JOURNAL OF SOFTWARE ENGINEERING

Correct, Efficient and Tailored:
The Future of Build Systems

Guillaume Maudoux and Kim Mens
Université catholique de Louvain

Abstract—Build systems, also known as build automation tools,
are used in every non-trivial software project. They contain
the knowledge of how software is built, and provide tools to
get it actually built as fast as possible. While they are central
for day-to-day productivity, they sometimes fail to deliver their
promise of being correct, efficient and tailored. The situation
gets even worse when used with huge code bases and fast-paced
continuous integration pipelines. In this paper we survey state
of the art techniques and algorithms that relegate the occasional
inconsistent builds, slow execution times and boilerplate makefiles
to another age.

UILD systems are used to collect all the commands

and all the knowledge necessary to build an application.
While it simplifies maintenance of the build steps, the real
gain (as opposed to a collection of shell scripts for example)
resides in the single optimization called incremental builds.
Because the build system knows the entire dependency graph,
it is able to run only the few required commands to update
the build. On non-trivial projects, the potential speed-up is so
huge that no-one could live without it. In particular, it is mostly
used locally during development where the edit-compile-test
loop is most critical. Developers tend to test frequently very
small edits. Rebuilding bigger projects completely every time
is therefore not an option.

Behind the scenes, build systems all maintain a dependency
graph, and schedule the execution of build steps. But each
software project want a tailored build system that understands
the conventions of their programming language or underly-
ing framework. This explains the plethora of different build
systems. In this situation, good ideas found in a given imple-
mentation are not propagated to others, and build systems keep
using the same old algorithms despite the existing optimiza-
tions. In this article, we survey various existing improvements
scattered across the different implementations. We grouped
them with respect to the three main aspects of build systems:
Correctness, efficiency and specificity to their domain.

I. CORRECTNESS

A build system is deemed correct when it produces re-
sults indistinguishable from a clean build from clean sources.
Whatever magic optimisation happens inside the tool must not
change the build products. In particular, users should never
have to force a full rebuild, nor start the build in a clean tree
to get the expected outputs. There exists different definitions
of correctness [1], [2], but we prefer the intuitive notion that
"any invocation of the build system is equivalent to a clean
build".

This is not a trivial requirement. Every developer en-
countered a situation where the build was broken beyond
understanding.

State of the art techniques to enforce correct builds include
the persisting build systems state, advanced dependency en-
forcement and validation as well as redundant checking of
build products.

A. Persistent state

To achieve correct builds in all cases, a build system must
keep track of the files that were built [1]. For example,
this allows to detect when a build product was manually
modified and error out. Silently overwriting the file drops
user modifications, but keeping it as-is may produce artefacts
significantly diverging from the source. Tools like make start
from scratch on every invocation, with no a priori information.
They are therefore bound to miss the above kind of changes.

B. Isolating build steps

To ensure correct incremental builds, build systems need to
collect information about dependencies between build steps.
A change to an untracked dependency will not trigger the
required rebuild for the related steps, which in turn could
invalidate the build.

For most build systems, dependencies are provided or
inferred statically before the build. In some rare cases, de-
pendencies are collected dynamically during execution [2]. In
both cases, it is important to track how a build step accesses
it’s environment to either enforce the declared dependencies,
or to collect them all.

Progress on namespacing (also called sandboxing) tech-
niques to isolate processes enables to perform this enforce-
ment [3]. This is represented in Figure 1. Any access to
undeclared resources must be forbidden, because it may in-
validate current and future builds. Dependencies unknown to
the build system will impede its ability to run the steps in the
right sequence, or to detect that a rebuild is needed. Declared
but unused dependencies are not as serious but should be
eliminated as they reduce the overall efficiency of the build.

C. Managing the environment

Another threat to correctness is the environment where
compilations happen. We take the simple definition that the
environment is formed by everything outside the source tree
and the internal state of the build system (including compi-
lation results). The environment is therefore formed by the

(%)

Environment variables can be

PATH = ... monitored,
LC_ALL = C.UTF-8 overwritten
=f00 or filtered out

Dependencies can be

iﬁ undeclared but | . iﬁ
f— used (error) f—
A declared & used A
- 1, | ==
f— (normal case) f—
=]\ declared but =]\
— H W e H —
f— unused (warning) —

Figure 1. Proper isolation of build steps allow to detect discrepancies between
declared and used dependencies. Such an isolation is also instrumental to
provide reproducible builds. This is only possible thanks to recent, lightweight
sanboxing techniques (also know as namespaces). These allow to capture all
the effects of a build step and cache them in a efficient, reusable way. This
is discussed in Sections I-B, I-C and II-C.

CPU Architecture, the version of the tools involved in the
compilation, the environment variables, the operating system,
etc. As a build can be impacted by such factors, build systems
should monitor, hide or otherwise control these parameters.
For example, recent build systems clear unknown environment
variables and set some others to predefined universal values
as shown in Figure 1.

The current state of the art is to manage the environment
outside and separately from the build system. Nowadays, most
CI builds happen in docker, vagrant or other containers
to provide the same environment across builds. This practice
also spreads to local builds of developers, because it avoids
surprises when sending patches to CI and makes it easy to
set-up the development environment thanks to the existing
containers.

Some build systems, like tup for example, allow to track
the whole environment. This allows to detect changes to the
¢ compiler or any external tool or library. Tup does that by
tracking all the accessed files outside the source tree in the
same fashion as it tracks source files.

D. Validating results

The only way to check that a given build is correct is
to compare it with a clean build. In practice, build systems
could run the same build steps multiple times and compare
the results. While correctness requires only equivalent builds,
getting identical results is the simplest way to ensure build
equivalence.

While it is not a common practise elsewhere, some
package managers strive to provide reproducible packages.
This guarantees that a binary package consistently reflects

JOURNAL OF SOFTWARE ENGINEERING

its source tree. Efforts made by open-source projects are
concentrated by the reproducible-builds.org initiative. Their
goal is to allow anyone to reproduce any package, as reliably
as possible.

Correctness is a matter of trust in the build system. When
developers are confident enough, they rely blindly on their
build system and concentrate on other aspects of their tasks.

II. EFFICIENCY

Correctness is often overlooked in favour of efficiency.
There are a lot of speed comparisons amongst build systems,
and for a good reason. A benchmark comparing build systems
on a C++ project showed time ratios as large as 60 between
the tools [4]. One tool took one second while another took a
full minute.

The speed of incremental builds is crucial to get a short
edit-compile-test loop, and therefore to spare developer’s time.
When analysing the Travis CI platform, it was shown that
“[t]he main factor for delayed feedback from test runs is
the time required to execute the build [5].” That being said,
getting efficient incremental builds in distributed CI clusters
is a complex challenge [6].

An optimal build system should spend as little time as
possible figuring out which steps needs to run. It should also
run only the steps that are really required, and ensure there are
as few as possible. This is made possible by efficiently tracking
and propagating change, as well as performing advanced
caching.

A. Tracking changes

Detecting changes between builds allows to know exactly
what needs to be rebuilt. To do this, make relies on timestamps.
This is inefficient because it requires to build the whole
dependency graph, and read the timestamps of every source
file. This is an O(n) algorithm with n being the number of
files. For big software projects, this is a big issue.

Many build systems turned to inotify (or simmilar APIs)
to receive notifications on every file change. This technique
catches can also be used to trigger incremental builds imme-
diately. To work properly it requires a background monitor
process. When that process (re)starts, it still needs to check
all the files.

Efficiently tracking changes can have a huge impact on
build time, especially when there is very little to do to update
the build. In huge code bases, this O(1) vs O(n) complexity
speeds builds by many orders of magnitude [7]. This benefit
is however only possible if the build system does not walk
the entire dependency tree on each iteration. To avoid that, we
need the efficient encoding of the dependency graph described
presented in the next section.

B. Propagating changes

To detect efficiently what steps need to be executed again,
the dependency tree (which is technically a DAG) must be
stored as reversed arborescence, as depicted in Figure 2. With

RELEASE ENGINEERING V3

a.out
main.o lib.o
main.c lib.h lib.c

Figure 2. The dependency graph is the common feature of all the build
systems. It has a strict alternation of data and processes. The arrows pointing
towards the root allow a fast lookup of updates triggered by source changes.
In this example, a modification to 1ib. c requires to update the 1ib.o and
a.out outputs. This is discussed in section II-B.

that data structure modifications propagate naturally upward
in the DAG, in an expected O(log(n)) time [1]. This is again
a huge improvement over the classical O(n) tree walk that
builds the full graph on each invocation. This optimisation,
together with efficient change detection described above makes
build system feel instantaneous. Only the time taken by the
build steps remains significant.

C. Caching and sharing builds

While incremental builds allow to reuse products of the last
build, they are less useful after switching to a new branch, or
around merge commits which both introduce many changes
at once. It is also difficult to share these products with other
users or distant machines. Products caching is the technique
used to address these issues.

Caching was first popularised with ccache. The tool acts
as a drop-in replacement for gcc, but caches compilation resuts
in an external directory. When equivalent calls are made to the
compiler, ccache fetches the result from the cache, avoiding
redundant computations. If the cache is big enough, building
different branches remains efficient.

More recently, Mozilla implemented sccache, a shared
compiler cache, to get caching to work on a cluster of nodes.
Sccache publishes build products on a central repository
available to all the CI workers. This allows CI to access
incremental builds intead of clean builds often found there [6].
With sccache, Mozilla was able to halve compilation time
on its CI cloud workers [8].

Generic caching is much more difficult to achieve, because
build steps can perform a huge range of modifications on
their environment. Each of these must be either captured of
prohibited to ensure that the cache contains exhaustive and
valid substitutes to the corresponding build steps. That kind of
shared caching is implemented in gradle, buck and bazel.
These implementations do not provide complete isolations,
and therefore cannot guarantee both correctness and efficiency
at the same time. For example, gradle cannot correctly
cache parallel build steps that write to the same directory.

Lightweight isolation and virtualization technologies would
help to improve these issues.

As a side note, caching builds also allows individual
developers to improve local performances. In fact, caching
blurs the difference between local and CI builds.

With good data structure and algorithms, as well as with
correct shared caching, software project have improved the
speed of their daily builds by some orders of magnitude.

III. USABILITY

While build systems use similar algorithms behind the
scene, they distinguish themselves by their configuration lan-
guage, the intended uses they support and their community.
This is mostly visible in the set of modules and ad-hoc
configuration provided with each of them. The advantages of
tailoring drive the creation of new build systems. Either when
older ones do not support new technologies, or when they
require too much boilerplate. While generic, programmable
build systems can theoretically build any software, developers
tend to prefer tools tailored for their specific language, or with
included support for the framework they use.

Build systems mature over time, and collect tips and tricks
to handle corner cases for software they build. For example,
bazel has an in-depth understanding of C compilers options
and manages the subtle variations required by different
implementations and platforms. The autotools tool suite
has gained extensive support for building applications on
Unix platforms. Picking the right tool therefore avoids a lot
of boilerplate to developers and maximises portability.

There is a huge galaxy of different build systems, and all
of these could benefit from better performances, and should
strive to ensure the correctness of their builds. As these
improvements relate to the backend, it should be possible
to focus efforts on shared backends, while retaining the
rich ecosystem of build system frontends. Alternatively, they
could interoperate nicely together, providing their in-depth
knowledge to other tools.

IV. CONCLUSION

We first described existing techniques to guarantee correct
incremental builds. We also explained the algorithms to ex-
ecute incremental (or cached) builds in the blink of an eye.
Finally, we outlined the huge set of ad-hoc frontends for every
possible use case.

Because build systems share the same core algorithms, these
improvements can be easily ported to all of them. This would
not sacrifice the embedded domain knowledge that makes the
specificity of each implementation. This sketches an exciting
future where build systems would no more be in the way.
No more rm —rf, no more builds from scratch and no more
idle waiting on build products. Only sound builds at high
performance!

—

(1]

[2]

[3]

(4]

(51

(6]

(71
(8]

REFERENCES

M. Shal. (2009) Build system rules and algorithms. [Online]. Available:
http://gittup.org/tup/build_system_rules_and_algorithms.pdf

S. Erdweg, M. Lichter, and M. Weiel, “A sound and optimal incremental
build system with dynamic dependencies,” SIGPLAN Not., vol. 50, no. 10,
pp. 89-106, Oct. 2015.

M. Shal. (2014) Clobber builds part 2 - fixing missing
dependencies. [Online]. Available: http:/gittup.org/blog/2014/05/
7-clobber-builds-part-2---fixing-missing-dependencies/

N. Llopis. (2015) The quest for the perfect build
system (part 2). [Online]. Available: http:/gamesfromwithin.com/
the-quest-for-the-perfect-build-system-part-2

M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke
the build: An explorative analysis of travis ci with github,” in
Proceedings of the 14th International Conference on Mining Software
Repositories, ser. MSR 17, 2017, pp. 356-367. [Online]. Available:
https://doi.org/10.1109/MSR.2017.62

G. Maudoux and K. Mens, “Bringing incremental builds to continuous
integration,” Jun. 2017, unpublished conference paper. [Online].
Available: sattose.org/2017:schedule

M. Shal. Make vs tup. [Online]. Available: http://gittup.org/tup/make_
vs_tup.html

M. Hommey. Analyzing shared cache on try. [Online]. Available:
https://glandium.org/blog/?p=3201

Guillaume Maudoux is a PhD student at Univer-
sité catholique de Louvain (Belgium) since 2013.
Member of the RELEASeD research laboratory on
software evolution, his research interests cover the
whole release engineering pipeline, with a prefer-
ence for build systems, continuous integration and
preferably both at the same time. Contact him at
guillaume.maudoux @uclouvain.be.

Kim Mens is a full-time professor at Université
catholique de Louvain, where he leads the RE-
LEASeD research laboratory on software evolu-
tion and software development technology. His re-
search interests include software development, main-
tenance, reuse and evolution, as well as program-
ming language engineering. Mens received a PhD
in computer science from Vrije Universiteit Brussel.
Contact him at kim.mens@uclouvain.be.

JOURNAL OF SOFTWARE ENGINEERING

