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Abstract—Metasurfaces are thin (2D) metamaterials designed
for manipulating the dispersion properties of surface-waves (SWs)
or the reflection properties of incident plane-waves. Thanks to the
sub-wavelength sizes of the patches used in the implementation
step, these surfaces can be described by a surface impedance
boundary condition (IBC). In this paper, we investigate a “Method
of Moments” (MoM) based analysis of such surface with a
family of entire-domain basis functions named “Fourier-Bessel”
functions. The orthogonality property of these functions on a
disk allows us to represent any smooth current distribution in
an effective manner and thereby to drastically reduce the size of
the MoM matrix.

I. INTRODUCTION

During the last decade, metasurfaces (MTSs) have
received a great interest from the microwave and antennas
community [1]. The possibility of controlling the propagation
characteristics of surface-waves (SWs) at sub-wavelength
level has enabled the design of low-profile, high-gain
polarized leaky-wave (LW) antennas [2]. At microwave
frequencies, metasurface antennas may be implemented as
circular apertures with radius of several wavelengths and
exited by a TM SW source (for example a dipole) placed at
the center of the disk. The aperture is typically composed
of a dense periodic texture of electrically small patches
printed on a grounded dielectric slab. From a design point of
view, these patches implement a spatially modulated periodic
impedance boundary condition (IBC). By slowly varying the
shape, dimension and/or orientation of the elements, we can
assume a locally periodic surface. Under this assumption,
the surface impedance can be locally interpreted as if the
elements were placed in a periodically textured layer. This
impedance modulation allows to locally modify the dispersion
characteristics of the guiding surface waves and thereby
gradually transform the surface-wave into a leaky-wave [3].
A classical analysis of this kind of surfaces requires the
meshing of a dense array of sub-wavelength (around λ/10)
printed elements (typically more than ten thousand) [2].
The resulting high number of degrees of freedom at a
sub-wavelength scale leads to prohibitive computation times
[4] and a possibly ill-posed formulation. However, the MTS
can be homogenized and represented as an IBC within a
good approximation. One possibility consists in using an
opaque IBC [4], which assumes that the MTS is impenetrable
(zero fields in the lower half-space) and relates the tangential
electric and magnetic fields evaluated at the upper interface.

Another possibility consists in modeling the surface as a
transparent IBC, which relates the fields on both sides of
the MTS and accounts separately for the contribution of the
grounded slab and that of the sheet [5]. The sheet impedance
relates the average tangential electric field at the surface level
and the electric currents representing the jump-discontinuity
of the average transverse magnetic field at the metasurface. It
has been proven in [5] that the second configuration leads to a
better conditioned formulation. Moreover, the first formulation
does not take into account the spatial dispersion due to the
thickness of the grounded slab.
In this paper, we will therefore use the second formulation.
Owing to the smoothness of the surface impedance, the current
distribution on the surface will be smooth and therefore can
be represented with much fewer basis functions than needed
to mesh all the patches. The authors of [6] proposed the use
of Gaussian Ring Basis Functions (GRBF) and they proved
that using these basis functions, one can obtain a drastic
reduction of the number of unknowns and an extremely short
computation time (less than 2min). However, these basis
functions are not rigorously orthogonal, which means that it
should be possible to come up with a more general class of
current distributions, which may be described more compactly.

The paper is outlined as follows. In section II, we present the
family of Fourier-Bessel functions as well as their spectral
behavior. Section III describes the MoM formulation using
these functions and Section IV shows numerical results
including comparisons with the results from [6].

II. FOURIER-BESSEL FUNCTIONS

One of the two known families of functions that are
orthogonal on a disk is the Bessel family defined as follows
[7]:

Fn
m(ρ) = Jn(λ

m
n ρ) (1)

where λm
n is the m-th positive zero of Jn(ρ). This obtained

family of Bessel functions admits a closed-form Hankel trans-
form:

∫ 1

0

Fn
m(ρ)Jn(kρρ)ρdρ = −

λm
n Jn−1(λ

m
n )Jn(kρ)

(λm
n )2 − k2ρ

(2)

In order to account for the azimuthal dependence, we add
the e−jnφ, where φ is the azimuthal coordinate. The Fourier-
Bessel Basis Functions (FBBF) are then written as:

Rn
m(ρ, φ) = Fn
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The resulting family of Fourier-Bessel functions is rigorously
orthogonal on a disk and admits a closed form Hankel trans-
form on a disk of radius a:

Rn
m(kρ, α) = −2πjne−jnα

[

a2λm
n Jn−1(λ

m
n )Jn(kρa)

(λm
n )2 − (kρa)2

]

(4)

Where kρ and α are the spectral variables in cylindrical
coordinates.
Finally the current distribution is decomposed into its x and y
components. Each component is assumed to be expanded into
a sum of Fourier-Bessel Basis Functions (FBBF), as follows:

~J(~ρ) =
N
∑

n=−N

M
∑

m=1

ixmnR
n,x
m

(ρ

a
, φ

)

âx + iymnR
n,y
m

(ρ

a
, φ

)

ây

(5)
where âx and ây are respectively the unit vectors along the x
and y directions.

III. MOM FORMULATION

By modeling the MTS as transparent IBC, one arrives to
the following equation [5]:

~n×

[
∫ ∫

S′

GEJ(~ρ, ~ρ ′) ~J(~ρ ′)dS′
− Z

S
(~ρ) ~J(~ρ)

]

= −~n× ~Ei

(6)
where ~ρ ′ and ~ρ are respectively the source and observation
positions. GEJ is the dyadic Green’s function of the grounded

slab, Z
S

is the sheet impedance tensor and ~Ei is the excitation
electric field.
We make the choice to test the fields with the complex
conjugate of the FBBF. Equation (6) then leads to the following
matrix equation:

(

[Zxx] [Zxy]
[Zyx] [Zyy]

)(

[ix]
[iy]

)

=

(

[vx]
[vy]

)

(7)

The elements of the submatrix Zxx are defined as:

Zxx(m,n;m′, n′) = Zxx
G (m,n;m′, n′)−Zxx

IBC(m,n;m′, n′)
(8)

with:

Zxx
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1
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(9)

and:
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Finally, the excitation vector vx is given by

vx(m,n) =
1

4π2

∫ 2π

0

∫

∞

0

Rx,∗
m,n(kρ, α)G

EJ
xz (kρ, α) kρ dkρ dα

(11)
The elements in the other submatrices in (7) are given by
definitions analogous to (9)-(10).

A. Grounded slab contribution

The GEJ
xx component of the dyadic Green’s function can

be written as [8]

GEJ
xx (kρ, α) = GA(kρ) + k2ρ cos

2(α)GV (kρ) (12)

where GA and GV are the scalar potentials (with respect to
currents/charges), respectively. After substituting (12) in (9)
and integrating along α, we obtain:

Zxx
G = (−j)njn

′

∫

∞

0

Fn
m(kρa)F

n′

m′(kρa)

[2πGA(kρ)δn,n′ +GV (kρ)ǫn,n′ ] kρ dkρ

(13)

with ǫn,n′ = π
2 (2δn,n′ + δn,n′+2 + δn,n′

−2)

This integral can be efficiently evaluated using a parabolic
contour complex-deformation [8].
The same procedure can be used for Zxy

G , Zyx
G and Zyy

G .

B. Sheet impedance contribution

The sheet impedance can be computed in space domain as
follows:

Zxx
IBC =

∫ a

0
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m

(ρ

a

)

Fn′

m′

(ρ

a

)

∫ 2π

0

ej(n−n′)φ Zxx
S (~ρ) dφ ρ dρ

(14)
After expanding Zxx

S into Fourier series as proposed in [6],
one has:

Zxx
S (~ρ) =

∞
∑

r=−∞

ar(ρ) e
jrφ (15)

Then (14) reduces to:

Zxx
IBC = 2π

∫ a

0
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m

(ρ
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)

Fn′
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(ρ

a

)

an′
−n(ρ) ρ dρ (16)

C. Excitation contribution

The metasurface is excited at the origin (ρ = 0) with
an elementary vertical electric dipole. The Green’s function
associated with the x-oriented E-Field can be written as
GEJ

xz ( ~kρ) = cos(α)f(kρ). After inserting this expression
in (11), we obtain:

vx(m,n) = −

(−j)n

2
a2λm

n Jn−1(λ
m
n )

∫

∞

0

Jn(kρa)

((λm
n )2 − (kρa)2)

f(kρ)kρ(δn,1 + δn,−1)dkρ

(17)

A similar expression is obtained for vy .

IV. RESULTS

The analyzed structure is a broadside circularly polarized
metasurface antenna as in one of the examples described in
[2]. The elements of the impenetrable MTS tensor are given
by:

Zρ,ρ
+ (~ρ) = jX0[1 +M0cos(2πρ/d− φ)] (18)

Zρ,φ
+ (~ρ) = jX0M0sin(2πρ/d− φ) (19)

Zφ,φ
+ (~ρ) = jX0[1−M0cos(2πρ/d− φ)] (20)

with: X0 = 279, M0 = 0.4, ǫr = 9.8, h = 1.57 mm, f =
8.425 GHz, d = λ0/

√

1 + (X0/η0)2 and a = 7.6λ.
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The presence of the ρ and φ in the sine or cosine gives the
different elements, a spiral shape.
Fig. 1 shows the obtained current distribution with GRBF
and that obtained with FBBF for the same number of basis
functions (N=16, M=96) and Fig. 2a shows a 2D plot of these
two currents distributions on the axis φ = 0.
We recall that the GRBF solution has been already validated
in [6]. We will therefore consider it in this paper as a reference
solution.

(a) Current distribution GRBF (b) Current distribution FBBF

Fig. 1: Current distribution

(a) GRBF vs FBBF

(b) FBBF (N16M70 vs N16M96)

Fig. 2: Current distribution on φ = 0

We can observe a quite good agreement between the two
results. The only discrepancy appears near the center because

GRBF do not represent the current at the center, as in practical
realizations.

Fig. 2b shows a convergence analysis with FBBF,
comparing the obtained solution with (M=96, N=16) with
that obtained with (M=70, N=16). We can observe a good
agreement between the two curves, which means that the
current distribution can be represent very efficiently thanks to
the orthogonality property of FBBFs.

V. CONCLUSION

We have presented a method for the analysis of modulated
metasurface antennas based on Fourier-Bessel decomposition.
A very good correspondence has been obtained with respect
to another set of basis functions. The main advantage of the
FBBF lies in its orthogonality and its generality. Although the
study has been focused on modulated metasurface antennas,
those basis functions can be used in a more general application
where one needs to represent a smooth current distribution on
a disk.
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