
Efficient Reification of Table Constraints
Minh Thanh Khong ∗, Yves Deville ∗, Pierre Schaus ∗, Christophe Lecoutre †

∗ ICTEAM, Université catholique de Louvain, Louvain-la-Neuve, Belgium
{minh.khong, yves.deville, pierre.schaus}@uclouvain.be

† CRIL-CNRS UMR 8188, Université d’Artois, F-62307 Lens, France
lecoutre@cril.fr

Abstract—Reifying a constraint c consists in associating a
Boolean variable b with c such that c is satisfied if and only
if b is true, which can be denoted by creif : c ⇔ b. Reification is
useful for logically combining constraints and counting how many
reified constraints can be satisfied. Since table constraints play
an important role within constraint programming, in this paper,
we are interested in their reification. We introduce a filtering
algorithm that allows us to establish generalized arc consistency
on reified table constraints, with no spatial overhead. We also
propose a flexible approach that can generally reify any subsets
of constraints. We show the practical interest of our work on the
Max-CSP problem and a variation of the subgraph isomorphism
problem.

I. INTRODUCTION

The reification of a constraint c is used to reflect its truth
value into a Boolean variable b. Consequently, reifying a con-
straint c involves replacing c with its reified form creif : c⇔ b,
with now the possibility of c being unsatisfied: b is true if
and only if the constraint c is satisfied. Reified constraints are
useful for applying logical connectives between constraints
and/or expressing that a certain number of constraints must
hold, e.g., by summing up the Boolean (interpreted as zero-
one) variables associated with the reified constraints [1].

Table constraints, i.e., constraints defined by explicitly list-
ing the allowed (or disallowed) combinations of values for the
variables in their scopes, play an important role in constraint
programming. Indeed, they can be seen as a general-purpose
service, offered by constraint solvers, for expressing any kind
of constraints, with the required space consumption as only
limit to this approach. Table constraints can be useful to
combine efficiently some parts of problems (e.g., merging
highly related constraints), and appear naturally in many
domains such as configuration and databases. Many algorithms
have been proposed over the years to filter table constraints
[2]–[9], or some of their compact forms [10]–[13].

In recent years, a number of works have been proposed
for the reification of global constraints [1], [14], [15], not
including table constraints. In this paper, we study the reifica-
tion of table constraints, mainly by describing an algorithm to
establish Generalized Arc Consistency (GAC), following the
technique of Simple Tabular Reduction (STR) [5], [6]. One
interesting outcome of our work is that the door is open to
reify any kind of constraints, just by reformulating them as
table constraints, provided that space memory consumption is
not an issue.

We also propose a flexible approach to reify dynamically
any subset of constraints as a table constraint when a certain
threshold is reached. Reflecting the truth of this conjunction
(subset) of constraints into a Boolean variable b is thus such
that b is true if and only if all constraints in the subset are
satisfied.

We introduce two applications of our work. First, we show
how the Max-CSP problem (maximizing the number of sat-
isfied constraints of a given Constraint Satisfaction Problem)
can be solved efficiently when table constraints of high arity
are involved. Second, we show how a variant of the Subgraph
Isomorphism Problem (SIP) can be modeled easily, and solved
efficiently, with our flexible reification approach.

II. TECHNICAL BACKGROUND

A Constraint Satisfaction Problem (CSP) P = (X,D,C) is
composed of an ordered set of n variables, X = {x1, . . . , xn},
a set of domains D = {dom(x1), . . . , dom(xn)} where
dom(xi) is the set of possible values of the variable xi and
a set of e constraints, C = {c1, . . . , ce}. Each constraint c
involves an ordered set of variables, called the scope of c and
denoted by scp(c). Each constraint c is defined by a relation,
denoted by rel(c), which contains the allowed combinations
of values for scp(c). The arity of a constraint c is the size of
scp(c), and will usually be denoted by r.

Given a sequence 〈x1, . . . , xr〉 of r variables, a r-tuple τ on
this sequence of variables is a sequence of values 〈a1, . . . , ar〉,
where the individual value ai is also denoted by τ [xi] or, when
there is no ambiguity, τ [i]. Let c be an r-ary constraint. An
r-tuple τ is valid on c iff ∀x ∈ scp(c), τ [x] ∈ dom(x), and
τ is allowed by c iff τ ∈ rel(c) (we also say that c accepts
τ). A support on c is a valid tuple on c that is also accepted
by c. A constraint c is generalized arc-consistent (GAC) iff
∀x ∈ scp(c), ∀a ∈ dom(x), there exists a support of (x, a)
on c, i.e., a valid tuple τ on c such that τ is accepted by c and
τ [x] = a. A solution to a CSP is the assignment of a value to
each variable such that all the constraints are satisfied.

The set of valid tuples on a constraint c is val(c) =
Πx∈scp(c)dom(x). The ordered set of variables involved in
a set of constraints C is denoted by vars(C); we have
vars(C) = ∪c∈Cscp(c). The set of valid tuples on a set of
constraints C is val(C) = Πx∈vars(C)dom(x). A constraint
c is said to be entailed (resp. disentailed) if any tuple τ in
val(c) is accepted (resp., not accepted) by c; in other words, c
is always satisfied (resp. violated). A positive (resp. negative)

table constraint is a constraint whose semantics is defined in
extension by listing the set of allowed (resp. forbidden) tuples.
This table (set) is denoted by tableinit(c).

The reification of a constraint c is obtained by associating a
Boolean variable b with c. We then obtain a reified constraint
creif : c ⇔ b. The operational semantics of a filtering
algorithm (propagator) for the reification of such a constraint
is given by the following rules:
• if b is set to 1, then c must hold.
• if b is set to 0, then the negation of c must hold.
• if c becomes entailed, then b is set to 1.
• if c becomes disentailed, then b is set to 0.
To deal with a reified constraint, we need a propagator for

c, a propagator for ¬c, and we have to detect when c becomes
entailed or disentailed. The observation below shows when a
table constraint becomes entailed and disentailed.

Observation 1. Let table(c) be the set of current supports of
c, i.e., we have table(c) = tableinit(c) ∩ val(c). We have:
• c is entailed iff |table(c)| = |val(c)|,
• c is disentailed iff |table(c)| = 0.

When a table constraint becomes entailed, all valid tuples
on c are supports of c. Example 1 shows an entailed constraint.

Example 1. Given a positive table constraint c such that
scp(c) = {x1, x2, x3} and table(c) is:

x1 x2 x3
0 0 0
0 1 0
1 0 0
1 1 0

If dom(x1) = dom(x2) = {0, 1} and dom(x3) = {0}, then c
is entailed because |table(c)| = 4 = |val(c)| = |dom(x1) ×
dom(x2)× dom(x3)|.

III. REIFYING STAND-ALONE TABLE CONSTRAINTS

In this section, we present an algorithm for enforcing GAC
on a given reified table constraint. The principle is to update
the table of the constraint at each call of the filtering algorithm,
so as to remove the tuples that have become invalid, and then
to check the possibility of entailment or disentailment. For
managing the table, we use the well-known technique called
STR (Simple Tabular Reduction) [5], [6], [8].

A. Data Structures
The table associated with a table constraint c is denoted

by c.table. This table is represented by an array of tuples
indexed from 1 to c.table.length that denotes the size of the
table (i.e., the number of tuples). If the table is positive (resp.,
negative), c.positive is true (resp., false). The worst-case space
complexity to represent a table constraint c is O(rt) where
t = c.table.length and r = |scp(c)|.

STR-based algorithms have been developed for filtering
table constraints. The latest developments combining the prin-
ciple of STR with bit vectors have been shown to be state-of-
the-art [9], [16]. For simplicity, we only present the algorithm

in the spirit of STR1 [5], i.e., without any optimizations. STR-
based algorithms are efficient, in particular, because their data
structures permit a cheap restoration upon backtracking. The
principle of STR is to split a table into different sets such that
each tuple is member of exactly one set ; this corresponds to
the use of a sparse set [17], [18]. One of these sets contains
all tuples that are currently valid: tuples in this set constitute
the content of the current table, and are the current valid
tuples of the constraint. Other sets contain tuples removed at
different levels of search. For simplicity, data structures related
to backtracking are not detailed in this work (see [6]).

The following arrays provide access to the disjoint sets of
valid and invalid tuples within c.table:
• c.position is an array of size t = c.table.length that

provides indirect access to the tuples of c.table. At any
given time, the values in c.position are a permutation of
{1, 2, ..., t}. The ith tuple of c is c.table[c.position[i]].
For simplicity, this tuple is denoted by τc,i.

• c.limit is the position of the last current tuple in c.table.
The current table of c is composed of exactly c.limit
tuples. The values in c.position at indices ranging from
1 to c.limit are positions of the current tuples of c.

B. Tab-Reif

We now describe Tab-Reif, an algorithm for enforcing GAC
on a given reified table constraint creif : c ⇔ b. Note that
it can applied whatever the table constraint is positive or
negative.

Algorithm 1: Tab-Reif(creif : c⇔ b)

1 if dom(b) = {1} then
2 replace creif by c // we post c
3 else if dom(b) = {0} then
4 replace creif by ¬c // we post ¬c
5 else if dom(b) = {0, 1} then
6 i← 1
7 while i ≤ c.limit do
8 if ∀x ∈ scp(c), τc,i[x] ∈ dom(x) then
9 i← i+ 1

10 else
11 swap tuples τc,i and τc,c.limit
12 c.limit← c.limit− 1

// Check entailment/disentailment
13 if c.limit = 0 then
14 dom(b)← c.positive ? {0} : {1}
15 discard creif

16 else if c.limit = |val(c)| then
17 dom(b)← c.positive ? {1} : {0}
18 discard creif

The first operation is to test whether b is assigned or not. If
it is the case, we need to post the propagator for ensuring c or
¬c, and there will be no further call to the propagator of creif :
creif is replaced by c or ¬c (but creif will be restored when

backtracking). Note that any filtering can be employed such as
STR2 [6] or CT [9] for positive table constraints, and STR-Ni
[19] or CTneg [20] for negative table constraints. If b is not
assigned, we have to check for entailment or disentailment of
c (lines 13-18), after having updated the current table (lines
6-12). When entailment or disentailment is proved, b can be
assigned and the reified constraint creif can be discarded (but
will be restored when backtracking).

Proposition 1. Tab-Reif enforces GAC on any given reified
table constraint.

Proof. When b is assigned, Tab-Reif ensures GAC on con-
straint c if b is 1 or ¬c if b is 0 (assuming the propagators
for c and ¬c enforce GAC). Otherwise, Tab-Reif guarantees
to filter dom(b) when it is possible, according to Observation
1.

The worst-case time complexity of Tab-Reif is O(rt), and
can even be decreased by using some optimizations proposed
for STR2 or CT. Of course, when creif has been replaced, the
worst-case time complexity is that of the employed propaga-
tors (e.g., CT and CTneg).

IV. REIFYING SUBSETS OF CONSTRAINTS

We propose now to reify dynamically any subset of con-
straints (not necessarily, table constraints). More specifically,
we introduce an algorithm that can be used to reify any non-
empty subset C of constraints of a given CSP P = (X,D,C);
C ⊆ C is called a sub-model of P . The CSP to be solved
is then P = (X,D,C \ C ∪ {Creif}) where Creif is the
reified submodel of P : we have Creif : C ⇔ b. We propose
to reformulate dynamically the reified sub-model Creif as a
reified table constraint creif when the size of the Cartesian
product of the domains of the variables involved in C is less
than a given threshold L (in order to avoid combinatorial
explosion). We chose this metric for the threshold as it is
an upper bound on the number of tuples of the generated
reified table constraint. This upper bound can be improved by
estimating the number of solutions for a subset of constraints
[21], but this is out of scope of this paper.

Algorithm 2 is the algorithm we propose for filtering the
reified sub-model Creif : C ⇔ b. Note that this algorithm
does not guarantee GAC, notably because filtering is delayed
until the number of valid tuples corresponding to the variables
involved in C is less than the specified integer limit L. If the
variable b is assigned to 1, we can simply replace Creif by all
constraints in C (an alternative, not considered in this paper,
is to only keep lines 3-16 of Algorithm 2). Otherwise, when
the test at Line 3 evaluates to true, a table T is built (lines 4–
7). To perform this operation, the current state of P is stored,
the constraint Creif is discarded and all constraints in C added
to P . Then, all tuples in val(C) that are compatible with P
while considering constraint propagation φ are collected. More
precisely, for each tuple τ ∈ val(C), P|τ denotes the CSP
P with the additional variable assignments x = τ [x],∀x ∈
vars(C). The test φ(P|τ) 6= ⊥ indicates if running constraint

Algorithm 2: Mod-Reif(L: Integer, Creif : C ⇔ b)

1 if dom(b) = {1} then
2 replace Creif by C // we post const. in C
3 else if |val(C)| < L then
4 store state P
5 replace Creif in P by C
6 T ← {τ ∈ val(C) : φ(P|τ) 6= ⊥}
7 restore state P // P is as in Line 2
8 if |T | = 0 then
9 dom(b)← {0}

10 discard Creif

11 else if |T | = |val(C)| then
12 dom(b)← {1}
13 discard Creif

14 else
15 let creif : vars(C) ∈ T ⇔ b
16 replace Creif by creif // we post creif

propagation (denoted by φ) on P|τ does not lead to a conflict
(domain wipeout denoted by ⊥). At Line 7, the state of P is
restored. If entailment or disentailment of C is proved (lines
8 and 11), b can be assigned and the reified sub-model Creif
can be discarded (but will be restored when backtracking).
Otherwise, we can build a positive table constraint vars(C) ∈
T and post its reified form. It is important to note that the table
T can be obtained by branching on the variables in vars(C)
and using propagation at each step. Also, we assume a trailed-
based solver able to undo the changes on the state of the CSP
between the store and restore instructions.

The way a table constraint is constructed in Mod-Reif has
some similarities with works about solving submodels on the
fly [22] and autotabling [23]. Sub-models are converted into
table constraints to speed-up the solving process. However,
in our case, we are interested in reification.

V. APPLICATIONS

We show the practical interest of our approach on two
applications: Max-CSP and a SIP variant. We implemented
the reification algorithms in OscaR [24], a constraint solver
written in Scala.

A. Max-CSP

When a CSP is unsatisfiable (i.e., has no solution), it may
be interesting to identify a complete instantiation that satisfies
the greatest number of constraints. This is called the Maximal
Constraint Satisfaction Problem (Max-CSP). During the two
last decades, many works have been carried out to solve this
problem (and its direct extension, WCSP); see e.g., [25]–[28].

Suppose that P is an unsatisfiable instance, and that we want
to solve its Max-CSP problem version. One simple approach
is to reify each constraint ci of P (with the introduction of
a Boolean variable bi) and to convert the CSP into a COP
(Constraint Optimization Problem) whose objective function
is max

∑
i∈1..e bi. If P only contains table constraints, we

can use our algorithm Tab-Reif. This is what we have made

with the series of n-ary table constraints (with n > 2) used at
the Max-CSP 2008 competition1.

On a cluster under Linux (CPUs clocked at 2.2
GHz, with 10GB of RAM), we have compared on
the instances of these series the behavior of Tab-Reif
(implemented in OscaR), and Toulbar2 version 9.8.0
(http://www7.inra.fr/mia/T/toulbar2/documentation.html),
which is a well-known state-of-the-art solver dedicated to
Max-CSP and WCSP. We have also considered the results
obtained by the three best solvers (AbsCon, sugar++, and
tbBTD) at the Max-CSP 2008 competition (times have been
taken as such even if must be cautiously considered as the
execution environment is clearly not the same). The timeout
was set to 1, 200 seconds.

TABLE I
NUMBER OF SOLVED INSTANCES PER SERIES.

Series #ins Tab-Reif toulbar2 AbsCon sugar++ tbBTD
aim-50 8 8 8 8 8 8
aim-100 8 8 8 8 8 8
aim-200 8 8 8 6 8 6
bddLarge 20 0 0 2 0 0
bddSmall 15 0 15 15 0 15

dubois 13 6 11 2 13 13
pret 8 4 8 4 8 8

rand-10-20-10 20 20 0 0 0 0
rand-3-20-20 10 10 9 7 6 9

lexVg 15 4 0 0 2 0
wordsVg 15 2 0 0 1 0

modifiedRenault 17 13 0 5 17 17
jnhUnsat 15 12 15 9 15 13

0 20 40 60 80 100

0

200

400

600

800

1,000

1,200

Number of Solved Instances

C
PU

tim
e

(i
n

se
co

nd
s)

Tab-Reif
toulbar2v9.8.0

AbsCon
sugar++

toulbarBTD

Fig. 1. Number of instances solved in a given amount of time.

Table I shows the number of instances (per series) solved
by each of the five solvers. On some series, Tab-Reif is largely
outperformed (notably, on bddLarge and bddSmall) while
on some other series Tab-Reif is dominating (notably, on
rand-10-20-10 and lexVg). Figure 1 is a cactus plot indicating
the number of solved instances according to elapsed time.
Tab-Reif has a rather good behavior, being dominated by
toulbarBTD when 600 seconds have been reached. This
experimentation aims at showing that reified table constraints
can be a useful and efficient mechanism to solve MAX-CSP
instances in certain circumstances.

1See https://www.cril.univ-artois.fr/CPAI08/results/results.php?idev=16

B. Variant of Subgraph Isomorphism Problem
1) Description: A graph G = (N,E) consists of a node

set N and an edge set E ⊆ N × N where an edge (u, v)
is a pair of nodes. In this paper, we consider only undirected
graphs, (u, v) ∈ E ⇒ (v, u) ∈ E. A graph Gp = (Np, Ep) is
isomorphic to a graph Gt = (Nt, Et) if there exists a mapping
f : Np → Nt such that (u, v) ∈ Ep ⇔ (f(u), f(v)) ∈ Et.

A subgraph isomorphism problem (SIP) between a pattern
graph Gp and a target graph Gt consists in deciding whether
Gp is isomorphic to some subgraph of Gt. We propose an
extension of SIP (so-called eSIP) which handles pattern graphs
containing two sub-patterns where only one must be part of
the isomorphism. For a pattern graph Gp = (Np, Ep∪E1∪E2)
and a target graph Gt = (Nt, Et), eSIP consists in deciding
whether there exists a subgraph of Gt that is isomorphic to
either (Np, Ep ∪E1) or (Np, Ep ∪E2). An example is given
by Figure 2.

1 2 3

4 5 6

7 8 9

E1

E1

E1

E2

E2

E2

E2 E2

a b c d

e f g h

i j k l

Fig. 2. An eSIP instance (pattern graph on the left, target graph on the
right). Edges of E1 (E2) are dotted (dashed) line . A possible solution is
f = {(1, b), (2, c), (3, d), (4, f), (5, g), (6, h), (7, j), (8, k), (9, l)}.

An eSIP can be formulated as a CSP as follows. A variable
xu is associated with every node u of the pattern graph with
dom(xu) = Nt. A global constraint AllDifferent is used to
ensure that the matching is injective, and a set of binary
constraints for edge matching: ∀(u, v) ∈ Ep, (xu, xv) ∈ Et.
We introduce two reified sub-models Creifi : Ci ⇔ bi for Ei
s.t. Ci = ∀(ui, vi) ∈ Ei, (xui , xvi) ∈ Et, i = 1, 2, then the
constraint b1∨ b2 ensures that C1 or C2 must be satisfied. This
CSP can be solved straightforwardly by our flexible reification
approach Mod-Reif.

2) Experimental Results: We ran our experiment on a Mac
OS X with a 2.70GHz Intel Core i5 and 16GB of memory. To
evaluate our algorithm, some classes of instances were chosen
from the vflib database (see [29], [30] for more details). Each
class bvg-x-p-t contains 10 instances with fixed-valence graphs
where x ∈ {6, 9} corresponds to the valence, p ∈ {40, 80}
corresponds to the number of nodes in the pattern graphs and
t ∈ {200} corresponds to the number of nodes in the target
graphs. Each sub-model is generated randomly by extracting
20% of nodes and 90% of edges from the pattern graphs (these
edges are removed in the pattern graph). In order to compare
different approaches, a static search heuristics (lexico) is used.

We have compared different levels of reification: static
means that reified sub-models are reformulated at the root of
the search tree, while dynamic means that the reformulation
is postponed in the search tree until the threshold L is
reached. Different thresholds have been considered in our

TABLE II
AVERAGE RESOLUTION TIME (S) FOR STATIC AND DYNAMIC REIFICATION.

Class Static Dynamic
L1 L2 L3 check

bvg6-40-200 7.49 6.09 5.60 5.56 7.04
bvg9-40-200 27.75 9.19 9.05 21.31 27.84
bvg6-80-200 28.06 15.52 14.07 33.00 51.45

TABLE III
AVERAGE NUMBER OF FAILS FOR STATIC AND DYNAMIC REIFICATION.

Class Static Dynamic
L1 L2 L3 check

bvg6-40-200 #fail 12858 13543 13661 14497 16542
bvg9-40-200 #fail 9203 12228 14108 36557 72949
bvg6-80-200 #fail 6562 18112 16826 41887 65453

TABLE IV
AVERAGE NUMBER OF REFORMULATION CALLS AND TABLE SIZE FOR

STATIC AND DYNAMIC REIFICATION.

Class Static Dynamic
L1 L2 L3 check

bvg6-40-200 #call 2 1108.1 1654.1 1628.9 2080.0
size 360.0 1.10 0.73 0.67 0.64

bvg9-40-200 #call 2 1358.6 1371.6 50992 104520
size 320.0 0.53 0.53 0.23 0.07

bvg6-80-200 #call 2 440.0 600.0 4422.4 16480
size 460.0 0.00 0.00 0.00 0.00

experimentation: L1 = 1, 000, 000, L2 = 10, 000, L3 = 100
and check = 1.

Table II shows that the dynamic approach usually provides
better resolution times than the static approach. This is mainly
due to the time taken to reformulate reified sub-models at the
root node (when domains have not been reduced at all). Table
III shows that as soon as the reformulation is performed,
it can provide a better pruning. Hence, the number of fails
increases when the threshold decreases. This can also make
higher the number of reformulation calls (see Table IV). The
thresholds L1 and L2 are good trade-offs.

VI. CONCLUSION

In this paper, we have presented a GAC algorithm
for reified table constraints, which does not require any
additional space: we keep dealing with the original tables of
the constraints. We have also introduced a flexible reification
approach for reifying any subsets of constraints, by generating
dynamically reified table constraints. The practical interest
of these algorithms have been shown on two problems.
Interestingly, our algorithms benefit from recent algorithmic
advances such as those proposed in Compact-Table.

ACKNOWLEDGMENTS

The first author is supported by the FRIA-FNRS (Fonds
pour la Formation à la Recherche dans l’Industrie et dans
l’Agriculture, Belgium). The fourth author is supported by the
project CPER DATA from the ”Hauts-de-France”.

REFERENCES

[1] F. Fages and S. Soliman, “Reifying global constraints,” HAL, Tech. Rep.
RR-8084, 2012.

[2] C. Bessiere and J.-C. Régin, “Arc consistency for general constraint
networks: preliminary results,” in Proceedings of IJCAI’97, 1997, pp.
398–404.

[3] O. Lhomme and J.-C. Régin, “A fast arc consistency algorithm for n-ary
constraints,” in Proceedings of AAAI’05, 2005, pp. 405–410.

[4] I. Gent, C. Jefferson, I. Miguel, and P. Nightingale, “Data structures for
generalised arc consistency for extensional constraints,” in Proceedings
of AAAI’07, 2007, pp. 191–197.

[5] J. Ullmann, “Partition search for non-binary constraint satisfaction,”
Information Science, vol. 177, pp. 3639–3678, 2007.

[6] C. Lecoutre, “STR2: Optimized simple tabular reduction for table
constraints,” Constraints, vol. 16, no. 4, pp. 341–371, 2011.

[7] J.-B. Mairy, P. Van Hentenryck, and Y. Deville, “Optimal and efficient
filtering algorithms for table constraints,” Constraints, vol. 19, no. 1, pp.
77–120, 2014.

[8] C. Lecoutre, C. Likitvivatanavong, and R. Yap, “STR3: A path-optimal
filtering algorithm for table constraints,” Artificial Intelligence, vol. 220,
pp. 1–27, 2015.

[9] J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J.-
C. Régin, and P. Schaus, “Efficiently filtering table constraints with
reversible sparse bit-sets,” in Proceedings of CP’16, 2016, pp. 207–223.

[10] G. Katsirelos and T. Walsh, “A compression algorithm for large arity
extensional constraints,” in Proceedings of CP’07, 2007, pp. 379–393.

[11] K. Cheng and R. Yap, “An MDD-based generalized arc consistency
algorithm for positive and negative table constraints and some global
constraints,” Constraints, vol. 15, no. 2, pp. 265–304, 2010.

[12] N. Gharbi, F. Hemery, C. Lecoutre, and O. Roussel, “Sliced table con-
straints: Combining compression and tabular reduction,” in Proceedings
of CPAIOR’14, 2014, pp. 120–135.

[13] G. Perez and J.-C. Régin, “Improving GAC-4 for Table and MDD
constraints,” in Proceedings of CP’14, 2014, pp. 606–621.

[14] T. Feydy, Z. Somogyi, and P. Stuckey, “Half reification and flattening,”
in Proceedings of CP’11, 2011, pp. 286–301.

[15] N. Beldiceanu, M. Carlsson, P. Flener, and J. Pearson, “On the reification
of global constraints,” Constraints, vol. 18, no. 1, pp. 1–6, 2013.

[16] R. Wang, W. Xia, R. Yap, and Z. Li, “Optimizing Simple Tabular
Reduction with a bitwise representation,” in Proceedings of IJCAI’16,
2016, pp. 787–795.

[17] P. Briggs and L. Torczon, “An efficient representation for sparse sets,”
ACM Letters on Programming Languages and Systems, vol. 2, no. 1-4,
pp. 59–69, 1993.

[18] V. le Clément de Saint-Marcq, P. Schaus, C. Solnon, and C. Lecoutre,
“Sparse-sets for domain implementation,” in Proceeding of TRICS’13,
2013, pp. 1–10.

[19] H. Li, Y. Liang, J. Guo, and Z. Li, “Making simple tabular reduction
works on negative table constraints,” in Proceedings of AAAI’13, 2013,
pp. 1629–1630.

[20] H. Verhaeghe, C. Lecoutre, and P. Schaus, “Extending Compact-Table
to negative and short tables,” in Proceedings of AAAI’17, 2017, pp.
3951–3957.

[21] A. Favier, S. De Givry, and P. Jégou, “Exploiting problem structure
for solution counting,” in International Conference on Principles and
Practice of Constraint Programming. Springer, 2009, pp. 335–343.

[22] C. Bessiere and J.-C. Régin, “Enforcing arc consistency on global
constraints by solving subproblems on the fly,” in Proceedings of CP’99,
1999, pp. 103–117.

[23] J. Dekker, G. Bjordal, M. Carlsson, P. Flener, and J.-N. Monette, “Auto-
tabling for subproblem presolving in MiniZinc,” Constraints, 2017.

[24] OscaR Team, “OscaR: Scala in OR,” 2012, available from https://
bitbucket.org/oscarlib/oscar.

[25] E. Freuder and R. Wallace, “Partial constraint satisfaction,” Artificial
Intelligence, vol. 58, no. 1-3, pp. 21–70, 1992.

[26] J. Larrosa and P. Meseguer, “Partition-Based lower bound for Max-CSP,”
Constraints, vol. 7, pp. 407–419, 2002.

[27] M. Cooper, S. de Givry, and T. Schiex, “Optimal soft arc consistency,”
in Proceedings of IJCAI’07, 2007, pp. 68–73.

[28] C. Lecoutre, N. Paris, O. Roussel, and S. Tabary, “Solving WCSP by
extraction of minimal unsatisfiable cores,” in Proceedings of ICTAI’13,
2013, pp. 915–922.

[29] M. D. Santo, P. Foggiae, C. Sansone, and M. Vento, “A large database
of graphs and its use for benchmarking graph isomorphism algorithms,”
Pattern Recognition Letters, vol. 24, no. 8, pp. 1067–1079, 2003.

[30] C. Solnon, “Alldifferent-based filtering for subgraph isomorphism,”
Artificial Intelligence, vol. 174, no. 12-13, pp. 850–864, 2010.

