
Managing the Context Interaction Problem
A Classification and Design Space of Conflict Resolution Techniques in Dynamically Adaptive

So�ware Systems

Kim Mens
Benoı̂t Duhoux

ICTEAM, Université catholique de Louvain, Belgium
[kim.mens,benoit.duhoux]@uclouvain.be

Nicolás Cardozo
Systems and Computing Engineering Department,

Universidad de los Andes, Colombia
n.cardozo@uniandes.edu.co

ABSTRACT
�e context interaction problem occurs in dynamically adaptive so�-
ware systems whenever adaptations to di�erent contexts provide
incompatible behaviour, as they were not foreseen to occur simul-
taneously. Several strategies have been proposed to resolve such
con�icts when they occur. �is paper surveys a number of such
con�ict resolution strategies, and proposes a design space in which
to classify, compare, and explain the di�erences between them.

CCS CONCEPTS
•General and reference →Surveys and overviews; •So�ware
and its engineering →Multiparadigm languages; So�ware design
tradeo�s;

KEYWORDS
context interaction problem, dynamically adaptive so�ware sys-
tems, con�ict resolution techniques

ACM Reference format:
Kim Mens, Benoı̂t Duhoux, and Nicolás Cardozo. 2017. Managing the
Context Interaction Problem. In Proceedings of Programming ’17, Brussels,
Belgium, April 03-06, 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3079368.3079385

1 INTRODUCTION
Context-aware, context-oriented and dynamically adaptive so�-
ware systems all share the common property that they adapt their
behaviour in di�erent ways to a variety of di�erent situations, gath-
ered from their surrounding execution environment [32]. As a
consequence, they face the problem of subtle con�icts that may
arise when the system needs to react in di�erent incompatible ways
to combinations of situations that were not foreseen. We refer to
this problem as the context interaction problem, inspired by similar
interaction problems in other variability approaches, such as the
aspect interaction [30] and feature interaction problems [2, 9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
Programming ’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4836-2/17/04. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3079368.3079385

To illustrate the problem, consider the example of a home au-
tomation system with an emergency response module that reacts to
detected emergency situations. Whereas all emergency situations
have a common process to follow (alerting the user), the speci�c
steps needed to respond to a particular emergency vary according
to each speci�c situation (e.g., a �re, burglary, or water leak). �is
module can thus be developed as a dynamically adaptive system,
which adapts the response process dynamically to the detected
situation. For example, in case a water leak is detected, the system
may respond by temporarily turning o� the main water supply; in
case of a burglary it alerts the police department and turns on the
alarm; and in case of �re it activates the sprinklers and the alarm,
alerting the �re brigade. When designing such systems, developers
should try to consider all possible situations and their combinations
up front, since unforeseen combinations of behavioural adaptations
may lead to subtle errors. For example, if a �re and a water leak
were not foreseen to take place simultaneously, when they do occur
together it may happen that the system shuts o� the water supply,
causing the sprinklers not to work and the house to burn down.

In practice, however, it is not always feasible nor possible to
foresee all such con�icts, given the potentially large number of
combinations of situations that may occur and their corresponding
behavioural variations. Nevertheless, dynamically adaptive systems
should be resilient to such con�icting context-speci�c behavioural
adaptations. �erefore, a variety of mechanisms have been studied
to detect such context interaction con�icts, and to take appropriate
resolution actions when they occur. In the example above, upon
detection of the con�ict the system could choose not to turn o� the
water supply so that the sprinklers can still be used. Even though
this may cause water damage, the house would not burn down.

In this paper, we explore di�erent strategies that have been pro-
posed to resolve con�icts arising from the unexpected interaction
between incompatible context-speci�c behavioural adaptations. We
propose a design space in which to compare these techniques, pro-
vide a classi�cation of con�ict resolution strategies, and relate them
to that design space. �e purpose of this paper is to serve as a frame
of reference for developers of dedicated context-aware, dynamically
adaptive architectures, languages and frameworks, providing them
with a be�er idea of what resolution mechanisms exist to address
the context interaction problem.

2 DESIGN SPACE
2.1 Methodology
�is section sketches our multi-dimensional design space used to
classify di�erent resolution strategies for managing con�icts arising

Programming ’17, April 03-06, 2017, Brussels, Belgium K. Mens et al.

Venue 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
P R P R P R P R P R P R P R P R P R P R P R

TAAS 8 0 14 3 19 1 21 2 14 0 26 2 33 5 19 1 20 1 28 3 22 2
SEAMS 8 3 17 3 17 1 17 3 13 2 26 5 21 4 19 4 18 4 18 7 17 4
SASO 25 2 42 3 30 3 25 2 21 0 26 0 34 5 19 1 18 2 20 1
COP 10 5 6 2 7 5 5 2 6 2 8 4 8 2 6 3

Table 1: Landscape of con�ict resolution strategies in the area of context-aware and dynamically adaptive systems.

from (unforeseen) interactions between adaptations. Taking inspi-
ration from various resolution strategies collected from research
literature, we organised the design space according to �ve dimen-
sions, corresponding to �ve key questions (what/where, when, who,
how and why) regarding the resolution strategies.

To build a comprehensive design space we conducted a literature
review of resolution strategies for managing con�icting context-
aware behaviour. �e review focused on context-aware, context-
oriented, and adaptive systems, by considering publications from
top conferences and workshops (SEAMS,1 SASO,2 and COP3) and
journals (TAAS4) in these areas. As summarised in Table 1, for each
of these venues we collected all publications concerning con�ict
resolution strategies (R) amongst all published papers at the venue
(P). Papers were identi�ed and chosen based on the paper’s abstract
and content overview, to verify whether the paper indeed presents
a strategy to deal with con�icts between adaptations.

From Table 1, we can observe that the bulk of papers describing
con�ict resolution strategies comes from the SEAMS and COP com-
munities, as these have focused more on the so�ware engineering
aspects of dynamic so�ware adaptation. Papers presented at SASO
and TAAS tend to have a broader scope, which explains their lower
ratio of con�ict resolution papers. Selected references for the di�er-
ent con�ict resolution strategies are provided in Section 3, where
we present each speci�c strategy as part of our classi�cation.

2.2 �e Five Dimensions to Con�ict Resolution
Figure 1 depicts our design space, structured along �ve dimensions,
each corresponding to one of �ve “W” questions (What/Where,
When, Who, Why and hoW). Moreover, in this design space, more
intrusive approaches can be found closer to the origin, than strate-
gies that are less intrusive for users. We will refer to this design
space as the “design space for concern interaction management
techniques”, since it can easily be generalised to other concern
interaction problems than the context interaction problem.

WHAT / WHERE is the root cause of the con�ict? Dynamically
adaptive so�ware systems are constructed out of di�erent kinds
of entities such as sensors (detecting situations to which the sys-
tem should adapt), contexts (reifying these situations) and adap-
tations (de�ning the behavioural adaptation to be executed in a
particular situation). As context interaction con�icts occur, know-
ing what kinds of entities are causing the underlying con�ict may
in�uence the most appropriate resolution strategy to use. Con-
�icts caused by defective sensors that produce data that is absurd,

1h�p://seams2016.jgreen.de/?page id=41
2h�p://www.saso-conference.org
3h�p://2017.ecoop.org/series/COP
4h�p://taas.acm.org

WHAT?

sensors

contexts

adaptations

WHEN?

statically

dynamically

WHO?

end-user

developer

system

WHY?

HOW?

modify system

user choice

ignore/postpone

throw error

revert to default

user analysis

self-explanation
customise

WHERE?

Figure 1: Design space for concern interaction management
techniques

unlikely or inconsistent with respect to other sensors could be re-
solved by simply ignoring the adaptation associated to the situation
detected by the sensor, given that the sensor is faulty. Another
strategy could be to consult other sources of information to con-
�rm, refute, or correct information provided by the faulty sensor.
Con�icts may also be caused by the simultaneous occurrence of
two contexts not expected to occur together (due to an incom-
plete speci�cation of context interactions in the system design).
In such cases, a possible strategy may be to ignore the adaptation
corresponding to one of the contexts. Which of the contexts to
ignore would depend on the speci�c system domain. Related to
the previous con�ict, even when contexts were foreseen to interact,
the adaptations associated with such contexts could be con�icting.
Two di�erent adaptations could adapt a single system feature in
di�erent ways according to their associated context. Each of the
adaptations is correct in isolation, but their simultaneous execution
raises an ambiguity about which adapted behaviour to execute. A
linearisation strategy that dictates their combination and execution
order could avoid such ambiguity.

WHEN does a con�ict occur? WHEN should it be resolved? A
second dimension along which to classify di�erent con�ict resolu-
tion strategies is related to the timeliness of the strategy. Con�icts
could be resolved either statically (i.e., at design or con�guration
time) or dynamically (i.e., during system execution), requiring
di�erent con�ict resolution strategies. For example, statically, we
may detect that two adaptations have been de�ned for two speci�c
contexts, but no adaptation was de�ned for their combined con-
text. A simple static resolution could be to require the de�nition
of an additional variant for the combined case. Detecting all such
situations statically may not be feasible due to the dynamicity and

http://seams2016.jgreen.de/?page_id=41
http://www.saso-conference.org
http://2017.ecoop.org/series/COP
http://taas.acm.org

Managing the Context Interaction Problem Programming ’17, April 03-06, 2017, Brussels, Belgium

combinatorial explosion of context interactions. Missing adapta-
tions for speci�c context combinations will then be detected only
when the situations occur. In such cases, a possible resolution could
be to use the behaviour of only one of the adaptations based on
some prioritisation strategy.

WHO should resolve a con�ict? A third dimension to distinguish
con�ict resolution strategies is who is responsible for the resolu-
tion. Resolution could either be delegated to the system’s end-user
(e.g., asking users which adaptation they prefer to use), be speci�ed
by developers using dedicated mechanisms (e.g., language con-
structs or annotations) to de�ne a resolution strategy (e.g., explicitly
declared priorities for con�icting adaptations), or be resolved auto-
matically by the underlying system or language (e.g., an implicit
linearisation mechanism in case of ambiguities).

HOW to resolve con�icts? �e fourth dimension addresses how
to resolve con�icts, which may depend on the other dimensions.
For example, resolving con�icts dynamically requires di�erent
techniques (e.g., incremental analysis) than resolving them stat-
ically (e.g., static analysis) (WHEN). Moreover, identi�ed con�icts
can be resolved either by end-users or autonomously by the sys-
tem (WHO), and at the level of sensors, contexts, or adaptations
(WHAT/WHERE). Speci�c techniques vary between: asking end-
users to choose what adaptations they prefer; requiring design-
ers or developers to modify the system, customise a resolution
strategy, throw a runtime exception, le�ing the system ignore or
postpone adaptations, or to revert to a default behaviour.

WHY do con�icts occur? �e �nal dimension concerns the rea-
sons behind con�icts. Taking into account WHAT caused a con�ict
and its speci�c resolution (WHEN, WHO, HOW), it is possible to
provide some explanation of the con�ict. �is explanation, for ex-
ample, in case of ambiguity between two incompatible adaptations,
can help developers to analyse what speci�c resolution strategy
would be most appropriate (e.g., de�ning a new adaptation, choos-
ing one of the two adaptations, reverting to a default adaptation,
or ignoring the adaptation altogether) based on domain knowledge
about the system. �is analysis is useful to know how to resolve
similar types of con�icts in the future. Related to this, automated
self-explanation techniques [35] can be applied to provide feed-
back about the resolution strategy used in face of a con�ict, and
the reason behind using such strategy.

3 CLASSIFICATION
�is section presents a classi�cation of di�erent con�ict resolution
strategies, while linking them back to the design space. Before doing
so, we brie�y reiterate a typical context interaction problem that
such techniques need to address. A dynamically adaptive so�ware
system, such as our home automation system, can dynamically
adapt part of its behaviour, such as how it responds to emergencies,
to di�erent contexts. �e default behaviour could be to simply alert
the user in case of an emergency. �e default behaviour is adapted
whenever a �re or water leak is detected. A context interaction
problem arises when both situations (�re and water leak) occur
simultaneously, so that the system does not know to which of the
contexts to respond or how. A variety of di�erent con�ict resolution
techniques have been proposed to address such problems:

Using Runtime Exceptions. A direct strategy to “resolve” con-
text interaction problems is to let the system (WHO/system) au-
tomatically raise an exception (HOW/throw error) whenever the
con�icting contexts occur simultaneously during the system’s exe-
cution (WHEN/dynamically) [26].

Time of Adaptation. Interacting adaptations can cause con-
�icts in the observable system behaviour by requiring behaviour
that is no longer available due to a context change, or because
required behaviour is shadowed by an incoming adaptation. It is
thus of utmost importance to precisely de�ne when adaptations
are incorporated to or removed from the system. Adaptations can
be adopted loyally, promptly, or as a combination of both [11].

A loyal strategy [5, 17] consists in preventing the inclusion of
adaptations associated with a newly active context, until the cur-
rently executing context exits. �e strategy is thus loyal to the
currently executing behaviour, in the sense that it �nishes all pend-
ing behaviour executions in its current context, before switching to
the new context. A loyal strategy (WHO/system) avoids con�icts
at the level of contexts (WHAT), ensuring that all entities a�ected
by adaptations associated to a given context �nish executing in the
same context they started their execution by ignoring (HOW) the
incorporation of new contexts as they are signaled for activation
(WHEN/dynamically).

A prompt strategy [21] tries to adopt adaptations as soon as
their associated context is sensed, regardless of the currently exe-
cuting behaviour. �is strategy autonomously addresses con�icts
(WHO/system; WHEN/dynamically) between contexts by giv-
ing priority (HOW) to the latest sensed context (WHAT), with
the purpose of always executing the behaviour most speci�c to the
current situation. However, it may cause the system’s observable
behaviour to become unpredictable as the adaptation order depends
on the last context detected. In our running example, depending
on what emergency was detected last, either the house will burn
down, or the house will be �ooded.

A middle ground between the loyal and prompt strategies is the
prompt-loyal strategy [11, 33]. �is strategy applies adaptations to
all components not currently executing, and restrains new adapta-
tions (HOW/postpone) coming from context changes (WHAT)
until the behaviour a�ected by the adaptation has �nished its execu-
tion (WHEN/dynamically). As soon as the behaviour execution
�nishes, the adaptation is adopted by the system. In this way, the
system (WHO) remains loyal to the current execution, while still
promptly adopting new contexts.

Reverting to Default Behaviour. Whenever two adaptations
are simultaneously applicable, a con�ict may arise when both com-
pete to adapt the same behaviour. Given that the system (WHO)
does not know which of the two adaptations is most appropriate, a
conservative resolution strategy is to simply revert (HOW) to a
default behaviour, generic to both adaptations [18, 20, 29, 33]. �is
strategy subsumes the loyal strategy, since it ignores the con�icting
adaptations altogether, even if no other variant of the behaviour
is currently executing. �e idea behind this conservative strategy
is to avoid the con�ict by falling back to a default case, at the cost
of loosing the specialised behaviour provided by the applicable
adaptations. Note that this strategy does assume that a default

Programming ’17, April 03-06, 2017, Brussels, Belgium K. Mens et al.

behaviour is de�ned for all possible adaptation combinations. If
not, remaining con�icts may still occur.

In practice, this strategy is less conservative than it seems, since
several adaptation techniques [15, 18, 24] keep track of active con-
texts, reverting as a default case to the �rst less speci�c adaptation
common to both con�icting adaptations, as opposed to reverting
to a base behaviour not specialised to any context. Nevertheless,
even if this strategy makes a lot of sense in many cases, it goes a bit
against the spirit of dynamic adaptation, by conservatively revert-
ing to more generic cases as soon as con�icts arise. Furthermore,
the default case may not always be the most appropriate strategy.
In our emergency response module, reverting to default behaviour
would imply that users are only alerted of an emergency, but neither
the �re nor the water leak adaptation would be activated, leading
to the house to burn and �ood, which in our example is undesired.

Prioritising Adaptation Execution. Given the con�ict previ-
ously described between adaptations (WHAT), a resolution strat-
egy is to avoid ambiguities by prioritising the adaptations involved
in the con�ict. �is prioritisation could either be de�ned by devel-
opers, for example using explicit annotations, or be imposed by the
language, using an implicit linearisation strategy or activation pol-
icy. In our example, such a prioritisation could be used to express
that the adaption for �re takes priority over that for water leaks.

Explicit priorities (HOW/modify system) de�ned by devel-
opers (WHO) [19], remove ambiguity between adaptations by
considering the adaptation with the highest priority the most spe-
ci�c (WHEN/statically). However, if two adaptations with the
same priority are applicable to a behaviour, a con�ict still remains.

Instead of relying on developer annotations, some program-
ming languages or run-time architectures (WHO/system) de�ne
a prioritisation scheme by imposing a well-de�ned linearisation or
activation policy (HOW/customise). �e Context Traits [22] COP
language, for example, de�nes a prioritisation policy based on the
activation age of contexts. �at is, the most speci�c adaptations
correspond to contexts that are activated more recently, overriding
adaptations corresponding to older contexts. �e intuition behind
this policy is that adaptation associated to more recent contexts
are more appropriate to the situations sensed, than adaptations
associated to earlier context changes.

User-driven. Another strategy to resolve ambiguity in case of
con�icting adaptations is to let users (WHO) de�ne which of the
adaptations to choose. Gathering a user’s choice (HOW) can be
done either by requesting explicit input from the user [14], using
a previous analysis of available adaptations [34], or by learning
information from observing the user’s current activities or past
behaviour. In each of these cases, we still need to decide how to
use the gathered information, and who is responsible for resolving
the con�ict based on that information and how.

Requesting explicit user input (WHEN/dynamically), when-
ever adaptations are to take place, allows application users to
choose (HOW) the adaptation they consider most appropriate.
Relying on a previous analysis of the system (WHEN/statically),
on the other hand, can be used to identify possible con�icts between
adaptations through debugging and automated analyses. Using the
resulting analysis information, developers (WHO) can then mod-
ify the system (HOW) to remove the interaction problem (e.g.,

by de�ning priorities or ensuring a composition order for the adap-
tations). Finally, the system (WHO) can derive information by
observing previous user actions (WHEN/dynamically) to infer
(HOW/customise) what is their preferred behaviour, for di�erent
contexts and combinations of adaptations. �e best approach to
collect user information about their adaptation preferences may
vary and depend on the speci�c application domain and objectives
of the system (e.g., if a fully ubiquitous system is desired).

User as a Context. Related to the previous strategy, an inter-
esting resolution strategy is to regard the users themselves as a
context [8, 10] (WHAT). �e idea behind this strategy is to fall
back on existing context-aware adaptation mechanisms to let the
system (WHO) adapt its behaviour dynamically (WHEN) based
on the user’s preferences and behaviour (HOW). Although con-
ceptually this is a very nice approach, it does not work for all
possible con�icts. For example, it is very hard to pinpoint what
the user context or a�ribute would be to discriminate between the
�re adaptation and the water leak adaptation. However, if we have
additional information on the users’ preferences and intentions
[28], context-con�ict management strategies can taking into ac-
count those intentions, to maximise users’ satisfaction based on
their declared preferences. For example, a user could indicate that
she is more sensitive to damage caused by �re rather than by a
water leak, so that the con�ict resolution mechanism can take this
sensitivity into account and give preference to the adaptation that
turns on the sprinklers.

Formal Conflict Veri�cation. Con�ict resolution strategies
can also rely on formal approaches, backed up by a mathematical
formalism, to verify the coherence of the system upon dynamic
adaptations to the context [13]. �e formalism of COntext Petri Nets
[12, 15], for example, allows to model statically a system’s contexts
and their relationships (WHAT), while assuring, upon context
activation (WHEN/dynamically), that the model is respected. If
this is not the case, the system reverts to a previous consistent
state (HOW/ignored). Similar approaches have been de�ned upon
alternative formalisms such as labelled transitions system [23].

Taking advantage of the type system speci�cation [1, 6, 24], it is
possible to verify that no needed behaviour will be missing when-
ever a context (WHAT) change occurs. During the system’s de�ni-
tion (WHEN/statically), a type inference process (WHO/system)
can identify execution traces that would yield an error due to part of
the expected behaviour being missing (HOW/throw error). Sim-
ilarly, the type system de�nition (WHO/developer) can also be
used to de�ne the way in which adaptations (WHAT) should in-
teract with each other to avoid con�icts as the system goes from
one adaptation to the next [16] (HOW/revert to default).

Orchestration. Interactions between adaptations can also be
managed by the system (WHO), using a control structure assuring
that con�icts will not take place in the system. �is structure
controlling the adaptations, normally a graph-based representation
of the interactions between adaptations, is created dynamically
(WHEN) as adaptations are de�ned or appear in the environment.

Programmatically, it is possible to de�ne (WHO/developer)
explicit transitions between di�erent contexts (WHAT) [25], gen-
erating a network of allowed interactions between contexts. If

Managing the Context Interaction Problem Programming ’17, April 03-06, 2017, Brussels, Belgium

a transition between contexts is not de�ned or is explicitly for-
bidden, the adaptations associated with such context are ignored
(HOW). Similarly, based on the de�ned contexts and adaptations, a
graph controlling the transition between contexts can be generated
(WHO/system) [4, 7, 15]. Finally, adaptations can be orchestrated
using feedback loops [3] managing their interaction. �e advantage
of using such loops is that it is possible to build analysis and veri�ca-
tion mechanisms for inter- and intra- loop con�icts. Identi�cation
of such con�icts (WHEN/statically), can support the design and
implementation of the system by modifying the system (HOW)
beforehand, to avoid the con�icts altogether.

Adaptation contracts. Related to formal strategies, it is possi-
ble to statically de�ne adaptation contracts between adaptation
modules [27, 31], specifying the way they should interact with each
other, avoiding con�icts dynamically (WHEN). Adaptation con-
tracts are realized at two di�erent times, at system de�nition (speci-
fying the contracts), and their dynamic validation (i.e., their enforce-
ment). �erefore, this strategy uses a mixture of dimensions from
the design space. Contracts are extracted by developers (WHO)
from the system requirements, and de�ned in a programming lan-
guage using a formal (e.g., logic) speci�cation (HOW/customise).
Even though such contracts are de�ned statically by developers,
the expressive power of the formal speci�cation enables developers
to express interaction rules even with future adaptations that are
not yet present in the system. Contracts are enforced dynamically
by the system (WHO), enabling only those adaptations that satisfy
the given contracts, while ignoring other adaptations (HOW).

4 DISCUSSION
In the previous sections we introduced the context interaction
problem, and presented a design space as well as a classi�cation
of di�erent con�ict resolution strategies to address that problem.
In this section, we take a step back to discuss in more detail some
remaining issues.

Exhaustiveness. A �rst relevant question is whether our design
space and classi�cation are exhaustive. Surely other relevant di-
mensions along which to classify con�ict resolution strategies can
be found. However, we purposefully limited ourselves to �ve di-
mensions corresponding to �ve key questions to be asked about any
strategy, given that we wanted a design space that is su�ciently
generic and easy to understand and remember.

Our partitioning of each dimension into subcategories was based
on the strategies we surveyed and how we felt they would �t into
each dimension. �is partitioning may evolve further as we add
more strategies to our classi�cation. �is is especially the case
for the HOW dimension, which surely should be re�ned further.
Our current partitioning of dimensions into subcategories is not
always ideal either, even for seemingly obvious subcategories such
as statically or dynamically in the WHEN dimension. Indeed,
some techniques (like adaptation contracts or some of the formal
veri�cation techniques) clearly have both a static and a dynamic
counterpart. �ey require a developer to specify statically what is
allowed, while verifying dynamically whether this speci�cation is
respected, and taking appropriate resolution actions if not. For the

WHO dimension too, a more �ne-grained division may be needed,
for example to distinguish between programmers and designers.

Generality. Whereas the classi�cation in this paper only covers
con�ict resolution strategies, and not techniques for detecting those
con�icts, we do believe that our design space would be equally
suited to classify con�ict detection techniques as well, provided a
revision of the partitioning of each dimension in subcategories.

Similarly, the design space we proposed seems su�ciently generic
so that it could be applied to concern interaction management tech-
niques other than mere context interaction (e.g., feature interaction,
aspect interaction, component interaction).

Combining strategies. Section 3 classi�ed and highlighted di�er-
ent con�ict resolution strategies in isolation. In practice, however,
when building a full dynamically adaptive system, a single strat-
egy may not su�ce to resolve all possible con�icts. Suppose, for
example, that we are using prioritisation as resolution strategy for
disambiguating con�icts. �is strategy is able to resolve con�icts,
except in cases where di�erent contexts or adaptations are de�ned
with the same priority. In such cases an alternative backup strategy
would be needed. It is thus necessary to further explore how di�er-
ent individual strategies can be combined into a coherent uni�ed
resolution strategy that performs best in most cases. Additionally,
it is important to evaluate what impact such combined strategies
would have on the overall system behaviour.

Customisation. Combining di�erent strategies is, however, not
su�cient to handle all possible interaction con�icts, since in some
cases the most appropriate solution depends on the particular con-
texts and adaptations involved. In addition to the combination of
di�erent strategies, there is thus a need for customising existing
strategies to particular cases. It should also be assessed at what
level such customisation is most appropriate (e.g., customisation
by the user, by the developer or learned by the system).

Intrusiveness. A trade-o� exists between customisability and in-
trusiveness. On the one hand, customised strategies are likely to be
more appropriate since they have been targeted to solve a particular
con�ict type. On the other hand, de�ning such customised strate-
gies is o�en more intrusive since it requires either a developer to
override a more generic strategy, or to gather explicit user feedback
giving information on how to handle that con�ict. A less disruptive
strategy would be to infer user preferences based on previous user
interactions with the system. �is strategy, however, requires the
implementation of a learning component as part of the system.

User acceptance. On the one hand, end-users of dynamically
adaptive systems would like their applications to be as adaptive as
possible, so that they provide personalised services to the current
context for every user. On the other hand, end-users may not
accept systems that are constantly asking for input. Flooding users
with interactions is too disruptive, since every possible adaptation
interrupts the user’s activity and stalls the system until it receives
a response. �is violates the objective of context-aware systems as
ubiquitous systems. Again, systems that learn from past behaviour
may be a possible solution to this problem. Nonetheless, such
systems should give su�cient explanation to their users about
when, how, and why adaptations take place. Providing feedback

Programming ’17, April 03-06, 2017, Brussels, Belgium K. Mens et al.

about decisions taken by the system can mitigate users’ resistance
to systems that perform actions on their behalf.

Context of use. It is important to note that some strategies may
make more sense in some usage contexts than in others. A typical
example is the strategy of throwing a runtime exception. Whereas
this strategy is clearly to be avoided in deployed end-user applica-
tions, it may be a valid strategy to use during system development,
to catch as many problematic cases as possible before system de-
ployment. Once the system is deployed, however, this quite invasive
strategy should be replaced by a more conservative strategy such
as reverting to default behaviour.

Meta strategies. Given the previous observation, there may be
a need for meta strategies, i.e., strategies that determine, based on
the context of use, what is the most appropriate strategy for that
context. As such, the chosen strategy is too a contextual adaptation.

5 CONCLUSION
�is paper provided an overview of current resolution strategies
for the context interaction problem. �e objective of the paper is
to serve as a reference framework for developers of context-aware
systems, to be be�er informed about the kind of problems that may
arise due to the unforeseen interaction between contexts and adap-
tations, and about possible strategies for resolving these con�icts as
well as the trade-o�s these strategies face. While we do not claim
our classi�cation of resolution strategies to be exhaustive, our de-
sign space does cover the key questions when faced with a con�ict.
Since the proposed design space maps speci�c types of con�icts
to resolution strategies, it can be of use for the development of
context-aware systems, or languages or frameworks for managing
such systems. �e design space can easily be generalised to serve
as a framework to reason about other kinds of concern interaction
management techniques as well.

REFERENCES
[1] T. Aotani, T. Kamina, and H. Masuhara. 2015. Type-Safe Layer-Introduced Base

Functions with Imperative Layer Activation. In Proc. of the 7th Workshop on
Context-Oriented Programming (COP’15). ACM, 8:1–8:7.

[2] S. Apel, J. M. Atlee, L. Baresi, and P. Zave. 2014. Feature Interactions: �e Next
Generation (Dagstuhl Seminar 14281). Dagstuhl Reports 4 (2014), 1–24.

[3] P. Arcaini, E. Riccobene, and P. Scandurra. 2015. Modeling and Analyzing MAPE-
K Feedback Loops for Self-Adaptation. In Symp on So�ware Engineering for
Adaptive and Self-Managing Systems (SEAMS’15). IEEE/ACM, 13–23.

[4] E. Bainomugisha, W. De Meuter, and T. D’Hondt. 2009. Towards Context-Aware
Propagators: Language Constructs for Context-Aware Adaptation Dependencies.
In Proc. ofWorkshop on Context-Oriented Programming (COP’09). ACM, 8:1–8:4.

[5] E. Bainomugisha, J. Vallejos, C. De Roover, A. Lombide Carreton, and W.
De Meuter. 2012. Interruptible Context-dependent Executions: A Fresh Look at
Programming Context-aware Applications. In Proc. of the ACM Symp on New
Ideas and Re�ections on So�ware (OnWard’12). ACM, 67–84.

[6] D. Basile, L. Galle�a, and G. Mezze�i. 2015. Safe Adaptation �rough Implicit
E�ect Coercion. In Essays Dedicated to Pier Paolo Degano on Programming Lan-
guages with Applications to Biology and Security. Springer-Verlag, 122–141.

[7] N. Bencomo, A. Belaggoun, and V. Issarny. 2013. Dynamic Decision Networks
for Decision-making in Self-adaptive Systems: A Case Study. In Proc. of the Symp
on So�ware Engineering for Adaptive and Self-Managing Systems (SEAMS’13).
IEEE, 113–122.

[8] H. Eon Byun and K. Cheverst. 2001. Exploiting user models and context-awaR.ss
to support personal daily activities. In Workshop on User Modeling for Context-
Aware Applications (UM2001).

[9] M. Calder, M. Kolberg, E. H. Magill, and S. Rei�-Marganiec. 2003. Feature
Interaction: A Critical Review and Considered Forecast. Computer Networks 41
(2003), 115–141.

[10] J. Cámara, G. A. Moreno, and D. Garlan. 2015. Reasoning about Human Partici-
pation in Self-Adaptive Systems. In Symp on So�ware Engineering for Adaptive
and Self-Managing Systems (SEAMS’15). 146–156.

[11] N. Cardozo, S. González, K. Mens, and T. D’Hondt. 2011. Safer Context
(de)Activation: �rough the Prompt-Loyal Strategy. In Workshop on Context-
Oriented Programming (COP’11). ACM, 1 – 6.

[12] N. Cardozo, S. González, K. Mens, R. Van Der Straeten, J. Vallejos, and T. D’Hondt.
2015. Semantics for consistent activation in context-oriented systems. Informa-
tion and So�ware Technology 58 (2015), 71 – 94.

[13] N. Cardozo, K. Mens, and S. Clarke. 2017. Models for the Consistent Interaction of
Adaptations in Self-Adaptive Systems. In So�ware Engineering for Self-Adaptive
Systems: Assurances. LNCS, Vol. 9640. Springer-Verlag. To be published.

[14] N. Cardozo, K. Mens, S. González, P-Y. Orban, and W. De Meuter. 2014. Features
on Demand. In Proc. of theWorkshop on Variability Modelling of So�ware-intensive
Systems (VaMoS’14). ACM, 18:1–18:8.

[15] N. Cardozo, J. Vallejos, S. González, K. Mens, and T. D’Hondt. 2012. Context
Petri Nets: Enabling Consistent Composition of Context-Dependent Behavior.
In Workshop on Petri Nets and So�ware Engineering (PNSE’12), Vol. 851. CEUR
Workshop Proceedings, 156 – 170.

[16] D. Clarke, P. Costanza, and �. Tanter. 2009. How should context-escaping closures
proceed. In Workshop on Context-Oriented Programming (COP’09). ACM, 1–6.

[17] B. Desmet, K. Vanhaesebrouck, J. Vallejos, P. Costanza, and W. De Meuter. 2007.
�e Puzzle Approach for designing Context-Enabled Applications. In Conf. of
the Chilean Computer Science Society. IEEE, 23 – 29.

[18] D. Ghosh, R. Sharman, H. R. Rao, and S. Upadhyaya. 2007. Self-healing systems
— survey and synthesis. Decision Support Systems 42, 4 (2007), 2164 – 2185.

[19] S. González, N. Cardozo, K. Mens, A. Cádiz, J-C. Librecht, and J. Go�aux. 2010.
Subjective-C: Bringing Context to Mobile Platform Programming. In Proc. of the
Conf. on So�ware Language Engineering (LNCS), Vol. 6563. Springer, 246 – 265.

[20] S. González, M. Denker, and K. Mens. 2009. Transactional Contexts harnessing
the Power of Context-Oriented Re�ection. In Workshop on Context-Oriented
Programming (COP’09). ACM.

[21] S. González, K. Mens, and A. Cádiz. 2008. Context-Oriented Programming with
the Ambient Object System. Jour. of Universal Computer Science 14, 20 (2008),
3307–3332.

[22] S. González, K. Mens, M. Colacioiu, and W. Cazzola. 2013. Context Traits:
Dynamic Behaviour Adaptation �rough Run-time Trait Recomposition. In Proc.
of the Conf. on Aspect-oriented So�ware Development (AOSD’13). ACM, 209–220.

[23] M. Usman I�ikhar and Danny Weyns. 2014. ActivFORMS: Active Formal Models
for Self-adaptation. In Proc. of the Symp on So�ware Engineering for Adaptive and
Self-Managing Systems (SEAMS’14). ACM, New York, NY, USA, 125–134.

[24] H. Inoue, A. Igarashi, M. Appeltauer, and R. Hirschfeld. 2014. Towards Type-Safe
JCop: A Type System for Layer Inheritance and First-class Layers. In Proc. of the
Workshop on Context-Oriented Programming (COP’14). ACM, 7:1–7:6.

[25] T. Kamina, T. Aotani, and H. Masuhara. 2011. EventCJ A Context-Oriented
Programming Language with Declarative Event-based Context Transition. In
Conf. on Aspect Oriented So�ware Development (AOSD’11). ACM, 253–264.

[26] T. Kamina and T. Tamai. 2009. Towards Safe and Flexible Object Adaptation. In
Workshop on Context-Oriented Programming (COP’09). ACM.

[27] M. Mongiello, P. Pelliccione, and M. Sciancalepore. 2015. AC-Contract: Run-Time
Veri�cation of Context-Aware Applications. In Symp. on So�ware Engineering
for Adaptive and Self-Managing Systems (SEAMS’15). 24–34.

[28] I Park, D. Lee, and S. J. Hyun. 2005. A dynamic context-con�ict management
scheme for group-aware ubiquitous computing environments. In 29th Annual
International Computer So�ware and Applications Conference (COMPSAC’05).
359–364 Vol. 2.

[29] H. Psaier and S. Dustdar. 2011. A survey on self-healing systems: approaches
and systems. Computing 91, 1 (January 2011), 43–73.

[30] F. Sanen, E. Truyen, W. Joosen, A. Jackson, A. Nedos, S. Clarke, N. Loughran, and
A. Rashid. 2006. Classifying and documenting aspect interactions. In Proc. of the
AOSD workshop on aspects, components, and pa�erns for infrastructure so�ware
(Technical Report CS–2006–01). University of Virginia Computer Science, 23–26.

[31] A. Sartorio and M. Cristiá. 2009. First Approximation to DHD Design and
Implementation. CLEI electronic Jour. 12, 1 (2009).

[32] F. Schreiber and E. Panigati. 2014. Context-Aware So�ware Approaches: a
Comparison and an Integration Proposal. In 27th Italian Symp on Advanced
Database Systems (SEBD’14). 175–184.

[33] N. Taing, M. Wutzler, T. Springer, N. Cardozo, and A. Schill. 2016. Consistent
Unanticipated Adaptation for Context-Dependent Applications. In Workshop on
Context-Oriented Programming (COP’16). ACM, 1–6.

[34] S. Uchio, N. Ubayashi, and Y. Kamei. 2011. CJAdviser: SMT-based Debugging
Support for ContextJ. In Proc. of the Workshop on Context-Oriented Programming
(COP ’11). ACM, 7:1–7:6.

[35] K. Welsh, N. Bencomo, P. Sawyer, and J. Whi�le. 2012. Self-Explanation in Adap-
tive Systems. In Conf. on Engineering of Complex Computer Systems (ICECCS’12).
157–166.

	Abstract
	1 Introduction
	2 Design Space
	2.1 Methodology
	2.2 The Five Dimensions to Conflict Resolution

	3 Classification
	4 Discussion
	5 Conclusion
	References

