,
2016), we define a one-form ω by taking the interior
product of the volume form with respect to the vector
and apply the Hodge star operator (see (Guay and Hudon,
2016) for definitions of those elements):

ω = �ηF
(XK�µηF

). (11)

We thus obtain a differential one-form associated to the
original (2n+1) dynamical systems parameterized by the
metric, given as:

ω = (−1)k−1
2n+1∑
k=1

2n+1∑
l=1

ηkl(ξ)Xl(ξ,p)dξk. (12)

To carry the proposed decomposition locally on a star-
shaped region on R2n+1 centered at ξ̄, we first define a
radial vector field X, defined in local coordinates by

X(ξ) =

2n+1∑
i=1

(ξi − ξ̄i)
∂

∂ξi
.

We then define two linear operators. For a differential form
ω of degree k on a star-shaped region, the homotopy
operator H is defined, in coordinates, as

(Hω)(ξ) =

∫ 1

0

X(ξ)�ω(ξ̄ + λ(ξ − ξ̄))λk−1dλ.

On the same star-shaped domain, one can define the dual
homotopy operator S as follows:

S = (−1)(2n+1)(k+1)+1 �η H �η . (13)

We now report the decomposition result given in (Guay
and Hudon, 2016):

Proposition 5. Consider a smooth nonlinear dynamical
system ξ̇ = X(ξ) with corresponding one-form, ω. The
one-form ω can be decomposed as follows:

ω = dHω + δSHdω + γH, (14)

where the one-form γH = Q(ξ)W is harmonic.

The decomposition of the one-form ω yields an alternative
structure of the dynamical system X(ξ) of the form

ξ̇ = −∇ξP
T +

n∑
i�=j

Jij∇ξH
T
ij +Q(ξ)ξ,

where P = Hω and the Hij are computed by the dual
homotopy operator. The first term on the right hand side
is the gradient part of the flow. The second term provides
the anti-symmetric component of the dynamics. The third
term takes the form of the gradient of a function V (ξ).
Using this decomposition for stability analysis of the drift
vector field X(ξ). We identified a normal form in the
extended phase space that is generated by functions P (blξ)
and Hij(ξ) (i �= j).

Assumption 6. Assume that the functions P and Hij are
such that for a neighborhood D of the equilibrium ξ̄ ∈
R2n+1:

(1) ∇ξP (ξ̄) = ∇ξHij(ξ̄) = 0, ∀i, j, and
(2) ∇2

ξP (ξ) ≥ αI,

for all ξ ∈ D and positive constant α.

Under this assumption, the following was proved in (Guay
and Hudon, 2016).

Theorem 7. Let the nonlinear system

ξ̇ = X(ξ) (15)

generate a decomposition with potentials that meet As-
sumption 6. Then the ξ̄ is a local exponentially stable
equilibrium of the system.

The proof of this theorem can be found in (Guay and
Hudon, 2016). Summarizing the result, one notes that
by using the above decomposition along a locally defined
vector field X = ξk

∂
∂ξk

, it is possible to re-write the

dynamics (9) as

ξ̇ = −∇ξP
T + U(ξ) (16)
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where U(ξ) =
∑

i�=j Jij∇ξH
T
ij + Q(ξ)ξ. It follows by

construction that ξTU(ξ) ≡ 0. Furthermore, it is always
possible, by assumption, to re-write the gradient of P (ξ)

as ∇ξP
T = Θ(ξ)ξ, where Θ(ξ) =

∫ 1

0
∇2P (λξ)dλ. Con-

sidering the Lyapunov function, V = 1
2ξ

T ξ, its derivative
with respect to t yields:

V̇ = −ξT∇ξP
T + xTU(ξ) = −ξT∇ξP

T . (17)

Based on the discussion above, it follows that the second
term is identically zero. It follows that, by assumption, one
can write:

V̇ = −ξTΘ(ξ)ξ, (18)

and for all ξ ∈ D we have:

V̇ ≤ −α‖ξ‖2 = −2αV. (19)

Local exponential stability of the system over D is
achieved, as required.

Applying this result to the thermodynamic system in the
TPS, the key feature is to test if the Hessian of the
potential P (ξ), computed by homotopy of the one-form
ω is positive definite. In our context, the one-form is given
in coordinates as

ω = x0
((

∂F

∂x

)T

f(x)dx0

+ (−1)k
n∑

k=1

n∑
l=1

(
∂F

∂xk∂xl
fl(x)

)
dxk

+ (−1)n+k

n∑
k=1

n∑
l=1

(
∂2F

∂xk∂xl
fl(x) +

(
∂F

∂k
− pk

)
∂fl

∂xk

)
dpk

)
.

By using homotopy integration along a locally-defined
vector field X centered at the equilibrium (x̄0, x̄, p̄), one
obtain a potential of the form

P (x0,x,p) = Hω,

in terms of the known generating function F (x). By
restricting the equilibrium to the Legendre submanifold
Σφ, one can verify that ∇ξP (ξ̄) = ∇ξHij(ξ̄) = 0 for all
i, j. The key problem therefore, consists in checking the
condition on the Hessian of the computed potential P ,
i .e.,

Hess P (x0,x,p) > αI2n+1.

The full condition, as developed in (Favache et al., 2009),
will be stated in a future contribution. For this note, we
illustrate the result for a particular class of systems in the
next section.

To summarize, the key feature of introducing a metric on
the TPS is to yield to a one-form ω that is parameterized
by a known metric. Using a previously proposed approach
to decompose vector fields, one can identify, under suitable
assumptions, the gradient structure of the vector field
in the contact phase space and derive suitable stability
conditions on a derived potential.

4. EXAMPLE

As an example, we consider the stability of dynamical
systems generated using Helmholtz free energy F (x) with
a constant structure matrix F

ẋ = F · ∇TF (x). (20)

Examples of such dynamical systems are metriplectic
systems, derived originally in the work by Morrison (1986),
but also gradient systems and Hamiltonian systems. In
the present case, we assume that the generating potential
is quadratic in its arguments, i .e., we consider the case
where F (x) is given by

F (x) =
n∑

i=1

1

2
(xi)2,

and as a result, the convex generating potential vanishes at
the origin and the non-degenerated Hessian matrix of F (x)
is the identity matrix. The key question about stability
of the system hence lies in the property of the structure
matrix F . By setting the contact Hamiltonian as

K = (x− p)
T Fx,

we can construct the contact vector field (5) as:

ẋ0 = xTFx (21)

ẋ = Fx (22)

ṗ = (FT + F)x− pTF . (23)

At the origin x̄ = 0, we have ẋ0 = 0, and ẋ = 0 since
Fx = 0. Furthermore, on the Legendre submanifold Σφ,

p and ∂F
∂x coincide, hence ṗ = 0.

Since the Hessian of the generating function is the identity
matrix, the Riemannian metric on the (2n+1)-dimensional
contact phase space is given as

ηF = (x0)2dx0 ⊗ dx0 + dxi ⊗ dxi + dpi ⊗ dpi,

for i = 1, . . . , n, and the volume form in the extended space
is given as

µηF
= x0dx0 ∧ dx1 ∧ . . . ∧ dxn ∧ dp1 ∧ . . . ∧ dpn.

Following the construction given above, and because of the
decoupled structure of the potential F , we define a one-
form ω as

ω = �ηF
(XK�µηF

),

which in this particular case is given by

ω =
(
xTFx

)
x0dx0 +

n∑
i=1

(−1)i
(
Fi,ix

i
)
x0dxi

+

n∑
i=1

(−1)(i+n)
(
2Fi,ix

i −Fi,ipi
)
x0dpi.

By homotopy integration of this one-form centered at the
origin, one obtains a potential P (x0,x,p) of the form
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where U(ξ) =
∑

i�=j Jij∇ξH
T
ij + Q(ξ)ξ. It follows by

construction that ξTU(ξ) ≡ 0. Furthermore, it is always
possible, by assumption, to re-write the gradient of P (ξ)

as ∇ξP
T = Θ(ξ)ξ, where Θ(ξ) =

∫ 1

0
∇2P (λξ)dλ. Con-

sidering the Lyapunov function, V = 1
2ξ

T ξ, its derivative
with respect to t yields:

V̇ = −ξT∇ξP
T + xTU(ξ) = −ξT∇ξP

T . (17)

Based on the discussion above, it follows that the second
term is identically zero. It follows that, by assumption, one
can write:

V̇ = −ξTΘ(ξ)ξ, (18)

and for all ξ ∈ D we have:

V̇ ≤ −α‖ξ‖2 = −2αV. (19)

Local exponential stability of the system over D is
achieved, as required.

Applying this result to the thermodynamic system in the
TPS, the key feature is to test if the Hessian of the
potential P (ξ), computed by homotopy of the one-form
ω is positive definite. In our context, the one-form is given
in coordinates as

ω = x0
((

∂F

∂x

)T

f(x)dx0

+ (−1)k
n∑

k=1

n∑
l=1

(
∂F

∂xk∂xl
fl(x)

)
dxk

+ (−1)n+k

n∑
k=1

n∑
l=1

(
∂2F

∂xk∂xl
fl(x) +

(
∂F

∂k
− pk

)
∂fl

∂xk

)
dpk

)
.

By using homotopy integration along a locally-defined
vector field X centered at the equilibrium (x̄0, x̄, p̄), one
obtain a potential of the form

P (x0,x,p) = Hω,

in terms of the known generating function F (x). By
restricting the equilibrium to the Legendre submanifold
Σφ, one can verify that ∇ξP (ξ̄) = ∇ξHij(ξ̄) = 0 for all
i, j. The key problem therefore, consists in checking the
condition on the Hessian of the computed potential P ,
i .e.,

Hess P (x0,x,p) > αI2n+1.

The full condition, as developed in (Favache et al., 2009),
will be stated in a future contribution. For this note, we
illustrate the result for a particular class of systems in the
next section.

To summarize, the key feature of introducing a metric on
the TPS is to yield to a one-form ω that is parameterized
by a known metric. Using a previously proposed approach
to decompose vector fields, one can identify, under suitable
assumptions, the gradient structure of the vector field
in the contact phase space and derive suitable stability
conditions on a derived potential.

4. EXAMPLE

As an example, we consider the stability of dynamical
systems generated using Helmholtz free energy F (x) with
a constant structure matrix F

ẋ = F · ∇TF (x). (20)

Examples of such dynamical systems are metriplectic
systems, derived originally in the work by Morrison (1986),
but also gradient systems and Hamiltonian systems. In
the present case, we assume that the generating potential
is quadratic in its arguments, i .e., we consider the case
where F (x) is given by

F (x) =
n∑

i=1

1

2
(xi)2,

and as a result, the convex generating potential vanishes at
the origin and the non-degenerated Hessian matrix of F (x)
is the identity matrix. The key question about stability
of the system hence lies in the property of the structure
matrix F . By setting the contact Hamiltonian as

K = (x− p)
T Fx,

we can construct the contact vector field (5) as:

ẋ0 = xTFx (21)

ẋ = Fx (22)

ṗ = (FT + F)x− pTF . (23)

At the origin x̄ = 0, we have ẋ0 = 0, and ẋ = 0 since
Fx = 0. Furthermore, on the Legendre submanifold Σφ,

p and ∂F
∂x coincide, hence ṗ = 0.

Since the Hessian of the generating function is the identity
matrix, the Riemannian metric on the (2n+1)-dimensional
contact phase space is given as

ηF = (x0)2dx0 ⊗ dx0 + dxi ⊗ dxi + dpi ⊗ dpi,

for i = 1, . . . , n, and the volume form in the extended space
is given as

µηF
= x0dx0 ∧ dx1 ∧ . . . ∧ dxn ∧ dp1 ∧ . . . ∧ dpn.

Following the construction given above, and because of the
decoupled structure of the potential F , we define a one-
form ω as

ω = �ηF
(XK�µηF

),

which in this particular case is given by

ω =
(
xTFx

)
x0dx0 +

n∑
i=1

(−1)i
(
Fi,ix

i
)
x0dxi

+

n∑
i=1

(−1)(i+n)
(
2Fi,ix

i −Fi,ipi
)
x0dpi.

By homotopy integration of this one-form centered at the
origin, one obtains a potential P (x0,x,p) of the form
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P (x0,x,p) = Hω = a(x)(x0)2 +

n∑
i=1

bi(x
i)2

+

n∑
i=1

cix
ipi +

n∑
i=1

dip
2
i ,

from which the condition on the Hessian for stability can
be computed and conditions on the structure of F can be
computed.

The opened question is obviously the choice of metric. As
argued in (Guay and Hudon, 2016), for a structure as
simple and decoupled as the one considered here, there
is a simple relation between the Hessian of P (·) and the
Jacobian of the vector field (in this case in extended dimen-
sions). As such, to ensure stability, the Jacobian matrix of
the vector cannot have zero on its diagonal, which is the
case when the contact Hamiltonian is not an explicit func-
tion of x0. In the present context, it leads to a particular
choice of metric, in order to perturb the one-form and hope
for a full-rank Hessian. It is believed however, that stability
analysis using this proposed approach could deal with non-
hyperbolic equilibrium points. Further investigations will
consider those topics.

5. CONCLUSIONS

In this note, we study the stability problems of thermo-
dynamic systems described in the Thermodynamic Phase
Space (TPS) endowed with a metric. Using a specific and
known metric and a decomposition approach recently pro-
posed in the literature, stability conditions in the extended
phase were developed. This examination leads to new in-
terpretations of previously obtained results, and highlights
new problems and avenues for research, in particular,
the possibility of using Riemannian geometry to study
thermodynamic problems, as proposed in (Preston and
Vargo, 2008). It is believed that concrete problems could
be considered, following for example the geometrothermo-
dynamic approach proposed by Quevedo (2007), as well as
more fundamental problems, using contributions collected
in the references (Blair, 2002). In particular, the knowledge
of a metric enables one to study the Reeb vector field in the
contact phase space, which is believed to be of importance
in the computation of admissible (optimal) control for
thermodynamic systems.
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Mathematics. Birkhäuser, Boston, MA.

Callen, H. (1985). Thermodynamics and an Introduction
to Thermostatistics. John Wiley and Sons, 2nd edition.

Eberard, D., Maschke, B.M., and van der Schaft, A.J.
(2007). An extension of Hamiltonian systems to
the thermodynamic phase space: Towards a geometry

of nonreversible processes. Reports on Mathematical
Physics, 60(2), 175–198.

Favache, A., Dochain, D., and Maschke, B. (2010).
An entropy-based formulation of irreversible processes
based on contact structures. Chemical Engineering Sci-
ence, 65, 5204–5216.

Favache, A., Dos Santos Martins, V., Dochain, D., and
Maschke, B. (2009). Some properties of conservative
port contact systems. IEEE Transactions on Automatic
Control, 54, 2341–2351.

Grmela, M. (2002). Reciprocity relations in thermody-
namics. Physica A, 309, 304–328.

Guay, M. and Hudon, N. (2016). Stabilization of nonlinear
systems via potential-based realization. IEEE Transac-
tions on Automatic Control, 61(4), 1075–1080.

Haslach Jr., H. (1997). Geometric structure of the non-
equilibrium thermodynamics of homogeneous systems.
Reports on Mathematical Physics, 39, 147–162.

Hermann, R. (1973). Geometry, Physics, and Systems.
Marcel Dekker, New York.

Hoang, N. and Dochain, D. (2013). On an evolution cri-
terion of homogeneous multi-component mixtures with
chemical transformation. Systems and Control Letters,
62, 170–177.

Libermann, P. and Marle, C.M. (1987). Symplectic Ge-
ometry and Analytical Mechanics. D. Reidel Publishing
Company, Doedrecht.

Morrison, P.J. (1986). A paradigm for joined Hamiltonian
and dissipative systems. Physica D, 18, 410–419.

Mrugala, R. (1996). On a Riemannian metric on con-
tact thermodynamic spaces. Reports on Mathematical
Physics, 38(3), 339–348.

Mrugala, R., Nulton, J., Schon, J., and Salamon, P. (1991).
Contact structure in thermodynamical theory. Reports
on Mathematical Physics, 38, 339–348.

Preston, S. and Vargo, J. (2008). The indefinite met-
ric of R. Mrugala and the geometry of the thermody-
namic phase space. Atti della Academia Peloritana del
Periscolanti — Classe di Scienze Fisiche, Matematiche
e Naturalli, LXXXVI, C1S0801019 – Suppl. 1.

Quevedo, H. (2007). Geometrothermodynamics. Journal
of Mathematical Physics, 48, 013506.

Quevedo, H. and Tapias, D. (2014). Geometric description
of chemical reactions. Journal of Mathematical Chem-
istry, 52(1), 141–161.

Ramirez, H., Maschke, B., and Sbarbaro, D. (2013). Ir-
reversible port-Hamiltonian systems: A general formu-
lation of irreversible processes with application to the
CSTR. Chemical Engineering Science, 89, 223–234.

Wang, L., Maschke, B., and van der Schaft, A.J. (2015).
Stabilization of control contact systems. In Proceedings
of the Lagrangian and Hamiltonian Methods in Nonlin-
ear Control Conference, 144–149. Lyon, France.

Ydstie, B. and Alonso, A. (1997). Process systems and
passivity via the Clausius–Planck inequality. Systems
and Control Letters, 30, 253–264.

2016 IFAC TFMST
September 28-30, 2016. Vigo, Spain

72


