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Introduction

The present work revolves around the theme of algebraic groups, with
a special emphasis on semisimple algebraic groups over local fields. It
consists of three independent chapters. The first one aims for a structure
theorem for totally disconnected locally compact groups having a linear
open subgroup. The second chapter studies Chabauty limits of quasi-
split simple algebraic groups acting on trees. Finally, the last chapter
gives a condition for the group of semilinear automorphisms of a semisim-
ple group G to decompose as a semidirect product of the group of alge-
braic automorphisms and the group of field automorphisms preserving
G.

Algebraic groups over local fields

By an algebraic group over a scheme S, we mean a group object in the
category of smooth affine S-scheme of finite type, and an algebraic group
over a field k means an algebraic group over Spec k. For a non-expert,
this definition might appear as overly dry and sophisticated. To motivate
it, we begin by discussing the historical development of algebraic group
theory. It is also good to keep in mind the various levels of difficulty
that arise when allowing various base schemes S, a fact which is well
illustrated by the history of the development of the theory.

Algebraic groups were first only considered over R or C, in which
case they are instances of Lie groups. It took a long time before starting
to vary the base scheme, so let us pause for a moment on this case and
take the opportunity to discuss the early motivations for the theory of
algebraic groups. A. Borel wrote a masterful account of the genesis of
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8 Introduction

algebraic groups in [Bor01]. Relying on this reference, we quote the
various influences.

The ancestors of algebraic groups are the so called Lie groups, a
notion introduced in 1873 by S. Lie. His motivation was to develop a
Galois theory for differential equations. Note in passing that abstract
groups emerged from Galois theory. Lie groups started to play a leading
role in mathematics after the fundamental contributions of W. Killing,
E. Cartan and H. Weyl. Interestingly enough, H. Weyl came to study Lie
groups because of his interest (amongst others) for relativity theory. In
hindsight, his influence has been tremendous, since nowadays Lie groups
play a central role in physics.

From a modern point of view, a Lie group is a group object in the
category of smooth manifolds. This definition makes it clear that smooth
manifolds are not far from smooth group schemes of finite type over the
reals, the latter category being a subcategory of the former in which we
restrict our attention to polynomial functions. Hence, it is not surprising
that some works initiated by the theory of Lie groups dating from the
end of the 19th century were early contributions to the theory of alge-
braic groups. Amongst those early contributions, we can cite the work of
S. Lie and E. Study on projective representations of SLn(C), the work of
E. Picard on linear differential equations, and the work of E. Cartan on
linear Lie groups that are algebraic. But, as A. Borel puts it in [Bor01,
Chapter 5], those works did not appear to their authors as contributions
to the theory of algebraic groups, since they had other goals in mind.
From this period, the mathematician L. Maurer stands out as an excep-
tion. His main goal was to develop the theory of algebraic groups per se,
but his work fell into oblivion.

Algebraic groups had then to wait for forty years before being re-
vived by C. Chevalley and E. Kolchin. They had different motivations:
the former was trying to extend the work of L. Maurer, while the latter
was trying to develop a Galois theory of differential equations à la Pi-
card. This leads us to the golden age of algebraic groups. In the fifties,
C. Chevalley took the mathematical community by surprise by achiev-
ing a classification of simple algebraic groups over an algebraically closed
field in arbitrary characteristic. To quote P. Cartier in [Che05, Postface,
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25.2], “the announcement by C. Chevalley that the classification of sim-
ple algebraic groups over algebraically closed fields was independent of
the characteristic was a crash of thunder”. Soon afterwards, the needs
for a better understanding of the classification of finite simple groups led
mathematicians to push further Chevalley’s work and to work over per-
fect fields, aiming for a classification of simple algebraic groups over finite
fields. In retrospect, algebraic groups over finite fields indeed yields the
core of the list of finite simple groups. The assumption of perfectness
of the field was essential to make it possible to apply Galois-theoretic
techniques when descending from the algebraically closed field case to
the perfect field case.

Problems over local and global fields coming from number theory
motivated the elimination of the perfectness assumption. According to
[Con14, Appendix A], the initial breakthrough allowing to work over
an arbitrary field came from a theorem of Grothendieck (namely The-
orem A.1.1 in [Con14]), whose proof uses in an essential way scheme-
theoretic ideas. At approximately the same time, Grothendieck and
his school were developing the theory of schemes, and it was probably
then natural to recast the theory of algebraic groups in the language of
schemes, and to work over an arbitrary base. This notably led to the
classification of split simple algebraic groups over an arbitrary scheme,
massively generalising the classification achieved by Chevalley.

In our work, we mostly restrict our attention when the base scheme
S is the spectrum of a non-discrete locally compact topological field.
The classification of such fields is an early success of the development of
the theory of locally compact groups impulsed by Hilbert’s fifth problem.
Note again in passing the inspiring role of Lie groups. That classification
ensures that a non-discrete locally compact topological field is isomorphic
to either R, C, a finite extension of the field of p-adic numbers Qp or
the field of formal Laurent series Fq((T )) over the finite field Fq, where
q is a prime power. In this list, the disconnected ones, i.e. all of them
apart from R and C, are called (non-Archimedean) local fields.

To motivate in a few words the concept of a local field, let us mention
their relevance in number theory, which is not surprising if one thinks
of Qp as the completion of Q with respect to a prime p. What makes
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p-adic fields so useful in number theory is their historical use in the work
of Hasse on the classification of quadratic forms over Q, which was a
first instance of his profound and amazing local-global principle.

Now that we have introduced the concept of an algebraic group and
the concept of a local field, it remains to explain why considering alge-
braic groups over local fields is of interest. As we already pointed out,
they play a central role in number theory. For example, the Langlands
program is concerned with representation theory of algebraic groups over
local fields. Let us also outline another remarkable link: according to
[Buz], Tamagawa numbers of algebraic groups over local fields played an
inspiring role in formulating the Birch and Swinnerton-Dyer conjecture,
which is considered as one of the most important problems in mathe-
matics.

The starting point of this thesis is to view the simple algebraic groups
over local fields as the most prominent examples in the class S of nondis-
crete compactly generated locally compact groups that are topologically
simple. The study of the class S as a whole is a new trend that emerged
in the past decade. However, its origins are to be traced within the his-
toric interest for locally compact groups. In his famous so-called “fifth
problem”, D. Hilbert asked whether the differential structure on a Lie
group can be reconstructed from the topological structure. In the fifties,
A. Gleason and H. Yamabe answered this question in the affirmative, in
a theorem nowadays deemed as “the solution to Hilbert’s fifth problem”.
Their fundamental theorem (see for example [Tao14, Theorem 1.1.17])
provides structural information on general locally compact groups. In
particular, it implies a first result on the class S : if G is a connected,
locally compact group which is topologically simple, then G is a Lie
group. It is to be noted that Lie groups were again the main concern in
those early developments.

But from the point of view of the classification of groups in S , the
result of A. Gleason and H. Yamabe is only a milestone, not the end of
the story. Note that given any topological group G, we always have a
short exact sequence of topological groups 1 → G0 → G → G/G0 → 1

where G0 is a connected closed normal subgroup of G, and G/G0 is
totally disconnected. In particular, by a result of D. van Dantzig (see
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[CM11, Introduction] for a precise reference), G/G0 has a basis of iden-
tity neighbourhood consisting of compact subgroups, so that the theo-
rem of A. Gleason and H. Yamabe does not bring any new information.
Hence, in order to attempt at a classification of groups in S , the totally
disconnected case and only this one remains open.

Before explaining how our results contribute to an exploration of the
class S , let us end this section by insisting on a technical difficulty.
While finite extensions of Qp are perfect fields since these are fields
of characteristic 0, Fq((T )) is not perfect. Indeed, using the valuation,
we directly see that T ∈ Fq((T )) has no n-th roots for n > 0. As we
said earlier, considering algebraic groups over nonperfect fields makes
it really necessary to use the schematic language. This is particularly
well illustrated by the following example: for any prime p, the map
SLp → PGLp, considered as a map of algebraic group over Fp((T )), is a
purely inseparable isogeny, which makes this map wilder at the level of
rational points (see Example 1.13 for an illustration of this).

Presentation of the results

We refer to [Cap16] for a very well-written and informative survey of
results and problems pertaining to the class S . Let us just list the most
prominent examples of groups in the class S : algebraic groups over local
fields, Kac–Moody groups over finite fields, groups acting on trees and
groups almost acting on trees (see [Cap16, Section 2] for more details).
One of the main challenge that we now face is to find new examples of
groups belonging to S , hoping to obtain guiding principles to develop
the general theory. This quest for new examples is the common theme
of the first two chapters.

Chapter 1, which is joint work with P.-E. Caprace, is concerned with
the structure of totally disconnected locally compact groups that are
locally linear. A locally compact group is called linear if it admits a
continuous faithful finite-dimensional linear representation over a local
field. It is called locally linear if it has an open subgroup which is
linear. The main motivation behind this work was a classification of
groups G in S that are locally linear, and we indeed achieved our goal.
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Theorem A (see Chapter 1, Corollary 1.4). Let G be a totally discon-
nected group in S . If G is locally linear, there exists a local field k and
an absolutely simple, simply connected, isotropic algebraic group H over
k such that G is isomorphic to H(k)/Z(H(k)) as a Hausdorff topological
group.

By a result of D. van Dantzig (see [CM11, Introduction] for a precise
reference), we can assume that the open subgroup U of G is compact.
We are thus reduced to look for information about compact subgroups
of GLn(k). This is provided by the far reaching results of R. Pink (see
[Pin98, Corollary 0.5]). But in order to use those results in the proof of
Theorem A, one needs to quotient the linear compact open subgroup U
of G by a normal soluble subgroup. An indication that the theory was
ripe for the classification of locally linear totally disconnected locally
compact groups in S is the result in [CRW14, Theorem 5.3] that U does
not possess any non-trivial soluble closed normal subgroup.

In fact, our method allows us to give a general structure theorem for
totally disconnected, locally compact groups having a linear open sub-
group wothout assuming that it is a member of S . We refer the reader
to the introduction of Chapter 1 for a thorough overview of the results
it contains. For now, we just highlight another corollary of our results,
which is striking in the sense that it provides a uniform framework for
three classical families of simple groups.

Theorem B. Let G be a compactly generated, topologically simple, lo-
cally compact group. Then G is linear over a (possibly Archimedean)
local field if and only if G belongs to one of the following class:

1. Finite simple groups.

2. Simple Lie group.

3. Simple algebraic groups over local fields.

Chapter 1 has been published as a separate article, see [CS15]. Com-
pared to the article, we have added two appendices. One is concerned
with proving that the automorphism group of a simple algebraic group
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over a local field is simple-by-compact, while the other elucidates the
connection between algebraic and analytic varieties.

The work in Chapter 2 originates from the same quest for more ex-
amples of groups in S . As P.-E. Caprace and N. Radu show, one can
try to build a topologically simple group by approximating it with a
sequence of topologically simple groups.

Theorem ([CR16, Theorem 1.2]). let T be a locally finite tree whose
vertices are of degree ≥ 3. The set of topologically simple closed subgroups
of Aut(T ) acting 2-transitively on ∂T is Chabauty-closed.

Recall that the Chabauty space Sub(G) of a locally compact group
G is the set of all closed subgroup of G, endowed with the so called
Chabauty topology. We refer the reader to [dlH08] for a survey of the
Chabauty space. For example, it follows directly from the definition
that Sub(R) is homeomorphic to a compact interval [0,∞]. On the
other hand, it is already a non trivial result to prove that Sub(R2) is
homeomorphic to the 4-sphere, while a helpful description of Sub(Rn)

when n ≥ 3 is not known.
For Tp+1 the (p+ 1)-regular tree,

{SL2(K)/Z(SL2(K)) | K a totally ramified extension of Qp}

is an infinite family in Aut(Tp+1) of topologically simple closed subgroups
acting 2-transitively on ∂Tp+1. Furthermore, since the Chabauty space
is compact, this infinite family must accumulate. Hence the question of
knowing whether an accumulation would be a new kind of group in S

becomes a pressing issue. But N. Radu soon computed that the only ac-
cumulation point of this family is actually SL2(Fp((T )))/Z(SL2(Fp((T )))).
At first, this convergence of algebraic groups over fields of characteristic
0 to an algebraic groups over a field of positive characteristic was very
surprising. In retrospect, our work shows that this convergence is very
natural, since Fp[[T ]] is the (projective) limit of OKn/mn

Kn
, where Kn is

a totally ramified extension of Qp of degree n, with ring of integers OKn
and maximal ideal mKn .

Chapter 2 extends this result to cover the case of Chabauty limits
of groups of the form SL2(D) for D a division algebra over a local field,
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as well as quasi-split special unitary groups SU
L/K
3 (K). In essence, we

show that Chabauty limits of groups of this form are again groups of this
form.

In order to be more precise, for T a tree, let us define a topologi-
cally simple algebraic group acting on T to be a locally compact group
isomorphic to H(K)/Z, where K is a local field, H is an absolutely sim-
ple, simply connected, algebraic group over K of relative rank 1 whose
Bruhat–Tits tree is isomorphic to T , and Z is the center of H(K).

The first thing to observe is that, given a topologically simple alge-
braic group G acting on T , the action homomorphism G→ Aut(T ) is not
canonical, but depends on some choices. There is however a natural way
to resolve this issue of canonicity, explained in [CR16]. Following that
paper, we shall denote by ST the space of topological isomorphism classes
of topologically simple closed subgroups of Aut(T ) acting 2-transitively
on the set of ends. According to [CR16, Theorem 1.2], the space ST
endowed with the quotient topology induced from the Chabauty space
Sub(Aut(T )) is compact Hausdorff.

Using this language, the main result of Chapter 2 goes as follows:

Theorem C (see Chapter 2, Theorem 2.1). Let T be a locally finite
leafless tree, and let Sqs-alg

T be the set of isomorphism classes of topologi-
cally simple algebraic groups acting on T that are furthermore quasi-split.
Then Sqs-alg

T is closed in ST .

We are actually able to explicitly describe the space Sqs-alg
T , as well

as the convergences happening inside it. For an exhaustive description,
we refer the reader to the introduction of Chapter 2. We just highlight
here the case of the 3-regular tree, where more intricate convergences
happen, indicating that this kind of questions can be delicate.

Theorem D (see Chapter 2, Theorem 2.3). Let T be the 3-regular tree.

1. The space Sqs-alg
T is homeomorphic to N̂

2
, where N̂ denotes the one

point compactification of N. The first Cantor–Bendixson deriva-
tive consists of groups in positive characteristic, while the second
Cantor–Bendixson derivatice consists of the group SL2(F2((T )))/Z,
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where Z is the center of SL2(F2((T ))) (see Theorem 2.3 for a more
precise formulation).

2. For each n, let K = F2((T )), let Ln = K[X]/(X2−TnX+T ), and
identify SU

Ln/K
3 (K)/Z, Z being the center of SU

Ln/K
3 (K), with a

closed subgroup Gn of Aut(T ) (using Bruhat–Tits theory). Then
{Gn}n∈N converges in the Chabauty space of Aut(T3) to (a closed
subgroup of Aut(T ) isomorphic to) SL2(K)/Z(SL2(K)). In partic-
ular, the Tits index need not be preserved under Chabauty limits.

The main tool in proving those theorems is the so-called integral
model of a reductive group over a local field. Those integral models
are smooth group schemes over the ring of integers of the local field,
and they play an essential role in the monumental work of F. Bruhat
and J. Tits. Especially, we give a concrete description (via equations) of
various models of rank 1 quasi-split, absolutely simple, simply connected
groups over local fields. We believe that the explicit description of the
integral model for SU3 in the so-called ramified and residue characteristic
2 case is also of interest in its own. See Subsection 2.4.2 for more on this
topic. This work also led us to consider more generally the description
of combinatorial balls in Bruhat–Tits buildings. We come back to this
in the next section.

The work in Chapter 2 has been submitted for publication as a sep-
arate article, and is available on the ArXiV (see [Stu16]).

The final chapter, on the contrary, is not motivated by questions
pertaining to the class S . In our work, we frequently encountered the
group of abstract automorphisms Aut(G(k)) of (the rational points of) a
semisimple algebraic group G. As we recall in Chapter 3, the celebrated
result of A. Borel and J. Tits provides conditions ensuring that it fits into
a short exact sequence 1 → (AutG)(k) → Aut(G(k)) → AutG(k) → 1,
and the question of whether this sequence splits arises naturally. While
it was known from a long time that this sequence splits when G is a split
algebraic group (in which case AutG(k) = Aut(k)), the general case had
not been addressed. Of course, before attacking this question, one needs
in particular to be able to decide whether AutG(k) is trivial or not. We
are not aware of any results in the literature towards that direction.
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In fact, our results show that settling the question in general is rather
tricky, since it depends on the arithmetic of field extensions associated to
the algebraic groups. We obtain a necessary and sufficient criterion for
this sequence to split when G is quasi-split. Our criterion is independent
of the ground field.

Theorem E (Chapter 3, Theorem 3.2 and Proposition 3.29). Let G
be a quasi-split, absolutely simple, simply connected algebraic group of
type 2An, 2Dn or 2E6 over a field k, and let l be the separable quadratic
extension k defining G.

Let Autl(k) = {α ∈ Aut(k) | there exists an automorphism of l whose
restriction to k is α}, let Aut(l ≥ k) = {α ∈ Aut(l) | α(k) = k} and

Aut(l/k) = {α ∈ Aut(l) | α acts trivially on k}.

1. The group AutG(k) is isomorphic to Autl(k).

2. The short exact sequence 1→ (AutG)(k)→ Aut(G(k))→ AutG(k)

→ 1 splits if and only if the short exact sequence 1→ Aut(l/k)→
Aut(l ≥ k)→ Autl(k)→ 1 splits.

We also have a similar result for quasi-split groups of type 3D4 or
6D4. We refer the reader to Proposition 3.29 for precise statements. Our
work shows that for quasi-split groups, the splitting question is actually
controlled by the scheme of Dynkin diagrams. This useful notion intro-
duced in [ABD+64, Exposé 24, section 3] is not so widely known, and we
discuss it in detail in Chapter 3. Schemes of Dynkin diagram allows us
to treat the case of quasi-split groups in an uniform way, and the main
result in Chapter 3 is formulated using this language (see Theorem 3.2).

Here is a concrete corollary of the main result in Chapter 3, providing
many examples where the aforementioned short exact sequence does not
split.

Corollary F (See Chapter 3, Corollary 3.32). Let K,L be finite Galois
extensions of Qp, with L a quadratic extension of K. Let G be the
quasi-split algebraic group SU

L/K
n over K. The short exact sequence

1 → (AutG)(K) → Aut(G(K)) → AutG(K) → 1 splits if and only if
1→ Gal(L/K)→ Gal(L/Qp)→ Gal(K/Qp)→ 1 splits.
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We also investigate the case of SLn(D) over a local field K, where
the results have a very different flavour. As mentioned above, before
attacking splitting question, we need to control the group AutSLn(D)(K).
Doing explicit computations, we obtain the following result.

Theorem G (see Chapter 3, Corollary 3.37). AutSLn(D)(K) = Aut(K)

If α ∈ Aut(K) is of finite order, the fact that α extends to an auto-
morphism of D was already known (see Remark 3.38). This implies that
α ∈ AutSLn(D)(K). Hence, Theorem G was already known in character-
istic 0, but we are not aware of such a result in the literature in positive
characteristic.

Now, concerning the splitting question for SLn(D), we did not com-
pletely settled it in the positive characteristic case (see Theorem 3.4 for
a precise statement of what we know). Here, we just quote the result in
characteristic 0.

Theorem H (see Chapter 3, Theorem 3.4). Let K be a local field of
characteristic 0, and let D be a finite dimensional central division algebra
of degree d over K. Let G = SLn(D), and let K ′ be the fixed field of
Aut(K) (so that K is a finite Galois extension of K ′). Then AutG(K) =

Aut(K), and the short exact sequence 1→ (AutG)(K)→ Aut(G(K))→
AutG(K)→ 1 splits if and only if gcd(nd, [K : K ′]) divides n.

Further directions of research

Our work in Chapter 2 is part of a more global project aiming to describe
and classify combinatorial balls in Bruhat–Tits buildings of arbitrary
rank.

Given an irreducible Bruhat–Tits building of rank n and of order q,
the combinatorial ball of radius r consists of a finite number (bounded by
a function of n, q and r) of n-simplices glued together in a specific way.
On the other hand, there are infinitely many pairwise non-isomorphic
irreducible Bruhat–Tits building of rank n and of order q. Hence the
question of when irreducible Bruhat–Tits buildings of a given rank and
order have isomorphic balls of radius r arises naturally.
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Another way to frame our investigation of balls in Bruhat–Tits build-
ings is to say that we study the metric space of all Bruhat-Tits buildings,
endowed with the Gromov-Hausdorff topology. In [dT15], the authors
show that the Gromov-Hausdorff space of buildings of type Ãn (with
n > 2) has accumulations points, which are precisely those of positive
characteristic. It is then natural to wonder what is the situation for
other types of buildings. Our [Stu16] is closely related to that question,
and indicates that buildings of type C −BCn accumulates on buildings
of type An.

The question of classifying balls in buildings is already interesting
when r = 1, i.e. for residues in buildings. In their classical paper [BT84a],
F. Bruhat and J. Tits observed that reducing the integral model mod-
ulo the maximal ideal correspond geometrically to a localisation in the
building. Hence, over local fields, the description of residues is straight-
forward. For example, given two split simple algebraic groups G1 and
G2, defined respectively over the local fields k1 and k2, their residues
are isomorphic if and only if they have isomorphic Dynkin diagram and
the residue fields are isomorphic. However, describing residues in more
general situations can be more involved. For example, one of the main
focus in [MPW15] is to investigate residues of a euclidean building whose
building at infinity is Moufang.

In view of the r = 1 case, it is natural to conjecture that for r > 1,
reducing an integral model modulo the r-th power of the maximal ideal
correspond geometrically to a localisation of radius r in the building.
We implemented this idea in [Stu16], via an explicit description of the
equations defining an integral model. The main goal of this project is
to give a complete classification of isomorphism of balls in Bruhat–Tits
buildings in the quasi-split case, using the explicit commutation relations
in the quasi-split case (as given in [BT84a, Annexe]), together with the
Artin–Weil theorem extending uniquely birational group laws on schemes
(see [BLR90, § 6.6, Theorem 1]). It should then be possible to obtain
the general case from the quasi-split case by unramified descent.

The application we have in mind for this work is a proof of the follow-
ing conjecture, that we formulate in Chapter 2, where we use the same
language than in Theorem C.
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Conjecture. Let T be a locally finite leafless tree, and let Salg
T be the

set of isomorphism classes of topologically simple algebraic groups acting
on T . Then Salg

T is closed in ST .

It is also interesting to note that a complete characterisation of iso-
morphism classes of balls in Bruhat–Tits buildings involve questions
about abstract isomorphisms of algebraic groups over local rings modulo
power of their prime ideals. Indeed, let us for example try to show
that if SLn(k1) and SLn(k2) have isomorphic balls of radius r, then
Ok1/mr

k1
∼= Ok2/mr

k2
. First, by a standard argument of J. Tits, an iso-

morphism of balls implies that PGLn(Ok1/mr
k1

) and PGLn(Ok2/mr
k2

) are
(abstractly) isomorphic. Then the desired result would follow from the
algebraicity of abstract isomorphisms of PGL over Ok1/mr

k1
. This par-

ticular case has actually already been proved in [Pet89], and our goal is
to extend this result beyond the split case.

This project on balls in Bruhat–Tits might also give new points of
view for the representation theory of reductive groups over local fields,
since it is related with the Moy–Prasad filtration introduced in [MP94].

In the course of our research, we also got interested in the work of
P.-E. Caprace, C. Reid and G. Willis (see [CRW13]) on the so-called
structure lattice of a totally disconnected, locally compact (tdlc) group
G, which consists of locally normal subgroups. A main tool in this study
is the centraliser lattice LC(G), which is a boolean algebra extracted
from the lattice of locally normal subgroups. The authors then proceed
to describe various properties of the action of G on the Stone space
corresponding to the boolean algebra LC(G), which enables them to
prove structure theorems aboutG. Unfortunately, when LC(G) is trivial,
we get no information on G via this method.

We observed that it is actually possible to define a quotient H(G)

of the lattice of locally normal subgroups, such that H(G) is a Heyting
algebra whose associated boolean algebra is isomorphic to LC(G). Fur-
thermore, in situations where LC(G) is trivial, it can still happen that
H(G) is non-trivial. This is the case for some Kac-Moody groups. We
aim to characterise properties of the action of G on the Priestley space
associated to H(G). This approach could extend the results in [CRW13].





Chapter 1

Totally disconnected locally
compact groups with a linear
open subgroup

In this first chapter, we describe the global structure of totally discon-
nected locally compact groups having a linear open compact subgroup.
Among the applications, we show that if a nondiscrete, compactly gen-
erated, topologically simple, totally disconnected locally compact group
is locally linear, then it is a simple algebraic group over a local field. All
the work in this chapter is joint work with P.-E. Caprace.

1.1 Introduction

A locally compact group is called linear if it admits a continuous faith-
ful finite-dimensional linear representation over a local field. It is called
locally linear if it has an open subgroup which is linear. The goal of
this chapter is to study the class of totally disconnected locally com-
pact groups (t.d.l.c.) that are locally linear. Roughly speaking, our
main results ensure that such groups are built out of three kinds of el-
ementary pieces: discrete groups, compact groups, and simple algebraic
groups over local fields (note that abelian t.d.l.c. groups are compact-
by-discrete). In order to be more precise, let us define a topologically

21
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simple algebraic group over a local field to be a locally compact
group isomorphic to H(k)/Z, where k is a local field, H is an absolutely
simple, simply connected, isotropic algebraic group over k, and Z is the
center of H(k) (see Section 1.2.1 for more details on those groups). We
also say that a locally compact group is locally solvable (respectively,
locally abelian of finite exponent) if it has a solvable (respectively,
abelian of finite exponent) open subgroup.

We can now state our main result.

Theorem 1.1. Let G be a t.d.l.c. group having an open compact sub-
group which is linear over a local field k. Then G has a series of closed
normal subgroups:

{1}EREG1 EG0 EG

enjoying the following properties.

The group R is a closed characteristic subgroup and is locally solvable.
The group G0 is an open characteristic subgroup of finite index in G, and
G0/G1 is locally abelian of finite exponent. Moreover, the quotient group
H0 = G0/R, if nontrivial, has nontrivial closed normal subgroups, say
M1, . . . ,Mm, satisfying the following properties.

(i) For some l ≤ m and all i ≤ l, the group Mi is a topologically simple
algebraic group over a local field ki, of the same characteristic and
residue characteristic as k. In particular,Mi is compactly generated
and abstractly simple.

(ii) For all j > l, the group Mj is compact, hereditarily just-infinite
(h.j.i.), and algebraic (in the sense of Definition 1.46) over a local
field kj, of the same characteristic and residue characteristic as k.

(iii) Every nontrivial closed normal subgroup N of H0 contains Mi for
some i ≤ l, or contains an open subgroup of Mj for some j > l.

(iv) The quotient group H1 = G1/R coincides with the direct product of
subgroups M1 . . .Mm

∼= M1 × · · · ×Mm, which is closed in H0. In
particular, H1 is compactly generated.
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Note the apparent analogy with the structure of general Lie groups,
whose quotient by their solvable radical is semisimple. It should how-
ever be emphasized that the characteristic subgroup R afforded by The-
orem 1.1 is locally solvable, but not solvable in general: indeed, it can
contain discrete normal subgroups of G that are nonabelian free groups.

One nevertheless expects that the structure of the normal subgroup
R is not too mysterious. In order to make that statement precise, we
define the class of elementary groups as the smallest class of t.d.l.c.
groups that contains all discrete groups, all profinite groups, and is closed
under group extensions and directed unions of open subgroups. This
class was first defined and investigated by Wesolek in [Wes15a] in the
second countable case, and then extended to the general t.d.l.c. case in
[Wes14]. We obtain the following consequence of Theorem 1.1.

Corollary 1.2. Let G be a t.d.l.c. group having a compact open sub-
group which is linear over a local field k. Then G has a series of closed
characteristic subgroups

{1}EAEG1 EG0 EG

enjoying the following properties.

The group A is elementary, G0 is open of finite index in G, and the
quotient G0/G1 is locally abelian of finite exponent. In particular, G0/G1

is elementary. Moreover, the quotient group H0 = G0/A, if nontrivial,
satisfies the following.

(i) H0 has finitely many minimal closed normal subgroups, that we
call M1, . . . ,Ml, and every nontrivial closed normal subgroup of
H0 contains some Mi.

(ii) Each Mi is a topologically simple algebraic group over a local field
ki, of the same characteristic and residue characteristic as k. In
particular, Mi is compactly generated and abstractly simple.

(iii) The quotient group H1 = G1/A coincides with the product of sub-
groups M1 . . .Ml

∼= M1 × · · · ×Ml, which is closed in H0.
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We will see in due course that the characteristic subgroup A afforded
by Corollary 1.2 contains, as expected, the subgroup R afforded by The-
orem 1.1. As a byproduct of Theorem 1.1, we also deduce that a locally
linear t.d.l.c. group G is elementary if and only if the groupsM1, . . . ,Mm

from the statement of Theorem 1.1 are all compact (equivalently the
subquotient G1/R is compact). This follows from the fact that topolog-
ically simple algebraic groups over local fields are not elementary (see
Claim 4 in the proof of Corollary 1.2) combined with the fact that lo-
cally solvable groups are all elementary (see Proposition 1.29(ii)). This
observation thus provides structural information on all locally linear ele-
mentary groups, and can be applied to the elementary group A appearing
in Corollary 1.2, since A is itself locally linear.

Note that when k is of characteristic 0, the hypotheses of Theorem 1.1
imply that G is a p-adic Lie group, where p is the residue character-
istic of k. The conclusions of Corollary 1.2 are then already known,
due to Ph. Wesolek: indeed, they follow from [Wes15b, Corollary 1.5.].
Moreover, in that special case, the elementary quotient G0/G1 is even
finite (the latter is however not true in positive characteristic, see Ex-
ample 1.13). The main novelty of our results is that they hold in all
characteristics. The key tool allowing for this uniformity is provided by
the far-reaching results of Pink [Pin98] on compact subgroups of linear
algebraic groups.

Another special case of particular interest is when G is assumed to
be topologically simple, that is, its only closed normal subgroups are
the trivial ones.

Corollary 1.3. Let G be a t.d.l.c. group having a compact open subgroup
which is linear over a local field k. If G is topologically simple, then one
of the following holds.

(a) G is discrete.

(b) G is nondiscrete, not compactly generated, and locally solvable.

(c) G is a topologically simple algebraic group over a local field k′, of the
same characteristic and residue characteristic as k. In particular, G
is compactly generated and abstractly simple.
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It should be emphasized that examples of topologically simple t.d.l.c.
groups as in (b) of Corollary 1.3 do exist. Indeed, such examples can be
produced using the construction described by Willis [Wil07, Section 3].
Those examples can be made locally isomorphic to the additive group of
the field Fp((t)) (hence they are indeed locally linear and locally abelian)
and can be arranged to contain a copy of every finite group (hence they
are not globally linear).

The following consequence of Corollary 1.3 is immediate.

Corollary 1.4. Let G be a nondiscrete, compactly generated, topologi-
cally simple, t.d.l.c. group. If G is locally linear, then G is algebraic:
indeed G is a topologically simple algebraic group over a local field.

A systematic study of the class S of nondiscrete, compactly gener-
ated, topologically simple, t.d.l.c. groups has been initiated in [CRW14].
Corollary 1.4 implies that the locally linear members of S are precisely
the algebraic ones, and are thus all known since the latter algebraic
groups have been classified by Kneser and Bruhat–Tits. In particular,
within the class S , a group is locally linear if and only if it is globally
linear. This matter of fact has the following consequence on irreducible
complete Kac–Moody groups over finite fields, which form a subclass of
S (see [Mar14] and references therein).

Corollary 1.5. An irreducible complete Kac–Moody group over a finite
field which is not globally linear, is also not locally linear: none of its
compact open subgroups is linear.

This applies to all Kac–Moody groups of irreducible nonspherical,
nonaffine type which are either of rank at least 3 (by [CR09]) or of rank
2, and whose generalized Cartan matrix has −1 as an off-diagonal entry
(by [CR13]). Corollary 1.5 confirms [CR14, Conjecture 1], except in
the case of generalized Cartan matrices of size 2 with both off-diagonal
entries different from −1.

Finally, we record the following application.

Corollary 1.6. Let G be a compactly generated, topologically simple,
locally compact group. Then G is linear over a (possibly Archimedean)
local field if and only if G belongs to one of the following classes:
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• Finite simple groups.

• Simple Lie groups.

• Simple algebraic groups over local fields.

1.2 Algebraic t.d.l.c. groups

1.2.1 Linear algebraic groups

Let H be a linear algebraic k-group, where k is a field. By definition,
this means that H is a smooth affine group scheme of finite type over k.
Equivalently, H is (schematically) isomorphic to a smooth Zariski closed
subgroup of GLn,k. As all algebraic groups used in this thesis are linear,
we omit this adjective in the sequel.

For ϕ : H → H1 a morphism of algebraic k-groups, we denote the
evaluation of ϕ in a k-algebra A by ϕA : H(A) → H1(A), or sometimes
by ϕ : H(A)→ H1(A).

When k is a Hausdorff (i.e., not anti-discrete) topological field, the
group H(k) inherits a Hausdorff topology, which does not depend on the
embedding into GLn,k (for more details, see [PR94]). We adopt the con-
vention that any topological statement will refer to that topology, and
not to the Zariski topology, unless we explicitly add the prefix Zariski
(e.g., Zariski-connected or Zariski-dense). When k is a nondiscrete lo-
cally compact field, the groupH(k) is a locally compact second countable
topological group.

A semisimple algebraic k-group H is called k-simple if it has no
nontrivial Zariski-connected normal algebraic k-subgroup. It is called
absolutely simple if for any field extension k → k′, the algebraic k′-
group H ×k k′ is k′-simple. Equivalently, H is absolutely simple if its
root system is irreducible.

The study of Zariski-connected semisimple algebraic groups reduces
for the most part to that of absolutely simple ones. Namely, a Zariski-
connected, semisimple, simply connected (respectively, adjoint) algebraic
k-group is the direct product of k-simple, simply connected (respectively,
adjoint) algebraic k-groups, and each factor is of the form Rk′/kH for
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some absolutely simple, simply connected (respectively, adjoint) alge-
braic k′-group H, where k′ is a finite separable extension of k. Here,
Rk′/kH denotes the Weil restriction of H. For a proof of those facts, see
[Con14, Proposition 6.4.4, Remark 6.4.5 and Example 6.4.6].

Let H be a Zariski-connected algebraic k-group. As in [BT73, Sec-
tion 6], we denote by H(k)+ the normal subgroup of H(k) generated by
k-rational points of split unipotent k-subgroups of H.

In order to properly understand the definition of a topologically sim-
ple algebraic t.d.l.c. group, we need two results, that will also be invoked
later on.

Proposition 1.7. Let k be a local field, let H be a simply connected, k-
simple algebraic k-group. Any continuous homomorphism f : H(k)→ G

to a locally compact group G is a closed map.

Proof. See [BM96, Lemma 5.3]. Note that the assumption there that
the target of the map should be second countable is superfluous.

Theorem 1.8. Let k be a local field and let H be a k-simple algebraic k-
group. Then any proper open subgroup of H(k)+ is compact. Moreover,
H(k)+ is compactly generated.

Proof. See [Pra82, Theorem (T)] for the first assertion. To prove the
compact generation, one can assume that H is isotropic and that H(k) =

H(k)+ (see Theorem 2.4). In this case, we can find a semismple element
of norm greater than one in any nontrivial k-split torus, which thus gen-
erate an infinite discrete cyclic subgroup. So that this element together
with a compact open subgroup will generate the whole group, in view of
[Pra82, Theorem (T)].

Definition 1.9. Let G be a topologically simple t.d.l.c. group. We say
that G is algebraic if there exists a local field k and a k-simple algebraic
k-group H such that G is topologically isomorphic to H(k)+/Z(H(k)+).

Note that by the main result of [Tit64], the group H(k)+/Z(H(k)+)

is abstractly simple.
The following theorem (which is a collection of results borrowed from

[BT73, Section 6]) shows that in the above definition, one can assume
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that H is simply connected, absolutely simple and that H(k) = H(k)+.
This confirms that Definition 1.9 is consistent with the definition of a
topologically simple algebraic group over a local field given in the intro-
duction.

Theorem 1.10. Let k be a local field and H be a k-simple algebraic
k-group.

(i) H(k)+ is trivial if and only if H is anisotropic over k.

(ii) Assume that H is isotropic over k. Any central isogeny f : H → H1

induces an isomorphism H(k)+/Z(H(k)+)→ H1(k)+/Z(H1(k)+).

(iii) If k is a finite separable extension of a subfield k′, (Rk/k′H)(k′)+ ∼=
H(k)+.

(iv) If H is isotropic, simply connected, and absolutely simple, then we
have H(k) = H(k)+.

Proof. See [BT73, Section 6].

1.2.2 Hereditarily just-infinite groups

An essential point in the proof of Theorem 1.47 is that the linearity of
the open compact subgroup, say U , implies that U has subquotients that
are hereditarily just-infinite.

Definition 1.11. A profinite group G is called just-infinite if it is
infinite and every nontrivial closed normal subgroup of G is of finite
index. A profinite group G is called hereditarily just-infinite (h.j.i.)
if every open subgroup of G is just-infinite.

Theorem 1.12. Let U be an open compact subgroup of H(k), where H
is a k-simple, simply connected algebraic k-group, and k is a local field
of residue characteristic p. Then U/Z(U) is a nonvirtually abelian h.j.i.
virtually pro-p group.

Proof. First note that U is Zariski-dense in H(k), hence U is infinite and
Z(U) = Z(H(k))∩U . We want to show that if U1 ≤ U/Z(U) is an open
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subgroup, then it is just-infinite. But the preimage of such a U1 is an
open compact subgroup of H(k) as well, which has the same center than
U . Hence, it suffices to prove that U/Z(U) is just-infinite and virtually
pro-p. Now, this follows directly from the main result of [Rie70a].

It remains to show that U/Z(U) is not virtually abelian. But if it
was, H(k) would have an open, hence Zariski-dense, abelian subgroup,
contradicting the fact that H is not abelian.

We emphasize that when char(k) > 0, the hypothesis that H is sim-
ply connected is essential in Theorem 1.12. Indeed, as one immediately
deduces from [Rie70a], the above result does not hold if H is a k-simple
group whose universal cover π : H̃ → H is inseparable. Here is an
explicit example.

Example 1.13. Consider the group H = PSL2 over the local field
k = F2((T )), and the open compact subgroup U = PSL2(F2[[T ]]) in
PSL2(k). We insist that we consider PSL2 as the quotient scheme
SL2/µ2 (over SpecZ), and that PSL2(F2[[T ]]) denotes the group of
F2[[T ]] rational points of PSL2, not to be confused with the quotient
group SL2(F2[[T ]])/Z(SL2(F2[[T ]])).

The universal cover is π : SL2 → PSL2, which is purely inseparable
over k. Now, H(k)+ is a closed normal subgroup of H and is equal to
πk(SL2(k)) (see [BT73, Section 6]). Let us show explicitly that H(k)+∩
U is not open in U . It suffices to consider the sequence

hi =

(
1 + T

1+2i
2 0

0 (1 + T
1+2i
2 )−1

)

whose elements are in H(k) \H(k)+ and which converge to the identity.

Let us check that hi ∈ H(k). If k[X11, X12, X21, X22]/ det denotes the
coordinate ring of SL2 in its standard coordinates, then the coordinate
ring of PSL2 is the subring of k[SL2] generated by all products XijXkl

where i, j, k, l ∈ {1, 2}. This shows that hi is indeed in H(k).
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1.3 Locally normal subgroups

The interaction between the local and global structure of general t.d.l.c.
groups has become more and more apparent in recent works. In this
section, we review some tools from [CRW13] and [Wes15a] and use them
to establish subsidiary facts that will be needed in the sequel.

1.3.1 Locally C-stable groups

Let G be a t.d.l.c. group.

Definition 1.14. (1) The quasi-center of G, denoted by QZ(G), is
the characteristic subgroup of G consisting of all elements whose
centralizer is open. More generally, given H ≤ G, we define the
quasi-centralizer of H in G, denoted by QCG(H), to be the sub-
group of G consisting of those elements that centralize an open sub-
group of H.

(2) A subgroup K ≤ G is called locally normal if it is compact and
normalized by an open subgroup of G.

(3) G is called locally C-stable if QZ(G) is trivial and there is no
nontrivial abelian locally normal subgroup.

Note that our definition of local C-stability is slightly less general
than in [CRW13, Definition 3.17]. The following property of locally C-
stable groups will be needed later.

Proposition 1.15. Let G be a locally C-stable t.d.l.c. group. Then every
locally normal subgroup of G has trivial quasi-center.

Proof. See [CRW13, Theorem 3.18].

The locally C-stable assumption is indeed a weakening of the hy-
potheses that G is a compactly generated and topologically simple group,
as asserted by the following.

Theorem 1.16. Let G be a nondiscrete topologically simple t.d.l.c. group
which is compactly generated. Then G is locally C-stable.

Proof. See [CRW14, Theorem 5.3].
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1.3.2 The structure lattice

Let G be a t.d.l.c. group.

Definition 1.17. Two subgroups H,K of G are locally equivalent
if there exists a compact open subgroup U of G such that H ∩ U =

K ∩ U . The set of all local equivalence classes having a locally normal
representative is called the structure lattice of G, and is denoted by
LN (G).

LN (G) is a lattice in a natural way: the meet operation is the in-
tersection (of any representatives) and the join operation is the product
(of well-chosen representatives). Obviously, [{e}], the local equivalence
class of the trivial subgroup, is the minimum of LN (G) and we denote it
by 0. At the other extreme, the local equivalence class of compact open
subgroups of G is the maximum of LN (G) and we denote it by ∞. We
refer the reader to [CRW13, Section 2] for a more detailed discussion of
LN (G).

An atom of LN (G) is a minimal nonzero element. The following
lemma is a first elementary observation about the role of h.j.i. locally
normal subgroups in the structure lattice.

Lemma 1.18. Let G be a t.d.l.c. group and α ∈ LN (G) have a locally
normal representative V which is h.j.i. Then α is an atom of LN (G).

Proof. First note that by definition, V is not discrete, hence α 6= 0.
Let β ∈ LN (G), and assume that β ≤ α. We want to show that

either β = 0 or β = α. Let L be a locally normal representative of β
(i.e., β = [L]), so that our assumption translates as [L ∩ V ] = [L].

Consider an open compact subgroup W of NG(L) ∩ NG(V ). Now,
L ∩W ∩ V is normal closed in W , hence also in W ∩ V . But since the
latter is just-infinite, we obtain that L∩W ∩ V is either trivial, or open
in W ∩ V , as wanted.

When G is a product of h.j.i. groups, we can refine the previous
lemma as follows.

Lemma 1.19. Let G ' V1×· · ·×Vm be a profinite group which splits as
the direct product of finitely many h.j.i. closed subgroups, none of which
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is virtually abelian. Then the structure lattice LN (G) is isomorphic to
the Boolean algebra of all subsets of {1, . . . ,m}. Moreover, for a locally
normal representative K of an element of LN (G), there exist i1, . . . , ik ∈
{1, . . . ,m} such that Ui1 . . . Uik ≤ K ≤ Vi1 . . . Vik , where Uij is an open
subgroup of Vij for all j.

Proof. Let αi = [Vi] be the local equivalence class having representative
Vi. Obviously, {αi1 ∨ · · · ∨ αik | 1 ≤ i1 < · · · < ik ≤ m, k = 1, . . . ,m}
are different elements in LN (G). We want to show that all elements of
LN (G) are of this form.

Let β ∈ LN (G), let K be a locally normal representative of β, and
consider the projection πi(K) onto the i-th factor Vi. Since K is normal-
ized by an open subgroup of G, it is normalized by an open subgroup of
Vi. Furthermore, πi(K) is compact, hence closed. But Vi is h.j.i., so that
πi(K) is either trivial or open in Vi. Reordering the Vi’s if necessary, we
can assume that πi(K) is open in Vi for i ≤ k, and πi(K) is trivial for
i > k.

We obviously have that [K] ≤ [V1] ∨ · · · ∨ [Vk], and we now prove
the reverse inequality. For this, consider K ∩ Vi, for i ≤ k (where Vi is
seen as a subgroup of G via the natural injection). It is a locally normal
subgroup of Vi, hence it is either trivial or open in Vi. But if K ∩Vi were
trivial, we would have [K,NVi(K)] ⊆ K ∩ Vi = {e}, contradicting {e} 6=
[πi(K), πi(K) ∩ NVi(K)] ⊆ [K,NVi(K)]. We conclude that for i ≤ k,
[Vi∩K] = [Vi], so that [V1]∨· · ·∨[Vk] = [(NV1(K)∩K) . . . (NVk(K)∩K)] ≤
[K], as wanted.

For the last assertion, note that ifK is a locally normal representative
of an element in LN (G), then the second paragraph of this proof shows
that πi(K) is open in Vi for i ∈ {i1, . . . , ik} and is trivial otherwise, so
that K ≤ Vi1 . . . Vik . But the third paragraph shows then that NVij

(K)∩
K is open in Vij for all j, and that (NVi1

(K)∩K) . . . (NVik
(K)∩K) ≤ K,

as wanted.

We now consider profinite groups that are virtually a direct product
of h.j.i. groups.

Lemma 1.20. Let G be a profinite group without nontrivial finite normal
subgroup, and having an open subgroup G0

∼= V1×· · ·×Vm which splits as
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the direct product of finitely many h.j.i. closed subgroups, none of which
is virtually abelian.

Then G has a characteristic open subgroup G1 ' W1 × · · · × Wm,
contained in G0, which splits as the direct product of finitely many h.j.i.
closed subgroups, where Wi is an open subgroup of Vi.

Proof. We first claim that G is locally C-stable. Indeed, every h.j.i.
group which is not virtually abelian has trivial quasi-center, by [BEW11,
Proposition 5.1]. Therefore, the quasi-center of G must be finite, hence
trivial by hypothesis. The fact that the only abelian locally normal
subgroup ofG is the trivial one follows from Lemma 1.19, since LN (G) =

LN (G0). The claim stands proved.
Let now αi = [Vi] ∈ LN (G). Since the quasi-centralizer QCG(Vi)

depends only on the local class αi, we denote it by QCG(αi), following
the convention adopted in [CRW13]. Next we set Li = QCG(QCG(αi)).
Since G is locally C-stable, we may invoke [CRW13, Lemma 3.15(ii)]
which shows that Li = CG(CG(Vi)). Thus, the subgroup Li is closed in
G. By Lemma 1.19, the automorphism group Aut(G) permutes the αi
and, hence, permutes the closed subgroups Li.

We now claim that [Li] = αi and that Li commutes with Lj for all
i 6= j. Note that Vi ⊆ Li = CG(CG(Vi)), hence we just have to show that
Vi is open in Li. Set Pi :=

∏
j 6=i

Vj . Then G > LiPi > ViPi = G0. But G0

is open in G, so that the index of Vi in Li is finite, as wanted. For the
second assertion of the claim, starting from Vi ⊆ CG(Vj) (which is true
for all i 6= j), we get Li = CG(CG(Vi)) ⊆ CG(CG(CG(Vj))) = CG(Vj).
So that finally, CG(Li) ⊇ CG(CG(Vj)) = Lj , as was to be shown.

Therefore, the subgroup G2 ≤ G generated by the Li’s is character-
istic, open, and isomorphic to the direct product L1 × · · · × Lm. Since
each Li is h.j.i., it has a basis of identity neighborhoods consisting of
characteristic subgroups. Therefore, the same is true for G2, and there-
fore G2 has a characteristic subgroup G1 contained in G0, which has the
desired form.

Building upon Lemmas 1.18 and 1.19, we obtain the following more
technical fact.
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Lemma 1.21. Let G be a profinite group having a closed normal sub-
group Γ ' V1×· · ·×Vm which splits as the direct product of finitely many
h.j.i. closed subgroups, none of which is virtually abelian. Assume fur-
ther that G contains no nontrivial abelian locally normal subgroup, and
that G/Γ is abelian.

Then for all 0 6= β ∈ LN (G), there exists i ∈ {1, . . . ,m} such that
[Vi] ≤ β. In particular, the set of all the atoms of LN (G) is precisely
{[V1], . . . , [Vm]}.

Proof. We first have to check that Vi has an open normalizer in G. But
G acts on the atoms of LN (Γ), which is a finite set by Lemma 1.19.
Also, in view of the last assertion of that lemma and the fact that Γ is
normal, [gVig

−1] = [Vi] if and only if g ∈ NG(Vi). Hence, NG(Vi) is of
finite index in G. As it is also closed, because Vi is, we conclude that it
is open, as wanted.

Now let β be a nontrivial element of LN (G) and set αi = [Vi]. Recall
that by Lemma 1.18, the αi’s are atoms in LN (G). We want to show
that β ≥ αi for some i, and we now separate the proof into two cases.

Case 1. β ∧ (α1 ∨ · · · ∨ αm) = 0.

The assumption translates as K ∩ (V1V2 . . . Vm) = F , a finite sub-
group. Shrinking K again if necessary, we may and do assume that
K ∩ (V1V2 . . . Vm) = {e}.

Hence, we have a continuous injective map K → G/(V1V2 . . . Vm)→
G/Γ. But since the latter is abelian, so is K. In view of the hypothesis,
we conclude that β = 0, a contradiction.

Case 2. β ∧ (α1 ∨ · · · ∨ αm) 6= 0.

Using Lemma 1.19, we conclude that for some i, we have αi ≤ β ∧
(α1 ∨ · · · ∨ αm) ≤ β, as wanted.

1.3.3 Radical theories

In this section, we review the definition and basic properties of two char-
acteristic subgroups of a general t.d.l.c. group. The first is the [A]-regular
radical R[A](G), defined in [CRW13], and the second is the elementary
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radical RE(G), defined in [Wes15a] under the assumption that G is sec-
ond countable.

Definition 1.22. Let [A] be the smallest class of profinite groups, stable
under isomorphism, such that the following conditions hold:

(a) [A] contains all abelian profinite groups and all finite simple groups.

(b) If U ∈ [A] and K is a closed normal subgroup of U , then K ∈ [A]

and U/K ∈ [A].

(c) Given a profinite group U that is a (not necessarily direct) product
of finitely many closed normal subgroups belonging to [A], then U ∈
[A].

Given a profinite group U , a subgroup K of U is called [A]-regular
in U if for every closed normal subgroup L of U not containing K, the
image of K in the quotient U/L contains a nontrivial locally normal
subgroup of U/L belonging to the class [A]. Given a t.d.l.c. group G

and a closed subgroup H, we say that H is [A]-regular in G if H ∩U is
[A]-regular in U for all open compact subgroups U of G.

Note that all groups in [A] are virtually nilpotent by Fitting’s theo-
rem. The [A]-regular radical of a t.d.l.c. group G is defined to be the
characteristic subgroup identified by the following result.

Theorem 1.23. Let G be a t.d.l.c. group. Then G has a closed charac-
teristic subgroup R[A](G), which is characterized by either of the following
properties:

(i) R[A](G) is the largest subgroup of G that is [A]-regular.

(ii) R[A](G) is the smallest closed normal subgroup N such that G/N
is locally C-stable.

Proof. See [CRW13, Theorem 6.11].

We move on to elementary groups following [Wes15a] and [Wes14].
We first restrict to t.d.l.c. groups that are second countable (t.d.l.c.s.c.
for short).
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Definition 1.24. The class Esc is defined as the smallest class of groups
that are t.d.l.c.s.c. and such that

(a) Esc contains all metrizable profinite groups and all countable discrete
groups.

(b) Esc is closed under taking group extensions.

(c) Esc is closed under countable directed unions of open subgroups.

A key feature, due to Wesolek, is the existence of a radical belonging
to the class Esc, asserted in the following.

Proposition 1.25. Let G be a t.d.l.c.s.c. group. Then G has a largest
closed normal subgroup RadEsc(G) which belongs to the class Esc.

Proof. See [Wes15a, Proposition 7.4].

The relation between the two radicals introduced above is elucidated
by the following.

Proposition 1.26. Let G be a t.d.l.c.s.c. group. Then R[A](G) ≤
RadEsc(G). In particular, G/RadEsc(G) is locally C-stable, and R[A](G)

belongs to Esc.

Proof. See [Wes15a, Corollary 9.12 and 9.13].

We now briefly explain how one can drop the second countability
assumption, following the work in [Wes14]. This discussion was suggested
to us by Wesolek.

Definition 1.27. The class of elementary groups is the smallest class
E of t.d.l.c. groups such that

(a) E contains all profinite groups and all discrete groups.

(b) E is closed under taking group extensions.

(c) E is closed under directed unions of open subgroups.
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It should be stressed that our choice of terminology is slightly differ-
ent from Wesolek’s: what he called the class of elementary groups and
denoted by E in the references [Wes15a] and [Wes14] is denoted by Esc

in the present chapter. Moreover, the class denoted here by E is denoted
by E∗ in [Wes14]. We believe that our choice is natural in the present
context, and should not cause any confusion.

The inclusion Esc ⊂ E is clear from the definitions. Conversely, we
have the following.

Lemma 1.28. Let G ∈ E. If G is second countable, then G ∈ Esc.

Proof. This is a particular case of [Wes14, Proposition 4.3].

This lemma allows us to deduce that many properties of Esc generalize
to E , as follows (see also Theorem 1.31).

Proposition 1.29. Let G be a t.d.l.c. group.

(i) Let H be a t.d.l.c. group that maps continuously and injectively
onto a dense normal subgroup of G. If H ∈ E, then G ∈ E.

(ii) If G is locally solvable, then G ∈ E.

Proof. Write G =
⋃
i∈I

Oi as a directed union of compactly generated open

subgroups. By a result in [KK44], for each i ∈ I, there exists a compact
normal subgroup Ki ≤ Oi such that Oi/Ki is a t.d.l.c.s.c. group.

(i) Let now H be a t.d.l.c. group that maps continuously and injec-
tively onto a dense normal subgroup of G such that H ∈ E . Then
(Oi ∩ H)Ki/Ki is a dense normal subgroup of Oi/Ki. Moreover,
by Lemma 1.28, it belongs to Esc. In the second countable case,
the desired result is known, namely Oi/Ki ∈ Esc by [Wes15a, Theo-
rem 1.4]. Hence, for each i, the group Oi is compact-by-elementary,
hence elementary. Therefore, G is itself elementary, as required.

(ii) For each i, the groups Oi and Oi/Ki are locally solvable. By
[Wes15a, Theorem 8.1] we have Oi/Ki ∈ Esc. Therefore, Oi is
compact-by-elementary, and we conclude as in the proof of (i).
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The elementary radical is defined to be the characteristic subgroup
identified by the following result, which is a straightforward adaptation
of [Wes15a, Proposition 7.4].

Theorem 1.30. Let G be a t.d.l.c. group. Then G has a largest closed
normal subgroup RadE(G) which is elementary.

Proof. Let Ni be an ascending chain of closed normal subgroups of G
that are elementary. Let U < G be a compact open subgroup. Then NiU

is elementary for each i, hence so is the union O =
⋃
iNiU . It follows

that
⋃
iNi ≤ O is elementary, since E is closed under taking closed

subgroups in view of [Wes14, Theorem 4.6(b)]. It follows from Zorn’s
lemma that the collection of elementary closed normal subgroups of G
has maximal elements. In fact, there is a unique such, since the closure
of the product of any two of them is itself elementary as a consequence
of Proposition 1.29(i).

Finally, we extend Theorem 1.26 to the general case.

Theorem 1.31. Let G be a t.d.l.c. group. Then R[A](G) ≤ RadE(G).
In particular, G/RadE(G) is locally C-stable, and R[A](G) is elementary.

Proof. Write G =
⋃
i∈I

Oi as a directed union of compactly generated open

subgroups. By a result in [KK44], for each i ∈ I, there exists a compact
normal subgroup Ki ≤ Oi such that Oi/Ki is a t.d.l.c.s.c. group.

In view of [CRW13, Proposition 6.15(ii)], for each i ∈ I, we have Oi∩
R[A](G) = R[A](Oi). Let πi : Oi → Oi/Ki be the projection. Since [A]-
regularity is stable under quotients by closed normal subgroups, we have
R[A](Oi) ≤ π−1

i (R[A](Oi/Ki)). Note that R[A](Oi/Ki) is elementary by
Theorem 1.26, hence so is π−1

i (R[A](Oi/Ki)), and thus also R[A](Oi) by
[Wes14, Theorem 4.6(b)]. We conclude that R[A](G) is a directed union
of open elementary subgroups, and is thus elementary, as required.

1.4 The compact subgroups of a linear algebraic
group

As outlined in Section 1, Theorem 1.47 relies essentially on the results
obtained by Pink in [Pin98]. The goal of this section is to review those
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results and to adapt them to our needs.

1.4.1 The group of abstract commensurators

Another important object used in the local-to-global transfer lying be-
hind our main results is the group of abstract commensurators of a profi-
nite group, first defined and investigated by Barnea–Ershov–Weigel in
[BEW11].

Definition 1.32. Let U be a profinite group. The group of abstract
commensurators of U , denoted Comm(U), is defined as follows. Con-
sider the set E of isomorphisms α : U1 → U2, where the Ui’s are open
compact subgroups of U and α is a topological isomorphism. Define an
equivalence relation ∼ on E by α ∼ β if and only if they coincide on
some open subgroup of U . We set Comm(U) = E/ ∼.

As explained in [BEW11], the group of abstract commensurators of
an open compact subgroup of a simple algebraic group is described by
Corollary 0.3 of Pink’s paper [Pin98]. Let us record that result explicitly.

Theorem 1.33 ([Pin98], Corollary 0.3). Let G (respectively, G′) be an
absolutely simple, simply connected algebraic group over a local field k

(respectively, k′). Let U (respectively, U ′) be an open compact subgroup of
G (respectively, G′). Then for any topological isomorphism α : U → U ′,
there exists a unique isomorphism of algebraic groups G → G′ over a
unique isomorphism of topological fields k → k′ such that the induced
morphism G(k)→ G(k′) extends α.

Given a topological group G, we denote by Aut(G) its group of bi-
continuous automorphisms.

Corollary 1.34. Let G be an absolutely simple, simply connected alge-
braic group over a local field k, and let U be an open compact subgroup of
G(k). Let Z denote the center of G(k). Then Comm(U) is canonically
isomorphic to Aut(G(k)/Z).

Proof. For any open compact subgroup V 6 G(k), we have Comm(U) '
Comm(V ). Hence, since Z is finite, we can assume that U ∩ Z = {1}.
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Now, we have a natural homomorphism ϕ : Aut(G(k)/Z)→ Comm(U).
Pink’s result (see Theorem 1.33) directly implies that ϕ is surjective. For
the injectivity, observe that QZ(G(k)/Z) = {1}. Indeed, any element of
G(k) whose centralizer is open belongs to the center, by Zariski-density
of open subgroups. We finally conclude that ϕ is injective by [BEW11,
Proposition 2.5].

Remark 1.35. We have an exact sequence 1 → Hom(G(k), Z) →
Aut(G(k)) → Aut(G(k)/Z)). Once again by Pink’s result (see [Pin98,
Corollary 0.5]), Aut(G(k))→ Aut(G(k)/Z) is surjective. Note that if G
is isotropic, G(k)+ = G(k) by Theorem 1.10 (4) and G(k)/Z is abstractly
simple by the main result of [Tit64], so that Hom(G(k), Z) is trivial and
Aut(G(k)) ∼= Aut(G(k)/Z) if G is isotropic. On the other hand, by the
classification of semisimple groups over local fields, G is anisotropic if
and only if it is of the form SL1(D) for some finite dimensional central
division algebra D over k. In this case, it is not hard to find non-trivial
homomorphisms from G(k) to its center (a way to do that is to use the
results in [Rie70b] describing the structure of SL1(D)).

A priori, the group Comm(U) is just an abstract group, but as dis-
cussed in [BEW11], there are several ways to endow it with a group
topology. The identification provided by Corollary 1.34 suggests that,
in our situation, the natural topology on Comm(U) should be the one
which coincides with the Braconnier topology on Aut(G(k)/Z). Let us
now address the details, following [BEW11, Section 7].

Definition 1.36. A profinite group U is called countably characteris-
tically based if it has a countable basis of neighborhood of the identity
consisting of characteristic subgroups. A profinite group is called hered-
itarily countably characteristically based (h.c.c.b.) if every open
subgroup of U is countably characteristically based.

Example 1.37. Let G be a k-simple, simply connected algebraic k-
group, where k is a local field, and let U be an open compact subgroup
of G(k). Then U is h.c.c.b. Indeed, U is a h.j.i. virtually pro-p group
(see Theorem 1.12), hence is finitely generated. And as explained in
[BEW11, Section 7.1], , every finitely generated profinite group is h.c.c.b.
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Another way to see that U is h.c.c.b. is to exhibit by hand a countable
characteristic neighborhood basis of any open subgroup by considering
intersections of maximal open normal subgroups.

Definition 1.38. Let U be an h.c.c.b. profinite group. For any open
subgroup V ≤ U , let ρV : Aut(V ) → Comm(U) be the natural homo-
morphism and endow Aut(V ) with the compact open topology. The
Aut-topology on Comm(U) is defined by the following sub-base of
identity neighborhood :

BU = {H ≤ Comm(U) |

ρ−1
V (H) is open in Aut(V ) for all open subgroups V of U}.

As explained in [BEW11, Proposition 7.3], this turns Comm(U) into a
topological group.

Definition 1.39. Let G be a locally compact group. The Bracon-
nier topology on Aut(G) is defined by the following sub-base of identity
neighborhood :

U(K,U) = {φ ∈ Aut(G) | ∀ x ∈ K, φ(x) ∈ xU and φ−1(x) ∈ xU},

where K ⊆ G is compact and U ⊆ G is an identity neighborhood (see
[CM11, Appendix I] for more comments on this topology).

Remark 1.40. The Braconnier topology is the natural one, in the sense
that it turns Aut(G) into a topological group, while the compact open
topology on Aut(G) does not in general. However it does in the special
case where G is compact. Moreover, given any closed normal subgroupN
of G, the adjoint map Ad: G→ Aut(N) given by the conjugation action
is continuous for the Braconnier topology (see [HR79, Theorem (26.7)]).

In order to prove that the Aut-topology on Comm(U) coincides with
the Braconnier topology on Aut(G(k)/Z), we use the following result
due to Barnea–Ershov–Weigel.

Proposition 1.41. Let U be an h.c.c.b. profinite group. Assume that
Comm(U) with the Aut-topology is Hausdorff. Suppose that Comm(U) is
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a topological group with respect to some topology T and that there exists
an open subgroup V of U such that

(i) The index [Comm(U) : Aut(V )] is countable.

(ii) Aut(V ) is an open compact subgroup of (Comm(U), T ).

(iii) If N is an open subgroup of V and (fn)∞n=1 is a sequence in Aut(V )

such that fn → 1 with respect to T , then fn(N) = N for sufficiently
large n.

Then (Comm(U), T ) is locally compact, second countable, and T coin-
cides with the Aut-topology.

Proof. The fact that the topologies coincide and that Comm(U) is a
locally compact group is the exact content of [BEW11, Proposition 8.8].
It just remains to prove the second countability of Comm(U). Since
U is h.c.c.b., it follows that Aut(V ) is a compact metrizable group with
respect to the compact open topology. By definition of the Aut-topology,
the natural embedding Aut(V ) → Comm(U) is continuous, and is thus
a homeomorphism onto its image. Therefore, Comm(U) is metrizable.
Moreover, it is σ-compact since [Comm(U) : Aut(V )] is countable. This
confirms that Comm(U) is second countable.

The following result is a straightforward adaptation of [BEW11, Ex-
ample 8.1] to our situation.

Proposition 1.42. Let H be an absolutely simple, simply connected al-
gebraic group over a local field k, let U be an open compact subgroup
of H(k), and let Z denote the center of H(k). Then the canonical iso-
morphism Comm(U) ' Aut(H(k)/Z) of Corollary 1.34 is an isomor-
phism of topological groups, where Comm(U) has the Aut-topology and
Aut(H(k)/Z) has the Braconnier topology. In particular, Aut(H(k)/Z)

is a t.d.l.c.s.c. group.

Proof. As noted in Example 1.37, U is h.c.c.b. We next claim that
Comm(U) is Hausdorff. Indeed, Comm(U) = Comm(V ) for some open
subgroup V having a trivial center, so that QZ(V ) is trivial (to prove
this last assertion, one can argue as in [BEW11, Proposition 5.1]). Using
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[BEW11, Proposition 2.5 and Theorem 8.6], we deduce the claim. For
the rest of the proof, we can (and will) assume that U ∩ Z = {1}.

The desired conclusion will follow from Proposition 1.41. In order to
check the three conditions, we first remark that, since every automor-
phism of U extends to the whole of H(k), we have

Aut(U) = {ϕ ∈ Aut(H(k)/Z) | ϕ(U) = U} = U(U,U). (1.1)

We now check the three conditions successively.

(i) The index of Aut(U) in Comm(U) is countable. Indeed, φ, ψ ∈
Comm(U) are in the same coset modulo Aut(U) if and only if φ(U) =

ψ(U). Therefore, it suffices to check that U has a countable orbit under
Comm(U) = Aut(H(k)/Z). This is indeed the case, since H(k)/Z is sec-
ond countable, and thus has countably many compact open subgroups.

(ii) In view of (1.1), Aut(U) is open in Aut(H(k)/Z) by the definition
of the Braconnier topology.

(iii) Let N be an open subgroup of U , and let (fn)∞n=1 be a se-
quence converging to 1 in Aut(H(k)/Z). Then, for n large enough,
fn ∈ U(N,N) = {ϕ ∈ Aut(H(k)/Z) | ϕ(N) = N}, as wanted.

If U is an open compact subgroup of G, we have a canonical map
G→ Comm(U); we end this section by verifying its continuity.

Lemma 1.43. Let U be an h.c.c.b. profinite group and let G be a topo-
logical group containing U as a locally normal subgroup. Assume that
G commensurates U . Then the canonical map ϕ : G → Comm(U) is
continuous, where Comm(U) has the Aut-topology.

Proof. Let W = NG(U), which is open by assumption. It suffices to
prove that the restriction of ϕ toW is continuous at the identity. Observe
that ϕ factors through ρU : Aut(U) → Comm(U), which is continuous
by definition of the Aut-topology. Moreover, the adjoint map W →
Aut(U) is continuous by Remark 1.40, so that the composed map W →
Aut(U)→ Comm(U) is continuous as well.
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1.4.2 Decomposition into h.j.i. factors

We now come to the heart of our toolbox, which consists of Pink’s results
from [Pin98]. We start by repeating one of the main theorems from
[Pin98].

Theorem 1.44. Let k be a local field and let Γ be a compact subgroup of
GLn(k). There exist closed normal subgroups U3 ≤ U2 ≤ U1 of Γ such
that

(i) U1 is of finite index in Γ.

(ii) U1/U2 is abelian of finite exponent.

(iii) There exists a local field k′ of the same characteristic and residue
characteristic as k, a Zariski-connected, semisimple adjoint alge-
braic group H over k′, with universal covering π : H̃ → H, and an
open compact subgroup ∆ ≤ H̃(k′) such that U2/U3 ' πk′(∆) as
topological groups.

(iv) U3 is solvable of derived length ≤ n.

Proof. See [Pin98, Corollary 0.5].

It will be crucial for our purposes to arrange that the subquotient
U2/U3 is the direct product of h.j.i. groups. This is achieved by the
following.

Theorem 1.45 (Extended version of [Pin98], Corollary 0.5). Let k be a
local field and let Γ be a compact subgroup of GLn(k). There exist closed
normal subgroups U3 ≤ U2 ≤ U1 of Γ such that :

(i) U1 is of finite index in Γ.

(ii) U1/U2 is abelian of finite exponent.

(iii) There exist local fields k′1, . . . , k
′
m of the same characteristic and

residue characteristic as k, Zariski-connected, absolutely simple ad-
joint algebraic k′i-groups Hi, with universal covering πi : H̃i → Hi,
and open compact subgroups ∆i ≤ H̃i(k

′
i) such that

U2/U3
∼= π1(∆1)× · · · × πm(∆m)
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as topological groups. In particular, in view of Theorem 1.12, the
subquotient U2/U3 is a direct product of nonvirtually abelian h.j.i.
groups.

(iv) U3 is solvable of derived length ≤ n.

Proof. Retain the notation of Theorem 1.44. As recalled in Section 1.2.1,
we may and do decompose H̃ as the direct product of Weil restrictions
m∏
i=1
Rk′i/k′H̃i, where each H̃i is an absolutely simple, simply connected

algebraic group over a finite separable extension k′i of k′. Let Gi =

Rk′i/k′H̃i(k
′).

Now, the compact group ∆ appearing in (iii) of Theorem 1.44 is an
open compact subgroup of G1×· · ·×Gm. Therefore, there exists an open
compact subgroup ∆i for Gi such that Λ = ∆1 × · · · ×∆m is contained
in ∆. Thus, π(Λ) ' (π1)k′1(∆1)×· · ·× (πm)k′m(∆m) is an open subgroup
of U2/U3. However, it is not clear a priori that it is normalized by Γ/U3.
In order to ensure that, it suffices to apply Lemma 1.20 to the group
U2/U3 (note that U2/U3 ' πk′(∆) has indeed no nontrivial finite normal
subgroups, in view of Theorem 1.12). This shows that, upon replacing
each ∆i by a suitable open subgroup, the image π(Λ) is indeed an open
subgroup of U2/U3 of the desired form, which is moreover normalized by
Γ/U3.

Let U ′2 denote the preimage of π(Λ). Now the quotient U1/U
′
2 is finite-

by-{abelian of finite exponent}. We may thus replace U1 by a smaller
open normal subgroup U ′1 of Γ containing U ′2 to ensure that U ′1/U ′2 is
indeed abelian of finite exponent. Now the normal chain U3 ≤ U ′2 ≤ U ′1
of Γ satisfies all the requested properties.

To capture the properties of the compact factors appearing in (iii) of
Theorem 1.45, we introduce the following terminology.

Definition 1.46. A compact h.j.i. group Γ is called algebraic if there
is a local field k and a Zariski-connected, absolutely simple, adjoint al-
gebraic k-group H with universal cover π : H̃ → H, and a compact open
subgroup ∆ of H̃(k) such that Γ is isomorphic to π(∆).
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1.5 The global structure of locally linear groups

1.5.1 Proof of the main theorem

The following result is a reformulation of Theorem 1.1 from Section 1,
using the terminology introduced in Section 1.3.3.

Theorem 1.47. Let G be a t.d.l.c. group having an open compact sub-
group which is linear over a local field k. Then G has a series of closed
normal subgroups:

{1}EREG1 EG0 EG

enjoying the following properties.
The group R = R[A](G) is the [A]-regular radical of G and is locally

solvable. The group G0 is an open characteristic subgroup of finite index
in G, and G0/G1 is locally abelian of finite exponent. Moreover, the
quotient group H0 = G0/R, if nontrivial, has nontrivial closed normal
subgroups, say M1, . . . ,Mm, satisfying the following properties.

(i) For some l ≤ m and all i ≤ l, the group Mi is a topologically simple
algebraic group over a local field ki, of the same characteristic and
residue characteristic as k. In particular,Mi is compactly generated
and abstractly simple.

(ii) For all j > l, the group Mj is compact, h.j.i., and algebraic (in the
sense of Definition 1.46) over a local field kj, of the same charac-
teristic and residue characteristic as k.

(iii) Every nontrivial closed normal subgroup N of H0 contains Mi for
some i ≤ l, or contains an open subgroup of Mj for some j > l.

(iv) The quotient group H1 = G1/R coincides with the product of sub-
groups M1 . . .Mm

∼= M1 × · · · ×Mm, which is closed in H0. In
particular, H1 is compactly generated.

Proof. Let U ≤ G be a compact open subgroup which is linear over k.
Let also H = G/R and V denote the image of U in H. Theorem 1.45
applied to the group U yields closed normal subgroup U3 ≤ U2 ≤ U1

satisfying the properties (i)-(iv) from that statement.
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Claim 1. U3 is contained in R as an open subgroup. In particular, R is
locally solvable.

The image of U3 in H is a solvable locally normal subgroup. It must
therefore be trivial, since H is locally C-stable by Theorem 1.23. Thus,
U3 ≤ R.

Assume now for a contradiction that U3 is not open in R. Then
U ∩ R contains U3 as a closed normal subgroup of infinite index. Since
U ∩ R is [A]-regular in U by Theorem 1.23, it follows that the image of
U∩R in U/U3 contains a nontrivial locally normal subgroup belonging to
[A]. However, by Lemma 1.21 and Theorem 1.45, every nontrivial locally
normal subgroup of U/U3 contains a locally normal subgroup which is
h.j.i. and algebraic. Those subgroups do not belong to [A]. This is a
contradiction, and the claim stands proved.

Claim 2. There exist closed normal subgroups V2 ≤ V1 of V such that

(i) V1 is of finite index in V .

(ii) V1/V2 is abelian of finite exponent.

(iii) There exist local fields k′1, . . . , k
′
m of the same characteristic and

residue characteristic than k, Zariski-connected, absolutely simple
adjoint algebraic k′i-group Hi, with universal covering πi : H̃i → Hi,
and open compact subgroups ∆i ≤ H̃i(k

′
i) such that V2 ' π1(∆1)×

· · · × πm(∆m) as topological groups. In particular, the group V2 is
a direct product of nonvirtually abelian h.j.i. groups.

We denote by Vi the image of Ui in V . Then Vi is a closed normal
subgroup of V (because Ui is compact), and V3 is trivial by Claim 1.

Note that V1 and V2 satisfy conditions (i) and (ii) from the claim, in
view of the corresponding properties of U1 and U2. It remains to check
that V2 satisfies (iii). Since V2 ' U2R/R ' U2/U2 ∩ R, it suffices to
show that U2 ∩ R = U3 in view of Theorem 1.45(iii). By Claim 1, the
group U3 is contained as an open subgroup of U2 ∩R, so that the image
of U2 ∩ R in U2/U3 is a finite normal subgroup, and is thus trivial by
Theorem 1.45(iii) and Lemma 1.19. This shows that U2 ∩ R = U3, so
that V2 ' U2/U3. The claim stands proved.
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Claim 3. The set of atoms of LN (H) coincides with the finite set
{[π1(∆1)], . . . , [πm(∆m)]}, and every nonzero element of LN (H) con-
tains an atom. In particular, H has an open characteristic subgroup H0

containing V2, which commensurates πi(∆i) for all i = 1, . . . ,m.

Since V1 is open in H, we have LN (H) = LN (V1). In view of
Claim 2, the hypotheses of Lemma 1.21 are satisfied by V1. This proves
the desired assertions on LN (H).

Now the H-action on LN (H) permutes the atoms, and we define H0

to be the kernel of that permutation action. Then H0 is indeed open,
characteristic and of finite index in H, and commensurates πi(∆i) for all
i. Since V2 normalizes πi(∆i) for all i, we have V2 ≤ H0, as claimed.

Claim 4. For each i ∈ {1, . . . ,m}, let ϕi : H0 → Comm(πi(∆i)) be the
homomorphism induced by Claim 3. Then the product homomorphism

ϕ = ϕ1 × · · · × ϕm : H0 → Comm(π1(∆1))× · · · × Comm(πm(∆m))

is continuous and injective, where each factor is endowed with the Aut-
topology.

In view of Lemma 1.43, the map ϕ is a product of continuous homo-
morphisms, and is thus continuous. Let us now check its injectivity.

In view of Definition 1.14, we have Kerϕ ≤ QCH0(V2), and it suffices
to check that V2 has trivial quasi-centralizer in H0.

Recalling that H, and thus also H0, is locally C-stable, we deduce
from [CRW13, Lemma 3.11 and Theorem 3.18] that QCH0(V2CH0(V2)) =

1. Since V1 is open in H, 1 = QCH0(V2CH0(V2)) = QCH0((V2CH0(V2))∩
V1) = QCH0(V2CV1(V2)). Therefore, it is enough to show that the cen-
tralizer CV1(V2) is trivial. Now CV1(V2)∩V2 ≤ QZ(V2), which is trivial by
Proposition 1.15. Thus, CV1(V2) embeds into V1/V2, and is thus abelian
by Claim 2. But CV1(V2) is also locally normal in H (see, e.g., [CRW13,
Lemma 2.1]), and must therefore be trivial because H is locally C-stable.

Claim 5. Let i ∈ {1, . . . ,m}, and let Zi = Z(H̃i(k
′
i)). Then there is an

isomorphism of topological groups

Comm(πi(∆i)) ' Aut(H̃i(k
′
i)/Zi),
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where Comm(πi(∆i)) has the Aut-topology and Aut(H̃i(k
′
i)/Zi) has the

Braconnier topology.

By Corollary 1.34 and Proposition 1.42, we have an isomorphism of
topological groups Comm(∆i) ' Aut(H̃i(k

′
i)/Zi). Since Ker(πi) is finite,

there is an open subgroup ∆′i ≤ ∆i which intersects Ker(πi) trivially.
Thus, πi induces an isomorphism of profinite groups between ∆′i and its
image, so that

Comm(πi(∆i)) = Comm(πi(∆
′
i)) ' Comm(∆′i) = Comm(∆i).

The claim follows.

Claim 6. Let i ∈ {1, . . . ,m} and set

Mi = ϕ−1
i (Inn(H̃i(k

′
i))) ∩

⋂
j 6=i

Ker (ϕj ),

where Inn(H̃i(k
′
i)) is viewed as a subgroup of Comm(πi(∆i)) by means of

Claim 5. Then Mi is a closed normal subgroup of H0, and exactly one
of the following assertions holds:

(a) Mi is a compact, h.j.i. group which is algebraic over k′i.

(b) Mi ' H̃i(k
′
i)/Zi, and H̃i is isotropic over k′i. In particular, Mi is a

topologically simple algebraic group over k′i.

We first check that the quotient group H̃i(k
′
i)/Zi is isomorphic to

Inn(H̃i(k
′
i)) endowed with the Braconnier topology. Indeed, by Propo-

sition 1.42, the group Aut(H̃i(k
′
i)/Zi) is locally compact, and by Re-

mark 1.40 the canonical embedding H̃i(k
′
i)/Zi → Aut(H̃i(k

′
i)/Zi) is con-

tinuous. From Proposition 1.7, we deduce that the latter embedding is a
homeomorphism onto its image, namely Inn(H̃i(k

′
i)), and that the latter

is closed in Aut(H̃i(k
′
i)/Zi). This also implies thatMi is a closed normal

subgroup of H0.
We next observe that the restriction of ϕi toMi is a homeomorphism

onto its image. Indeed (ϕi)|Mi is injective by Claim 4. Moreover, by
Claim 2, we have πi(∆i) ≤Mi, and ϕi(πi(∆i)) is open in Inn(H̃i(k

′
i)) '
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H̃i(k
′
i)/Zi. Thus, (ϕi)|Mi is a continuous isomorphism onto an open,

hence closed, subgroup of Inn(H̃i(k
′
i)).

Since Inn(H̃i(k
′
i)) is second countable (see Proposition 1.42) and

(ϕi)|Mi is injective, we deduce that the compact group πi(∆i) is of count-
able index in Mi. It follows that Mi is σ-compact. By the Open Map
Theorem (see [HR79, Theorem (5.29)]), we deduce that the map (ϕi)|Mi

is open, as requested.

Now if Mi is compact, the desired claim follows by construction
(see Theorem 1.12 and Definition 1.46). If Mi is noncompact, then
ϕi(Mi) is a noncompact open subgroup of Inn(H̃i(k

′
i)) so that H̃i(k

′
i)

is noncompact. Hence, H̃i is isotropic by [Pra82, Theorem (BTR)].
By Theorem 1.8, the only noncompact open subgroup of Inn(H̃i(k

′
i)) '

H̃i(k
′
i)/Zi = H̃i(k

′
i)

+/Z(H̃i(k
′
i)

+) is the whole group (see Theorem 1.10
for the last equality). The claim follows.

Claim 7. We have [Mi,Mj ] = 1 for i 6= j. Moreover, the product
H1 = M1 . . .Mm

∼= M1 × · · · ×Mm is closed in H0, and the quotient
G0/G1 = H0/H1 is locally abelian of finite exponent.

The injectivity of ϕ, established in Claim 4, ensures that the Mi’s
commute pairwise, and that the canonical map fromM1×· · ·×Mm onto
the subgroup S = M1 . . .Mm is a continuous isomorphism. To see that
H1 is closed, consider the canonical projection H0 → H0/M2 . . .Mm. If
M1 is compact, then it has closed image. If M1 is not compact, then
Claim 6 and Proposition 1.7 ensure that M1 has closed image as well.
Hence, the product M1M2 . . .Mm is closed in H0, and a straightforward
induction shows that H1 is closed as well.

Finally, since V2 ≤ H1, it follows from Claim 2 that H0/H1 is locally
abelian of finite exponent.

Claim 8. Every nontrivial closed normal subgroup N of H0 contains
some noncompact Mi, or an open subgroup of some compact Mj.

The group V ∩N is a locally normal subgroup of H0, and therefore
there is some i such that [πi(∆i)] ≤ [V ∩N ] by Claim 3. IfMi is compact,
this yields the desired assertion. Otherwise we see that N∩Mi is an open
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normal subgroup of Mi, so that Mi ≤ N by Claim 6. The claim stands
proved.

To conclude the proof, we denote by G0 (respectively, G1) the preim-
age of H0 (respectively, H1) in G, and re-order the set {M1, . . . ,Mm} so
that the noncompact elements come first. We see that all the requested
assertions have been established in the claims above: Assertion (iv) and
the fact that G0/G1 is locally abelian of finite exponent in Claim 7,
Assertions (i) and (ii) in Claim 6 and Assertion (iii) in Claim 8.

Remark 1.48. We remark that the closedness of the product of the
Mi in H0 asserted in Theorem 1.47(iv) is not an automatic property.
Clearly, the subgroup generated by two distinct minimal normal sub-
groups is abstractly isomorphic to their direct product, but it need not
be closed. This phenomenon naturally yields to the concept of quasi-
products. Further discussions and concrete examples may be found in
[CM11, Appendix II].

Remark 1.49. The subgroup R is also characterised as the maximal
closed normal locally solvable subgroup. Indeed, if N is a closed nor-
mal locally solvable subgroup, its image Ñ in G/R is a locally solvable
group, so has a non-trivial quasi-center. But G/R is locally C-stable by
Theorem 1.23, hence Ñ is trivial by 1.15.

Remark 1.50. Defining the discrete residual of a topological group
to be the intersection of all its open normal subgroups, we prove in
Section 1.A that, with the notation of Theorem 1.1, M1×· · ·×Ml is the
discrete residual of G0/R.

1.5.2 Corollaries

Proof of Corollary 1.2. We apply Theorem 1.47, which yields subgroups
Mi and G0 of G. Let A be the elementary radical of G0, see Theo-
rem 1.30.

Claim 1. We have R ≤ A. Moreover, A/R coincides with the elemen-
tary radical of H0 = G0/R.
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By Theorem 1.31, we have R ≤ A and R is elementary. Therefore,
A/R contains the elementary radical of H0. The claim follows, since the
quotient group A/R is elementary by [Wes14, Theorem 4.6(c)].

Claim 2. Set W =
⋂l
i=1CH0(Mi) ≤ H0, where l is as in Theorem 1.47.

Then W is compact-by-{locally abelian of finite exponent}. In particular,
it is elementary.

We have Mj ≤ W for all j > l by Theorem 1.47(i). Thus, W̃ =

Ml+1 . . .Mm is a compact normal subgroup of W . Moreover, W ∩
(M1 . . .Ml) = 1, since the latter product has trivial center in view of
Theorem 1.47(ii) and (iv). It follows that W/W̃ embeds into H0/H1,
which is locally abelian of finite exponent. This implies that W is ele-
mentary by Proposition 1.29(ii).

Claim 3. Every nontrivial closed normal subgroup N of H0 which is not
contained in W contains some Mi with i ∈ {1, . . . , l}.

Assume that N does not contain any noncompact Mi. Then 1 =

N ∩Mi ≥ [N,Mi] since Mi is topologically simple. Thus, N ≤ W as
desired.

Claim 4. W coincides with the elementary radical of H0.

That W is contained in the elementary radical follows from Claim 2.
If that inclusion were proper, then the elementary radical of H0 would
contain some noncompact Mi by Claim 3. This is impossible because
every closed subgroup of an elementary group is elementary (see [Wes14,
Theorem 4.6(b)]), while nondiscrete compactly generated topologically
simple groups are not elementary (see [Wes15a, Proposition 6.2]).

To conclude the proof, we remark that H ′ = H0/W is isomorphic
to G0/A in view of Claims 1 and 4. Thus, it suffices to show all the
desired assertions for the quotient H0/W . For each i ∈ {1, . . . , l}, we
define a groupM ′i as the image ofMi in the quotient H ′ = H0/W . That
image is injective because Mi is simple, and closed by Proposition 1.7.
Thus, each M ′i is a topologically simple algebraic group over k′i. The
assertions that the M ′i are precisely the minimal normal subgroups of
H0/W , and that every nontrivial closed normal subgroup contains one
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of them, follow from Claim 3. ThatH ′1 = M ′1 . . .M
′
l is closed follows from

the same argument as in the proof of Claim 7 in Theorem 1.47. Finally,
that (H0/W )/H ′1 is locally abelian of finite exponent follows from the
last assertion of Theorem 1.47. Therefore, that quotient is elementary
by Proposition 1.29(ii).

Proof of Corollary 1.3. Assume that G is nondiscrete. Since it is topo-
logically simple, its [A]-regular radical R is either trivial or the whole of
G.

Assume that R = G. Then G is locally solvable by Theorem 1.47.
Moreover, [Wil07, Theorem 2.2] implies that G is not compactly gener-
ated.

Assume now that R = 1. By the definition of the [A]-regular radi-
cal, G is not locally abelian. Hence, the product M1 × · · · ×Mm from
Theorem 1.47 is nontrivial. Since G is topologically simple, we have
m = 1 and G = M1. Since G is not compact (because a topologically
simple profinite group is finite, hence discrete), we obtain the desired
conclusion.

Proof of Corollary 1.4. Immediate from Corollary 1.3.

Proof of Corollary 1.6. Each class of groups listed in the statement con-
sists of linear groups. Assume conversely that G is a compactly gener-
ated, topologically simple, locally compact group that is linear. If G is
connected, then it is a simple Lie group, as a consequence of the solution
to Hilbert’s fifth problem. Otherwise G is totally disconnected. If it is
nondiscrete, then it is algebraic by Corollary 1.4. If it is discrete, then it
is residually finite by a theorem of Mal’cev (see, e.g., [LS03, Window 7,
Proposition 8]), hence a finite simple group.

1.5.3 Some examples

In this section, we describe a family of examples of t.d.l.c. groups sat-
isfying the hypotheses of Theorem 1.1, and illustrating some peculiar
properties that the quotient H0 = G0/R can have in general. For the
construction, we use the Nottingham group.
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Definition 1.51. The Nottingham group, denoted by J(pi), is the
group of normalized continuous automorphisms of the ring Fpi [[T ]]. Oth-
erwise stated, an element g ∈ J(pi) is defined by its action on T and is

of the form g(T ) = T +
∞∑
i=2

aiT
i, ai ∈ Fpi .

We will use the universality of the Nottingham group, asserted in the
following.

Theorem 1.52 (Main result in [Cam97]). Every countably based pro-p
group can be embedded, as a closed subgroup, in the Nottingham group.

The following construction shows that the group H0 from Theo-
rem 1.1 need not be second countable, and that it need not have any
maximal compact normal subgroup.

Example 1.53. Consider the algebraic group SLn over the local field
Fp((T )). Then, the quotient U = SLn(Fp[[T ]])/Z(SLn(Fp[[T ]])) is a com-
pact linear group which is h.j.i. by Theorem 1.12. Let L be a t.d.l.c.
group admitting a continuous embedding into the Nottingham group
J(p). Then the semidirect product G = U o L is a t.d.l.c. group.

We claim that G is locally C-stable. Let us first check that QZ(G) is
trivial. First observe that QZ(U) is trivial by [BEW11, Proposition 5.1].
Hence, if ul ∈ QZ(U o L), then l ∈ L must be nontrivial. Since a
nontrivial element of J(p) acts by an outer automorphism on any open
subgroup V of U , we deduce that QZ(G) is trivial.

We now show that G has no nontrivial locally normal abelian sub-
group. Arguing by contradiction, let K be such a subgroup. Since U
is h.j.i. but not virtually abelian, the intersection NU (K) ∩K must be
trivial. Thus, K commutes with NU (K). This is impossible, because L
acts on NU (K) by outer automorphisms. This confirms the claim.

The claim implies that R = 1, and that G = G0 = H0 in the notation
of Theorem 1.1. We now specialize this family of examples in two ways.

Taking L = J(p), endowed with the discrete topology, we see that G
is a metrizable, locally linear, t.d.l.c. group which is not second count-
able.
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Now consider L =
⊕

n∈N Z/pnZ, with the discrete topology. It
embeds in the pro-p group

∏
n∈N Z/pnZ, which itself embeds in J(p)

by Theorem 1.52. In this situation, we see that G is a locally linear,
t.d.l.c.s.c. group, but has no maximal compact normal subgroup.

1.A Structure of the group of abstract automor-
phisms of an algebraic group over a local
field

Defining the discrete residual of a topological group to be the inter-
section of all its open normal subgroups, we aim to prove that, with the
notation of Theorem 1.1, M1×· · ·×Ml is the discrete residual of G0/R.
We take this opportunity to elucidate related fundamental questions on
the structure of Aut(G(k)).

We begin by recalling the structure of Aut(k) for k a local field.

Lemma 1.54. Let k be a local field. Then Aut(k) is either finite or a
(topologically) finitely generated, locally pro-p group.

Proof. In [Sch33], the author proves that if a field is complete with re-
spect to two inequivalent norms, then it is algebraically closed. Since
local fields are not algebraically closed, this implies that every automor-
phism of a local field is continuous.

Now, recalling thatQ is dense inQp, we see that every automorphism
of Qp is trivial. But a local field k of characteristic 0 is a finite extension
of Qp for some prime number p, and hence Aut(k) = Aut(k/Qp) is finite.

On the other hand, local fields of positive characteristic are isomor-
phic to Fpi((T )). But Aut(Fpi((T ))) contains the Nottingham group J(pi)

as an open finite index subgroup (see Definition 1.51 for the definition of
the Nottingham group). As explained in [Cam97, Preliminaries], J(pi)

is a pro-p group. It i also known that J(pi) is just-infinite: see [Cam00,
Proposition 2] when p 6= 2 and [Heg01, Theorem 7] for p = 2. The (topo-
logical) finite generation follows from the general fact that a just-infinite
pro-p group is (topologically) finitely generated. Indeed, it suffices to
note that the Frattini subgroup of such a group is closed and normal,
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hence of finite index, so that this general fact follows from [DdSMS91,
Proposition 1.9].

We go on in our investigation of the automorphism group of algebraic
groups over local fields.

Definition 1.55. Let G be an absolutely simple, simply connected al-
gebraic group over a local field k. By Pink’s result (see Theorem 1.33),
the group Aut(G(k)) of abstract automorphisms of G(k) fits inside the
exact sequence 1→ AutG(k)→ Aut(G(k))→ Aut(k). Let AutG(k) be
the image of Aut(G(k)) → Aut(k) (see Section 3.1 for more discussion
on this).

Proposition 1.56. Let G be an absolutely simple, simply connected al-
gebraic group over a local field k. If G is isotropic, the homomorphism
Aut(G(k))→ AutG(k) is continuous.

Proof. Given an (abstract) automorphism α ∈ Aut(G(k)), we denote
the underlying field automorphism by ϕα ∈ Aut(k). Let S be a maximal
k-split torus in G. We claim that α(S(k)) is (the group of rational points
of) a k-split torus of G of the same rank than S. Indeed, by Pink’s result
(see [Pin98, Corollary 0.5]), there exists a unique automorphism f of G
over a unique automorphism ϕα of k such that the induced automorphism
of G(k) is α (in Chapter 3, we call f a semilinear automorphism).

For ϕ an automorphism of k, let ϕ−1
∗ denotes the base change of a

scheme along ϕ−1 (following the notation we introduce in Chapter 3).
We can reformulate Pink’s result as saying that there exists a k-algebraic
isomorphism of algebraic groups f̃ : G → ϕ∗G such that the induced
automorphism of G(k) is α (our discussion before Lemma 3.8 explain
this in more details). But f̃(S) is a split torus of the same rank than S
because f̃ is injective and a closed immersion (see [DG70, Chap 2, §5,
n◦5 Proposition 5.1]). Hence, α(S(k)) ' (ϕ−1

∗ f̃(S))(k), as wanted.
Let {αn}n∈N be a sequence in Aut(G(k)) converging to the identity.

Let AS be the apartment of the Bruhat–Tits building of G corresponding
to S, let C be a chamber of A and let U be the pointwise fixator of C. We
claim that there exists N ∈ N such that for n ≥ N , there exists gn ∈ U
such that gnS(k)g−1

n = αn(S(k)). Indeed, since U is a compact open
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subgroup of G(k) and {αn}n∈N converges to the identity, αn(U) = U

for n big enough. Hence, the apartment Aαn(S) corresponding to αn(S)

contains C for n big enough. Now, since G(k) acts strongly transitively
on its building, there exists gn ∈ G(k) fixing pointwise C such that
gn.AS = Aαn(S), or equivalently gnS(k)g−1

n = αn(S(k)), as wanted.
Hence, up to passing to a subsequence, we can and do assume that

αn(S(k)) = gnS(k)g−1
n , where gn belongs to the compact (open) sub-

group U . Furthermore, passing again to a subsequence, we can as-
sume that {gn}n∈N converges to g. Let Int(g) be the interior auto-
morphism of G(k) induced by g. Defining β̃n = Int(gn)αn, we have that
β̃n(S(k)) = S(k) and {β̃n}n∈N converges to Int(g). Now the sequence
βn = Int g ◦ β̃n is such that βn(S(k)) = S(k), ϕβn = ϕαn and {βn}n∈N
converges to the identity. Finally, since Aut(k) is compact, up to passing
to a subsequence, we can and do assume that ϕβn converges to ϕ.

Note that βn restricts to a semilinear automorphism of S. Since
the k-split torus S is defined over Z, the group of semilinear auto-
morphims Aut(S → Spec k) of S decomposes as the semidirect prod-
uct Aut(SZ) o Aut(k) (see Lemma 3.6). Note that by [DG70, II, §1,
n◦2.11]), automorphisms of S as a Z-group can naturally be seen as
elements of Aut(Zr,Zr) (where r is the rank of S). Write the de-
composition of βn in Aut(SZ) o Aut(k) as (fn, ϕβn). Since the section
Aut(k) → Aut(S → Spec k) ≤ Aut(S(k)) is continuous, {fn}n∈N con-
verges to ϕ−1. This readily implies that {fn}n∈N eventually preserves
a chosen decomposition of S as Gm × · · · × Gm. But this forces fn to
eventually be the identity, so that ϕ−1 is trivial, as wanted.

We do not know how to prove Proposition 1.56 in the anisotropic
case, i.e. for groups of the form SL1(D). But on the other hand, when
G is anisotropic, we have the following result on Aut(G(k)).

Proposition 1.57. For D a finite dimensional central division algebra
over a local field k, the group of abstract automorphism Aut(SL1(D)) is
compact.

Proof. By Lemma 1.12, SL1(D) is a non-abelian hereditarily just-infinite
virtually pro-p group.
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We claim that such a group G is (topologically) finitely generated.
Indeed, up to passing to an open finite index subgroup, we can assume
that G is pro-p. Then, its Frattini subgroup Φ(G) is a closed normal
subgroup which is non-trivial (because the Frattini subgroup contains
the commutator subgroup and G is not virtually abelian). Hence, be-
cause G is just infinite, G/Φ(G) is finite, and any set of representatives
topologically generates G by [DdSMS91, Proposition 1.9], as was to be
shown.

Hence, according to [BEW11, Section 7.1], Aut(SL1(D)) is a profinite
group, as wanted.

We continue by proving that the group of inner automorphisms is
cocompact in the group of abstract automorphisms.

Proposition 1.58. Let G be an absolutely simple, simply connected al-
gebraic group over a local field k. Aut(G(k))/ Inn(G(k)) is compact.

Proof. If G is anisotropic, Aut(G(k)) is compact by Proposition 1.57 and
Inn(G(k)) is a closed subgroup of it so that the result holds. We now
assume that G is isotropic and prove this cocompactness phenomenon
by looking at the action of G(k) on its Bruhat–Tits building X.

Let G(k)→ Aut(X) be the map induced by the action of G(k) on its
building. We let Aut(X) be a topological group for the pointwise con-
vergence. Note that G(k)→ Aut(X) is proper, so that G(k)/Z is iden-
tified with a closed subgroup of Aut(X). We claim that Aut(G(k)) =

NAut(X)(G(k)/Z). Indeed, let α be an abstract automorphism of G.
By Pink’s result (see [Pin98, Corollary 0.5]), there exists ϕα ∈ Aut(k)

and an algebraic isomorphism f̃α : G→ (ϕα)∗(G) inducing the automor-
phism α. But f̃ preserves a maximal k-split torus and its associated
root groups. Furthermore, ϕα preserves the valuation on root groups,
since any automorphism of k is continuous. Hence, α preserves any val-
ued root group datum, so that it induces an automorphism aα of the
building. Furthermore, α normalizes G(k)/Z in Aut(X). Conversely,
consider the homomorphism NAut(X)(G(k)/Z) → Aut(G(k)) given by
conjugation. The kernel is in the centraliser of G(k)/Z, and hence is
trivial, because G(k) acts strongly transitively on X.
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Let A = NAut(X)(G(k)/Z) and let C be a chamber of X. Since G(k)

acts strongly transitively on X, NAut(X)(G(k)/Z) = G(k)/Z. StabA(C).
But StabA(C) is compact, because X is locally finite. Hence, the quo-
tient Aut(G(k))/ Inn(G(k)) is compact, which concludes the proof.

Corollary 1.59. Let G be an absolutely simple, simply connected alge-
braic group over a local field k. Then AutG(k) is compact.

Proof. If G is anisotropic, this follows from the fact that AutG(k) =

Aut(k) (see Chapter 3, Theorem 3.3) and Lemma 1.54. In the isotropic
case, since Aut(G(k))/ Inn(G(k)) is compact by Proposition 1.58, the
result follows directly from Proposition 1.56.

Remark 1.60. For k a local field of characteristic p ≥ 5 and for G an
isotropic, simply connected, absolutely simple algebraic group over k,
the index of AutG(k) in Aut(k) is finite. Indeed, ϕ ∈ Aut(k) belongs to
AutG(k) if and only if ϕ∗G is k-isomorphic to G. But ϕ∗G and G have
the same Tits index. Hence, according to the classification of algebraic
groups over local fields (see especially [Tit79, 4.5]), there only are a finite
number of isotropic, simply connected, absolutely simple algebraic group
over k (up to k-isomorphism) having the same Tits index than G.

When the characteristic is 2 or 3, we do not know if AutG(k) is
always of finite index. A computation seems to indicate that for an
absolutely simple, simply connected, quasi-split group G of type 2An

over k = F2((T )), this is the case.

We end this section with a slight improvement on Theorem 1.47
G0/R, which describes the discrete residual of G0/R.

Proposition 1.61. With the notations of Theorem 1.47, the product
M1. . . . .Ml is the discrete residual of G0/R.

Proof. Recall that we have an injective map ϕ1 × · · · × ϕm : G0/R →
Aut(H̃1(k′1)/Z1) × · · · × Aut(H̃m(k′m)/Zm) (see Claim 4). For i ≤ l

(respectively i > l), Mi
∼= H̃i(k

′
i)/Zi (respectively Mi is an open normal

subgroup of H̃i(k
′
i)/Zi) and ϕi restricted to Mi maps an element to the

inner automorphism corresponding to this element.
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We claim that Aut(H̃i(k
′
i)/Zi)/ Inn(H̃i(k

′
i)/Zi) is compact for all i ∈

{1, . . .m}. Indeed, as we observed in Remark 1.35, Aut(H̃i(k
′
i)) surjects

onto Aut(H̃i(k
′
i)/Zi). But by Proposition 1.58, Aut(H̃i(k

′
i))/ Inn(H̃i(k

′
i))

is compact for all i ∈ {1, . . .m}.
This already proves thatM1. . . . .Ml is cocompact in G0/R, so that it

is indeed in the discrete residual of G0/R. On the other hand,M1. . . . .Ml

is a direct product of topologically simple groups by Theorem 1.47, and
hence M1. . . . .Ml is the discrete residual of G0/R.

1.B Analytificaton of a finite type k-scheme

We aim to prove that the Lie algebra of an algebraic group G over a local
field k is isomorphic to the Lie algebra of G(k) considered as an analytic
manifold. This fact is at the heart of the proof of Theorem 1.12. Indeed,
it is the crucial ingredient in the proof of the main theorem in [Rie70a].
However, when using this fact, C. Riehm does not provide explanations
about how to compare the analytic and the algebraic Lie algebra, and
despite a literature search, we could not find a comprehensive treatment
of the matter.

Let us first discuss what we found in the literature. In [PR94, Section
3.1], the authors explain in great details how to “analytify” a k-variety.
But when it comes to the comparison of the analytic tangent space versus
the algebraic tangent space, they only make the elliptic comment “the
proof follows easily from a comparison of the appropriate definitions”.
However, in view of the definitions involved (we recall them in Defini-
tion 1.67), this fact does not seem to be a formal consequence of the
definitions. On the contrary, our proof relies on explicit computations in
a chosen chart. Another issue that makes their treatment of the subject
incomplete for us is that they insist on the fact that they work only in
characteristic 0.

Another reference that touches the matter is [Mar91, Proposition
2.6.11]. But again, when comparing analytic and algebraic tangent space,
the author use a reference to ([Bou72, Chapter 3, §3, n◦11]) where the
result is not clearly stated. Hence, we decided to include a discussion
here. However, nothing is new in our treatment of the subject, and we
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essentially follow the presentation given in [PR94].
Let us begin by discussing the “topologification” of the rational points

of a finite type k-scheme, when k is a topological field. The following
result is a mix of a question on the website MathOverflow (see [BCn])
and [PR94, Section 3.1].

Proposition 1.62. Let k be a topological field. There exists a unique
(up to natural isomorphism) functor Topk from the category of finite type
k-schemes to the category of topological spaces such that

1. Composing Topk with the forgetful functor from the category of
topological spaces to the category of sets yields a functor naturally
isomorphic to the functor of taking k-points.

2. For A1 the affine line over k, Topk(A1) is homeomorphic to k.

3. (Compatibility with fiber products). For X → S and Y → S two
morphisms in the category of finite type k-schemes, Topk(X×S Y )

is (naturally in all the variables) homeomorphic to the fiber product
Topk(X)×Topk(S) Topk(Y ).

4. (Compatibility with closed immersions). If Z → X is a closed
immersion in the category of finite type k-scheme, then Topk(Z)→
Topk(X) is a closed embedding in the category of topological space
(i.e. an injective continuous closed map).

5. (Compatibility with open immersions). If U → X is an open im-
mersion in the category of finite type k-scheme, then Topk(U) →
Topk(X) is a closed embedding in the category of topological space
(i.e. an injective continuous open map).

Proof. For X a finite type k-scheme, we define a collection of subsets of
X(k): for U an open subscheme of X, for f1, . . . , fn regular functions on
U and for V a neighbourhood of 0 in k, consider X(U, f1, . . . , fn, V ) =

{x ∈ X(k) | x ∈ U(k) and fi(x) ∈ V for i = 1, . . . n}.
We define Topk(X) to be the set X(k) together with the topology

having for base the sets X(U, f1, . . . , fn, V ). Note that for f : X →
Y a morphism in the category of finite type k-schemes, Topk(f) =
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f(k) : X(k) = Topk(X) → Topk(Y ) = Y (k) is continuous, because it
is locally given by polynomial, so that it follows from the fact that the
field is topological. Furthermore, Topk satisfies all the conditions of the
proposition.

Uniqueness is a direct consequence of the conditions we imposed on
the functor. Indeed, at the level of set, the functor has to be naturally
isomorphic to the functor of k-points. But a finite type k-scheme is
covered by finitely many open affine subschemes of finite type. Finally, an
affine scheme of finite type is a closed subscheme of a finite dimensional
affine space, i.e. a finite direct product of affine lines. Hence, the topology
is entirely determined by the remaining conditions.

We can go further and also give the structure of an analytic manifold
to X(k) when X is smooth and k is a complete field. As pointed out in a
the MathOverflow question [BCn], the natural tool to use is to cover X
by etale maps over affine space, and then use the inverse function theorem
for analytic manifolds. We first recall the implicit function theorem in
the analytic case.

Definition 1.63. Let k be a local field and let f : kn → k : x→
∑
aαx

α

be an analytic map around 0 (we use the multi-index notation as in
[Ser92, Chapter II]). Let δi be the multi-index (0, . . . , 0, 1, 0, . . . , 0), where
the 1 appears in the i-th position. We define the partial derivative of f
with respect to xi to be ∂f

∂xi
: kn → k : x→

∑
α≥δi aα

(
α
δi

)
xα−δi

Remark 1.64. In [Ser92, Chapter II], ∂f
∂xi

is denoted ∆δi .

Theorem 1.65 (Analytic Implicit Function Theorem). Let k be a local
field and let g : kc × kn → kc be an analytic map around 0 such that
g(0) = 0. Assume that det( ∂gi∂xj

(0))i,j∈{1,...,c}. Then there exist V ⊂ kn,
W ⊂ kc, both neighbourhoods of 0, and an analytic map Φ: kn → kc

such that for all v ∈ V and w ∈W , g(v, w) = 0 if and only if Φ(v) = w.

Proof. The argument deducing the implicit function theorem from the
inverse function theorem is classical. See for example the proof of The-
orem C.40 in [Lee13] for how this argument works in the smooth case.
Note that this argument carries over verbatim in the analytic case, up
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to assuming the analytic inverse function theorem. For the proof of the
analytic inverse function theorem, we refer the reader to [Ser92, Chap-
ter II].

Proposition 1.66. Let k be a complete field with respect to a non-trivial
absolute value. We construct an “analytification functor” from the cat-
egory of smooth, finite type k-schemes to the category of analytic va-
rieties whose composition with the forgetful functor from analytic vari-
eties to topological space is the functor Topk from Proposition 1.62. For
f : X → Y in the category of smooth, finite type k-schemes, we denote
by fan : Xan → Yan its image under this analytification functor.

Proof. Let X be a smooth finite type k-scheme. Let {Ui}1,...,l be a cover
of X by affine open subschemes such that each Ui is standard etale
over Ani

k , the affine space over k of dimension ni. Such a cover exists
because X is smooth (see [Sta17, Tag 054L]). This implies that Ui(k)

is the set of points in Aci+ni
k (k) where fi,1, . . . , fi,ci vanish, for some

polynomials fi,1, . . . , fi,ci such that det(
∂fi,j
∂xm

)j,m∈{1,...,ci} is a polynomial
that does not vanish on Ui(k) (see [Sta17, Tag 00U9]). By the Analytic
Implicit Function Theorem (Theorem 1.65), Ui(k) is locally the graph
of an analytic map. By gluing all those maps, we deduce that there
exists an open Vi ⊂ kni and an analytic map Φi : Vi → kci such that
Ui(k) = {(v,Φi(v)) | v ∈ Vi}.

For each i = 1, . . . , l, let πi be the restriction to Ui(k) of the projection
kci+ni → kni . It follows from its definition that Φi is a continuous
inverse to πi, so that (Ui(k), πi, ni) is a chart on X(k). We check the
compatibility of those charts. For i 6= j ∈ {1, . . . , l}, let Ũi = Ui ∩ Uj ⊂
Ui, so that Ũi(k) is seen as a subset of Ui(k) ⊂ kci+ni , and let Ũj =

Ui ∩ Uj ⊂ Uj , so that Ũj(k) is seen as a subset of Uj(k) ⊂ kcj+nj . It is
now readily seen that (Ui(k), πi, ni) and (Uj(k), πj , nj) are compatible,
since the isomorphism Ũi(k) ∼= Ũj(k) is algebraic, and hence given by
a rational map. Note that rational maps are analytic because inverse
of non-vanishing polynomials are analytic (see [Ser92, Chapter III, §7,
Lemma]). Furthermore, this argument shows that the analytic structure
we defined on X does not depend on the choice of the cover by affine
open subschemes that are etale over An

k . We denote the corresponding



64 1. T.d.l.c. groups with a linear open subgroup

analytic variety by Xan.
Finally, an algebraic map f : X → Y is locally given by polynomi-

als, so that fan = f(k) : Xan → Yan is analytic. This concludes the
construction of the analytic functor.

We now compare the analytic and the algebraic tangent space. We
begin by recalling the corresponding definitions.

Definition 1.67. 1. Let X be a k-scheme of finite type and let x ∈
X(k). Let OX,x be the stalk at x of the structure sheaf, and let
mx be its maximal ideal (we also denote it malg

x when we need to
distinguish if from its analytic counterpart). The algebraic tangent
space at x is defined to be the dual of the k-vector space mx/m

2
x

(see [Vak17, Definition 12.1.1])

2. Let X be an analytic variety over a local field k and let x ∈ X. Let
HX,x be the k-algebra of germs of analytic function at x, and let
mx be its maximal ideal (we also denote it man

x when we need to
distinguish if from its algebraic counterpart). The analytic tangent
space at x is defined to be the dual of the k-vector space mx/m

2
x

(see [Ser92, Chapter III, §8]).

Theorem 1.68. Let X be a smooth k-scheme of finite type and let
x ∈ X(k). Since every regular function is analytic, we have a homo-
morphism of k-algebra θx : OX,x → HXan,x, such that θx(malg

x ) ⊂ man
x .

The induced map θx : malg
x /(malg

x )2 → man
x /(m

an
x )2 is an isomorphism of

k-vector space.

Proof. Let U be an affine (Zariski)-open neighbourhood of x which is
etale over An

k . In particular, as we saw in Proposition 1.66, U is iso-
morphic (as a k-scheme) to a closed subscheme of An+r

k , say U ∼=
Spec k[X1, . . . , Xn, Xn+1, . . . , Xn+r]/(f1, . . . , fr) and det( ∂fi

∂Xn+j
)i,j=1,...,r

does not vanish on U . To simplify notations, we can and do assume that
x = 0 ∈ An+r

k . We then readily check that {X1, . . . Xn} is a basis of the
k-vector space malg

x /(malg
x )2.

Now, recall that the projection on the first n components An+r
k (k)→

An
k(k) restricted to U(k) is a chart for Xan, by definition of the an-

alytification functor. Hence, using this chart, we get an isomorphism
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of man
x /(m

an
x )2 with the cotangent space at 0 of An

k(k), that we de-
note man

0 /(m
an
0 )2. By [Ser92, Chapter III, §7, Lemma], we deduce that

man
x /(m

an
x )2 also has a basis given by {X1, . . . Xn}. Furthermore, θ(Xi) =

Xi for all i ∈ {1, . . . , n+ r}, which concludes the proof.

Recall that the Lie algebra of a Lie group is just the tangent space
at the identity, endowed with a bracket operation coming from the dif-
ferential of the commutator map.

Corollary 1.69. Let G be an algebraic group over a local field k, and
let g be its Lie algebra. Let Gan be the corresponding analytic group as
defined in Proposition 1.66, and let gan be the Lie algebra of Gan. The
dual θ∗e of the map θe defined in Theorem 1.68 gives an isomorphism of
Lie algebras gan

∼= g.

Proof. Let c : G×G→ G : (x, y) 7→ xyx−1y−1 be the commutator map.
By definition, the bracket operation [ , ] on g or gan is the total derivative
of c at the identity. So by definition, for X,Y in g = (malg

e /(malg
e )2)∗

(respectively gan = (man
e /(m

an
e )2)∗) and v ∈ malg

e /(malg
e )2 (respectively

v ∈ man
e /(m

an
e )2), we have [X,Y ](v) = (X ⊕ Y )(v ◦ c) (there are a few

abuse of notations in this formula, but the intended meaning should
be clear). We can now readily check that θ∗e is an isomorphism of Lie
algebras:

For X,Y ∈ gan, v ∈ malg
e /(malg

e )2,

(θ
∗
e[X,Y ])(v) = [X,Y ](θe(v))

= (X ⊕ Y )(θe(v) ◦ c)

= (X ⊕ Y )(θe(v ◦ c))

= (θ
∗
e(X)⊕ θ∗e(Y ))(v ◦ c)

= [θ
∗
e(X), θ

∗
e(Y )](v)





Chapter 2

Chabauty limits of algebraic
groups acting on trees

Given a locally finite leafless tree T , various algebraic groups over local
fields might appear as closed subgroups of Aut(T ). We show that the set
of closed cocompact subgroups of Aut(T ) that are isomorphic to a quasi-
split simple algebraic group is a closed subset of the Chabauty space of
Aut(T ). This is done via a study of the integral Bruhat–Tits model of
SL2 and SU

L/K
3 , that we carry on over arbitrary local fields, without any

restriction on the (residue) characteristic. In particular, we show that in
residue characteristic 2, the Tits index of simple algebraic subgroups of
Aut(T ) is not always preserved under Chabauty limits.

2.1 Introduction

Ta vague monte avec la rumeur d’un prodige
C’est ici ta limite. Arrête-toi, te dis-je.
(Victor Hugo, L’année terrible, 1872)

According to well-known rigidity results of J. Tits (see [Tit74, Theo-
rem 5.8], together with [Tit86, Théorème 2] or [Wei09, Theorem 27.6]),
a Bruhat–Tits building of rank ≥ 2 determines uniquely the simple alge-
braic group and the underlying ground field to which it is associated. In
particular, two simply connected absolutely simple algebraic groups over
local fields of relative rank ≥ 2 have isomorphic Bruhat–Tits buildings

67
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if and only if they are isomorphic as locally compact groups. This con-
trasts drastically with the rank 1 case, where infinitely many pairwise
non-isomorphic simple algebraic groups of relative rank 1 can have the
same Bruhat–Tits tree. Therefore, given a locally finite leafless tree T,
the set Sub(Aut(T )) of closed subgroups of the locally compact group
Aut(T ) may contain infinitely many pairwise non-isomorphic algebraic
groups. For example, the Bruhat–Tits tree of the split group SL2(K) is
completely determined by the order of the residue field of K, while the
isomorphism type of SL2(K) depends on the isomorphism type of the
local field K. Since Sub(Aut(T )) carries a natural compact Hausdorff
topology, namely the Chabauty topology, we are naturally led to the
following question: what are the Chabauty limits of algebraic groups in
Sub(Aut(T ))? The goal of this chapter is to initiate the study of that
problem. In particular, we provide a complete solution in the case of
quasi-split groups.

In order to be more precise, for T a tree, let us define a topologi-
cally simple algebraic group acting on T to be a locally compact group
isomorphic to H(K)/Z, where K is a local field, H is an absolutely sim-
ple, simply connected, algebraic group over K of relative rank 1 whose
Bruhat–Tits tree is isomorphic to T , and Z is the center of H(K).

The first thing to observe is that, given a topologically simple alge-
braic group G acting on T , the action homomorphism G → Aut(T ) is
not canonical, but depends on some choices. There is however a natural
way to resolve this issue of canonicity, explained in [CR16]. Following
that paper, we shall denote by ST the space of (topological) isomor-
phism classes of topologically simple closed subgroups of Aut(T ) acting
2-transitively on the set of ends. According to [CR16, Theorem 1.2], the
space ST endowed with the quotient topology induced from the Chabauty
space Sub(Aut(T )) is compact Hausdorff.

We can therefore reformulate the question mentioned above as fol-
lows. Let Salg

T be the set of isomorphism classes of topologically simple
algebraic groups acting on T . What are the accumulation points in ST
of the elements of Salg

T ? It seems reasonable to conjecture that Salg
T is

closed in ST . Our main theorem is a partial result in this direction.
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Theorem 2.1. Let T be a locally finite leafless tree, and let Sqs-alg
T be the

set of isomorphism classes of topologically simple algebraic groups acting
on T that are furthermore quasi-split. Then Sqs-alg

T is closed in ST .

As recalled in Section 2.2.1, the classification of the simple algebraic
groups over local fields implies that absolutely simple, simply connected,
quasi-split algebraic groups over K of relative rank 1 are of the form
SL2(K) or SU

L/K
3 (K) (see Lemma 2.9). So that in effect, the main goal

of the chapter is only to dispose of those two “types” of groups.
Since the Bruhat–Tits tree of SL2(K) or SU

L/K
3 (K) for L a ramified

extension of K (respectively SU
L/K
3 (K) for L an unramified extension of

K) is isomorphic to the (pn+1)-regular tree (respectively the semiregular
tree of bidegree (p3n + 1; pn + 1)), where pn is the order of the residue
field of K, the space Sqs-alg

T is empty unless T is one of those trees.
It should also be noted that for some trees T , every algebraic group

having T as Bruhat–Tits tree is actually quasi-split. According to the
classification tables in [Tit79, 4.2 and 4.3], this is the case if and only if
T is the regular tree of degree p + 1 or the semiregular tree of bidegree
(p3n + 1; pn + 1). Combining this observation with Theorem 2.1, we get
the following corollary.

Corollary 2.2. Let p be a prime number, and let T be the (p+1)-regular
tree, or the (p3n+1; pn+1)-semiregular tree. Then the set Salg

T coincides
with Sqs-alg

T , so that it is closed in ST .

In fact, we give an explicit description of the topological space Sqs-alg
T .

To achieve it, we proceed in two steps. We first describe the space L
of quadratic pairs of local fields (as defined in Definition 2.62), and the
purpose of Section 2.5.1 is to give an explicit description of L, which
appears in Proposition 2.71. The process is a bit lengthy, but only uses
elementary facts about local fields. In a second step, we show in the
proof of Theorem 2.3 that the map

L → ST : (K,L) 7→ Ĝ(K,L)

is a homeomorphism onto its image (see Definition 2.74 and Proposi-
tion 2.77 for the definition of this map). Note that we make an abuse of
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notation: we represent a point in ST , which is an isomorphism class, by a
representative of that class. This abuse should not cause any confusion,
and will simplify notations throughout the rest of the chapter.

To ease the statement of the explicit form of the main theorem, let
us introduce some terminology. Recall that a countable totally discon-
nected topological space X is classified by two invariants (see [MS20,
Théorème 1]). More precisely, let N̂ be the one point compactifica-
tion of N (or in other words, a topological space homeomorphic to
{1, 1

2 ,
1
3 , . . . , 0} ⊂ R). If X(k) is the last non-empty Cantor-Bendixson

derivative of X, and if X(k) has n connected components, then X is
homeomorphic to N̂

k × {1, . . . , n}.

Theorem 2.3.

1. Let p be an odd prime number, and let T be the (pn + 1)-regular
tree. Then there exists a homeomorphism f : N̂ × {1, 2} → Sqs-alg

T

such that

f(N̂× {1}) = {SL2(K)/Z | K ∼= Fpn}

f((∞, 1)) = SL2(Fpn((X)))/Z

f(N̂× {2}) = {SU
L/K
3 (K)/Z | K ∼= Fpn

and L is (separable) quadratic ramified}

f((∞, 2)) = SU
L0/Fpn ((X))
3 (Fpn((X)))/Z

where ∞ denotes the accumulation point of N̂, K denotes the
residue field of K, and L0 is any (separable) quadratic ramified
extension of Fpn((X)).

2. Let T be the (2n + 1)-regular tree. Then Sqs-alg
T is homeomorphic

to N̂
2
. More precisely,

Sqs-alg
T = {SL2(K)/Z | K ∼= F2n} ∪ {SU

L/K
3 (K)/Z | K ∼= F2n

and L is separable quadratic ramified}

The first Cantor-Bendixson derivative of Sqs-alg
T is

{SU
L/F2n ((X))
3 (F2n((X)))/Z | L is separable quadratic ramified}
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∪ {SL2(F2n((X)))/Z}

while its second Cantor-Bendixson derivative contains the single
element SL2(F2n((X)))/Z.

3. Let p be any prime number, and let T be the (p3n + 1; pn + 1)-
semiregular tree. Then Sqs-alg

T is homeomorphic to N̂. More pre-
cisely,

Sqs-alg
T = { SU

L/K
3 (K)/Z | K ∼= Fpn

and L is (separable) quadratic unramified}

Furthermore, the accumulation point of Sqs-alg
T is the quotient group

SU
L/Fpn ((X))
3 (Fpn((X)))/Z, where L is the (separable) quadratic un-

ramified extension of Fpn((X)).

As one can see from Theorem 2.3, we face a more complex situation
in residue characteristic 2. Indeed, that statement implies that the split
group SL2(F2n((X)))/Z is a limit of unitary groups, thereby illustrating
the fact that the Tits index need not be preserved under Chabauty limits
in residue characteristic 2. In other words, the map associating to an
isomorphism class in Salg

T its Tits index is not continuous.
Since the map L → ST is a homeomorphism onto its image, the com-

plexity of the residue characteristic 2 case should already be visible at the
level of the space L of quadratic pairs of local fields. And indeed, Propo-
sition 2.71 reflects this fact. The specific features of Chabauty limits in
residue characteristic 2 highlight the complexity of the aforementioned
conjecture, which will be addressed in full generality in a forthcoming
paper, but with different methods.

The strategy to prove our results is the same for all algebraic groups
under consideration (i.e. SL2 or SU3). Let us outline it in the SL2 case
(our notational conventions for local fields are spelled out at the begin-
ning of Section 2.2.1).

1. In Definition 2.21, we recall the definition of the Bruhat–Tits tree:

I = SL2(K)×R/ ∼
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2. In Definition 2.25, we define a pointed version (around 0) of the
Bruhat–Tits tree:

I0 = SL2(OK)×R/ ∼0

and in Lemma 2.27, we show that the homomorphism SL2(OK)→
SL2(K) induces an (SL2(OK) → SL2(K))-equivariant bijection
I0 → I.

3. In Definition 2.56, we define the ball around 0 of radius r:

B0(r) = {[(g, x)]0 ∈ I0 | x ∈ [−ω(πrK), ω(πrK)] ⊂ R, g ∈ SL2(OK)}

4. In Definition 2.36, we define a local version (around 0 and of radius
r) of the Bruhat–Tits tree:

I0,r = SL2(OK/mr
K)× [−ω(πrK), ω(πrK)]/ ∼0,r

and we show in Theorem 2.59 that the homomorphism SL2(OK)→
SL2(OK/mr

K) induces an (SL2(OK)→ SL2(OK/mr
K))-equivariant

bijection B0(r)→ I0,r.

5. Following an idea dating back to M. Krasner (see [Del84] for refer-
ences, this idea is also used in e.g. [Kaz86]), we define a metric d
on the space K of (isomorphism classes of) local fields by declaring
that for r ∈ N and K1,K2 ∈ K, d(K1;K2) ≤ 1

2r if and only if
OK1/m

r
K1
∼= OK2/m

r
K2

(see Lemma 2.66). We observe in Proposi-
tion 2.71 that the space Kpn of (isomorphism classes of) local fields
having residue field Fpn is homeomorphic to N̂.

6. Points 1 to 4 imply that if K1 and K2 are close to each other in
Kpn , then SL2(OK1) and SL2(OK2) are close to each other in the
Chabauty space of Aut(Tpn+1) (where Tpn+1 is the (pn+1)-regular
tree). Indeed, up to isomorphism, they act in the same way on
a large ball centred at 0. This is the key step in the proof of
Theorem 2.78.

7. We are then able to conclude effortlessly, using a rigidity argument,
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that the map Kpn → Salg
Tpn+1

: K 7→ SL2(K)/Z is a homeomorphism
onto its image.

A key tool to implement our strategy is the existence of good func-
tors from OK-algebras (such as OK/mr

K) to groups (like SL2(OK/mr
K)).

The integral model provided by Bruhat–Tits theory plays the role of this
good functor. In the SL2 case, this is just the algebraic group SL2 con-
sidered over OK . But a description of the integral model is not always
so straightforward, and an important feature of this article is an explicit
computation of Bruhat–Tits models for SU

L/K
3 , especially in the more

delicate case when the residue characteristic is 2 and L is ramified.
The complexity of the integral model of SU

L/K
3 when the residue

characteristic is 2 and L is ramified also explains why we get a different
behaviour for regular trees of degree 2n + 1 in Theorem 2.3. As often in
the theory of algebraic groups, the characteristic 2 case is more involved
to work out (and in our situation, it is again because of the presence
of orthogonal groups in characteristic 2 lurking in the background, see
Remark 2.41), but as was strongly advocated by J. Tits, this case is
also of great interest. Our results seem to be another illustration of this
philosophy.

It also appears that studying convergence of groups isomorphic to
SL2(D)/Z (where D is a finite dimensional central division algebra over
a local field K) can be done in parallel to the SL2(K) case. Hence we
decided to treat this case as well in this chapter. We stress that this is
only an opportunistic choice, and that the other cases should be settled
by first considering similar questions in arbitrary rank for quasi-split
groups, and then by applying a descent method.

Nevertheless, thanks to this treatment, we get the following results
as well.

Theorem 2.4. Let T be a locally finite leafless tree, and let SSL2(D)
T be the

set of isomorphism classes of topologically simple algebraic groups acting
on T that are furthermore isomorphic to SL2(D)/Z for some central
division algebra D. Then SSL2(D)

T is closed in ST .

Hence, for the reasons explained before Corollary 2.2 and according
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to the tables in [Tit79, 4.2 and 4.3], we obtain the following strengthening
of Corollary 2.2.

Corollary 2.5. Let p be a prime number, and let T be the (pn+1)-regular
tree where n is not divisible by 3, or the (p3n+1; pn+1)-semiregular tree.
Then the set Salg

T coincides with Sqs-alg
T ∪ SSL2(D)

T , so that it is closed in
ST .

Again, just as for the quasi-split case, we are actually able to describe
explicitly the topological space SSL2(D)

T and all the convergences in this
space.

Theorem 2.6. Let T be the (pn + 1)-regular tree.

1. The topological space SSL2(D)
T is homeomorphic to the Cartesian

product N̂×{1, . . . , dn+1
2 e}. The first Cantor-Bendixson derivative

of SSL2(D)
T is

{SL2(D)/Z | D ∼= Fpn and D is of characteristic p}

2. For i ∈ N, let Di (respectively D) be a finite dimensional central
division algebra over Ki (respectively K) having residue field of car-
dinality pn. Let di (respectively d) be the degree of Di (respectively
D), so that |Ki|di = pn = |K|d, where Ki (respectively K) de-
notes the residue field of Ki (respectively K). Let ri (respectively
r) be the Hasse invariant of Di (respectively D), as in Defini-
tion 2.90. If (SL2(Di))i∈N converges to SL2(D) in the Chabauty
space Sub(Aut(T )), then for all i large enough, ri = ±r and
di = d, so that |Ki| = |K| as well.

We conclude this introduction by mentioning the recent work of M. de
la Salle and R. Tessera [dT15], who used independently closely related
ideas in their study of the space of Bruhat–Tits buildings of type Ãn
(with n > 2) endowed with the Gromov–Hausdorff topology.
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2.2 Definitions of the algebraic groups SL2 and
SU3

For the rest of the chapter, K will denote a local field (all our local
fields are assumed to be non-archimedean), and D will denote a finite
dimensional central simple division algebra over K. Let us spell out our
notational conventions for the objects associated with K (respectively
D): the ring of integers is denoted OK (respectively OD), its maximal
ideal by mK (respectively mD), a uniformiser by πK (respectively πD)
and K (respectively D) denotes the residue field. The valuation of K
(respectively D), and also its unique extension to any finite extension
of K, is denoted by ω. We use the notation Qpn for the unique (up to
isomorphism) unramified extension of Qp of degree n.

Also, in order to avoid the repetition of long lists of adjectives, in this
section, by an algebraic group, we mean an absolutely simple, simply
connected algebraic group over a local field.

2.2.1 Quasi-split groups of relative rank 1

As mentioned in the introduction, the Bruhat–Tits building of an alge-
braic group G is a tree if and only if G is of relative rank 1. Instead
of giving the general definition of quasi-split algebraic groups, and then
specialising to those that are of relative rank 1, we take a practical ap-
proach and give an explicit description of those groups, the result being
that they are all of the form SL2 or SU3. We begin by recalling the
definition of SU3.

Definition 2.7. Let L be a separable quadratic extension ofK, and let σ
be the nontrivial element of Aut(L/K), whose action by conjugation on
L is denoted x 7→ x̄. Consider the transposition along the anti-diagonal
S(.) : SL3(L) → SL3(L) : g 7→ Sg. More explicitly, (Sg)−j,−i = gij , for
i, j ∈ {−1, 0, 1}. Then we define

SU
L/K
3 (K) = {g ∈ SL3(L) | S ḡ−1 = g}

We denote SU
L/K
3 (or simply SU3 when the pair of field (K,L) is arbi-
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trary or understood from the context) the corresponding algebraic group
over K. Note that the equations det(g)− 1 and S ḡg− Id (together with
the embedding L ↪→ M2(K)) realise SU

L/K
3 as a closed subspace of the

affine space An
K of dimension n = 4 × 32. Using this, it is readily seen

that SU3 is an algebraic group over K.

Remark 2.8. The group SU3 defined above is the special unitary group
with respect to the following hermitian form of L3:

((x−1, x0, x1), (y−1, y0, y1)) 7→ x−1y1 + x0y0 + x1y−1

The advantage of taking this peculiar hermitian form is that the as-
sociated involution preserves the group of upper triangular matrices.
As Lemma 2.9 shows, up to isomorphism, there is only one “type” of
non-split, quasi-split algebraic group of relative rank 1 over local fields.
Hence, choosing the above hermitian form is in fact not restrictive.

We can now describe quasi-split algebraic groups of relative rank 1

(recall that by the convention of this section, all our algebraic groups are
absolutely simple, simply connected, algebraic groups over a local field).

Lemma 2.9. Let K be a local field and let G be a quasi-split algebraic
group of relative rank 1 over K. Then G is one of the following group:

1. SL2 over K.

2. SU
L/K
3 , where L is as in Definition 2.7.

Proof. If G is quasi-split, then by definition, its anisotropic kernel is
trivial. Hence, by [Tit66, 2.7.1, Theorem 2], G is entirely determined (up
to K-isomorphism) by its Dynkin diagram together with the ∗-action on
it (or in other words, G is determined by its index). Also note that the
number of orbit under this ∗-action is the relative rank, so that according
to [Tit66, Table II], the only possibilities for the index are

or

The first index is the index of SU
L/K
3 , where L is any separable quadratic

extension of K, while the second index is the index of SL2.
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2.2.2 The algebraic group SL2(D)

As outlined in the introduction, treating the case of the group SL2(D)

(where D is a finite dimensional central division algebra) is very close to
treating the case of SL2(K), so that we decided to include this case as
well. Let us recall the definition of the group SL2(D).

Definition 2.10. Let D be a finite dimensional central division algebra
over K. We define the group SL2(D) = {u ∈ EndD(D2) | Nrd(u) = 1},
where Nrd(u) stands for the reduced norm of u (we recall the definition
of the reduced norm in Definition 2.92), and D2 is considered as a right
D-vector space.

Let us stress again that the case of main interest is the case of quasi-
split groups, i.e. the case D = K. We advice the reader to consider only
this case in a first reading.

When D = K, the group SL2(K) is the group of rational points of
a closed subspace SL2 of the affine space A4

K defined by the polynomial
equation det−1. It is then straightforward to check that SL2 is indeed
an algebraic group over K.

For arbitrary D, it is well-known that SL2(D) can be seen as the
group of rational point of an algebraic group over K. We recall in Ap-
pendix 2.B the standard facts about division algebras, and we also discuss
in Appendix 2.C the representation of SL2(D) as an algebraic group over
K.

2.3 The Bruhat–Tits tree of SL2(D) and SU3

The aim of this section is to give a streamlined definition of the Bruhat–
Tits tree associated with SL2(D) and SU3, together with the action on
it. As outlined in the introduction, our definition of the Bruhat–Tits
tree follows [BT72, §7].

In order to be as efficient as possible, we only describe concretely
the objects needed, and give unmotivated definitions. Our description
is easily obtained from the explicit description given in [BT72, §10], and
we give in Appendix 2.A more details about the connection with [BT72].
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Recall from the introduction (or from general Bruhat–Tits theory)
that the Bruhat–Tits tree I should be isomorphic to G(K)×R/ ∼. For
x ∈ R, we define a group Px ≤ G(K) which will eventually turn out to
be the stabiliser of [(Id, x)] ∈ I (see Remark 2.22).

Definition 2.11. Let D be a finite dimensional central division algebra
over K and let g be a n×n matrix with coefficients in D. Given a n×n
matrix m with coefficient in R, we say that g has a valuation greater
than m if ω(gij) ≥ mij (for all i, j ∈ {1, . . . , n}), and we denote it by
ω(g) ≥ m.

Definition 2.12. In the SL2(D) case, for x ∈ R, we define

Px = {g ∈ SL2(D) | ω(g) ≥
(

0 −x
x 0

)
}

The definition of Px in the SU3 case is less straightforward when the
residue characteristic is 2 and the extension L is ramified. Following
[BT84a, 4.3.3], we define a parameter to handle the complication.

Lemma 2.13. Let L be a separable quadratic extension of K. There
exists t ∈ L and α, β ∈ K such that:

1. L = K[t] and t2 − αt+ β = 0.

2. ω(β) = 0 when L is unramified, and β is a uniformiser of K when
L is ramified.

3. α = 0, or 0 = ω(β) = ω(α) < ω(2), or 0 < ω(β) ≤ ω(α) ≤ ω(2).

Proof. See [BT84a, Lemme 4.3.3, (ii)]. The fact that α can be chosen
so that ω(α) = 0 in the unramified case is a direct consequence of the
theory of unramified extensions of local fields (see for example [FV02,
Chapter II, Section 3.2, Proposition]). With this in mind, the equivalence
with [BT84a, Lemme 4.3.3, (ii)] is clear.

Remark 2.14. To make Lemma 2.13 possibly clearer, let us state what
is the valuation of α on a case-by-case analysis:

1. If L is unramified,

α = 0 if the residue characteristic is not 2

ω(α) = 0 if the residue characteristic is 2
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2. If L is ramified,α = 0 if the residue characteristic is not 2

α = 0 or 0 < ω(α) ≤ ω(2) if the residue characteristic is 2

The only difference between Remark 2.14 and Lemma 2.13 is that the
latter allows the possibility that α = 0 in the unramified residue charac-
teristic 2 case. But this clearly cannot happen.

Definition 2.15. Let L be a separable quadratic extension of K, and
let t, α, β be chosen as in Lemma 2.13. Let l = tα−1 ∈ L if α 6= 0, and
l = 1

2 ∈ L if α = 0, where α is as in Lemma 2.13 (note that α = 0 implies
2 6= 0 in K, since L is assumed to be a separable extension). We then
define γ = −1

2ω(l) ∈ R.

Remark 2.16. Note that γ ≥ 0. Furthermore, in view of Remark 2.14,
γ > 0 if and only if the residue characteristic is 2 and L is a ramified
extension.

In fact, the parameter γ associated with a quadratic separable ex-
tension L/K only depends on the normalisation of the valuation on K.

Proposition 2.17. Let L/K be a separable quadratic extensions of lo-
cal fields. Then the parameter γ introduced in Definition 2.15 does not
depend on the choices of t, α and β. We call γ the parameter associated
with the extension L of K

Proof. This is a direct corollary of the work of Bruhat–Tits. Indeed,
according to [BT84a, Proposition 4.3.3, (ii)], the element l appearing in
Definition 2.15 has a maximal valuation amongst elements of L of trace
1.

Definition 2.18. In the SU
L/K
3 case, let γ be the parameter associated

with the extension L of K as in Definition 2.15. For x ∈ R, we define

Px = {g ∈ SU
L/K
3 (K) | ω(g) ≥

(
0 −x

2
−γ −x

x
2

+γ 0 −x
2

+γ

x x
2
−γ 0

)
}

The final ingredient in the definition of the Bruhat–Tits tree is the
definition of a subgroup N , together with its affine action on R.
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Definition 2.19. 1. In the SL2(D) case, consider the following sub-
sets

(a) T = {
(
x 0
0 x−1

)
| x ∈ D×} < SL2(D)

(b) M = {
(

0 −x
x−1 0

)
| x ∈ D×} ⊂ SL2(D)

2. In the SU
L/K
3 case, consider the following subsets

(a) T = {
( x 0 0

0 x−1x̄ 0
0 0 x̄−1

)
| x ∈ L×} < SU

L/K
3 (K)

(b) M = {
(

0 0 x
0 −x−1x̄ 0
x̄−1 0 0

)
| x ∈ L×} ⊂ SU

L/K
3 (K)

In both cases, let N = T tM .

Definition 2.20. In both cases, we define a map ν : N → Aff(R)

as follows. In the SL2(D) case (respectively the SU3 case), for m =(
0 −x
x−1 0

)
∈ M (respectively m =

(
0 0 x
0 −x−1x̄ 0
x̄−1 0 0

)
∈ M), ν(m) is the

reflection through −ω(x), while for t =
(
x 0
0 x−1

)
∈ T (respectively for

t =
( x 0 0

0 x−1x̄ 0
0 0 x̄−1

)
∈ T ), ν(t) is the translation by −2ω(x).

We finally arrive at the definition of the Bruhat–Tits tree.

Definition 2.21 ([BT72, 7.4.1 and 7.4.2]). Let G be either SL2(D) or
SU3(K). Define an equivalence relation on G × R as follows: (g, x) ∼
(h, y) if and only if there exists n ∈ N such that y = ν(n)(x) and
g−1hn ∈ Px. The Bruhat–Tits tree of G is I = G ×R / ∼, and [(g, x)]

stands for the equivalence class of (g, x) in I. The group G acts on I by
multiplication on the first component.

Remark 2.22. We discuss in Appendix 2.A why our groups Px coin-
cide with the groups P̂x appearing in the definition of the Bruhat–Tits
building in [BT72, 7.4.1 and 7.4.2]. Since the definition of N together
with its action ν on R also coincide with [BT72] (see also Appendix 2.A
for more details), the space I of Definition 2.21 is really the Bruhat–Tits
building of G as defined in [BT72]. In particular, for g ∈ G, the map
fg : R → I : x 7→ g.[(Id, x)] is injective (by the discussion in [BT72],
below Definition 7.4.2), an apartment of I is a subset of the form fg(R)

for some g ∈ G, and we can endow I with a metric which gives the usual
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metric on R when restricted to any apartment. Furthermore, in view of
[BT72, Proposition 7.4.4], Px is in fact the stabiliser of [(Id, x)] ∈ I.

Remark 2.23. The metric space I is indeed a tree, whose regularity
depends on G. If G = SL2(D) (respectively SU

L/K
3 (K) where L is ram-

ified), then I is the regular tree of degree |D|+ 1 (respectively |K|+ 1),
while if G = SU

L/K
3 (K) with L unramified, then I is the semiregular

tree of bidegree (|K|3 + 1; |K| + 1). Indeed, this follows from the fact
that our definition of I agrees with the one given in [BT72, 7.4.1 and
7.4.2], and from the tables in [Tit79, 4.2 and 4.3].

Remark 2.24. Note that in Definition 2.21, it is equivalent to say that
(g, x) ∼ (h, y) if and only if for all ñ ∈ N such that ν(ñ)(x) = y, we have
g−1hñ ∈ Px. Indeed, if there exists n ∈ N such that ν(n)(x) = y and
g−1hn ∈ Px, let ñ be any element of N such that ν(ñ)(x) = y. Then
g−1hñ = g−1hnn−1ñ. But n−1ñ stabilises [(Id, x)], and hence belongs to
Px by Remark 2.22. Thus, g−1hnn−1ñ belongs to Px as well, as wanted.

We pass to another equivalent definition of the Bruhat–Tits tree,
which can be thought of as a pointed version of I around [(Id, 0)].

Definition 2.25. In the SL2(D) case or the SU3(K) case, we define an
equivalence relation on P0 ×R as follows: (g, x) ∼0 (h, y) if and only if
there exists n ∈ N ∩ P0 such that y = ν(n)(x) and g−1hn ∈ Px ∩ P0.
The Bruhat–Tits tree of G centred at 0 is I0 = P0×R / ∼0, and [(g, x)]0

stands for the equivalence class of (g, x) in I0. The group P0 acts on I0

by multiplication on the first component.

To prove that I0 is naturally in equivariant bijection with I, we need
the following observation.

Lemma 2.26. Let g, h ∈ P0, and let x, y ∈ R. If (g, x) ∼ (h, y), there
exists n ∈ N ∩ P0 such that ν(n)(x) = y

Proof. Recall that P0 is the stabiliser of [(Id, 0)] ∈ I in G (see Re-
mark 2.22). Since G acts by isometries on I, and since g, h ∈ P0, we
have

|x| = dI([(Id, x)], [(Id, 0)]) = dI([(g, x)], [(Id, 0)])
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|y| = dI([(Id, y)], [(Id, 0)]) = dI([(h, y)], [(Id, 0)])

where dI denotes the distance in the metric space I (see Remark 2.22).
But if (g, x) ∼ (h, y), we have in particular dI([(g, x)], [(Id, 0)]) =

dI([(h, y)], [(Id, 0)]), and hence |x| = |y|. Thus, the existence of n ∈
N ∩ P0 such that ν(n)(x) = y follows from Definition 2.20,

Lemma 2.27. Let G be either SL2(D) or SU3(K). The map I0 →
I : [(g, x)]0 7→ [(g, x)] is a (P0 ↪→ G)-equivariant bijection.

Proof. • Injectivity: assume (g, x) ∼ (h, y), where g, h are in P0. By
Lemma 2.26, there exists n ∈ N ∩ P0 such that y = ν(n)(x) and
since (g, x) ∼ (h, y), g−1hn ∈ Px by Remark 2.24. But g−1hn also
belongs to P0, so that (g, x) ∼0 (h, y), as wanted.

• Surjectivity: let [(g, x)] ∈ I. SinceG acts strongly transitively on I
([BT72, Corollaire 7.4.9]), there exists h ∈ P0 such that h.[(g, x)] =

[(Id, y)], for some y ∈ R. Hence, [(g, x)] is the image of [(h−1, y)]0 ∈
I0.

• Equivariance: the image of h.[(g, x)]0 is [(hg, x)] = h.[(g, x)].

2.4 Local description of the Bruhat–Tits tree

We now aim to give a local description of balls of the Bruhat–Tits tree,
together with the group action on it. Recall that the ball of radius 1

around [(Id, 0)] ∈ I (together with the action of P0 on it), is in some
sense encoded in P0 considered over the residue field, i.e. over OK/mK

(see [BT84a, Théorème 4.6.33] for a precise meaning). It is then natural
to think that more generally, the ball of radius r around [(Id, 0)] ∈ I
(together with the action of P0 on it) is encoded in P0 considered over
the ring OK/mr

K . We prove in this section that this is indeed true.

2.4.1 Local models for the Bruhat–Tits tree

We just mimic the definition of the Bruhat–Tits tree, except that the
coefficients of all groups under consideration are now taken in the ring
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OD/mr
D (or OL/mr

L in the SU3 case). All groups defined in this section
are adorned by the superscript 0, r to reflect the fact that they are local
version around 0 of radius r.

Definition 2.28. In the SL2(D) case, let r ∈ N∪{∞}. We only need
to describe balls of radius rd, where d is the degree of D over its cen-
ter K. Let x ∈ [−ω(πrdD ), ω(πrdD )]. Note that the valuation ω induces
a well-defined map on OD/mrd

D , that we still denote ω. By conven-
tion, m∞D = (0). Mimicking Definition 2.12, we define P 0,rd

x = {g ∈
SL2(OD/mrd

D ) | ω(g) ≥
(

0 −x
x 0

)
} (see Definition 2.95 for the definition of

SL2(OD/mrd
D ). When D = K, we obtain the group SL2(OK/mr

K) in its
usual meaning, i.e. the group of 2×2 matrices with coefficient in OK/mr

K

having determinant 1).

We also need the local version of the subgroup N .

Definition 2.29. In the SL2(D) case, we define

1. H0,rd = {
(
x 0
0 x−1

)
∈ SL2(OD/mr

D) | ω(x) = 0}

2. M0,rd = {
(

0 −x
x−1 0

)
∈ SL2(OD/mr

D) | ω(x) = 0}

And then, we set N0,rd = H0,rd tM0,rd

In the SU3 case, some complications arise due to the fact that the
group P0 of Definition 2.18 is not naturally described as living in SL3(OL)

when the parameter γ of Definition 2.15 is strictly positive, i.e. when the
residue characteristic is 2 and the extension L is ramified. This is related
to the fact that if one considers the algebraic group G = SU

L/K
3 over

OK as in Definition 2.39 (which is possible since the equations det(g)−1

and S ḡg − Id only involve coefficients belonging to OK), then it is not
smooth (as an OK-scheme) if and only if the residue characteristic is 2

and the extension L is ramified. Indeed, in this case, dimK Lie(GK) =

dimK Lie(GK) + 3, while smoothness of SU
L/K
3 when γ = 0 is proved in

Theorem 2.40.
By contrast, the correct definition of the local version of the Bruhat–

Tits tree in the SU3 case when γ = 0 is the “natural” one.
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Definition 2.30. In the SU3 case when γ = 0, let r ∈ N∪{∞}. Let
x ∈ [−ω(πrL), ω(πrL)]. Note that the valuation ω induces a well-defined
map on OL/mr

L, that we still denote ω. Also, the Galois action on
L induce an action on OL/mr

L, that we also denote by x 7→ x̄. By
convention, m∞L = (0). Mimicking Definition 2.18, we define P 0,r

x = {g ∈

SL3(OL/mr
L) | S ḡg = Id, ω(g) ≥

(
0 −x

2
−x

x
2

0 −x
2

x x
2

0

)
}.

Again, we need the local version of the subgroup N .

Definition 2.31. 1. H0,r = {
( x 0 0

0 x−1x̄ 0
0 0 x̄−1

)
∈ SL3(OL/mr

L) | ω(x) =

0}

2. M0,r = {
(

0 0 x
0 −x−1x̄ 0
x̄−1 0 0

)
∈ SL3(OL/mr

L) | ω(x) = 0}

And then, we set N0,r = H0,r tM0,r.

When γ > 0 (i.e. when the residue characteristic is 2 and L is ram-
ified), we only need to give the local description for small radii. We
introduce a new parameter which controls the meaning of small in this
case.

Definition 2.32. Set i0 = min{r ∈ N | ω(πrL) ≥ γ}. Equivalently, let
α be as in Lemma 2.13. If α = 0 (respectively if α 6= 0), i0 is such that
ω(πi0K) = ω(2) (respectively ω(πi0K) = ω(α)).

Definition 2.33. In the SU3 case when γ > 0, let r ∈ N be such
that r ≤ 2i0. Let x ∈ [−ω(πrL), ω(πrL)]. Note that the valuation ω

induces a well-defined map on OL/mr
L, that we still denote ω. we define

P 0,r
x = {g ∈ SL2(OL/mr

L) | ω(g) ≥
(

0 −x
x 0

)
}

We also need the local version of the subgroup N .

Definition 2.34. In the SU3 case when γ > 0 and for r ≤ 2i0, we define

1. H0,r = {
(
x 0
0 x−1

)
∈ SL2(OL/mr

L) | ω(x) = 0}

2. M0,r = {
(

0 −x
x−1 0

)
∈ SL2(OL/mr

L) | ω(x) = 0}

And then, we set N0,r = H0,r tM0,r

We can also easily define an action of N0,r by affine isometries on R.
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Definition 2.35. In all cases (SL2(D) and SU3 for γ ≥ 0), we let H0,r

acts trivially on R, and we let all elements of M0,r act as a reflection
through 0 ∈ R. This gives an affine action of N0,r on R, and we denote
again the resulting map N0,r → Aff(R) by ν.

We are now able to give a definition of the ball of radius r around
[(Id, 0)] ∈ I which only depends on the ring O/mr, and not on the whole
division algebra D or the field L.

Definition 2.36. Let r ∈ N∪{∞}. In the SL2(D) case (respectively
the SU3 case), let π = πD and d =

√
[D : K] (respectively π = πL and

d = 1). Also assume that r ≤ 2i0 in the SU3 case when γ > 0. We
define an rd-local equivalence on P 0,rd

0 × [−ω(πrd), ω(πrd)] as follows.
For g, h ∈ P 0,rd

0 and x, y ∈ [−ω(πrd), ω(πrd)]

(g, x) ∼0,rd (h, y)⇔ there exists n ∈ N0,rd such that ν(n)(x) = y

and g−1hn ∈ P 0,rd
x

The resulting space I0,rd = P 0,rd
0 × [−ω(πrd), ω(πrd)]/ ∼0,rd is called the

local Bruhat–Tits tree of radius rd around 0, and [(g, x)]0,rd stands for
the equivalence class of (g, x) in I0,rd. The group P 0,rd

0 acts on I0,rd by
multiplication on the first component.

Remark 2.37. Note that as for Definition 2.21, it is equivalent to say
that (g, x) ∼0,rd (h, y) if and only if for all ñ ∈ N0,rd such that ν(ñ)(x) =

y, we have g−1hñ ∈ P 0,rd
x . Indeed, if there exists n ∈ N0,rd such that

ν(n)(x) = y and g−1hn ∈ P 0,rd
x , let ñ be any element of N0,rd such that

ν(ñ)(x) = y. We have g−1hñ = g−1hnn−1ñ, and a case-by-case analysis
shows that n−1ñ ∈ P 0,rd

x . Hence g−1hnn−1ñ belongs to P 0,rd
x as well, as

wanted.

2.4.2 Integral models

We have just defined the space I0,rd, where d is the degree of D in the
SL2(D) case, and is equal to one otherwise. In order to show that it
encodes the ball of radius rd together with the action of P0 on it (as will
be done in Theorem 2.59), we need to prove that there exists a surjective
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homomorphism P0 → P 0,rd
0 . In the SL2(D) case (respectively the SU3

case when γ = 0), the homomorphism P0 → P 0,rd
0 is just the one induced

by the projection OD → OD/mrd
D (respectively OL → OL/mr

L). But in
the SU3 case when γ > 0, even the existence of such a homomorphism
is not obvious at first sight.

We solve the question by defining (for each case separately) a smooth
OK-scheme G, such that G(OK) ∼= P0 and G(OK/mr

K) ∼= P 0,εrd
0 (where

ε = 2 in the SU3 case when L is ramified, and is equal to 1 otherwise).
Then the desired surjectivity follows by an application of Hensel’s lemma
for smooth schemes (that we recall in Theorem 2.52).

The smooth OK-scheme G is in fact the Bruhat–Tits integral model
Ĝϕ associated with a standard valuation ϕ (see [BT84a, 4.6.26]). A
potential interest of this section is that we also give an explicit description
of this integral model in the more complicated case of SU3 when γ > 0.
But let us begin with the SL2(D) case and the SU3 case when γ = 0.

Definition 2.38. Let SL2 be the group SL2 considered over OK . Con-
cretely, this is theOK-scheme associated with theOK-algebraOK [SL2]=

OK [X11, X12, X21, X22]/(X11X22−X12X21− 1). In the case of a central
division algebra of degree d > 1 over K, the definition of an integral
model SL2,D over OK is a bit less straightforward to define. We give it
in the appendix (see Definition 2.96).

Definition 2.39. When the parameter γ associated with L/K is 0,
let SU

L/K
3 be the group SU3 considered over OK . We often omit the

superscript L/K. Concretely, SU3 is the OK-scheme associated with the
OK-algebra OK [SU3] = OK [Xkl

ij ]/I (i, j ∈ {1, 2, 3}, k, l ∈ {1, 2}), where
I is the ideal generated by the following equations

For all i, j ∈ {1, 2, 3},

X12
ij = −βX21

ij

X22
ij = X11

ij + αX21
ij∑

σ∈Sym(3)

[(−1)sgn(σ)
3∏
i=1

Xiσ(i)]− 1

(
X33 X23 X13

X32 X22 X12

X31 X21 X11

)(
X11 X12 X13
X21 X22 X23
X31 X32 X33

)
−
(

1 0 0
0 1 0
0 0 1

)
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Here α and β are as in Lemma 2.13, so that the first equations encode
the ring embedding OL ↪→ M2(OK). Also, for a 2 × 2 matrix M =(
M11 M12

M21 M22

)
, we denote M =

(
M22 −M12

−M21 M11

)
(this operation reflects the

conjugation on OL). Finally note that a 1 (respectively a 0) in the above
equations denotes the 2× 2 identity matrix (respectively the 2× 2 zero
matrix), i.e. it corresponds to the 1 ∈ L (respectively 0 ∈ L).

Theorem 2.40. SL2,D and SU
L/K
3 (when γ = 0) are smooth OK-

scheme.

Proof. Smoothness of SL2 over OK (and in fact of SLn over any ring) is
easily checked using the infinitesimal lifting criterion (see [Sta17, Tag
02H6]). The case of SL2,D is discussed in the appendix (see Theo-
rem 2.97).

We now prove the smoothness of SU3. It suffices to prove that it is
flat and that the fibres are smooth. The generic fibre is SU

L/K
3 , and is a

form of SL3, hence is smooth over K. The closed fibre is the K-functor
(SU3)K which associates to any K-algebra R the group

(SU3)K(R) = {g ∈ SL3(R⊗K OL/m
ε
L) | S ḡg = Id}

where ε = 1 if L is unramified, and ε = 2 if L is ramified. When L is
unramified, this algebraic group becomes isomorphic to SL3 after base
change to L, and hence is smooth and connected. We now treat the
ramified case. Let SO3 be the special orthogonal group associated with
the quadratic form (x−1, x0, x1) 7→ x−1x1 +x2

0, considered over K. More
explicitly, for a K-algebra R,

(SO3)K(R) = {g ∈ SL3(R) | Sgg = Id}

Since by assumption γ 6= 0, the characteristic of K is not 2, and it
is then well known that SO3 is isomorphic to PGL2 over K, hence is
smooth and connected of dimension 3. There exists a homomorphism of
algebraic groups f : (SU3)K → (SO3)K induced by the homomorphism
of K-algebra OL/m2

L → K. The kernel of this map can be computed by
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hand, and we obtain that for any K-algebra R,

ker f(R) = {g ∈SL3(R⊗K OL/m
2
L) |

g =


(

1 0
g2111 1

) (
0 0
g2112 0

) (
0 0
g2113 0

)
(

0 0
g2121 0

) (
1 0

−2g2111 1

) (
0 0
g2112 0

)
(

0 0
g2131 0

) (
0 0
g2121 0

) (
1 0
g2111 1

)
}

This description makes it clear that ker f is of dimension 5 and con-
nected. Hence, using [DG70, II, §5, Proposition 5.1] (note that it does
not use smoothness), we conclude that dim(SU3)K = 8. But we can also
easily compute that the Lie algebra of (SU3)K is

(su3)K = {g ∈M3(OL/m2
L) | S ḡ + g = 0, trace(g) = 0}

This is readily seen to be of dimension 8 (recall that we are in the case
γ = 0 and L ramified, so that the residue characteristic is not 2), and
hence, we conclude that (SU3)K is smooth, as wanted. Also note that
the homomorphism f : (SU3)K → (SO3)K is surjective onto a connected
algebraic group, with connected kernel, hence (SU3)K is also connected.

It remains to prove flatness. Since OK is a pruferian ring, flatness is
equivalent to being without torsion (see [BT84a, 2.2.2]). In other words,
to prove flatness, it suffices to prove that (SU3)K is dense in SU3. Since
we proved that (SU3)K is connected, one can argue as in the conclusion
of the proof of Lemma 2.49, when we show that YK is dense in Y.

Remark 2.41. In passing, note that the group (SU
L/K
3 )K is not a reduc-

tive group over K when L is ramified (as predicted by [BT84a, 4.6.31]).
In fact, we just showed in the above proof that its reductive quotient is
naturally described as the orthogonal group in 3 variables. Again, this
might be seen as a reason for the complication of the ramified, residue
characteristic 2, since philosophically, it involves orthogonal group in
characteristic 2.

Remark 2.42. There is also a more direct way to prove the smoothness
of SU3 in the unramified case, since in this case (SU3)OL is isomorphic
to SL3 over OL. But this does not work in the ramified case. Indeed,
if (SU3)OL were isomorphic to SL3 over OL in the ramified case, then
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its closed fibre (SU3)K would be isomorphic to SL3 over K ∼= OL/mL,
which is not true, as we have just seen in the above proof.

We now give the explicit equation of the integral model in the SU3

case when γ > 0.

Definition 2.43. Let K[SU
L/K
3 ] be the standard representation of the

coordinate ring of SU
L/K
3 . More explicitly, K[SU

L/K
3 ] = K[Xkl

ij ]/I (i, j ∈
{1, 2, 3}, k, l ∈ {1, 2}), where I is the ideal generated by the equations
displayed in Definition 2.39. We also use the ring OK [A36] = OK [Xkl

ij ]

(i, j ∈ {1, 2, 3}, k, l ∈ {1, 2}).

Notation 2.44. We use the following notations: λk =
(
πk+1
K 0

0 πkK

)
, υk =(

πkK 0

0 πk+1
K

)
and τk =

(
πkK 0

0 πkK

)
.

Recall the definition of i0 in Definition 2.32, and let n0 = b i02 c. The
integral model depends on the parity of i0. If i0 is odd, we define the
OK-algebra map

ϕi0 : OK [A36]→ K[SU
L/K
3 ] :

(
Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

)
7→

(
X11 X12λn0 X13

λ−1
n0
X21 λ

−1
n0
X22λn0 λ

−1
n0
X23

X31 X32λn0 X33

)

while if i0 is even, we define the OK-algebra map

ϕi0 : OK [A36]→ K[SU
L/K
3 ] :

(
Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

)
7→

(
X11 X12τn0 X13

τ−1
n0
X21 X22 τ−1

n0
X23

X31 X32τn0 X33

)

Remark 2.45. The above notation for the map ϕi0 means that (for
example in the i0 odd case) ϕi0(Y11) = X11, ϕi0(Y21) = λ−1

n0
X21, and so

on.

Definition 2.46. Let SU
L/K
3 be the closed subscheme of A36 (over OK)

defined by the ideal kerϕi0 . We often omit the superscript L/K when it
is not necessary to insist on the pair of field (K,L) under consideration.

Remark 2.47. Note that ϕi0 is just the equation for a base change.
Also note that by definition, SU3 is the schematic adherence of SU3 in
A36 (see [BT84a, 1.2.6] for the definition of the schematic adherence).
Actually, SU3 is the integral model Ĝϕ associated in the sense of [BT84a,
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4.6.26] to the standard valuation of SU3. The concrete description given
here was found following the concrete description given in [BT87], see
especially section 3.9 and the Theorem in section 5 in loc. cit. But
we provide a concrete proof that SU3 is a smooth OK-group scheme,
without referring to [BT87].

To not lengthen too much the chapter, we now make all arguments
when i0 is odd, the case i0 even being similar, if not simpler. A first
important observation is that P0

∼= SU3(OK).

Lemma 2.48. The map ϕi0 gives an isomorphism SU3 → (SU3)K , and
the inverse image of (SU3)K(OK) ⊂ {g ∈ A36 | ω(gklij ) ≥ 0} is just

{g ∈ SU3(K) | ω(g) ≥
(

0 −γ 0
γ 0 γ
0 −γ 0

)
}. In view of Definition 2.18, we indeed

have that P0
∼= SU3(OK).

Proof. By definition, for g ∈ SU3(K), ϕi0(g) is equal to the prod-

uct
(

Id 0 0
0 λ−1

n0
0

0 0 Id

)( g11 g12 g13
g21 g22 g23
g31 g32 g33

)( Id 0 0
0 λn0 0
0 0 Id

)
. For example, let us examine

what we get for g12. The 2 × 2 matrix
(
g1112 −βg1212
g2112 g

11
12+αg2112

)
is thus sent

to
(
π
n0+1
K g1112 −πn0K βg1212

π
n0+1
K g2112 π

n0
K (g1112+αg2112)

)
. All coefficients of this latter matrix are

integral if and only if g11
12 ∈ (π−n0

K ) and g21
12 ∈ (π−n0−1

K ). We have
(π−n0
K ) = (π−2n0

L ) = (π
−(i0−1)
L ) and (π−n0−1

K ) = (π−2n0−2
L ) = (π

−(i0+1)
L )

(recall that we are just treating the case i0 odd). But by Definition 2.32,
i0 is the smallest integer such that ω(πi0L ) ≥ γ. Hence, all coefficients

of
(
π
n0+1
K g1112 −πn0K βg1212

π
n0+1
K g2112 π

n0
K (g1112+αg2112)

)
are integral if and only if ω(g12) ≥ −γ. The

other cases are similar.

Lemma 2.49. The ideal defining SU3 in A36 is generated by the follow-
ing equations

1. If i0 is odd(
Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

)(
τi0 0 0
0 1 0
0 0 τi0

)(
Y 33 Y 23 Y 13

Y 32 Y 22 Y 12

Y 31 Y 21 Y 11

)
=

(
τi0 0 0
0 1 0
0 0 τi0

)
(2.1)(

Y 33 Y 23 Y 13

Y 32 Y 22 Y 12

Y 31 Y 21 Y 11

)( 1 0 0
0 τi0 0
0 0 1

)( Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

)
=
( 1 0 0

0 τi0 0
0 0 1

)
(2.2)
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2

πi0K
(Y 11

31 Y
11

11 + βY 21
31 Y

21
11 ) +

α

πi0K
(Y 21

31 Y
11

11 + Y 21
11 Y

11
31 ) = −(Y 21Y21)11

(2.3)
2

πi0K
(Y 11

13 Y
11

33 + βY 21
13 Y

21
33 ) +

α

πi0K
(Y 21

13 Y
11

33 + Y 21
33 Y

11
13 ) = −(Y 23Y23)11

(2.4)

for (i, j) ∈ {(1, 1); (1, 3); (3, 1); (3, 3)},

Y 12
ij = −βY 21

ij

Y 22
ij = Y 11

ij + αY 21
ij

(2.5)Y 12
21 = − β

πK
Y 21

21

Y 22
21 = πKY

11
21 + αY 21

21

Y 12
23 = − β

πK
Y 21

23

Y 22
23 = πKY

11
23 + αY 21

23

(2.6)

Y 12
12 = − β

πK
Y 21

12

πKY
22

12 = Y 11
12 + αY 21

12

Y 12
32 = − β

πK
Y 21

32

πKY
22

32 = Y 11
32 + αY 21

32

(2.7)

πKY 12
22 = − β

πK
Y 21

22

Y 22
22 = Y 11

22 + α
πK
Y 21

22

(2.8)

λ0Y22λ
−1
0 Y11Y22 + Y12Y23Y31 + Y13Y32Y21

− λ0Y22λ
−1
0 Y31Y13 − Y11Y32Y23 − Y33Y12Y21 = 1 (2.9)

2. If i0 is even(
Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

)(
τi0 0 0
0 1 0
0 0 τi0

)(
Z33 Z23 Z13

Z32 Z22 Z12

Z31 Z21 Z11

)
=

(
τi0 0 0
0 1 0
0 0 τi0

)
(2.10)(

Z33 Z23 Z13

Z32 Z22 Z12

Z31 Z21 Z11

)( 1 0 0
0 τi0 0
0 0 1

)( Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 Z33

)
=
( 1 0 0

0 τi0 0
0 0 1

)
(2.11)

2

πi0K
(Z11

31Z
11
11 + βZ21

31Z
21
11 ) +

α

πi0K
(Z21

31Z
11
11 + Z21

11Z
11
31 ) = −(Z21Z21)11

(2.12)
2

πi0K
(Z11

13Z
11
33 + βZ21

13Z
21
33 ) +

α

πi0K
(Z21

13Z
11
33 + Z21

33Z
11
13 ) = −(Z23Z23)11

(2.13)

for all i, j ∈ {1, 2, 3},

Z12
ij = −βZ21

ij

Z22
ij = Z11

ij + αZ21
ij

(2.14)
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∑
σ∈Sym(3)

[(−1)sgn(σ)
3∏
i=1

Ziσ(i)] = 1 (2.15)

Proof. Recall that we only write down the case i0 odd. Let I be the
ideal in OK [A36] generated by those equations. We want to show that
I = kerϕi0 (see Definition 2.46).

Claim 1. I ≤ kerϕi0

Proof of the claim: This can easily be checked equation by equation. For
example, ϕi0(λn0Y21) = X21, hence ϕi0(Y 21υn0) = X21. Hence, ϕ−1

i0
of

the equalities (
X33 X23 X13

X32 X22 X12

X31 X21 X11

)(
X11 X12 X13
X21 X22 X23
X31 X32 X33

)
=
(

1 0 0
0 1 0
0 0 1

)
in K[SU3] gives the equalities(

Y 33 Y 23υn0 Y 13

υ−1
n0
Y 32 υ

−1
n0
Y 22υn0 υ

−1
n0
Y 12

Y 31 Y 21υn0 Y 11

)(
Y11 Y12λ

−1
n0

Y13

λn0Y21 λn0Y22λ
−1
n0

λn0Y23

Y31 Y32λ
−1
n0

Y33

)
=
(

1 0 0
0 1 0
0 0 1

)

Now, multiplying with
(

1 0 0
0 λ−1

0 τn0+1 0
0 0 1

)
on the left and

(
1 0 0
0 τn0+1υ

−1
0 0

0 0 1

)
on

the right, we get

(
Y 33 Y 23υn0 Y 13

Y 32 Y 22υn0 Y 12

Y 31 Y 21υn0 Y 11

)(
Y11 Y12 Y13

λn0Y21 λn0Y22 λn0Y23
Y31 Y32 Y33

)
=
( 1 0 0

0 τi0 0
0 0 1

)
,

which is Equation 2.2.

As another example, from Equation 2.2, we get in particular

Y 33Y13 + τi0Y 23Y23 + Y 13Y33 = 0 (2.2,L1C3)

The 11 component of Equation 2.2,L1C3 reads

Y 22
33 Y

11
13 − Y 12

33 Y
21

13 + Y 22
13 Y

11
33 − Y 12

13 Y
21

33 = −τi0(Y 23Y23)11

Now, using Y 22
33 = Y 11

33 +αY 21
33 and Y 12

33 = −βY 21
33 (and similarly for Y13),

we get

2(Y 11
33 Y

11
13 + βY 21

33 Y
21

13 ) + α(Y 21
33 Y

11
13 + Y 21

13 Y
11

33 ) = −τi0(Y 23Y23)11
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But note that all coefficients in this equation have valuation greater

than or equal to ω(πi0K) (because ω(πi0K) =

ω(2) if α = 0

ω(α) if α 6= 0
by Defini-

tion 2.32, and if α 6= 0, ω(α) ≤ ω(2) by Lemma 2.13). Hence we can
divide both sides by πi0K and still have an equation with coefficients in
OK . Checking the other equations is a similar task. �

Let Y be the closed OK-subscheme of A36 defined by the the ideal I.
By Claim 1, SU3 is a closed subscheme of Y, and we want to prove that
they are equal. The crux of the proof relies on investigating the closed
fibre of the OK-scheme Y, or in other words, the scheme YK over K. As
it will be needed later, we elucidate what YOK/mi0K

looks like, and then
deduce what we want about YK .

Claim 2. YOK/m
i0
K

is the following OK/mi0
K-algebraic group: for any

OK/mi0
K-algebra R, YOK/mi0K

(R) =




(
w11

11 −βw21
11

w21
11 w11

11

)
( 0 0

0 0 )
(
w11

13 −βw21
13

w21
13 w11

13

)
(
w11

21 −
β
πK

w21
21

w21
21 πKw

11
21

)
( 1 0

0 1 )

(
w11

23 −
β
πK

w21
23

w21
23 πKw

11
23

)
(
w11

31 −βw21
31

w21
31 w11

31

)
( 0 0

0 0 )
(
w11

33 −βw21
33

w21
33 w11

33

)


∣∣∣∣∣∣∣∣∣∣
wij ∈ R,w11w33 − w13w31 = 1

2

π
i0
K

(w11
31w

11
11 + βw21

31w
21
11) + α

π
i0
K

(w21
31w

11
11 + w21

11w
11
31) = −(w21w21)11

2

π
i0
K

(w11
13w

11
33 + βw21

13w
21
33) + α

π
i0
K

(w21
13w

11
33 + w21

33w
11
13) = −(w23w23)11


(∗)

where the group structure is the one coming from the representation of
elements as forming a 3× 3 matrix.

Proof of the claim: We have to analyse our equations modulo πi0K , or in
other words, work in the ring (OK/mi0

K)[Y kl
ij ]/I. In particular, in view of

Definition 2.32 and Lemma 2.13, we are now working in characteristic 2.
From Equation 2.1, we get Y22Y 22 = 1, so that in particular, Y22

and Y 22 are invertible matrices. Still from Equation 2.1, we also have
Y22Y 32 = 0 = Y22Y 12. Hence, Y 32 = 0 = Y 12, so that also Y32 = 0 =

Y12. This implies that Equation 2.9 simplifies to

λ0Y22λ
−1
0 (Y11Y33 − Y31Y13) = 1
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On the other hand, Equation 2.2 gives Y 33Y11 + Y 13Y31 = 1. But
Y 33 = Y33 and Y 13 = Y13 (which follows from Equation 2.5 and the fact
that the characteristic is 2). Hence, we conclude that λ0Y22λ

−1
0 = 1, and

hence that Y22 = 1 (using Equation 2.8). Combining what we know so
far with Equations 2.5 and 2.6, we get the claim. �

Let R SL2 be the Weil restriction from OL/m2i0
L to OK/mi0

K of the
algebraic group SL2. In more concrete terms, for any OK/mi0

K-algebra
R,

RSL2(R) = {


(
w11

11 −βw21
11

w21
11 w11

11

) (
w11

13 −βw21
13

w21
13 w11

13

)
(
w11

31 −βw21
31

w21
31 w11

31

) (
w11

33 −βw21
33

w21
33 w11

33

)
 | wij ∈ R}

Claim 3. For any OK/mi0
K-algebra R, there exists a (functorial in R)

group homomorphism

fR : YOK/m
i0
K

(R)→ RSL2(R) :
(
w11

11 −βw21
11

w21
11 w11

11

)
( 0 0

0 0 )
(
w11

13 −βw21
13

w21
13 w11

13

)
(
w11

21 −
β
πK

w21
21

w21
21 πKw

11
21

)
( 1 0

0 1 )

(
w11

23 −
β
πK

w21
23

w21
23 πKw

11
23

)
(
w11

31 −βw21
31

w21
31 w11

31

)
( 0 0

0 0 )
(
w11

33 −βw21
33

w21
33 w11

33

)

 7→

(
w11

11 −βw21
11

w21
11 w11

11

) (
w11

13 −βw21
13

w21
13 w11

13

)
(
w11

31 −βw21
31

w21
31 w11

31

) (
w11

33 −βw21
33

w21
33 w11

33

)


Furthermore, fOK/mi0K
is surjective.

Proof of the claim: The map fR is readily seen to be a group homo-
morphism. Let us check that fOK/mi0K

is surjective. On the left hand
side, apart from a determinant-like equation, we have also equations like

2

π
i0
K

(w11
31w

11
11 + βw21

31w
21
11) + α

π
i0
K

(w21
31w

11
11 + w21

11w
11
31) = −(w21w21)11. But

note that (w21w21)11 = πK(w11
21)2 + (w21

21)2. Since squaring is a surjec-
tive map on OK/mK , we see that for any x ∈ OK/mi0

K , there exists
w11

21, w
21
21 ∈ OK/m

i0
K such that x = πK(w11

21)2 + (w21
21)2. The surjectivity

follows. �

Claim 4. The K-group YK is smooth of dimension 8, and is connected.

Proof of the claim: Smoothness and the computation of the dimension
over K follows directly from Claim 2. Indeed, one can see directly that
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the dimension is in between 8 and 12. But the tangent space at the
identity is obviously of codimension 4 in A12

K
, as wanted.

We now prove that YK is connected. We have a morphism

f : YK → (SL2)K :


(
w11

11 0

w21
11 w

11
11

)
( 0 0

0 0 )
(
w11

13 0

w21
13 w

11
13

)
(
w11

21 w
21
21

w21
21 0

)
( 1 0

0 1 )
(
w11

23 w
21
23

w21
23 0

)
(
w11

31 0

w21
31 w

11
31

)
( 0 0

0 0 )
(
w11

33 0

w21
33 w

11
33

)

 7→ (
w11

11 w
11
13

w11
31 w

11
33

)

which is surjective. The kernel is


(

1 0
w21

11 1

)
( 0 0

0 0 )
(

0 0
w21

13 0

)
(
w11

21 w
21
21

w21
21 0

)
( 1 0

0 1 )
(
w11

23 w
21
23

w21
23 0

)
(

0 0
w21

31 0

)
( 0 0

0 0 )
(

1 0
w21

33 1

)


∣∣∣∣∣∣∣∣ w

21
11 + w21

33 = 0,

(w21
21)2 = α

π
i0
K

w21
31, (w

21
23)2 = α

π
i0
K

w21
13


which is clearly a product of connected schemes, hence is connected. So
f : YK → (SL2)K is a surjective morphism, whose kernel and image are
connected. Hence, YK is connected. �

Claim 5. We have (SU3)K = YK , and (SU3)K = YK .

Proof of the claim: Over K, we have a composition of closed embeddings
SU3 ↪→ (SU3)K ↪→ YK . But SU3 ↪→ YK is clearly an isomorphism,
hence the claim. We now prove the equality of the closed fibre, i.e.
(SU3)K = YK . Our argument is based on [Ele]. By Claim 4, YK

is a smooth irreducible affine K-scheme of dimension 8. But (SU3)K
is a closed subscheme of YK of the same dimension. Hence (SU3)K =

YK . Indeed, theK-group schemeYK is connected (respectively smooth)
by Claim 4, thus irreducible (respectively reduced). Hence K[YK ] is a
domain. But the kernel of K[YK ] � K[(SU3)K ] is contained in the
nilradical of K[YK ] (by Krull’s principal ideal theorem), which shows
that K[YK ]� K[(SU3)K ] is injective as well (because being a domain,
K[YK ] has in particular a trivial nilradical). �

We can now conclude the proof of Lemma 2.49. We have some closed
embeddings SU3 ↪→ Y ↪→ A36, and by Claim 5, SU3 ↪→ Y is an equality
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on fibres. Hence, since (SU3)K is dense in SU3 = (SU3)K t (SU3)K
(because SU3 is a schematic adherence, see [BT84a, 1.2.6]), we conclude
that YK is dense in Y = YKtYK as well. In the terminology of [BT84a,
1.2.3], this precisely means that Y is without torsion. But there is a
1− 1 correspondence between closed K-schemes of A36

K and closed OK-
schemes of A36

OK without torsion ([BT84a, 1.2.6]). Since (SU3)K = YK ,
this concludes the proof.

For G = SL2 or SU3, we have just defined an integral model G. We
now check that in each case, G(OK) ∼= P0.

Lemma 2.50. 1. SL2,D(OK) ∼= P0

2. When γ = 0, SU3(OK) ∼= P0

3. When γ > 0, SU3(OK) ∼= P0

Proof. 1. When D = K, SL2(OK) = MorOK (OK [SL2],OK) by def-
inition, which is clearly isomorphic to SL2(OK). The case SL2,D

when [D : K] > 1 is done in the appendix (see Lemma 2.98).

2. Using the fact that OL ∼= OK ⊕ t.OK (where t ∈ OL is as in
Lemma 2.13), one can check that MorOK (OK [SU3],OK) ∼= {g ∈
SL3(OL) | S ḡg = Id}, as wanted.

3. This has already been proved in Lemma 2.48.

We now spell out what the group G(OK/mr
K) is, together with the

homomorphism pr : P0 → P 0,r
0 .

Lemma 2.51. 1. SL2(OK/mr
K) ∼= P 0,r

0 . Following the identifications

SL2(OK) SL2(OK) = P0
∼=

SL2(OK/mr
K) SL2(OK/mr

K) = P 0,r
0

∼=

the homomorphism pr : P0 → P 0,r
0 is the one induced by the projec-

tion of the coefficients OK → OK/mr
K .
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2. More generally, for D a central division algebra of degree d over
K, SL2,D(OK/mr

K) ∼= P 0,rd
0 . Following the identifications

SL2,D(OK) SL2(OD) = P0
∼=

SL2,D(OK/mr
K) SL2(OD/mrd

D ) = P 0,rd
0

∼=

the homomorphism prd : P0 → P 0,rd
0 is the one induced by the pro-

jection of the coefficients OD → OD/mrd
D .

3. When γ = 0, let ε =

1 if L is unramified

2 if L is ramified
. SU3(OK/mr

K) ∼=

P 0,εr
0 . Following the identifications

SU3(OK) P0 ≤ SL3(OL)∼=

SU3(OK/mr
K) P 0,εr

0 ≤ SL3(OL/mεr
L )∼=

the homomorphism pεr : P0 → P 0,εr
0 is the one induced by the pro-

jection of the coefficients OL → OL/mεr
L .

4. When γ > 0, there exists a surjective homomorphism of groups
SU3(OK/mi0

K) � P 0,2i0
0 . For r ≤ 2i0, we thus have the following

diagram

SU3(OK) P0 ≤ SL3(L)∼=

SU3(OK/mi0
K) P 0,2i0

0 = SL2(OL/m2i0
L )�

P 0,r
0 = SL2(OL/mr

L)

f1

f2

where f2 is induced by the ring homomorphism OL/m2i0
L → OL/mr

L.
The resulting homomorphism pr : P0 → P 0,r

0 is given by the follow-
ing formula:

f2 ◦ f1 : P0 ≤ SL3(L)→ SL2(OL/mr
L)
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( g11 g12 g13
g21 g22 g23
g31 g32 g33

)
7→
(
p(g11) p(g13)
p(g31) p(g33)

)
(where p : OL → OL/mr

L denotes the projection modulo mr
L).

Proof. 1. By definition, SL2(OK/mr
K) = MorOK (OK [SL2],OK/mr

K),
which is clearly isomorphic to SL2(OK/mr

K), as wanted.

2. This is treated in the appendix (see Lemma 2.98).

3. Using the fact that if L is unramified (respectively L is ramified),
OL/mr

L
∼= OK/mr

K ⊕ t.OK/mr
K (respectively OL/m2r

L
∼= OK/mr

K ⊕
t.OK/mr

K), one can check that

MorOK (OK [SU3],OK/mr
K) ∼= {g ∈ SL3(OL/mr

L) | S ḡg = Id}

(respectively

MorOK (OK [SU3],OK/mr
K) ∼= {g ∈ SL3(OL/m2r

L ) | S ḡg = Id})

as wanted.

4. Recall the definition of the Weil restriction R SL2 of SL2 from
OL/m2i0

L to OK/mi0
K that we discussed before Claim 3 in the proof

of Lemma 2.49. Note thatR SL2(OK/mi0
K) ∼= SL2(OL/m2i0

L ). Now,
the existence of a surjective homomorphism SU3(OK/mi0

K)→ P 0,r
0

was proved in Claim 3.

Our work on integral models, and especially the fact that they are
smooth schemes over OK , allows us to deduce the surjectivity of P0 →
P 0,r

0 . For this, we use a well-known generalised version of Hensel’s lemma
for smooth schemes, that we now recall.

Theorem 2.52 (Hensel’s lemma for smooth scheme). Let X be a smooth
OK-scheme and r1 ≥ r2 ∈ N∪{∞}. Then X(OK/mr1

K ) → X(OK/mr2
K )

is surjective (where by convention, m∞K = (0)).

Proof. It suffices to prove that for all r ∈ N, X(OK) → X(OK/mr
K) is

surjective. For r = 1, this is [Gro67, Théorème 18.5.17]. In the general
case, note that as remarked below [Gro67, Définition 18.5.5], (S, S0)

is a Henselian couple if and only if (Sred, (S0)red) is so. We deduce
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that (SpecOK ,SpecOK/mr
K) is a Henselian couple. Thus the proof of

Théorème 18.5.17 applies verbatim to our situation, upon making one
change: replace the reference to 18.5.11(b) to a reference to 18.5.4(b)

(taking S = SpecOK and S0 = SpecOK/mr
K in the notation of 18.5.4).

Corollary 2.53. 1. In the SL2(D) case, let d be the degree of D over
K. The map pr : P0 → P 0,rd

0 is surjective, for all r ∈ N.

2. In the SU3 case when γ = 0, the map pεr : P0 → P 0,εr
0 is surjective,

for all r ∈ N (where ε = 1 if L is unramified, and ε = 2 if L is
ramified).

3. In the SU3 case when γ > 0, the map pr : P0 → P 0,r
0 is surjective,

for all r ∈ N such that r ≤ 2i0.

Proof. In each case, this is a direct consequence of the commutative
square involving P0 → P 0,r

0 given in Lemma 2.51, together with the fact
that the integral model is smooth, so that Theorem 2.52 applies to the
left hand side of the diagram.

In the SU3 case when γ > 0, we furthermore have to argue that the
map f2 appearing in Lemma 2.51 is surjective, but this is just another
instance of Hensel’s Lemma (Theorem 2.52) in the SL2 case.

Remark 2.54. In the SU3 case when γ = 0 and L is ramified, we did
not prove that the map pr : P0 → P 0,r

0 is surjective when r is odd. We
did not take the time to investigate further whether such a surjectivity
holds, since we do not need it.

Along with the surjectivity of the restriction map pr : P0 → P 0,r
0 , one

of the key result in our local description of the ball of radius r is that pr
is also somehow injective enough. This result can be seen as a natural
generalisation of [BT84a, Corollaire 4.6.8].

Lemma 2.55. Let r ∈ N.

1. In the SL2(D) case, let x ∈ [−ω(πrdK ), ω(πrdK )]. Then p−1
rd (P 0,rd

x ) ⊂
Px (where d is the degree of D over K).
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2. In the SU3 case when γ = 0, let x ∈ [−ω(πεrL ), ω(πεrL )]. Then
p−1
εr (P 0,εr

x ) ⊂ Px (where ε = 1 if L is unramified, and ε = 2 if L is
ramified).

3. In the SU3 case when γ > 0, assume that r ≤ 2i0, and let x ∈
[−ω(πrL), ω(πrL)]. Then p−1

r (P 0,r
x ) ⊂ Px.

Proof. In the SL2(D) case (respectively the SU3 case when γ = 0), be-
longing to p−1

rd (P 0,rd
x ) (taking d = 1 in the SU3 case) implies that the

valuation of the off diagonal entries are big enough. Hence, the result
follows directly from Definition 2.12 and Definition 2.18.

In the SU3 case when γ > 0, let g ∈ p−1
r (P 0,r

x ). We want to show
that g ∈ Px. We can assume that x ∈ [0, ω(πrL)], the argument when x
is negative being similar.

By assumption, we know that ω(g31) ≥ x, and we want to show that
this implies ω(g21) ≥ x

2 + γ and ω(g32) ≥ x
2 − γ. Since g ∈ SU3(K),

ϕi0(g) ∈ SU3(OK). In particular, the coefficients of g satisfy

2

πi0K
(g11

31g
11
11 + βg21

31g
21
11) +

α

πi0K
(g21

31g
11
11 + g21

11g
11
31) = −(g21τ

−1
i0
g21)11

Note that (g21g21)11 = (g11
21 +αg21

21)g11
21 + β(g21

21)2, an that τ−1
i0

is just
multiplication by π−i0K . Also recall that if α = 0, ω(2) = ω(πi0K) = 2γ,
while if α 6= 0, ω(α) = ω(πi0K) = 2γ + ω(πL) (see Definition 2.15 and
Definition 2.32). Furthermore, if α 6= 0, ω(α) ≤ ω(2) by Lemma 2.13.
Hence, we get

ω((g11
21 + αg21

21)g11
21 + β(g21

21)2) ≥ 2γ + x

But ω((g11
21 + αg21

21)g11
21 + β(g21

21)2) = min{ω((g11
21)2);ω(β(g21

21)2)} =

2ω(g21), so that ω(g21) ≥ γ + x
2 , as wanted.

Finally, using again that g ∈ SU3(K), we also find g21g33 + g22g32 +

g23g31 = 0. By Claim 2 of Lemma 2.49, if i0 is odd (respectively even)
λ−1
n0
g22λn0 (respectively g22) is equal to ( 1 0

0 1 ) modulo mi0
K . Thus g22 is in

particular of valuation 0. Hence, we get that g32 is of the same valuation
than g21g33 + g23g31. Since g ∈ P0, ω(g33) ≥ 0 ≤ ω(g23), and we know
that ω(g31) ≥ x ≥ x

2 ≤ ω(g21). This concludes the proof.
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We arrive finally at our main result, which is that the ball of radius
rd (respectively r), together with the action of SL2(OD) (respectively
SU3(OK)), is encoded in P 0,rd

0 (respectively P 0,r
0 ). Let us first state our

definition of the ball of radius r.

Definition 2.56. Let G be SL2(D) (respectively SU
L/K
3 (K)). Let π =

πD and d =
√

[D : K] (respectively π = πL and d = 1). The ball of
radius rd around 0 ∈ R is

B0(rd) = {[(g, x)]0 ∈ I0 | x ∈ [−ω(πrd), ω(πrd)] ⊂ R, g ∈ P0}

Remark 2.57. Recall that the map B0(rd) → I : [(g, x)]0 7→ [(g, x)] is
an equivariant embedding by Lemma 2.27.

The following result explains why we call B0(rd) the ball of radius
rd.

Lemma 2.58. In the SL2(D) case (respectively the SU3(K) case), let
π = πD and d =

√
[D : K] (respectively π = πL and d = 1). Let us

identify B0(rd) with its image in I under I0 → I. Renormalise the
distance on R so that dR(0, ω(π)) = 1, and put the metric dI on I
arising from the distance dR (see Remark 2.22). Then B0(rd) = {p ∈
I | dI([Id, 0], p) ≤ rd}.

Proof. Looking at the embedding R ↪→ I : x 7→ [(Id, x)], it is easy to
identify which x ∈ R are vertices of the tree I. Indeed, x ∈ R is a
vertex of I if and only if Px strictly contains Px+ε (where ε is a real
number such that |ε| < ω(π)). From our description of Px, one readily
check that x ∈ R is a vertex of I if and only if x ∈ Z .ω(π) = ω(πZ).
Now, if [(g, x)] ∈ B0(rd), then dR(0, x) ≤ rd by our normalisation of the
distance on R, while if dI([(Id, 0)], [(g, x)]) ≤ rd, then (g, x) ∼ (Id, y)

with dR(0, y) ≤ rd, so that [(g, x)] ∈ B0(rd), as wanted.

Theorem 2.59. Let r ∈ N. Depending on cases, we assume the follow-
ing:

1. In the SU3 case when γ = 0 and L is ramified, we assume that r
is even.
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2. In the SU3 case when γ > 0, we assume that r ≤ 2i0.

Also, let d =
√

[D : K] in the SL2(D) case (respectively d = 1 in the
SU3 case). The map B0(rd) → I0,rd : [(g, x)]0 7→ [(prd(g), x)]0,rd is a
(prd : P0 → P 0,rd

0 )-equivariant bijection.

Proof. It is readily seen that the given map is well-defined.

• Injectivity: let [(g, x)]0, [(h, y)]0 ∈ B0(rd) be such that they have
the same image in I0,rd. By Remark 2.37, it means that for all
ñ ∈ N0,rd such that ν(ñ)(x) = y, prd(g)−1prd(h)ñ ∈ P 0,rd

x . So,
we can assume that ñ is either equal to Id, or is of the form(

0 1
−1 0

)
(respectively

(
0 0 1
0 −1 0
1 0 0

)
) in the SL2(D) case (respectively

the SU3 case). Hence, there exists n ∈ N such that prd(n) = ñ.
But ν(n)(x) = y, and g−1hn ∈ p−1

rd (P 0,rd
x ) ⊂ Px by Lemma 2.55.

Hence, [(g, x)]0 = [(h, y)]0, as wanted.

• Surjectivity: follows directly from the surjectivity of prd : P0 →
P 0,rd

0 (Corollary 2.53).

• Equivariance:

h.[(g, x)]0 = [(hg, x)]0 7→ [(prd(hg), x)]0,rd = prd(h).[(prd(g), x)]0,rd

2.5 Convergences on the arithmetic side

2.5.1 The topological space of quadratic pairs of local
fields

Definition 2.60. Consider the set of pairs of local fields (K,L) where
either

1. K = L (equipped with the trivial conjugation action).

2. L is a separable quadratic extension of K.

We say that a pair (K,L) is trivial (respectively ramified, respectively
unramified) if L = K (respectively L is quadratic ramified, respectively
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L is quadratic unramified). We also use those adjectives for L, when the
pair under consideration is implicit. Furthermore, we freely amalgamate
the notions of local fields and trivial pair of local fields.

Remark 2.61. Strictly speaking, a trivial extension of a local field is
both ramified and unramified, but we nevertheless adopt the above vo-
cabulary to be able to easily differentiate the three kinds of pairs.

Definition 2.62. We say that two pairs (K1, L1) and (K2, L2) are iso-
morphic if there exists a conjugation equivariant isomorphism between
the two pairs. Let L be the set of pairs of local fields as in Defini-
tion 2.60, up to isomorphism. For each prime p, let us also define
Lpn = {(K,L) ∈ L | |K| = pn}.

Following an idea dating back to Krasner (see [Del84] for references,
this idea is also used in e.g. [Kaz86]), we define a metric on the space L.

Definition 2.63. Let (K1, L1) and (K2, L2) be in L. The conjugation
induces an automorphism of OLi/mr

Li
, for any r ∈ N. We say that

(K1, L1) is r-close to (K2, L2) if and only if there exists a conjugation
equivariant isomorphismOL1/m

r
L1
→ OL2/m

r
L2

inducing an isomorphism
OK1/(m

r
L1
∩ OK1)→ OK2/(m

r
L2
∩ OK2).

Remark 2.64. If L is unramified or if the residue characteristic is not
2, a conjugation equivariant isomorphism OL1/m

r
L1
→ OL2/m

r
L2

always
induces an isomorphism OK1/(m

r
L1
∩ OK1) → OK2/(m

r
L2
∩ OK2), since

in those cases, OK1/(m
r
L1
∩ OK1) is the invariant subring of OL1/m

r
L1
.

We do not know if it still holds in the ramified and residue characteristic

2 case. Also note that (mr
L1
∩ OK1) =

m
d r
2
e

K1
if L1 is ramified

mr
K1

if L1 is unramified
.

Remark 2.65. Note that being r-close is an equivalence relation, and
that if r ≥ l and (K1, L1) is r-close to (K2, L2), then (K1, L1) is l-close
to (K2, L2).

We now observe that this notion of closeness induces a metric which
is non-archimedean on L. Let d : L × L → R≥0 be defined by

d((K1, L1), (K2, L2)) = inf{ 1

2r
| (K1, L1) is r-close to (K2, L2)}
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Lemma 2.66. d(., .) is a non-archimedean metric on L.

Proof. If d((K1, L1), (K2, L2)) = 0, then OL1 and OL2 are equivariantly
isomorphic. But then, the pairs of field of fraction are isomorphic in L, as
wanted. The fact that this distance is non-archimedean is a consequence
of Remark 2.65.

Remark 2.67. With this definition, if d((K1, L1), (K2, L2)) ≤ 1
2 , then

L1 is unramified if and only if L2 is unramified. In other words, un-
ramified pairs are always at distance 1 from other kind of pairs. This is
because L is unramified if and only if the conjugation action is non-trivial
on the residue field.

A crucial fact about the space Lpn (for a fixed prime power pn, as
in Definition 2.62) is that it is a compact space. As was outlined in the
introduction, this is one of the key observation to prove that Sqs-alg

T is
closed in ST . In fact, it is even possible to give an explicit description
of the metric space Lpn . It takes some time to establish this explicit
description, but it only uses basic facts from the theory of local fields.
The corner stone in this description is Theorem 2.68 which is certainly
well known to experts (this is for example used implicitly in [Kaz86]).
While working on this chapter, we learnt that it had also been obtained
and used independently in [dT15, Lemma 1.3]. Given its importance, we
decide nevertheless to include our own proof.

Theorem 2.68. Let K be a totally ramified extension of degree k of
Qpn. The distance between K and Fpn((X)) is 1

2k
. More explicitly, let

{ax}x∈Fpn ⊂ Qpn be a set of representative of K. Then the bijection

ϕπK : OK → Fpn [[X]]
∞∑
i=0

axiπ
i
K 7→

∞∑
i=0

xiX
i

(which depends on a choice of uniformiser of K) induces an isomorphism
of ring

ϕπK : OK/mk
K → Fpn [[X]]/(Xk)
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Proof. Let {ax}x∈Fpn be a set of representative of K. Since Qpn ≤
K, we can choose the ax’s so that they all lie in Qpn . Now, we have
(ax + ay) − ax+y ∈ (p) and (axay) − axy ∈ (p). But also, since K
is totally ramified, (p) = mk

K . Hence, this implies that the map ϕK

(which is always a bijection, by the general theory of local fields) is a
homomorphism modulo mk

K and (Xk).

To conclude that K and Fpn((X)) are at distance 1
2k
, it suffices to

observe that OK/mk+1
K is not isomorphic to Fpn [[X]]/(Xk+1). But this

is clear, since p /∈ mk+1
K , hence

p∑
i=1

1 6= 0 in OK/mk+1
K .

We need a series of variations on Theorem 2.68, that we now state
as corollaries.

Corollary 2.69. 1. Let K be a totally ramified extension of degree k
of Qpn, and let L be the unramified quadratic extension of K. The
distance between (K,L) and (Fpn((X)),Fp2n((X))) is 1

2k
.

2. Let K be a totally ramified extension of degree k of Qpn, where p
is an odd prime, and let L be a ramified quadratic extension of K.
The distance between (K,L) and (Fpn((X)),Fpn((

√
X))) is 1

22k
.

3. Let F2n((X))[T ]/T 2−αT +X be a separable quadratic ramified ex-
tension of F2n((X)), with α ∈ (X). Let K be a totally ramified
extension of degree k of Q2n, and let ϕπK : OK → F2n [[X]] be the
bijection defined in Theorem 2.68. Finally, let a = ϕ−1

πK
(α) ∈ OK .

Then (K,K[T ]/T 2 − aT + πK) is 2k-close to the ramified pair
(F2n((X)),F2n((X))[T ]/T 2 − αT +X).

Proof. 1. As in the proof of Theorem 2.68, let {ax}x∈Fpn be a set of
representative of K such that ax ∈ Qpn , for all x ∈ Fpn .

Since unramified extensions correspond to extensions of the residue
field, there exists α, β ∈ Fpn such that

L ∼= K[T ]/T 2 − aαT + aβ

Fp2n((X)) ∼= Fpn((X))[T ]/T 2 − αT + β
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Observing furthermore that

OL/mk
L
∼= OK/mk

K ⊕ t.OK/mk
K

Fp2n [[X]]/(Xk) ∼= Fpn [[X]]/(Xk)⊕ t.Fpn [[X]]/(Xk)

it is clear (in view of Theorem 2.68) that (K,L) is k-close to
(Fpn((X)),Fp2n((X))).

To conclude that the distance is 1
2k

it suffices to note that if (K,L)

and (Fpn((X)),Fp2n((X))) were r-close for r > k, then K and
Fpn((X)) would be r-close as well, contradicting Theorem 2.68.

2. First note that by Lemma 2.13, there exists a uniformiser πK ∈ K
such that L ∼= K[T ]/T 2 + πK (since we avoid by assumption the
residue characteristic 2). Also note that for any uniformiser β ∈
Fpn((X)), the pair (Fpn((X)),Fpn((X))[T ]/T 2 + β) is isomorphic to
the pair (Fpn((X)),Fpn((

√
X))) (so that despite appearances, there

is only one ramified pair on Fpn((X))).

Since

OL/m2k
L
∼= OK/mk

K ⊕ t.OK/mk
K

Fpn [[
√
X]]/(

√
X

2k
) ∼= Fpn [[X]]/(Xk)⊕

√
X.Fpn [[X]]/(Xk)

it is clear (in view of Theorem 2.68) that (K,L) is 2k-close to
(Fpn((X)),Fpn((

√
X))).

To conclude that the distance is 1
2k

it suffices to note that if (K,L)

and (Fpn((X)),Fpn((
√
X))) were r-close for r > 2k, then K and

Fpn((X)) would be d r2e-close as well, contradicting Theorem 2.68.

3. The ingredients are similar than for the previous assertions: by
Theorem 2.68, OK/mk

K
∼= F2n [[X]]/(Xk). Observing that for a

ramified quadratic extension L = K[t] of K, we have OL/m2r
L
∼=

OK/mr
K ⊕ t.OK/mr

K , we directly obtain the conclusion. We could
also easily conclude that the distance is 1

22k
, but we do not need

this information.

We also need two further results in the residue characteristic 2 case.
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Lemma 2.70. 1. (F2n((X)),F2n((X))[T ]/T 2 − XiT + X) is at dis-
tance 1

22i
from F2n((X)).

2. Any separable quadratic ramified extension of F2n((X)) is of the
form F2n((X))[T ]/T 2 − αT + X, for some non zero α ∈ (X).
Also, given i ∈ N, there are only finitely many extensions (up
to isomorphism) of the form F2n((X))[T ]/T 2 − αT +X where α ∈
(Xi) \ (Xi+1).

Proof. 1. To simplify notations, let L = F2n((X))[T ]/T 2 −XiT +X.
Observe that the conjugation action is trivial on OL/m2i

L , so that
OL/m2i

L
∼= F2n [[X]]/(Xi) ⊕

√
X.F2n [[X]]/(Xi), with trivial conju-

gation action. Hence, (F2n((X)),F2n((X))[T ]/T 2 − XiT + X) is
2i-close from F2n((X)). Now, the conjugation action is non-trivial
on OL/m2i+1

L , so that the distance is 1
22i

.

2. By Lemma 2.13, any quadratic ramified extension is of the form
F2n((X))[T ]/T 2 − αT + β, where β ∈ (X) \ (X2) and α ∈ (X).
Now, because F2n((X)) has many isomorphisms, such an extension
is always (equivariantly) isomorphic to an extension of the desired
form. For the last statement, mimicking the proof of [Lan94, Chap-
ter II, §5, Proposition 14], the finiteness follows directly from the
compactness of (Xi) \ (Xi+1).

As in the introduction, let N̂ denote the one point compactification
of N.

Proposition 2.71. Let p be an odd prime number. Then Lpn is home-
omorphic to N̂ × {1, 2, 3}. On the other hand, L2n is homeomorphic
to N̂

2
. Furthermore, in L2n, the set of unramified pairs form a clopen

subset homeomorphic to N̂.

Proof.

Claim 1. Let K be a local field. If |K| = pn, then K is a totally ramified
extension of Qpn, or it is isomorphic to Fpn((X)).

Proof of the claim: By the classification of local fields, K is either a
finite extension of Qp, or isomorphic to Fpn((X)) for some prime power
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pn. Since Fpn((X)) = Fpn , the latter case is clear. For the first case,
K = Fpn if and only if the maximal unramified subextension of K is
Qpn . �

Claim 2. Let (Kk, Lk) and (Kl, Ll) be trivial pairs (respectively un-
ramified, respectively ramified and of residue characteristic not 2). As-
sume that Kk and Kl are totally ramified extension of Qpn such that
[Kk : Qpn ] = k < [Kl : Qpn ] = l. Then the distance between (Kk, Lk)

and (Kl, Ll) is 1
2k
.

Proof of the claim: We observed in Lemma 2.66 that L is a metric space
which is non-archimedean, and hence every triangle is isosceles. Thus,
the distance between (Kk, Lk) and (Kl, Ll) is either 1

2k
or 1

2l
(taking in

each case as a comparison point the corresponding pair in positive char-
acteristic, and using Theorem 2.68, or Corollary 2.69). But in the latter
case, since being l-close is an equivalence relation, we would conclude
that (Kk, Lk) is l-close to Fpn((X)), which would contradict Theorem 2.68
or Corollary 2.69. �

Claim 3. There are only finitely many totally ramified extension of de-
gree ≤ k of a local field of characteristic 0.

Proof of the claim: This is just a well-known corollary of the so called
Krasner’s Lemma. A proof of Claim 3 can be found in [Lan94, Chapter II,
§5, Proposition 14]. �

Claim 4. Let (K,L) ∈ Lpn. If K is of characteristic 0, the pair (K,L)

is isolated in Lpn.

Proof of the claim: Since unramified pairs are at distance 1 from other
kind of pairs, it follows from Claim 2 and Claim 3 that unramified pairs
of characteristic 0 are isolated in Lpn .

When p is an odd prime, ramified pairs are at distance 1
2 from trivial

pairs, and there are only 2 different quadratic ramified extension of a
given local field (since p is odd) hence the result follows again from
Claim 2 and Claim 3 in this case.
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Finally, when p = 2, let (K,L) be a trivial or ramified pair of charac-
teristic 0 belonging to L2n . By definition, if (K,L) is r-close to (K̃, L̃),
then K is d r2e-close to K̃. Hence, by Claim 2 for trivial pairs, (K,L)

is isolated from pairs (K̃, L̃) where K̃ is either of characteristic 2, or
[K̃ : Q2n ] 6= [K : Q2n ]. But there are only finitely many pairs (K,L)

with [K : Q2n ] = k by Claim 3. Hence, the conclusion. �

Claim 5. Lpn is a countable space.

Proof of the claim: By Claim 3, there are only countably many pairs
of characteristic 0. For pairs of positive characteristic, if p is odd, there
is only one pair of each type (recall that we consider pairs up to iso-
morphism). If p = 2, there is one trivial pair and one unramified
pair, and there are countably many ramified pairs of characteristic 2

by Lemma 2.70. �

We are now able to deduce the homeomorphism type of Lpn : for p any
prime, the unramified pairs are isolated from other kind of pairs in Lpn .
Furthermore, unramified pairs of characteristic 0 are isolated by Claim 4,
and the unramified pair of positive characteristic is an accumulation
point by Corollary 2.69. Hence, by [MS20, Théorème 1], unramified
pairs account for one disjoint copy of N̂.

When p is odd, trivial pairs (respectively ramified pairs) are isolated
from ramified pairs (respectively trivial pairs), the characteristic 0 ones
are isolated by Claim 4, and the unique pair of positive characteristic is
an accumulation points by Theorem 2.68 and Corollary 2.69, so that we
obtain two more disjoint copies of N̂.

Finally, when p = 2, since pairs of characteristic 0 are isolated by
Claim 4, the first Cantor Bendixson derivative L(1)

2n contains only pairs
of positive characteristic, and L(1)

2n contains all of them by Corollary 2.69.
Also, by Lemma 2.70, ramified pairs are isolated in L(1)

2n , and the trivial
pair F2n((X)) is an accumulation point in L(1)

2n . So that again by [MS20,
Théorème 1], we get the result.
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2.5.2 The topological space of division algebras

In Section 2.5.1, we studied convergence in the space L of pairs of local
fields. This subsequently allows us to conclude convergence in a corre-
sponding Chabauty space (see Theorem 2.78), in the case of quasi-split
(absolutely simple, simply connected) algebraic groups of rank 1 (i.e. in
the SL2(K) case and the SU3 case). It turns out that groups of the form
SL2(D) with [D : K] > 1 do not converge to quasi-split groups in the
Chabauty space, and hence we can treat arithmetical convergence for
division algebras separately from arithmetical convergences of pairs of
local fields.

Definition 2.72. Let D be the set of finite dimensional division alge-
bras D over a local field K, up to isomorphism. Let also Dpn = {D ∈
D | |D| = pn}. As in Section 2.5.1, we say that D1 is r-close to D2 if
and only if there exists an isomorphism OD1/m

r
D1
→ OD2/m

r
D2

.

Again, this notion of closeness induces a non-archimedean metric on
D, by defining

d : D ×D → R≥0 : d(D1, D2) = inf{ 1

2r
| D1 is r-close to D2}

It is then quite straightforward to work out the homeomorphism type
of Dpn .

Proposition 2.73. Let p be a prime number. Then Dpn is homeomor-
phic to N̂× {1, . . . , n}.

Proof. Let D ∈ Dpn . By Definition 2.89, D is isomorphic to the cyclic
algebra (E/K, σr, πK), where [E : K] = d divides n, r ∈ (Z/dZ)× and
|K| = p

n
d . Furthermore, it is easily seen that if D1 = (E1/K1, σ

r1 , πK1)

is 2-close to D2 = (E2/K2, σ
r2 , πK2), then [E1 : K1] = [E2 : K2] and

r1 = r2.
Using Theorem 2.68 and the explicit description of central division

algebra given in Appendix 2.B, we see that a point in Dpn is isolated if
and only if the corresponding division algebra is of characteristic 0 (see
also [dT15, Theorem 1.2]). Finally, Dpn is a countable space, and it is
readily seen that the number of positive characteristic division algebras
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in Dpn is equal to
∑
d|n
|(Z/dZ)×| = n. Hence, the result follows from

[MS20, Théorème 1].

2.6 Continuity from local fields to subgroups of
Aut(T )

Definition 2.74. Let (K,L) ∈ L.

1. If (K,L) is trivial, we associate to it the group SL2(K).

2. if (K,L) is ramified or unramified, we associate to it the group
SU

L/K
3 (K).

The associated group is denoted G(K,L). Similarly, we associate to D ∈
D the group GD = SL2(D) (note that if D = K, the two definitions
coincide).

Proposition 2.75. Let (K1, L1) and (K2, L2) be two elements in L that
are r-close, with r > 1. Let Gi be the algebraic group associated with
(Ki, Li). Then (P 0,r

0 )G1
∼= (P 0,r

0 )G2 , and I
0,r
G1

is equivariantly in bijection
with I0,r

G2
, except when (K1, L1) is a ramified pair and (K2, L2) is trivial.

In this latter case, (P 0,r−1
0 )G1

∼= (P 0,r−1
0 )G2 , and I

0,r−1
G1

is equivariantly
in bijection with I0,r−1

G2

Proof. We prove it on a case by case analysis.

1. When the pair are both trivial, the isomorphism OK1/m
r
K1
∼=

OK2/m
r
K2

induces an isomorphism ϕ : (P 0,r
0 )G1 =SL2(OK1/m

r
K1

) ∼=
SL2(OK2/m

r
K2

) = (P 0,r
0 )G2 . Define a linear map f : R → R : x 7→

x
ω(πK2

)

ω(πK1
) . It is clear that for all x ∈ [−ω(πrK1

);ω(πrK1
)], ϕ restricts

to an isomorphism (P 0,r
x )G1

∼= (P 0,r
f(x))G2 . Furthermore,

ϕ(T 0,r)G1 = (T 0,r)G2

ϕ(M0,r)G1 = (M0,r)G2

and for all n ∈ N0,r, f(n.x) = ϕ(n).f(x). Thus, the map I0,r
G1
→

I0,r
G2

: [(g, x)]0,r 7→ [(ϕ(g); f(x))]0,r is a ϕ-equivariant bijection.
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2. When the pair are both ramified of both unramified, the argument
is the same than for the previous case: the conjugation equivariant
isomorphism OL1/m

r
L1
∼= OL2/m

r
L2

induces an isomorphism ϕ

SL3(OL1/m
r
L1

) SL3(OL2/m
r
L2

)∼=
∨

(P 0,r
0 )G1 (P 0,r

0 )G2

∨

ϕ

Define a linear map f : R→ R : x 7→ x
ω(πL2

)

ω(πL1
) . It is clear that for all

x ∈ [−ω(πrL1
);ω(πrL1

)], ϕ restricts to an isomorphism (P 0,r
x )G1

∼=
(P 0,r

f(x))G2 . Furthermore,

ϕ(T 0,r)G1 = (T 0,r)G2

ϕ(M0,r)G1 = (M0,r)G2

and for all n ∈ N0,r, f(n.x) = ϕ(n).f(x). Hence, the map I0,r
G1
→

I0,r
G2

: [(g, x)]0,r 7→ [(ϕ(g); f(x))]0,r is a ϕ-equivariant bijection.

3. Recall that unramified pairs are isolated from pairs of other types,
and that ramified pairs in residue characteristic not 2 are at dis-
tance 1

2 from trivial pairs. Since we assume that r > 1, there
just remains to examine the case when a trivial pair is r-close to a
ramified pair in residue characteristic 2.

Without loss of generality, (K1, L1) is the ramified pair. Let t ∈ L1

be such that t2 = αt− β, where t, α and β are as in Lemma 2.13.
Since (K1, L1) is r-close to (K2, L2) and (K2, L2) is a trivial pair,
in particular the conjugation is trivial modulo mr

L. Hence, if α 6= 0

(respectively if α = 0), ω(2) ≥ ω(α) = ω(πi0K) ≥ ω(πrL) (respec-
tively ω(2) = ω(πi0K) ≥ ω(πr−1

L )), so that we have r − 1 ≤ 2i0, as
needed to apply Definition 2.33 to r − 1.

That being said, we can proceed as for the other cases: the iso-
morphism OL1/m

r−1
L1

∼= OL2/m
r−1
L2

induces in turn an isomorphism
ϕ : (P 0,r−1

0 )G1 = SL2(OL1/m
r−1
L1

) ∼= SL2(OL2/m
r−1
L2

) = (P 0,r−1
0 )G2 .

Define a linear map f : R → R : x 7→ x
ω(πL2

)

ω(πL1
) . It is clear that

for all x ∈ [−ω(πr−1
L1

);ω(πr−1
L1

)], ϕ restricts to an isomorphism
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(P 0,r−1
x )G1

∼= (P 0,r−1
f(x) )G2 . Furthermore,

ϕ(T 0,r−1)G1 = (T 0,r−1)G2

ϕ(M0,r−1)G1 = (M0,r−1)G2

and for all n ∈ N0,r−1, f(n.x) = ϕ(n).f(x). Hence, the map
I0,r−1
G1

→ I0,r−1
G2

: [(g, x)]0,r 7→ [(ϕ(g); f(x))]0,r is a ϕ-equivariant
bijection.

Proposition 2.76. Let D1 and D2 be two elements in D that are rd1-
close, with r ≥ 1 and with d1 =

√
[D1 : K1]. We have

√
[D1 : K1] =√

[D2 : K2] = d. Let Gi be the algebraic group associated with Di. Then
(P 0,rd

0 )G1
∼= (P 0,rd

0 )G2, and I
0,rd
G1

is equivariantly in bijection with I0,rd
G2

.

Proof. The proof is the same than the proof of Proposition 2.75. The
isomorphism OD1/m

rd
D1
∼= OD2/m

rd
D2

induces in turn an isomorphism
ϕ : (P 0,rd

0 )G1 = SL2(OD1/m
rd
D1

) ∼= SL2(OD2/m
rd
D2

) = (P 0,rd
0 )G2 . Define

a linear map f : R → R : x 7→ x
ω(πD2

)

ω(πD1
) . It is clear that for all x ∈

[−ω(πrdD1
);ω(πrdD1

)], ϕ restricts to an isomorphism (P 0,rd
x )G1

∼= (P 0,rd
f(x))G2 .

Furthermore,

ϕ(T 0,rd)G1 = (T 0,rd)G2

ϕ(M0,rd)G1 = (M0,rd)G2

and for all n ∈ N0,rd, f(n.x) = ϕ(n).f(x). Hence, the map I0,rd
G1
→

I0,rd
G2

: [(g, x)]0,rd 7→ [(ϕ(g); f(x))]0,rd is a ϕ-equivariant bijection.

We can finally go back to our original problem, which is to study
convergence of algebraic groups in the Chabauty space of Aut(T ). We
first discuss the homomorphism G→ Aut(T ) (for G equal to SL2(D) or
SU

L/K
3 (K)).

Proposition 2.77. Let G be either SL2(D) or SU3(K), and let TG be
its associated Bruhat–Tits tree (Definition 2.21). The induced homomor-
phism ˆ : G→ Aut(TG) is continuous with closed image, and the kernel
is equal to the center of G.
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Proof. In each case, the group Px is really the stabiliser of [(Id, x)] ∈ I
(see Remark 2.22). Since a basic identity neighbourhood in Aut(T ) is
given by intersecting finitely many vertices stabilisers, the continuity fol-
lows. The fact that the image is closed follows from the general argument
in [BM96, Lemma 5.3]. Finally, the kernel can also be seen directly from
the explicit description of Px. Indeed, if g is in the intersection

⋂
x∈R

Px,

then g is diagonal. But also, the conjugation action of g on root groups
needs to be trivial, so that g is in the center of G. Conversely, the center
of G clearly acts trivially on I, which concludes the proof.

The convergence is then a more or less direct consequence of Theo-
rem 2.59.

Theorem 2.78. Let ((Ki, Li))i∈N be a sequence in L which converges
to (K,L). Let T = T(K,L) (respectively Ti = T(Ki,Li)) be the Bruhat–Tits
tree of G = G(K,L) (respectively Gi = G(Ki,Li)). For N big enough and
for all i ≥ N , there exist isomorphisms Ti ∼= T such that the induced
embeddings Ĝi ↪→ Aut(T ) make (Ĝi)i≥N converge to Ĝ in the Chabauty
topology of Aut(T ).

Remark 2.79. The convergence depends on a choice of specific isomor-
phisms Ti ∼= T , or in other words it depends on choosing how Ĝi sits
in Aut(T ). This dependence is not problematic since for two isomor-
phic closed subgroups H,H ′ of Aut(T ) both acting 2-transitively on ∂T ,
there exists g in the fixator of e0 such that gHg−1 = H ′, where e0 is
any edge of T (see [Rad15, Proposition A.1], and recall also that H acts
transitively on the edges of T ). Hence, for other choices of embeddings,
the sequence converges to a conjugate of Ĝ in Aut(T ). Recall also that
we introduced the space ST in the introduction precisely to avoid this
dependence.

The main step of the proof is to establish that the sequence of sta-
bilisers ((P̂0)Gi)i≥N converges to the stabiliser (P̂0)G in Aut(T ). From
there, we can conclude that (Ĝi)i≥N converges to Ĝ from general theory.

Proof. As we recall in the introduction, the Bruhat–Tits tree T is regular
of degree pn+1 (respectively semiregular of degree (p3n+1; pn+1)) if the
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pair (K,L) is trivial or ramified (respectively unramified) and belongs
to Lpn . This shows that there exists N such that for all i ≥ N , Ti ∼= T .

Passing to a subsequence, we can assume that (Ki, Li) is (2i + 1)-
close to (K,L). We now define an explicit isomorphism fi : Ti = IGi →
IG = T as follows: let I0,2i

Gi
∼= I0,2i

G be the isomorphism given by Proposi-
tion 2.75. By Theorem 2.59, this gives an isomorphism on balls of radius
2i: IGi ⊃ B0(2i) ∼= B0(2i) ⊂ IG (recall that by Lemma 2.58, B0(2i)

is really the ball of radius 2i on the tree IG). As IGi is a semiregular
tree of the same bidegree than IG, we can extend this isomorphism of
balls to an isomorphism fi : IGi → IG (this extension is of course not
unique, but we choose one such). By means of fi, we get an embedding
Ĝi → Aut(T ).

We claim that ((P̂0)Gi)i∈N converges to (P̂0)G. Proving this claim
amounts to prove two things (according to [CR16, Lemma 2.1]).

1. Let (ĥi) be a sequence such that ĥi ∈ (P̂0)Gi , and assume that ĥi
converges to ĥ in Aut(T ). We have to show that ĥ ∈ (P̂0)G. For all
i, let hi ∈ (P0)Gi be an inverse image of ĥi underˆ : Gi → Aut(T ).
Let h̄i = p2i(hi) ∈ (P 0,2i

0 )Gi . Let ϕ2i : (P 0,2i
0 )Gi

∼= (P 0,2i
0 )G be

the isomorphism given in Proposition 2.75. By Corollary 2.53,
there exists h̃i ∈ (P0)G which is an inverse image of ϕ2i(h̄i) un-
der p2i : (P0)G → (P 0,2i

0 )G. Now, because all the identifications
were equivariant, the action of h̃i on the ball of radius 2i around
0 is the same than the action of ĥi on this ball. Hence, (

ˆ̃
hi) con-

verges to ĥ as well. But (P̂0)G is a closed subgroup of Aut(T ) (by
Proposition 2.77), hence ĥ ∈ (P̂0)G, as wanted.

2. Conversely, given an element ĥ ∈ (P̂0)G, we have to find a sequence
(ĥi) of elements in (P̂0)Gi such that ĥi converges to ĥ ∈ Aut(T ).
It suffices to follow the path of identifications in reverse : let h be
an inverse image of ĥ under ˆ : G → Aut(T ). Let h̄i = p2i(h) ∈
(P 0,2i

0 )G, and let ϕ2i : (P 0,2i
0 )G ∼= (P 0,2i

0 )Gi be the isomorphism
given in Proposition 2.75. For all i, let hi be an inverse image
of ϕ2i(h̄i) under p2i : (P0)Gi → (P 0,2i

0 )Gi , which exists by Corol-
lary 2.53. Now, because all the identifications were equivariant,
the action of hi on the ball of radius i around 0 is the same than
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the action of h on this ball. Hence, (ĥi) converges to ĥ, as wanted.

Finally, from the convergence of ((P̂0)Gi)i≥N to (P̂0)G, we can formally
deduce the convergence of (Ĝ)i≥N to Ĝ. Indeed by [CR16, Theorem 1.2],
(Ĝi)i≥N subconverges to a topologically simple group H. But since
((P̂0)Gi)i≥N converges to (P̂0)G, H has an open compact subgroup iso-
morphic to (P̂0)G. Hence, by [CS15, Corollary 1.3], H is algebraic. And
hence, by [Pin98, Corollary 0.3], H ∼= G. Since by the same argument,
any subsequence of (Ĝi)i≥N subconverges to Ĝ, we conclude that (Ĝi)i≥N

converges to Ĝ.

Similarly, we can prove the corresponding statement for sequences in
D.

Theorem 2.80. Let (Di)i∈N be a sequence in D which converges to D.
Let T = TD (respectively Ti = TDi) be the Bruhat–Tits tree of G = GD

(respectively Gi = GDi). For N big enough and for all i ≥ N , there exist
isomorphisms Ti ∼= T such that the induced embeddings Ĝi ↪→ Aut(T )

make (Ĝi)i≥N converge to Ĝ in the Chabauty topology of Aut(T ).

Proof. The Bruhat–Tits tree TDi is the regular tree of degree pn + 1 if
and only if Di belongs to Dpn . Hence there exists N such that for all
i ≥ N , Ti ∼= T .

Passing to a subsequence, we can assume that Di is (di)-close to
D, where D is of degree d over its center. Hence, for i ≥ 1, Di is
also of degree d over its center. We now define an explicit isomorphism
fi : Ti = IGi → IG = T as follows: let I0,di

Gi
∼= I0,di

G be the isomorphism
given by Proposition 2.76. By Theorem 2.59, this gives an isomorphism
on balls of radius di: IGi ⊃ B0(di) ∼= B0(di) ⊂ IG (recall that by
Lemma 2.58, B0(di) is really the ball of radius di on the tree IG). As
IGi is a regular tree of the same degree than IG, we can extend this
isomorphism of balls to an isomorphism fi : IGi → IG (this extension is
of course not unique, but we choose one such). By means of fi, we get
an embedding Ĝi ↪→ Aut(T ).

Now, the end of the proof is word for word the same than the corre-
sponding end of the proof of Theorem 2.78, upon replacing all 2’s with
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d’s, and upon replacing the reference to Proposition 2.75 with a reference
to Proposition 2.76.

Proof of Theorem 2.3. Let T be a semiregular tree and LT = {(K,L) ∈
L | the Bruhat–Tits tree of G(K,L) is isomorphic to T}. By Remark 2.23
and Proposition 2.71, LT is a compact space. Now, by Theorem 2.78,
the map LT → ST : (K,L) 7→ Ĝ(K,L) is continuous. We claim that
it is injective as well. Indeed, if Ĝ(K1,L1) is abstractly isomorphic to
Ĝ(K2,L2), then by [BT73, Corollaire 8.13], the corresponding adjoint al-
gebraic groups AdG1 and AdG2 are algebraically isomorphic over an
isomorphism of fields K1

∼= K2. Since AdG1 (respectively AdG2) is
quasi-split, there exists a smallest extension splitting it ([BT84a, 4.1.2]),
namely L1 (respectively L2). Hence, (K1, L1) ∼= (K2, L2), as wanted.

To summarise, LT → ST : (K,L) 7→ Ĝ(K,L) is an injective continuous
map whose source is a compact space, hence it is a homeomorphism onto
its image. Now, the explicit description given in Theorem 2.3 follows
from Remark 2.23 and Proposition 2.71.

Proof of Theorem 2.6. Let T be a regular tree and letDT = {D ∈ D | the
Bruhat–Tits tree of GD is isomorphic to T}. By Remark 2.23 and Propo-
sition 2.73, DT is a compact space. Now, by Theorem 2.80, the map
DT → ST : D 7→ ĜD is continuous. Let D1 and D2 be central divi-
sion algebras over K1 and K2 respectively, with respective degree d1, d2

and Hasse invariant r1, r2 (as defined in Definition 2.90). We claim that
ĜD1 = ĜD2 if and only if K1 ' K2, d1 = d2 and r1 = ±r2. Indeed, if
ĜD1 is abstractly isomorphic to ĜD2 , then by [BT73, Corollaire 8.13],
the corresponding adjoint algebraic groups AdG1 and AdG2 are al-
gebraically isomorphic over an isomorphism of fields K1

∼= K2. Now,
according to [KMRT98, Remark 26.11], this is only possible if D1

∼= D2

or D1
∼= Dopp

2 , which is equivalent to the given condition.
To summarise, let DT / ∼opp be the space DT modulo the equiva-

lence relation D1 ∼opp D2 if and only if D1
∼= D2 or D1

∼= Dopp
2 . We

proved that DT / ∼opp→ ST : D 7→ ĜD is an injective continuous map
whose source is a compact space, hence it is a homeomorphism onto its
image. Now, the explicit description given in Theorem 2.6 follows from
Remark 2.23 and Proposition 2.73.
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To be able to conclude that for T the (pn + 1)-regular tree, SSL2(D)
T

is homeomorphic to N̂ × {1, . . . , dn+1
2 e}, one has to count the number

of division algebras in DT / ∼opp of characteristic p. But there is only
one such division algebra in DT / ∼opp of degree 1 over its center, one
such division algebra in DT / ∼opp of degree 2 over its center if 2 divides
n, and for all 3 ≤ d dividing n, there are ϕ(d)

2 such division algebras in
DT / ∼opp of degree d over their center (where ϕ denotes Euler’s totient
function). Hence, if n is even (respectively odd), we have 2+

∑
d|n,d≥3

ϕ(d)
2

(respectively 1 +
∑

d|n,d≥3
ϕ(d)

2 ) division algebras of characteristic p in
DT / ∼opp. Using that

∑
d|n ϕ(d) = n, we readily get the conclusion.

2.A Comparison with the original Bruhat–Tits
definitions

The purpose of this appendix is to show that our definition of the Bruhat–
Tits tree agrees with the one in [BT72, 7.4.1 and 7.4.2]. Since the relative
rank of SL2(D) and SU3 is 1, it is already clear that the apartment A
is indeed isomorphic to R. The main task is to show that our group Px
is the same as the group P̂x used to define the equivalence relation in
[BT72, 7.4.1].

In the SL2(D) case, the explicit description of P̂x is given in [BT72,
Corollaire 10.2.9], that we take as a definition.

Definition 2.81 ([BT72, Corollaire 10.2.9]). Let {a1, a2} be the canon-
ical basis of R2, and let aij = aj − ai (i, j ∈ {1, 2}). We can see R as a
vector space V , dual of the vector space V ∗ = R .a12. Now, for x ∈ R,
P̂x = {g ∈ SL2(K) | ω(gij) ≥ aji(x), for all 1 ≤ i, j ≤ 2}.

Note that we can omit the factor (r + 1)−1δ appearing in loc. cit.
since by definition, δ = ω(det(g)) = ω(1) = 0.

This description obviously depends on the identification of R as the
dual of V ∗. Now, if we furthermore impose the condition a12 = Id: R→
R, then P̂x is indeed equal to the group Px of Definition 2.12. To end
the comparison between [BT72, Définition 7.4.2] and our Definition 2.21,
one has to show that the maps ν : N → Aff(R) are the same. This is
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easily obtained by comparing [BT72, Proposition 10.2.5 (ii)] with our
Definition 2.20.

In the SU3 case, as in Definition 2.7, we index the rows and the
columns of a 3-by-3 matrix by {−1, 0, 1}. Let a1 be a non-trivial element
of R∗, and set a−1 = −a1 and a0 = 0. We now take some time to spell
out the definition of ωij as defined in [BT72, 10.1.27].

Definition 2.82. Recall the definition of the element l ∈ L we intro-

duced in Definition 2.15. Namely, l =

tα−1 if α 6= 0

1
2 if α = 0

, where t and α

are as in Lemma 2.13.

Lemma 2.83. Let L1 = {x ∈ L | x + x̄ = 1} and L1
max = {x ∈

L1 | ω(x) = sup{ω(x) | x ∈ L1}}. The element l ∈ L in Definition 2.82
belongs to L1

max

Proof. See [BT84a, 4.3.3 (ii)].

Definition 2.84 ([BT72, 10.1.20]). Let q be the pseudo-quadratic form
associated with the hermitian form used to defined SU3 (see Remark 2.8).
Explicitly, for x ∈ L3, q(x) = lf(x, x) + L0, where L0 = {x ∈ L | x +

x̄ = 0} (see [BT72, 10.1.1 (7), (8)]). For x ∈ L, we define ωq(x) =
1
2 sup{ω(k) | k ∈ q((0, x, 0))} = 1

2 sup{ω(k) | k ∈ lx̄x+ L0}.

We can actually compute explicitly the value of ωq.

Lemma 2.85.

1. ωq(x) = ω(x) + ωq(1)

2. ωq(1) = 1
2ω(l)

Hence, ωq(x) = ω(x) + 1
2ω(l)

Proof. The first property follows from the definition, and the second one
is Lemma 2.83.

Definition 2.86 ([BT72, 10.1.27]). Let {e−1, e0, e1} be the canonical
basis of L3. For g ∈ End(L3), let (gij) be the matrix of g in the basis
{e−1, e0, e1}. For i, j ∈ {−1, 0, 1}, we define ω̄ij(g) = ω̃i(gij) − ω̃j(1),
where ω̃±1 = ω, while ω̃0 = ωq.
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Remark 2.87. The definition given in [BT72, 10.1.27] is readily checked
to agree with ours. Indeed, we can take advantage of the fact that
X0 is one dimensional. Let us identify Hom(Xj , Xi) with L, through
the basis {e−1, e0, e1}, and define ωi as in [BT72, 10.1.27]. Then, for
x ∈ L and α ∈ Hom(Xj , Xi) ∼= L, we have ωi(α(xej)) − ωj(xej) =

ωi((αx)ei)− ωj(xej) = ω̃i(αx)− ω̃j(x) = ω̃i(α)− ω̃j(1).

Definition 2.88 ([BT72, Corollaire 10.1.33]). With these notations,
P̂x = {g ∈ SU3(K) | ωij(g) ≥ ai(x)− aj(x), i, j ∈ {−1, 0, 1}}.

Note that we can omit the factor 1
2ωc(g) appearing in loc. cit. since

by definition, c(g) is the similitude ratio (see [BT72, Definition 10.1.4])
and is equal to 1 for g ∈ SU3.

Again, this description depends on the choice of a non-trivial element
in R∗. Now, if we choose a1 : R→ R : x→ x

2 , then for x ∈ R, the group
P̂x of Definition 2.88 is indeed equal to the group Px of Definition 2.18.
To end the comparison between [BT72, Definition 7.4.2] and our Defini-
tion 2.21, one has to show that the maps ν : N → Aff(R) are the same.
This is easily obtained by comparing [BT72, Proposition 10.1.28 (iii)]
with our Definition 2.20.

2.B A review of the theory of CSA over local
fields

Let D be a central division algebra of degree d over a local field K (recall
that the degree of D over K is the square root of the dimension of the
K-vector space D). It is well known that such division algebras are
classified (up to isomorphism) by elements of (Z/dZ)×.

To be explicit, for r ∈ (Z/dZ)×, the corresponding division algebra
is the cyclic algebra (E/K, σr, πK) where

• E is the unramified extension of K of dimension d.

• σ ∈ Gal(E/K) is the element in Gal(E/K) inducing the Frobenius
automorphism on E.

For the reader’s convenience, we recall the definition of a cyclic algebra.
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Definition 2.89. Let K be a field and let E/K be a cyclic extension
of degree d. Let σ be a generator of Gal(E/K), and let a ∈ K×. The
cyclic algebra (E/K, σ, a) is defined as follows:

• (E/K, σ, a) =
d−1⊕
i=0

uiE

• u−1xu = σ(x), for all x ∈ E

• ud = a

Definition 2.90. As in [dT15], for a finite central division algebra D of
degree d over K, we call the corresponding element r ∈ (Z /dZ)× the
Hasse invariant of D.

An important fact about such a division algebra D is that it splits
over E. It is important for us to describe explicitly the embedding of D
inside Md(E), the algebra of d× d matrices with coefficients in E.

Definition 2.91. Let D be a division algebra isomorphic to the cyclic
algebra (E/K, σr, πK) of degree d over K. Consider the isomorphism of
(right) E-vector spaces

f : En → D : v = (v1, . . . , vn) 7→
d−1∑
i=0

uivi+1

Let ϕ : D →Mn(E) : x 7→ (v 7→ f−1(x.f(v))). More explicitly,

ϕ(

d−1∑
i=0

uixi+1) =



x1 πKσ
r(xd) πKσ

2r(xd−1) . . . πKσ
(d−1)r(x2)

x2 σr(x1) πKσ
2r(xd) . . . πKσ

(d−1)r(x3)

x3 σr(x2) σ2r(x1) . . . πKσ
(d−1)r(x4)

...
...

...
. . .

...
xd σr(xd−1) σ2r(xd−1) . . . σ(d−1)r(x1)


We can now properly spell out the definition of the reduced norm.

Definition 2.92. Let D be a division algebra isomorphic to the cyclic
algebra (E/K, σr, πK) of degree d over K. We define the reduced norm
Nrd as follows:

Nrd: Mn(D)→ K : g → det(ϕ(gij))
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where ϕ(gij) is seen as a (dn)2 matrix with coefficient in E.

We end this discussion by an analysis of the ring of integers D.

Lemma 2.93. Let D be a central division algebra over K of degree
d, and let r ∈ N ∪ {∞} (with the convention that m∞ = (0)). Since
E is unramified, OE/mr

E
∼= OK/mr

K ⊕ · · · ⊕ OK/mr
K . Furthermore,

OD/mrd
D
∼=

d−1⊕
i=0

ui.OE/mr
E. Otherwise stated, OD/mrd

D is a free OE/mr
E-

module, and we can define a map ϕ : OD/mrd
D ↪→ Md(OE/mr

E), which
is compatible with the map ϕ of Definition 2.91, in the sense that the
following diagram commutes

OD Md(OE)↪→

OD/mrd
D Md(OE/mr

E)↪→

Proof. This is straightforward from the definitions.

2.C An integral model of SL2(D)

Recall that the group SL2(D) consists of the 2× 2 matrices with coeffi-
cient in D having reduced norm 1 (Definition 2.10). Recall the definition
of the embedding ϕ : D → Mn(E) given in Definition 2.91. In view of
the definition of the reduced norm (Definition 2.92), we arrive at the
following explicit definition of SL2(D).

Definition 2.94. SL2(D) = {( g11 g12g21 g22 ) | gij ∈ D, det(ϕ(gij)) = 1}

Mimicking this definition, we can define a similar group overOD/mrd
D .

Definition 2.95. Let D be a central division algebra over K of degree
d, and let r ∈ N∪{∞}. Keeping the notations of Lemma 2.93, we define

SL2(OD/mrd
D ) = {( g11 g12g21 g22 ) | gij ∈ OD/mrd

D , det(
(
ϕ(g11) ϕ(g12)
ϕ(g21) ϕ(g22)

)
) = 1}

Let us now discuss the underlying algebraic group of SL2(D). Let
M2(D) be the algebra of 2 × 2 matrices with coefficient in D. Using
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the embedding D ↪→ Md(E), we can identify M2(D) with a K-linear
subspace of M2d(E). Now, SL2(D) is the closed subspace of M2(D) ∼=
A

(2d)2

K cut out by the polynomial equation Nrd = 1. We can now mimic
this situation over the ring of integers to define an integral model of
SL2(D).

Definition 2.96. Let D be a central division algebra of degree d over
K, and let M2(OD) be the OK-algebra of 2× 2 matrices with coefficient
in OD. Using the embedding OD ↪→Md(OE), where E is the unramified
extension of K of degree d, we can identify M2(OD) with a free OK-
submodule ofM2d(OE). We define theOK-scheme SL2,D to be the closed

subscheme of M2(OD) ∼= A
(2d)2

OK cut out by the polynomial equation
Nrd = 1.

Of course, the crucial point is to check that SL2,D is in fact smooth.

Theorem 2.97. SL2,D is a smooth OK-scheme.

Proof. This is one of the main results in [BT84b]. Let us explain how
to extract it from there. Let ϕ be the valuation of GL2(D) defined in
[BT84b, 2.2, display (4)]. The valuation ϕ is thus a point of the enlarged
apartment A1. The associated norm is defined as αϕ(e1x1 + e2x2) =

inf{ω(x1), ω(x2)} (following the definition in [BT84b, 2.8, display (9)]).
The corresponding order Mαϕ of M2(D) defined in [BT84b, 1.17] is
{( g11 g12g21 g22 ) ∈ M2(D) | ω(gij) ≥ 0} (this is easily computed using the
description of Endα(u) in [BT84b, 1.11, display (17)]). Note that Mαϕ

is isomorphic to the affine space A
(2d)2

OK (being a free OK-module). Fi-
nally, following [BT84b, 3.6], let Gϕ be the (principal) open subscheme of
the affine space Mαϕ defined by the non-vanishing of the reduced norm
(see also [BT84b, 3.2]).
Gϕ is actually an integral model for GL2(D), and in [BT84b, §5],

the SL2(D) case is then treated. Let G1,ϕ be the schematic adherence of
SL2(D) in Gϕ (following the definition in [BT84b, 5.3]). It is mentioned
in [BT84b, 5.5] that the group G1,ϕ is the closed subgroup of Gϕ defined
by the equation Nrd = 1, and hence it coincides with our group SL2,D.
But by [BT84b, 5.5], G1,ϕ is smooth over OK , concluding the proof.
Note that to apply [BT84b, 5.5], we should check that a finite unramified
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extension of a local field is étale in the sense of [BT84b]. But this is clear
in view of [BT84a, 1.6.1 (f) and Definition 1.6.2].

We conclude our study of the SL2(D) case by identifying the rational
points of SL2,D.

Lemma 2.98. Let D be a central division algebra over K of degree d,
and let r ∈ N ∪ {∞}. Then SL2,D(OK/mr

K) ∼= SL2(OD/mrd
D ) (where by

convention, m∞ = (0)).

Proof. Because the diagram appearing in Lemma 2.93 is commutative,
we have

SL2,D(OK/mr
K) = {( g11 g12g21 g22 ) ∈M2(OD/mrd

D ) | Nrd(g) = 1}
∼= {( g11 g12g21 g22 ) ∈M2(OD/mrd

D ) | det(
(
ϕ(g11) ϕ(g12)
ϕ(g21) ϕ(g22)

)
) = 1}

as wanted.



Chapter 3

On the semilinear
automorphism group of a
semisimple algebraic group

LetG be an algebraic group over a field k, and consider the group of semi-
linear automorphisms Aut(G→ Spec k), which consists of algebraic au-
tomorphisms ofG over automorphisms of k. We study the splitting of the
exact sequence 1 → (AutG)(k) → Aut(G → Spec k) → AutG(k) → 1.
If G is a reductive group, we can consider another short exact sequence
1 → (Aut DynG)(k) → Aut(DynG → Spec k) → AutDynG(k) → 1 de-
scribing semilinear automorphisms of the scheme of Dynkin diagrams
DynG of G over automorphisms of k. We show that if G is semisimple,
simply connected and quasi-split, the former exact sequence splits if and
only if the latter exact sequence splits, and we explain why the splitting
of the latter exact sequence is easy to check in practice. As a corollary,
we get lots of examples of algebraic groups G over k whose group of
abstract automorphisms does not decompose as the semidirect product
of (AutG)(k) with AutG(k). We also study the same question for inner
forms of SLn, restricting ourselves to the case when the ground field is a
local field.

125
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3.1 Introduction

In their famous article [BT73], Armand Borel and Jacques Tits describe
the “abstract” automorphisms of the group of rational points of an ab-
solutely simple algebraic group. To wit, here is one of their results:

Theorem 3.1 ([BT73, Corollaire 8.13]). Let k be an infinite field, and
let G be an absolutely simple algebraic group over k. Assume that G is ei-
ther simply connected or adjoint, and that G(k) is generated by the groups
U(k), where U runs through the set of unipotent algebraic k-subgroups of
G that are split over k. Furthermore, if k is of characteristic 2 or 3, as-
sume that k is not perfect. Let α be an automorphism of G(k), considered
as an abstract group. Then there exists a unique automorphism ϕ : k → k

and a unique semilinear automorphism f : G → G over ϕ such that for
g ∈ G(k) = Homk-schemes(Spec k,G), we have α(g) = fϕ ◦ g ◦ Specϕ−1.

By a semilinear automorphism fϕ of a k-group scheme G over an
automorphism ϕ : k → k, we mean that we have the following commu-
tative diagram in the category of group schemes

G G

Spec k Spec k

fϕ

Specϕ

where the vertical arrows are the structural morphisms of the k-scheme
G. Let Aut(G→ Spec k) denotes the group of semilinear automorphisms
of G. We can then rephrase Theorem 3.1 as saying that under the as-
sumptions of the theorem, the group of abstract automorphisms of G(k)

is isomorphic to Aut(G→ Spec k).
Given a k-group scheme G, we have a homomorphism Aut(G →

Spec k) → Aut(k) : fϕ 7→ ϕ−1. Let AutG(k) denotes the image of this
homomorphism, and let (AutG)(k) denotes the group of k-algebraic au-
tomorphisms of G, or in other words the kernel of Aut(G → Spec k) →
Aut(k). Those groups fit in the short exact sequence 1→ (AutG)(k)→
Aut(G→ Spec k)→ AutG(k)→ 1.

It is well-known that the short exact sequence 1 → (AutG)(k) →
Aut(G → Spec k) → AutG(k) → 1 splits when G is a split algebraic
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group (a statement already made in [Tit74, Corollary 5.10]), and it is
then natural to wonder if this remains the case in general. The aim of
this article is to show that this is not the case. Furthermore, examples of
non-splitting already occur when the algebraic group is quasi-split. Our
main theorem gives a necessary and sufficient condition for Aut(G →
Spec k) to be a split extension of AutG(k) when G is a semisimple, simply
connected (or adjoint) quasi-split algebraic group over a field k.

Theorem 3.2 (The bowtie theorem). Let G be a semisimple, simply
connected (or adjoint) quasi-split algebraic group over k, and let DynG

be the scheme of Dynkin diagrams of G. Then the short exact sequence

1→ (AutG)(k)→ Aut(G→ Spec k)→ AutG(k)→ 1

splits if and only if the short exact sequence

1→ (Aut DynG)(k)→ Aut(DynG→ Spec k)→ AutDynG(k)→ 1

splits.

The bowtie theorem (whose name is due to the diagram appearing
in its proof) uses the notion of a scheme of Dynkin diagrams DynG (of
a reductive k-group G), which was introduced in [ABD+64]. In Sec-
tion 3.3, we discuss in detail the definition of DynG, and we state ex-
plicitly the classification of k-schemes isomorphic to a Dynkin’s scheme
DynG, for G an absolutely simple k-group. We also use the notation
Aut(DynG → Spec k) for the group of semilinear automorphisms of
DynG, see Definition 3.12.

We can identify the short exact sequence 1 → (Aut DynG)(k) →
Aut(DynG → Spec k) → AutDynG(k) → 1 as a sequence involving vari-
ous automorphism groups of fields associated withG (see Corollary 3.29).
Using this description, we give in Corollary 3.32 many explicit examples
for which Aut(G→ Spec k) is not a split extension of AutG(k).

In the last section of the chapter, we also explore the question when G
is an inner form of SLn over a field k. The first step in finding conditions
for non-splitting is to prove that AutG(k) is non-trivial. By exhibiting
explicitly automorphisms of a cyclic division algebra, we can prove that
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over a local field K, AutG(K) = Aut(K).

Theorem 3.3. Let K be a non-archimedean local field, let D be a divi-
sion algebra of degree d over K, and consider the algebraic group G =

SLn(D). Then AutG(K) = Aut(K).

We prove this theorem in Corollary 3.37. As we note in Remark 3.38,
this was essentially already known when K is of characteristic 0, but we
are not aware of such a result in positive characteristic.

By the theory of Galois descent, if k is a finite Galois extension of k′,
then giving a homomorphism Gal(k/k′)→ Aut(G→ Spec k) whose com-
position with Aut(G→ Spec k)→ AutG(k) is the identity on Gal(k/k′)

is equivalent to give a descent datum (from k to k′) for G (we recall this
fact in Theorem 3.7). Hence, working with forms of algebraic groups, we
are able to deduce the following theorem:

Theorem 3.4. Let K be a non-archimedean local field, let D be a divi-
sion algebra of degree d over K, and consider the algebraic group G =

SLn(D).

1. The short exact sequence 1→ (AutG)(K)→ Aut(G→ SpecK)→
AutG(K)→ 1 does not split if there exists a subfield K ′ ≤ K such
that K/K ′ is a finite Galois extension and gcd(nd, [K : K ′]) does
not divide n.

2. If K is of characteristic 0, the converse holds, i.e. if for all subfields
K ′ ≤ K such that K/K ′ is finite Galois, gcd(nd, [K : K ′]) divides
n, then the short exact sequence 1 → (AutG)(K) → Aut(G →
SpecK)→ AutG(K)→ 1 splits.

3. If K is of characteristic p > 0, then K is isomorphic to Fpi((T )).
Assume that for all subfields K ′ ≤ K such that K/K ′ is finite Ga-
lois, we have that gcd(nd, [K : K ′]) divides n. Further assume that
gcd(d, i) = 1. Then the short exact sequence 1 → (AutG)(K) →
Aut(G→ SpecK)→ AutG(K)→ 1 splits.

As we prove in Proposition 3.58, for K = Fpi((T )), the condition
“for all subfield K ′ ≤ K such that K/K ′ is finite Galois, we have that
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gcd(nd, [K : K ′]) divides n” is equivalent to requiring that gcd(d, p) = 1

and that gcd(nd, i(pi − 1)) divides n. Hence, in positive characteristic,
Theorem 3.4 leaves open the question of the existence of a splitting in a
few cases. We explain in Appendix 3.B why our strategy is not able to
cover those cases.

3.2 Semilinear automorphisms and descent

In this section, we work with a general (finite type, affine) group scheme
G defined over a field k. We already gave in the introduction the defi-
nition of a semilinear automorphism of G. The vocabulary “semilinear
automorphism” is already used in the literature (see for example [FSS98,
Section 1.2]). It has the same meaning than our usage, except that it
only applies when k is assumed to be the separable closure of a base
field k0, and when the underlying isomorphism acts trivially on k0. In
Section 3.6, we consider the case k = Fp((T )), which is a more general
situation.

The concept is also used in various later articles, see for examples
[BKLR12, Section 3.2] and references therein. In those references, the
notation SAut(Gks) is used for the group of semilinear automorphisms.
We prefer to use the notation Aut(G→ Spec k) so that the ground field
explicitly appears in the notation. Let us continue by recalling some
standard vocabulary.

Definition 3.5. Let k′ be a subfield of k and letH be a k′-group scheme.

1. The group of automorphisms of k whose restriction to k′ is trivial
is denoted Aut(k/k′).

2. We denote by Hk the base change of H along Spec k → Spec k′.
If Hk is isomorphic to G (as a k-group scheme), we say that H
is a k/k′-form of G (or just a form of G if the field extension is
understood from the context). If there exists a k/k′-form of G, we
say that G is defined over k′.

3. For l a field and ϕ : k → l a field homomorphism, for G′ a k-group
scheme and f : G → G′ a homomorphism of k-group schemes, we
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denote by ϕ∗f : ϕ∗G→ ϕ∗G
′ the base change of f along Specϕ.

The following elementary observation plays a fundamental role in this
chapter.

Lemma 3.6. Let k′ be a subfield of k, and assume that G is defined over
k′. Then there exists a homomorphism Aut(k/k′) → Aut(G → Spec k)

whose composition with Aut(G→ Spec k)→ AutG(k) is the identity on
Aut(k/k′). In particular, AutG(k) contains Aut(k/k′).

Proof. Let H be a k/k′-form of G. For ϕ ∈ Aut(k/k′), we define

fϕ−1 = IdH ×Specϕ−1 : H ×Spec k′ Spec k → H ×Spec k′ Spec k.

The map Aut(k/k′)→ Aut(G→ Spec k) : ϕ 7→ fϕ−1 is a homomorphism.
Furthermore, its composition with Aut(G → Spec k) → AutG(k) is the
identity on Aut(k/k′), as wanted.

In fact, if the field extension k/k′ appearing in Lemma 3.6 is finite
Galois, then we have a converse to Lemma 3.6 by the theory of Galois
descent.

Theorem 3.7 (Galois descent). Let k′ be a subfield of k such that k/k′ is
a finite Galois extension. If there exists a homomorphism Aut(k/k′) →
Aut(G→ Spec k) whose composition with Aut(G→ Spec k)→ AutG(k)

is the identity on Aut(k/k′), then G is defined over k′.

Proof. This is a classical result from descent theory, see [Poo10, Sec-
tion 4.4]. Note that giving such a homomorphism is the same as giving
a descent datum on G by [Poo10, Proposition 4.4.2], so that the result
holds by [Poo10, Corollary 4.4.6].

Note that for a field isomorphism ϕ : k → k, giving a semilinear
automorphism fϕ of G over ϕ amounts to give an isomorphism of k-
group schemes G ∼= ϕ∗G, as one can see from the following diagram:

ϕ∗G

fϕG

G

Spec k Spec k
Specϕ
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Hence, the group Aut(G→ Spec k) can be described as

{Isomk-group schemes(G,ϕ∗G) | ϕ ∈ Aut(k)}.

Let ks be a separable closure of k, and let Gks be the base change of G
over Spec ks → Spec k. We go on to describe semilinear automorphisms
of Gks , and give their relation to semilinear automorphisms of a ks/k-
form of Gks .

Lemma 3.8. Let H be a ks/k-form of Gks, corresponding to the co-
cycle c : Gal(ks/k) → Aut(Gks). Let l be a field with separable closure
ls, and let α : k → l be an isomorphism of fields. We choose an exten-
sion of α to ks → ls that we also denote α. Then α∗H is a ls/l-form
of α∗(Gks), whose corresponding cocycle is given by α∗c : Gal(ls/l) →
Aut(α∗(Gks)) : λ 7→ α∗(cα−1λα).

Proof. Let f : Hks → Gks be a chosen isomorphism of ks-group scheme.
In view of [Con14, Lemma 7.1.1], for γ ∈ Gal(ks/k), the automorphism
cγ arising from the choice of f is the following composition:

cγ : Gks
∼= γ∗(Gks)

γ∗f−1

∼= γ∗(Hks)
∼= Hks

f∼= Gks .

Now, we choose α∗f : α∗(Hks) → α∗(Gks) as our isomorphism of ls-
group scheme. An element of Gal(ls/l) is of the form αγα−1 for some
γ ∈ Gal(ks/k). For such an element of Gal(ls/l), the automorphism
(α∗c)αγα−1 of α∗(Gks) arising from the choice of α∗f is:

(α∗c)αγα−1 : α∗(Gks)
∼= (αγα−1)∗(α∗(Gks))

(αγ)∗f−1

∼= (αγα−1)∗(α∗(Hks))

∼= α∗(Hks)
α∗f∼= α∗(Gks) ,

so that indeed, (α∗c)αγα−1 = α∗(cγ).

Lemma 3.9. Let H be a ks/k-form of Gks, corresponding to the cocycle
c : Gal(ks/k) → Aut(Gks). Let α : k → k be an automorphism of k.
We choose an extension of α to ks → ks that we also denote α. Let
f : Gks → α∗Gks be a morphism of ks-group scheme. For γ ∈ Gal(ks/k),
let tγ : Gks → γ∗Gks be the isomorphism coming from the k-structure G
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on Gks. The morphism f descends to a morphism of H → α∗H if and
only if γ∗f = α∗(tα−1γαc

−1
α−1γα

)fcγt
−1
γ for all γ ∈ Gal(ks/k), where γ∗f

is seen as a morphism from γ∗Gks to (γα)∗Gks = α∗(α
−1γα)∗Gks.

Proof. Let us treat the case of a general k-scheme. Let X (respectively
Y ) be a k-scheme, and let X ′ (respectively Y ′) be a ks/k-form of Xks (re-
spectively Yks), with corresponding cocycle cX : Gal(ks/k)→ Aut(Xks)

(respectively cY : Gal(ks/k) → Aut(Xks)). For γ ∈ Gal(ks/k), let
tXγ : Xks → γ∗Xks (respectively tYγ : Yks → γ∗Yks) be the isomorphism
coming from the k-structure X (respectively Y ) on Xks (respectively
Yks). From descend theory, we have that a morphism f : Xks → Yks

descends to X ′ → Y ′ if and only if γ∗f = tYγ (cYγ )−1fcXγ (tXγ )−1 for all
γ ∈ Gal(ks/k). Hence the result follows from Lemma 3.8.

3.3 Scheme of Dynkin diagrams

In [ABD+64, Exposé 24, section 3] (for which one can consult the won-
derful reissue [GP11]), the authors define what they call a “Dynkin’s
scheme” of a reductive group G. The strategy is to first define this
Dynkin’s scheme for split reductive groups, and then to use descent.
Since this notion is not so widely known, let us review its definition.

Recall that a Dynkin diagram of a root system Φ is a graph (V,E)

whose vertices V are labelled with {1, 2, 3}. The vertices are in 1 − 1

correspondence with a set of simple roots in Φ. Two vertices are adjacent
if and only if the corresponding simple roots are not orthogonal. Finally,
the label of a vertex gives the square length of the corresponding root,
taking the shortest root in each irreducible component to be of length
1. This motivates the following definition, where for k a field and for a
set X, the notation Xk stands for the disjoint union

∐
i∈X

Spec k (in the

category of schemes).

Definition 3.10. Let D be a Dynkin diagram with underlying set of
vertices V . The split scheme of Dynkin diagrams corresponding
to D over a field k is a triple (∆, E, λ), where ∆ = Vk, E is a closed
subscheme of ∆ ×k ∆, and λ is a k-morphism λ : ∆ → {1, 2, 3}k. Fur-
thermore, the triple (∆, E, λ) satisfies the following properties:
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1. A pair in ∆ ×k ∆ belongs to E if and only if the corresponding
vertices are adjacent in D.

2. For v ∈ ∆ and i ∈ {1, 2, 3}, λ(v) = i if and only if the correspond-
ing vertex has label i in D.

A split scheme of Dynkin diagrams is a split scheme of Dynkin
diagrams corresponding toD for some Dynkin diagramD, and a scheme
of Dynkin diagrams is a form of a split scheme of Dynkin diagrams.

Remark 3.11. Let ks be a separable closure of a field k. It follows
from Definition 3.10 that a scheme of Dynkin diagrams over k split-
ting over ks consists of the spectrum of two etale algebras ∆ and E,
together with a labelling map λ. Hence, following [KMRT98, Theo-
rem 18.4], we can describe a scheme of Dynkin diagrams using the cat-
egory of Gal(ks/k)-sets. Under this correspondence, ∆ corresponds to a
finite Gal(ks/k)-sets ∆̃, E corresponds to a Gal(ks/k) invariant subset
Ẽ of ∆̃× ∆̃ (endowed with the diagonal action), and λ correspond to a
Gal(ks/k)-equivariant map ∆̃ → {1, 2, 3} (the latter set being endowed
with the trivial Gal(ks/k) action). We use this correspondence to give
an explicit description of scheme of Dynkin diagrams in the classification
appearing in Corollary 3.25.

Morphisms of schemes of Dynkin diagrams are defined in the obvi-
ous way. Let us spell out the definition of semilinear automorphisms of
schemes of Dynkin diagrams, mimicking our definition for group schemes.

Definition 3.12. Let k be a field and let Dyn be a scheme of Dynkin
diagrams over k. Let ∆ be the underlying set of vertices of Dyn (i.e. ∆

is a form over k of {1, . . . , n}l for some field extension l/k). A semilin-
ear automorphism fϕ of Dyn over an automorphism ϕ : k → k is an
automorphism fϕ : Dyn → Dyn in the category of schemes of Dynkin
diagrams such that the following diagram in the category of schemes
commutes

∆ ∆

Spec k Spec k

(fϕ)|∆

Specϕ
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We let Aut(Dyn → Spec k) denotes the group of semilinear automor-
phisms of Dyn.

As in the case of k-group schemes, for Dyn a scheme of Dynkin
diagrams over k, we have a homomorphism Aut(Dyn → Spec k) →
Aut(k) : fϕ 7→ ϕ−1. We let AutDyn(k) be the image of this homo-
morphism. Furthermore denoting the k-automorphisms of the Dynkin
diagram Dyn by (Aut Dyn)(k), we get a short exact sequence 1 →
(Aut Dyn)(k)→ Aut(Dyn→ Spec k)→ AutDyn(k)→ 1.

We now discuss how to associate a canonical scheme of Dynkin dia-
grams over k to a given reductive group over k. The following account
follows closely [Con14, Remark 7.1.2]. Recall that in the classical setting,
the Dynkin diagram is constructed after a choice of a maximal torus and
of a Borel subgroup containing it. In a sense, we would like to remember
that different choices are possible, but still have a canonical scheme of
Dynkin diagrams associated to a reductive group. We achieve this by
taking an inductive limit.

Definition 3.13. Let G be a split reductive group over k. For T a
maximal torus and B a borel subgroup containing T , let E = (T,B)

and set ∆(E) to be the (split) scheme of Dynkin diagrams correspond-
ing to the classical Dynkin diagram associated to the pair (T,B). For
another pair Ẽ = (T̃ , B̃), there exists g ∈ G(k) such that g conjugates
T (respectively B) to T̃ (respectively B̃), so that we get an isomor-
phism aE,Ẽ : ∆(E)→ ∆(Ẽ). Furthermore, the choice of g is unique up to
NG(B)(k) ∩ NG(T )(k) = T (k) (see [ABD+64, Exposé 22, 5.6.1] for the
latter equality), and thus the isomorphism aE,Ẽ : ∆(E)→ ∆(Ẽ) does not
depend on g. Hence, the aE,Ẽ form an inductive system, and we denote
the limit by DynG (or also Dyn(G) if a parenthesis is needed) and call
it the (split) scheme of Dynkin diagrams of G.

When G is not split, there exists a finite Galois extension l of k such
that G splits over l. Now, Aut(l/k) acts on Dyn(Gl) in the following
way. For σ ∈ Aut(l/k), let fσ be the induced automorphism of Gl over
σ. We have

Dyn(Gl) = lim−→∆((T,B)) ∼= lim−→∆(fσ(T ), fσ(B)) = Dyn(Gl)
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This action might be non-trivial because the isomorphism, induced
by σ, ∆((T,B)) → ∆(fσ(T ), fσ(B)) might not coincide with the effect
of conjugation by an element that carries (T,B) to (fσ(T ), fσ(B)).

With this action, for all σ ∈ Aut(l/k), we get an automorphism f̃σ

of Dyn(Gl) over σ, and the f̃σ’s satisfy the condition to be a descent
datum. Furthermore, the descended k-scheme of Dynkin diagrams does
not depend on the choice of the splitting field.

Definition 3.14. Let G be a reductive group over k, and let l be a
finite Galois extension splitting G. Then Dyn(Gl) together with its de-
scent datum defines a scheme over k that we call the scheme of Dynkin
diagrams of G, and that we denote DynG (or also Dyn(G) if a paren-
thesis is needed).

Example 3.15. Here are examples of schemes of Dynkin diagrams. Con-
sider G = SU

l/k
2n+1(h), where

• l is a quadratic separable extension of k

• n ≥ 1

• σ is the nontrivial element of Aut(l/k), whose action by conjuga-
tion on l is denoted x 7→ x̄

• h is the hermitian form of l2n+1 given by

((x−n, . . . , xn), (y−n, . . . , yn)) 7→ x̄−nyn + ...+ x̄ny−n

As is well-known, G is a form of SL2n+1, and we now describe the cor-
responding action of σ on SL2n+1. Consider the transposition along the
anti-diagonal S(.) : SL2n+1(L) → SL2n+1(L) : g 7→ Sg. More explicitly,
(Sg)−j,−i = gij , for i, j ∈ {−n, . . . , 0, . . . , n}. Note that as for the trans-
position, Sg Sh = S(hg). In particular, inversion and the map g 7→ Sg

commute. The automorphism fσ over σ given by fσ(g) = S(ḡ−1) has or-
der 2, and hence is a descent datum of SL2n+1, which defines the k-form
SU

l/k
2n+1(h).
Let us now describe the corresponding schemes of Dynkin diagrams.

Let T be the torus in SL2n+1 consisting of diagonal matrices having
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determinant 1, and let B be the Borel subgroup of SL2n+1 consisting of
upper triangular matrices having determinant 1. Let A2n be the classical
Dynkin diagram associated to the pair (T,B). The scheme of Dynkin
diagrams Dyn(SL2n+1) over l is the triple (∆, E, λ), where

1. ∆ =
−1∐
i=−n

xi,(i+1) t
n∐
i=1

x(i−1),i where for all i, xi,(i+1) = Specl l.

2. E = {(x(i−1),i;xi,(i+1)) or (x(i+1),i;xi,(i−1)) | i = −n + 1, . . . , n −
1} ⊂ ∆×∆

3. λ : ∆→ {1, 2, 3}l is the projection on 1.

Now, the action of σ on this scheme of Dynkin diagrams is read-
ily seen to correspond to the inversion of A2n. Hence, the scheme of
Dynkin diagrams Dyn(SU

l/k
2n+1(h)) = (∆′, E′, λ′), which is by definition

the twisted form of the schematic A2n along inversion, can be described
as follows

1. ∆′ =
−1∐
i=−n

xi, where for all i, xi = Speck l

2. E′ = {(xi;x(i+1)) or (x(i+1);xi) | i = −n, . . . ,−2}∪{(x−1;xσ−1)} ⊂
∆′ ×∆′

3. λ′ : ∆′ → {1, 2, 3}k is the projection on the first component.

Remark 3.16. In the above example, Speck l denotes the scheme Spec l

considered as a k-scheme. Equivalently, if l ∼= k[X]/(f), then Speck l
∼=

Spec k[X]/(f). It is worth to keep in mind that (Speck l)l is thus isomor-
phic to Spec l[X]/(f). But l contains the roots of f , hence l[X]/(f) ∼=
l[X]/(X − α)(X − β), so that (Speck l)l

∼= Specl l
∐

Specl l, with Galois
action exchanging the two points.

Remark 3.17. It is not hard to classify schemes of Dynkin diagram.
We do this in Corollary 3.25.

We end the section with an elementary observation.

Lemma 3.18. Let G be a reductive group over a field k and let l/k be a
field extension. Then Dyn(Gl) ∼= (DynG)l
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Proof. This directly follows from the definition

This result allows us to make an abuse of notation and to spare a
parenthesis in writing DynGl, since the way to place the parenthesis does
not matter. We freely use this abuse of notation in the next section.

3.4 Semilinear automorphisms of quasi-split al-
gebraic groups

Let G be a split reductive algebraic group over k. A pinning of G gives
rise to a splitting of the exact sequence 1→ InnG→ AutG→ OutG→
1. Furthermore, OutG is isomorphic to the (constant group scheme
associated to the) group of automorphisms of the based root datum given
by the pinning (see [Con14, Theorem 7.1.9]). If we furthermore assume
that G is semisimple and simply connected (or adjoint), then this latter
group is just the automorphism group of the Dynkin diagram.

This decomposition of AutG as the semidirect product InnGoOutG

is preserved when G is quasi-split. On the other hand, as we outlined in
the introduction, the short exact sequence 1→ (AutG)(k)→ Aut(G→
Spec k) → AutG(k) does not always split. The purpose of this section
is to show that we have another semidirect product decomposition for
the semilinear automorphism group when G is quasi-split, namely that
Aut(G → Spec k) ∼= InnG o Aut(DynG → Spec k) (notice the strong
parallel with AutG ∼= InnGoOutG).

We begin by recalling the classification of quasi-split groups. Our
description is based on [Con14, Section 7], but the result we give is
already present in [ABD+64, Exposé 24, Théorème 3.10]. Let ks denote
a separable closure of k. Recall that k-forms of G are classified by the
Galois cohomology setH1(ks/k,Aut(Gks)) (see [Con14, Theorem 7.1.1]).

Lemma 3.19. Let G be a split semisimple simply connected (or adjoint)
group over k, and let ks denote a separable closure of k. Choosing a
pinning of G, let Aut(DynG) ↪→ AutG be the corresponding embedding.
The induced map H1(ks/k,Aut(DynGks)) → H1(ks/k,Aut(Gks)) is in-
jective, and its image gives all the ks/k forms of Gks that are quasi-split
over k.
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Proof. SinceG is simply connected (or adjoint), the automorphism group
of the based root datum (corresponding to the chosen pinning of G)
is simply the automorphism group of the classical Dynkin diagram of
G, which in turn is the group Aut(DynGks). In summary, Aut(Gks)

∼=
(Gks/ZGks )(ks)oAut(DynGks). This directly implies that the map from
H1(ks/k,Aut(DynGks)) to H1(ks/k,Aut(Gks)) is injective, since it has
a right inverse.

By definition, automorphisms in Aut(DynGks) ≤ Aut(Gks) consists
of automorphisms preserving the Borel subgroup given by the pinning.
Hence, forms of G corresponding to classes in the image of the map
H1(ks/k,Aut(DynGks))→ H1(ks/k,Aut(Gks)) are quasi-split.

To conclude, we use the fact that given a set of classes that are in-
ner forms of each other in H1(ks/k,Aut(Gks)), there is a unique quasi-
split groups among the corresponding k-forms of G, by [Con14, Proposi-
tion 7.2.12]. But the fibres of H1(ks/k,Aut(Gks))→ H1(ks/k,Out(Gks))

are precisely the classes that are inner forms of each other, in view of
[Con14, Theorem 7.2.2], so that the theorem follows.

The key result towards the proof of Theorem 3.2 is a semidirect
decomposition of the group of semilinear automorphisms of a quasi-split
group.

Theorem 3.20. Let G be a quasi-split semisimple simply connected
(or adjoint) group over k. The group Aut(G → Spec k) decomposes
as G/ZG(k) o Aut(DynG → k). Furthermore, the projection Aut(G →
Spec k)→ Aut(DynG→ k) preserves the underlying field automorphism,
so that AutG(k) = AutDynG(k).

Proof. Let ks be a separable closure of k. Recall that Gks is a split
group, and let G0 be the split reductive Z-group scheme having same
root datum as Gks . To ease the notations, we set (G0)ks = G0. Since
split groups are determined by their root datum, G is a ks/k-form of G0.

Let c : Gal(ks/k) → Aut(DynG0) be the cocycle corresponding to
DynG. By Lemma 3.19, we can and do assume that the composition
Gal(ks/k) → Aut(DynG0) → G0/ZG0

(ks) o Aut(DynG0) is the cocycle
corresponding to G. We also denote this cocycle by c.
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In view of Lemma 3.9, we can study Aut(G → Spec k) by studying
Aut(G0 → Spec ks). But this latter group is isomorphic to Aut(ks) n
(Aut(DynG0)n (G0/ZG0

)(ks)), which is in turn isomorphic to the semi-
direct product Aut(DynG0 → Spec ks)n (G0/ZG0

)(ks).

Claim 1. Let fα be a semilinear automorphism of DynG0 over an au-
tomorphism α ∈ Aut(ks) such that α(k) = k, and let g ∈ (G0/ZG0

)(ks).
Then fαg ∈ Aut(G0 → Spec ks) descends to Aut(G → Spec k) if and
only if fα descends to Aut(DynG→ Spec k) and g descends to (G/ZG)(k).

Proof of the claim: We decompose Aut(DynG0 → Spec ks) as Aut(ks)×
Aut(DynG0), using the Z-structure on DynG0. For β ∈ Aut(ks), let
Idβ ∈ Aut(ks) ≤ Aut(DynG0 → Spec ks) be the semilinear automor-
phism over β given by the Z-structure of DynG0. With those nota-
tions, fα decomposes as Idα f ∈ Aut(ks)×Aut(DynG0). By Lemma 3.9,
the element Idα fg descends to Aut(G → Spec k) if and only if for all
γ ∈ Gal(ks/k), we have γ∗(Idα fg) = α∗(tα−1γαc

−1
α−1γα

) Idα fgcγt
−1
γ .

Since the image of c consists of automorphisms defined over Z, we
have α∗(c−1

α−1γα
) Idα = Idα c

−1
α−1γα

. Furthermore, since f is also defined
over Z, we have tγc−1

α−1γα
fcγt

−1
γ = γ∗(c

−1
α−1γα

fcγ). Thus,

α∗(tα−1γαc
−1
α−1γα

) Idα fgcγt
−1
γ

= α∗(tα−1γα) Idα t
−1
γ tγc

−1
α−1γα

fcγt
−1
γ tγc

−1
γ gcγt

−1
γ

= γ∗(Idα)γ∗(c
−1
α−1γα

fcγ)γ∗(c
−1
γ (g)).

Now, in view of the decomposition of Aut(G0 → Spec ks) into Aut(ks)n
(Aut(DynG0) n G0/ZG0

), γ∗(Idα fg) = α∗(tα−1γαc
−1
α−1γα

) Idα fgcγt
−1
γ

holds if and only if γ∗(Idα f) is equal to γ∗(Idα)γ∗(c
−1
α−1γα

fcγ) and γ∗(g)=

γ∗(c
−1
γ (g)). Going through the displayed equalities in reverse order, this

is indeed equivalent to requiring that Idα f descends to Aut(DynG →
Spec k) and that g descends to (G/ZG)(k), as wanted. �

The conclusion of the theorem readily follows. Indeed, in view of
Claim 1, we have

Aut(G→ Spec k) = {(g, fα) ∈ (G0/ZG0
)(ks)oAut(DynG0 → Spec ks)|

g ∈ (G/ZG)(k) and fα ∈ Aut(DynG→ Spec k)}
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Remark 3.21. For G a simple group which is not quasi-split, the de-
composition of AutG as a semidirect product is usually destroyed. Sim-
ilarly, one should not expect to obtain a semidirect decomposition of
Aut(G → Spec k) for a general simple algebraic group. Investigating a
possible semidirect decomposition of the group of semilinear automor-
phisms of simple algebraic groups is an entirely different matter when G
is not quasi-split, as is illustrated by our treatment of the SLn(D) case
in Section 3.6.

As a corollary of Theorem 3.20, we obtain a proof of Theorem 3.2.

Proof of Theorem 3.2. Aut(G → Spec k) ∼= (InnG)(k) o Aut(DynG →
Spec k) by Theorem 3.20. This shows in particular that AutDynG(k) =

AutG(k). We thus obtain the following commutative diagram:

1 1 1 1

(InnG)(k) AutDynG(k)

Aut(G→ Spec k)

(AutG)(k) Aut(DynG→ Spec k)

1 (OutG)(k) (Aut DynG)(k) 1

1 1

π2

ι

where all diagonal lines and vertical lines are exact. Here, π2 denotes
the projection of (InnG)(k) o Aut(DynG → Spec k) onto its second
component, and ι is a section of π2.

We thus conclude that the short exact sequence 1 → (AutG)(k) →
Aut(G → Spec k) → AutG(k) → 1 splits if and only if the short exact
sequence involving schemes of Dynkin diagrams 1 → (Aut DynG)(k) →
Aut(DynG→ Spec k)→ AutDynG(k)→ 1 does, as was to be shown.
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3.5 Semilinear automorphisms of the scheme of
Dynkin diagrams

We aim to give an explicit description of the group of semilinear au-
tomorphisms of Dynkin diagrams. One way to do that is to first base
change to a separable closure, and then push a little further the com-
putation appearing in the proof of Theorem 3.20. Instead, we prefer to
do it in a more down-to-earth manner, by looking explicitly at forms of
schemes of Dynkin diagrams.

Note that for Dyn a split scheme of Dynkin diagrams, the Gal(ks/k)-
action on Aut(Dynks) is trivial, so that H1(ks/k,Aut(Dynks)) is isomor-
phic to the set of continuous homomorphisms Hom(Gal(ks/k),Aut(D))

modulo conjugation (where D is the corresponding classical Dynkin di-
agram).

Definition 3.22. Let Dyn be a split scheme of Dynkin diagrams over
k corresponding to the Dynkin diagram D, and let Dyn′ be a ks/k form
of Dynks . Let N E Gal(ks/k) be the kernel of Gal(ks/k) → Aut(D)

classifying the form Dyn′, and let l be the Galois extension of k fixed by
N . We call l the classifying field of Dyn′. Once a separable closure of
k has been fixed, the classifying field of Dyn′ is uniquely determined by
Dyn′.

We say that a split scheme of Dynkin diagrams is connected if the cor-
responding Dynkin diagram is connected, and that a scheme of Dynkin
diagrams is connected if it is a form of a connected split scheme of
Dynkin diagrams (so connected really means “geometrically connected”
or “absolutely connected”). For the rest of the section, we focus on con-
nected schemes of Dynkin diagrams. At the level of algebraic groups,
this amounts to require G to be absolutely simple.

Lemma 3.23. Let Dyn be a split scheme of Dynkin diagrams over k
corresponding to a connected Dynkin diagram D. Let ks be a separable
closure of k. The map which associates to a ks/k-form of Dynks its
classifying field is a bijection between scheme of Dynkin diagrams over k
(up to k-isomorphism) and subfields l ≤ ks such that (l is Galois over k
and) Gal(l/k) is isomorphic to a subgroup of Aut(D).
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Proof. Since D is connected, Aut(D) is either trivial, Z /2Z or S3.
Hence, if two subgroups of Aut(D) are isomorphic, they are actually
conjugate. The result follows from the fact that the Galois action on
Aut(Dynks) is trivial, and hence H1(ks/k,Aut(Dynks)) is isomorphic to
the set of continuous homomorphisms Hom(Gal(ks/k),Aut(D)) modulo
conjugation.

Definition 3.24. Let Dyn be a connected scheme of Dynkin diagrams
over k, and let ks be a separable closure of k. We define the index of
Dyn to be gXn,l where

1. l ≤ ks is the classifying field of Dyn (and hence, a finite Galois
extension of k).

2. Xn is the label of the Dynkin diagram associated to (Dyn)l.

3. g is the order of the Galois group Gal(l/k).

As explained in Remark 3.11, we can describe a scheme of Dynkin
diagrams using the category of Gal(ks/k)-sets. Under this correspon-
dence, a scheme of Dynkin diagram (∆, E, λ) becomes a triple (∆̃, Ẽ, λ̃),
where ∆̃ is a finite Gal(ks/k)-sets, Ẽ is a Gal(ks/k)-invariant subset of
∆̃×∆̃ (this latter product being endowed with the diagonal action), and
λ̃ : ∆̃→ {1, 2, 3} is a Gal(ks/k)-equivariant map ({1, 2, 3} being endowed
with the trivial Gal(ks/k) action). We do so to ease the description of
scheme of Dynkin diagrams in the following classification.

Corollary 3.25. In view of Lemma 3.23, once we fix a field k together
with a separable closure ks, a connected scheme of Dynkin diagrams over
k is entirely determined by its index. Here is a description of all possible
connected scheme of Dynkin diagrams over a field k.

1. l = k. Hence the scheme of Dynkin diagrams is split, and split
schemes of Dynkin diagrams were described explicitly in Defini-
tion 3.10.

2. 2A2n,l (n ≥ 1). The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-
sets corresponding to this scheme of Dynkin diagrams can be de-
scribed as follows:
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. . .

. . .
(2n vertices)

The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Z /2Z depicted by the dotted
arrows. Finally, λ̃ is the projection onto 1.

3. 2A2n+1,l (n ≥ 0). The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-
sets corresponding to this scheme of Dynkin diagrams can be de-
scribed as follows:

. . .

. . .
(2n+ 1 vertices)

The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Z /2Z depicted by the dotted
arrows. Finally, λ̃ is the projection onto 1.

4. 2Dn,l (n ≥ 4). The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-
sets corresponding to this scheme of Dynkin diagrams can be de-
scribed as follows:

. . . (n vertices)

The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Z /2Z depicted by the dotted
arrows. Finally, λ̃ is the projection onto 1.

5. 2E6,l. The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-sets cor-
responding to this scheme of Dynkin diagrams can be described as
follows:
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The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Z /2Z depicted by the dotted
arrows. Finally, λ̃ is the projection onto 1.

6. 3D4,l. The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-sets cor-
responding to this scheme of Dynkin diagrams can be described as
follows:

The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Z /3Z acting cyclically on
the three rightmost nodes. Finally, λ̃ is the projection onto 1.

7. 6D4,l. The triple (∆̃, Ẽ, λ̃) in the category of Gal(ks/k)-sets cor-
responding to this scheme of Dynkin diagrams can be described as
follows:

The presence of an edge linking nodes i and j indicates that the
pairs (i, j) and (j, i) belong to Ẽ. Here, the Gal(ks/k) action fac-
tors through the action of Gal(l/k) ∼= Sym 3 acting freely on the
three rightmost nodes. Finally, λ̃ is the projection onto 1.

Lemma 3.26. Let Dyn be a connected scheme of Dynkin diagrams over
k with index gXn,l. For H a group, we denote its opposite group by Hop.

1. If g = 1, Aut(Dyn → Spec k) ∼= Aut(k)op × Aut(D) (where D
is the Dynkin diagram labelled by Xn). Furthermore, Aut(D) is
identified with (Aut Dyn)(k).
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2. If g = 2 or g = 3, Aut(Dyn → Spec k) ∼= {α ∈ Aut(l) | α(k) =

k}op, while (Aut Dyn)(k) ∼= Gal(l/k).

3. If g = 6, Aut(Dyn→ Spec k) ∼= {α ∈ Aut(l3) | α(k) = k}op, where
l3 is any non-normal cubic subextension of l/k.

Proof. 1. The case g = 1 means that Dyn is a split scheme of Dynkin
diagrams. Since D is connected, (Aut Dyn)(k) ∼= Aut(D). Fur-
thermore AutDyn(k) ∼= Aut(k) and the short exact sequence 1 →
Aut(D) → Aut(Dyn → Spec k) → Aut(k) → 1 introduced be-
low Definition 3.12 splits. Furthermore Aut(k) acts trivially on
Aut(D), so that the result follows.

2. An isomorphism of Dyn = (∆, E, λ) over an isomorphism of k is in
particular an edge preserving bijection ϕ of the set of points of the
topological space underlying the scheme ∆. In Corollary 3.25, the
scheme ∆ has been described as a Gal(ks/k)-set ∆̃. Recall that ∆

is just the spectrum of the etale algebra corresponding to ∆̃, and
that for example, the points of the topological space underlying
the scheme ∆ are in bijection with the orbits of ∆̃.

A case-by-case analysis of Corollary 3.25 readily reveals that the
bijection ϕ must be the identity. Hence, we are left with a set of
automorphisms of Spec l over an automorphism of k. But since
Dyn is connected, an element of Aut(Dyn → Spec k) is actually
determined by one automorphism of Spec l over an automorphism
of k. The description of Aut(Dyn → Spec k) follows. Finally, the
algebraic automorphisms are just the ones which act trivially on
k, so that (Aut Dyn)(k) is indeed isomorphic to Aut(l/k).

3. Again, the result is clear from the picture given in Corollary 3.25.

Corollary 3.27. Let Dyn be a connected scheme of Dynkin diagrams
over k with classifying field l. If Aut(l/k) � S3, then AutDyn(k) ∼= {α ∈
Aut(k) | there exists α̃ ∈ Aut(l) extending α}. While if Aut(l/k) ∼= S3,
then AutDyn(k) ∼= {α ∈ Aut(k) | there exists α̃ ∈ Aut(l3) extending α},
where l3 is a chosen non-normal cubic subextension of l/k.
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Proof. This follows from the surjectivity of Aut(Dyn → Spec k) →
AutDyn(k) and from the description of Aut(Dyn → Spec k) contained
in Lemma 3.26.

In view of Lemma 3.26 and Corollary 3.27, it is useful to introduce
the following notations.

Definition 3.28. Let k be a field, and let l be a field extension of k.
We denote by Aut(l ≥ k) the group of automorphisms of l preserving k,
i.e. Aut(l ≥ k) = {α ∈ Aut(l) | α(k) = k}. Also, we denote by Autl(k)

the group of automorphisms of k that extends to an automorphism of l,
i.e. Autl(k) = {α ∈ Aut(k) | there exists α̃ ∈ Aut(l) extending α}.

Using the identifications we made in Lemma 3.26 and Corollary 3.27,
we can rewrite in a very explicit form the short exact sequence 1 →
(Aut DynG)(k)→ Aut(DynG→ Spec k)→ AutDynG(k)→ 1.

Proposition 3.29. Let Dyn be a connected scheme of Dynkin diagrams
over k with index gXn,l.

1. If g = 1, let D be the Dynkin diagram labelled by Xn. The short
exact sequence 1 → (Aut DynG)(k) → Aut(DynG → Spec k) →
AutDynG(k) → 1 is isomorphic to the short exact sequence 1 →
Aut(D) → Aut(D) × Aut(k)op → Aut(k) → 1. In particular, it
always splits.

2. If g = 2 or g = 3, the short exact sequence 1→ (Aut DynG)(k)→
Aut(DynG → Spec k) → AutDynG(k) → 1 is isomorphic to 1 →
Gal(l/k)op → Aut(l ≥ k)op → Autl(k)→ 1.

3. If g = 6, let l3 be a (non normal) cubic subextension of l/k.
The short exact sequence 1 → (Aut DynG)(k) → Aut(DynG →
Spec k) → AutDynG(k) → 1 is isomorphic to 1 → 1 → Aut(l3 ≥
k)op → Autl3(k)→ 1. In particular, it always splits.

Proof. This is a direct consequence of Lemma 3.26 and Corollary 3.27.
Note that in each case, the map Aut(l ≥ k)op → Autl(k) is given by
restriction to k followed by inversion. Also note that when g = 6, and
since l3 is a non normal cubic extension of k, the group Aut(l3/k) is
trivial, and Aut(l3 ≥ k) ∼= Autl3(k).
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Remark 3.30. Note that for example, the short exact sequence 1 →
Gal(l/k)op → Aut(l ≥ k)op → Autl(k) → 1 appearing in Proposi-
tion 3.29 is also isomorphic to 1→ Gal(l/k)→ Aut(l ≥ k)→ Autl(k)→
1. We use this simpler form in Corollary 3.32.

We end this discussion with examples where the short exact sequence
1 → (Aut DynG)(k) → Aut(DynG → Spec k) → AutDynG(k) → 1 does
not split.

Definition 3.31. A field k is called rigid if every automorphism of k
is trivial, and strongly rigid if for any finite extension l of k, every
automorphisms of l acts trivially on k.

Examples of strongly rigid fields include finite fields of prime order,
the field Q and p-adic fields Qp for any prime p. On the other hand, R
is an example of a rigid field which is not strongly rigid.

Corollary 3.32. Let k be a finite Galois extension of a strongly rigid
field k0. Let G be an absolutely simple, simply connected (or adjoint)
quasi-split k-group such that DynG has index gXn,l, with g = 2 or g = 3.
Further assume that l is a Galois extension of k0. Then the short exact
sequence 1 → (AutG)(k) → Aut(G → Spec k) → AutG(k) → 1 splits if
and only if 1→ Gal(l/k)→ Gal(l/k0)→ Gal(k/k0)→ 1 splits.

Proof. In view of Theorem 3.2, Proposition 3.29 and Remark 3.30, the
short exact sequence 1→(AutG)(k)→ Aut(G→ Spec k)→ AutG(k)→
1 splits if and only if the short exact sequence 1→ Gal(l/k)→ Aut(l ≥
k) → Autl(k) → 1 splits. Since k0 is strongly rigid and k is a normal
extension, Aut(l ≥ k) = Gal(l/k0). Furthermore, Aut(k) = Gal(k/k0),
and since l/k0 is Galois, every element of Gal(k/k0) extends to Gal(l/k0).
Hence Autl(k) = Gal(k/k0), and we get the result.

3.6 The SLn(D) case

3.6.1 Outer automorphisms of finite dimensional central
simple algebras over local fields

We now explore the same question for algebraic groups of the form
SLn(D). We will restrict ourselves to the case of a local field. Let us
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begin by recalling the classification of central simple algebras over local
fields.

Definition 3.33. Let K be a local field and let d, r ∈ N with d ≥ 1. Let
Kd be the unramified extension of K of degree d, let σ ∈ Gal(Kd/K)

be the Frobenius automorphism (i.e. the automorphism inducing the
Frobenius automorphism on Gal(Kd/K)), and let π be a uniformiser of
K. We define A(d, r) to be the central simple algebra isomorphic to
the cyclic algebra (Kd/K, σ, π

r). More explicitly, A(d, r) is described as
d−1⊕
i=0

uiKd, with the relations u−1au = σ(a) for all a ∈ Kd, and ud = πr.

Note that up to isomorphism, A(d, r) does not depend on the choice
of π (in fact, given two uniformisers π and π̃, an explicit isomorphism
(Kd/K, σ, π

r) ∼= (Kd/K, σ, π̃
r) having the same form as the one appear-

ing in Lemma 3.34 can be given).

Lemma 3.34. Let K be a local field. Let A = A(d, r) and Kd, σ, π

be as in Definition 3.33. Let α be an automorphism of Kd such that
α(K) = K, and assume that there exists an element x in Kd such

that NKd/K(x) = α(πr)
πr . Then the map φ(α, x) : A → A :

d−1∑
i=0

uiai 7→
d−1∑
i=0

(ux)iα(ai) is a ring automorphism of A.

Proof. We view A as a quotient of the twisted polynomial ring Kd[u;σ]

(see [Jac96, Section 1.1] for the definition of a twisted polynomial ring)
modulo the relation ud = πr. Given an automorphism α in Aut(Kd), we

can define a map fα : Kd[u;σ]→ Kd[u;σ] :

u 7→ ux

a 7→ α(a) for all a ∈ Kd

.

By [Jac96, Proposition 4.6.20], fα is a ring automorphism as soon as
ασ = σα. Recall that by assumption, α(K) = K. Hence σ−1ασα−1

belongs to Gal(Kd/K), and its induced automorphism on the residue
field Kd is a commutator in Aut(Kd), thus trivial (note that since every
automorphism of a local field is continuous, it always induces an auto-
morphism of the residue field). We conclude that σ−1ασα−1 itself was
trivial, by [Ser79, Chapter III, §5, Theorem 3]. Hence, fα is indeed a
ring automorphism.
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Furthermore, if it passes to the quotient, fα induces the automor-
phism φ(α, x). Hence it suffices to check that fα preserves the relation.
But we have fα(ud − πr) = (ux)d − α(πr) = udNKd/K(x) − α(πr) =

(ud − πr)α(πr)
πr , as wanted.

For α an automorphism of a (non-necessarily commutative) ring R,
we denote by α̃ the corresponding automorphism of Mn(R) (the algebra
of n×n matrices with coefficient in R) obtained by applying α coefficient
by coefficient. Also, for A a finite dimensional central simple algebra over
a field k, we denote by Nrd: A→ k its reduced norm.

Lemma 3.35. Let k be a field and let A be a central simple k-algebra
of degree d. Let l be a field extension of k splitting A. Let α be a ring
automorphism of A such that α(k) = k and α(l) = l. For x ∈ A,
Nrd(α(x)) = α(Nrd(x)).

Proof. Let f : A → Md(l) be the representation of A given by the fact
that l splits A. Let α̃ : Md(l)→Md(l) be the automorphism correspond-
ing to α : l→ l. We consider the following non commutative diagram

A Md(l)

A Md(l)

l

l

f

α α̃

det

f det
α

In the above diagram, the square on the left does not commute, but the
square on the right does commute. By definition, for x ∈ A, Nrd(x) =

(det ◦f)(x). Also note that since α̃ ◦ f ◦ α−1 is another representation
of A, we have det ◦α̃ ◦ f ◦ α−1 = det ◦f , by [Pie82, Chapter 16, §1,
Corollary a]. Hence Nrd(α(x)) = (det ◦f ◦ α)(x) = (det ◦α̃ ◦ f)(x) =

(α ◦ det ◦f)(x) = α(Nrd(x)), as wanted.

We set some notations that we use for the rest of the chapter.

Definition 3.36. Let K be a local field. Let A(d, r) and Kd, σ, π be
as in Definition 3.33. Let α be an automorphism of Kd such that
α(K) = K, and assume that there exists an element x in Kd such that
NKd/K(x) = α(πr)

πr . The map φ̃(α, x) : Mn(A) → Mn(A), corresponding
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to the automorphism φ(α, x) : A → A from Lemma 3.34, preserves ele-
ments of reduced norm 1 by Lemma 3.35. We again denote its restriction
to SLn(A) by φ̃(α, x).

Corollary 3.37. Let A be a finite dimensional central simple algebra
over a local field K. Every automorphism of K extends to an automor-
phism of A. Furthermore, AutSLn(A)(K) = Aut(K).

Proof. By Theorem 3.59, the central simple algebra A is an algebra of
the form A(d, r), i.e. a cyclic algebra of the form (Kd/K, σ, π

r) with
Kd, σ, π as in Definition 3.33.

Let α ∈ Aut(K). Since Kd/K is Galois, there exists α̃ ∈ Aut(Kd)

whose restriction to K is α. On the other hand, by [Ser79, Chapter
V,§2, Corollary], NKd/K is surjective on O×K . Furthermore, as we recall
in the proof of Lemma 1.54, any automorphism of a local field preserves
the valuation. Hence there exists x ∈ Kd such that NKd/K(x) = α(πr)

πr .
Then the automorphism φ(α, x) defined in Lemma 3.34 is an extension
of α to A. Furthermore, φ̃(α, x) from Definition 3.36 is defined over α−1,
so that the last claim follows.

Remark 3.38. If α ∈ Aut(K) is of finite order, the result in Corol-
lary 3.37 asserting that α extends to an automorphism of D can be
found in the literature. Indeed, using Lemma 3.63, it is a direct conse-
quence of [EM48, Corollary 7.3]. See also [Han07, Theorem 5.6]. This
already settle the question in characteristic 0, but we are not aware of
such a result in positive characteristic.

3.6.2 Sufficient condition for the exact sequence not to
split

Let us introduce another notation for a subgroup of the group of semi-
linear automorphisms, which allow us to introduce a “ground field”.

Definition 3.39. Let k be a field and let G be a (finite type, affine) re-
ductive group over k. Let k′ be a subfield of k. We denote by Aut(G→
Spec k/k′) the subgroup of Aut(G → Spec k) consisting of semilinear
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automorphisms over an automorphism α belonging to Aut(k/k′). Fur-
thermore, we denote by AutG(k/k′) the image of Aut(G → Spec k/k′)

under the map Aut(G→ Spec k)→ AutG(k).

Theorem 3.40. Let D be a division algebra of degree d over a lo-
cal field K and let G = SLn(D). Let K ′ be a subfield of K such
that K/K ′ is a finite Galois extension. Then the short exact sequence
1→ (AutG)(K)→ Aut(G→ SpecK/K ′)→ AutG(K/K ′)→ 1 splits if
and only if gcd(nd, [K : K ′]) divides n.

Proof. By Corollary 3.37, AutG(K) = Aut(K). Hence, since Gal(K/K ′)

is contained in AutG(K), the short exact sequence splits if and only if G
is defined over K ′ (see Theorem 3.7). Let H be this hypothetical form
of G over K ′.

The case d = 1 being obviously true, let us assume that d ≥ 2. Now,
by the classification of simple groups over local fields (see [Tit79, Sec-
tion 4.2 and 4.3]), the Tits index of H is of the form 1A(d′) or 2A(1), since
these are the only groups of type A over local fields. Note that a distin-
guished orbit has to remain distinguished after scalar extension, because
a non-trivial root remains non-trivial after scalar extension. Hence H
cannot be of type 2A(1), because groups of type 2A(1) have extremal
roots that are distinguished, whereas G has undistinguished extremal
roots when d ≥ 2. But the only groups of type 1A(d′) are groups of the
form SLn′(D

′) where n′ ≥ 1 and D′ is a division algebra over K ′. So we
conclude that H is of this form.

We use the notation inv for the map classifying division algebras over
local fields (see Theorem 3.59 for a precise definition of inv). Let d′ be
the degree of D′ over K ′, and let r′ be such that [ r

′

d′ ] = inv([D′]) in Q/Z.
Also, let a = gcd(d′, [K : K ′]). The base change of SLn′(D

′) from K ′

to K is the algebraic group SLan′(A(d
′

a ,
[K:K′]
a r′)) by Proposition 3.64.

Since H is isomorphic to G over K, an′ = n and ad = d′. Hence,
a = gcd(ad, [K : K ′]), which implies that gcd(adn′, [K : K ′]) divides
an′. Now, the equation an′ = n already proves that if H exists, then
gcd(nd, [K : K ′]) divides n.

Conversely, let a = gcd(nd, [K : K ′]), and assume that a divides n.
We then set n′ = n

a , d
′ = ad and r′ such that [K:K′]

a r′ − r ∈ dZ (such
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an r′ exists because [K:K′]
a is prime to d). With those parameters, the

algebraic group SLn′(A(d′, r′)) is a form of G over K ′, as wanted.

Remark 3.41. The condition that gcd(nd, [K : K ′]) divides n is equiv-
alent to require that for all primes p dividing d, the p-adic valuation of
[K : K ′] is less than or equal to the p-adic valuation of n.

Corollary 3.42. Let D be a division algebra of degree d over a local field
K and let G = SLn(D). The short exact sequence 1 → (AutG)(K) →
Aut(G → SpecK) → AutG(K) → 1 does not split if there exists a
subfield K ′ ≤ K such that K/K ′ is finite Galois and gcd(nd, [K : K ′])

does not divide n.

Proof. 1 → (AutG)(K) → Aut(G → SpecK/K ′) → AutG(K/K ′) → 1

does not split by Theorem 3.40, hence neither does 1→ (AutG)(K)→
Aut(G→ SpecK)→ AutG(K)→ 1.

3.6.3 Sufficient condition for the exact sequence to split

In characteristic 0, it is actually straightforward to prove the converse to
Corollary 3.42.

Theorem 3.43. Let D be a division algebra of degree d over a local field
K of characteristic 0 and let G = SLn(D). The short exact sequence
1 → (AutG)(K) → Aut(G → SpecK) → AutG(K) → 1 does not split
only if there exists a subfield K ′ ≤ K such that K/K ′ is finite Galois
and gcd(nd, [K : K ′]) does not divide n.

Proof. By Corollary 3.37, AutG(K) = Aut(K). Since K is of charac-
teristic 0, it is a finite extension of Qp for some prime p. But every
automorphism of K is continuous and fixes Q ≤ K, so that every au-
tomorphism acts trivially on Qp. Hence, by Galois theory, Aut(K) is a
finite group. Furthermore, letting KAut(K) be the subfield of K fixed by
Aut(K), the extension K/KAut(K) is Galois with Galois group Aut(K).

Let a = gcd(nd, [K : KAut(K)]). Assuming that there does not ex-
ist a subfield K ′ ≤ K such that K/K ′ is finite Galois and such that
gcd(nd, [K : K ′]) does not divide n, we have in particular that a divides
n. Also, let r ∈ N be such that [ rd ] = inv([D]). Since [K:KAut(K)]

a is prime
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to d, there exists r′ ∈ N such that [K:KAut(K)]
a r′ − r ∈ dZ. Hence, by

Proposition 3.64, the algebraic group SLn
a
(A(ad, r′)) is a form of G over

KAut(K), because gcd(ad, [K : KAut(K)]) = a. But in view of Lemma 3.6,
this implies that the homomorphism Aut(G → SpecK) → Aut(K) =

Gal(K/KAut(K)) has a section, as wanted.

We now aim to prove an analogue of Theorem 3.43 but in posi-
tive characteristic. When K is of positive characteristic, the fixed field
KAut(K) is finite and K/KAut(K) is not Galois. Thus we cannot use the
same method than in characteristic 0.

Instead, the strategy goes as follows: we decompose Aut(K) in var-
ious pieces, we give a section of Aut(SLn(D) → SpecK) → Aut(K)

separately for each pieces and then we check that everything can be
glued. Let us begin by decomposing Aut(K).

Lemma 3.44. Let K = Fpi((T )). Since Fpi is the algebraic closure of
the prime field in K, Fpi is preserved by any automorphism of K. Let
N(K) = {α ∈ Aut(K) | α acts trivially on Fpi}. We have Aut(K) ∼=
N(K)oGal(K/Fp((T ))).

Proof. We want to show that the short exact sequence 1 → N(K) →
Aut(K)

f−→ Gal(Fpi/Fp) → 1 splits. But by [Ser79, Chapter III, §5,
Theorem 3], f maps Gal(K/Fp((T ))) isomorphically onto Gal(Fpi/Fp),
hence the result.

We furthermore decompose the group N(K). Since automorphisms
of K are continuous, an element α of N(K) is therefore defined by its

action on T , and is of the form α(T ) =
∞∑
j=1

ajT
j , where aj ∈ Fpi .

Definition 3.45. Let J(K) = {α ∈ N | α(T ) = T +
∞∑
j=2

ajT
j , aj ∈ Fpi}

and let Cpi−1 = {α ∈ N | α(T ) = aT, a ∈ F×
pi
}. With those notations,

the group N(K) is isomorphic to J(K)oCpi−1. For a ∈ F×
pi
, we denote

by ev(aT ) the corresponding element of Aut(K).

In summary, we have decomposed Aut(K) as the group (J(K) o
Cpi−1)oGal(K/Fp((T ))). We go on by giving a section to Aut(SLn(D)→
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SpecK) → Aut(K) for each component of Aut(K), one at a time. Let
us first set some notations.

Definition 3.46. Let K = Fpi((T )) and let E be a finite unramified
extension of K. For α ∈ N(K) we define its extension αE to Aut(E)

as follows: αE acts trivially on the residue field, while αE(T ) = α(T ).
We thus get an injective homomorphism N(K) → N(E) : α 7→ αE .
In Proposition 3.47 and Proposition 3.50, we abuse notations and also
denote αE as α.

Proposition 3.47. Let K = Fpi((T )) and let D be a division algebra of
degree d over K. Using the notations of Definition 3.33, D is the cyclic
algebra (Kd/K, σ, π

r) for some r ∈ N. Assume that gcd(p, d) = 1. For
α ∈ J(K), there exists a unique xα in 1+TFpi [[T ]] such that xdα = α(T r)

T r .
Let G = SLn(D) and recall the notation introduced in Definition 3.36.
The map

fJ(K) : J(K)→ Aut(G→ SpecK)

α 7→ φ̃(α, xα)

is a homomorphism whose composition with the map Aut(G→ SpecK)→
AutG(K) is the identity on J(K).

Proof. For α ∈ J(K), the uniqueness of xα in 1+TFpi [[T ]] such that xdα =
α(T r)
T r follows directly from Hensel’s lemma, since gcd(d, p) = 1. We claim

that for α, β ∈ J(K), xβ◦α = xβ.β(xα). By uniqueness, this equation
holds if and only if (β◦α)(T r)

T r = [xβ.β(xα)]d. But the right hand side is
equal to β(T r)

T r .β(α(T r)
T r ), which is indeed equal to (β◦α)(T r)

T r . Checking that
fJ(K) is a homomorphism is now straightforward: φ̃(β, xβ) ◦ φ̃(α, xα) =

φ̃(β ◦ α, xβ.β(xα)) = φ̃(β ◦ α, xβ◦α).

We can also prove a converse to Proposition 3.47.

Proposition 3.48. Let K = Fpi((T )), let D be a division algebra of de-
gree d over K and let G = SLn(D). If gcd(p, d) 6= 1, there does not exist
a homomorphism fJ(K) : J(K)→ Aut(G→ SpecK) whose composition
with Aut(G→ SpecK)→ AutG(K) is the identity on J(K).
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Proof. By Theorem 3.40, it suffices to prove that for all n ∈ N, there
exists K ′ ≤ K such that K/K ′ is finite Galois with Gal(K/K ′) ≤ J(K)

and gcd(nd, [K : K ′]) does not divide n. Let G be a group of order pn.
By [Cam97, Theorem 3], there exists an injective homomorphism G ↪→
J(Fp((T ))). Also note that J(Fp((T ))) can be seen as a subgroup of J(K)

in a natural way, so that J(K) has a subgroup of order pn, that we again
denote by G. Now, let K ′ = KG = {x ∈ K | α(x) = x for all α ∈ G}.
Hence, K/K ′ is a Galois extension with Gal(K/K ′) = G ≤ J(K) and
gcd(nd, [K : K ′]) = gcd(nd, pn) does not divide n because gcd(p, d) 6= 1,
as wanted.

We now construct a section of Aut(G → SpecK) → Aut(K) for
Cpi−1. In fact, using the same line of argument as for Theorem 3.40, we
know that a section for Cpi−1 exists if and only if gcd(nd, pi− 1) divides
n (where d and n appear in the form of G = SLn(D), d denoting as
usual the degree of D). But we need to have an explicit formula, since
we want to ensure that it glues well with the map fJ(K) constructed in
Proposition 3.47. Let us furthermore decompose Cpi−1 according to the
degree of the division algebra.

Definition 3.49. Let d ∈ N (in practice, d is the degree of the division
algebra appearing in G = SLn(D)). Let k(d), l(d) ∈ N be such that
k(d).l(d) = pi − 1, with gcd(dp

i−1, pi − 1) = gcd(dk(d), k(d)) = k(d) and
gcd(d, l(d)) = 1. Hence, gcd(l(d), k(d)) = 1, so that Cpi−1

∼= Ck(d) ×
Cl(d).

Proposition 3.50. Let K = Fpi((T )), let D be a division algebra of
degree d over K, and let Cl(d) ≤ Cpi−1

∼= F×
pi

be as in Definition 3.49.
Every element a in F×

pi
∩Cl(d) has a unique d-th root d

√
a in F×

pi
∩Cl(d). Us-

ing the notations of Definition 3.33, D is the cyclic algebra (Kd/K, σ, π
r)

for some r ∈ N. Let G = SLn(D) and recall the notation introduced in
Definition 3.36. The map

fCl(d) : Cl(d) → Aut(G→ SpecK)

ev(aT ) 7→ φ̃(ev(aT ), d
√
ar)
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is a homomorphism whose composition with the map Aut(G→ SpecK)→
AutG(K) is the identity on Cl(d).

Proof. The existence and uniqueness of d
√
a ∈ Cl(d) follows from the fact

that gcd(d, l(d)) = 1. Note that ev(aT )(T r)
T r = ar = NKd/K( d

√
ar), so that

we can indeed use Definition 3.36. Furthermore, by uniqueness of d-th
root, fCl(d) is indeed a group homomorphism.

Before going on and defining a section for Ck(d), we need more nota-
tions.

Definition 3.51. 1. Let Falg
p be the algebraic closure of Fp. We de-

note by Fp (or simply F when p is clear from the context) the Frobe-
nius automorphism of Falg

p ((T )). For any finite extension (respec-
tively finite unramified) extension E of Fp (respectively Fp((T ))),
we also denote by F the restriction of F to E.

2. For G a group and g ∈ G, we denote by int(g) the automorphism
by conjugation of g on G, i.e. int(g) : G→ G : x 7→ gxg−1.

Proposition 3.52. Let K = Fpi((T )), let D be a division algebra of
degree d over K.Using the notations of Definition 3.33, D is the cyclic
algebra (Kd/K, σ, π

r) for some r ∈ N. Let G = SLn(D) and let Ck(d) ≤
Cpi−1

∼= F×
pi

be as in Definition 3.49. Let ζ be a generator of Ck(d).

There exists an element x ∈ Fpidk(d) such that F id(x)
x = ζr. Choosing

a Fpid-basis of Fpidn, we obtain an embedding ϕ : Fpidn → Mn(Fpid).
Assume that k(d) divides n. Thus Fpidk(d) is a subfield of Fpidn , and let
g be the image of x−1 under the embedding ϕ. Recalling the notation
introduced in Definition 3.36, the map

fCk(d) : Ck(d) → Aut(G→ SpecK)

ev(ζjT ) 7→ int(gj) ◦ φ̃(ev(ζjT ), (F i(x)x−1)j)

is a homomorphism whose composition with the map Aut(G→ SpecK)→
AutG(K) is the identity on Ck(d).

Proof. Since d is fixed for the rest of the proof, let us denote k(d) simply
by k. We begin by proving the existence of x ∈ Fpidk such that F id(x)

x =
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ζr. Since ζ belongs to Ck, ζrk = 1. In other words, NF
pidk

/F
pid

(ζr) = 1.
Also note that the extension Fpidk/Fpid is Galois cyclic, and that F id

generates its Galois group. Hence, by Hilbert’s Theorem 90, there indeed
exists x ∈ Fpidk such that F

id(x)
x = ζr. For the rest of the proof, we choose

such an x.
From F id(x)

x = ζr, it readily follows that F i(x)x−1 and xk belongs to
Fpid , since they are both invariant under F id. Note that ev(ζjT )(T r)

T r =

ζjr = NKd/K((F i(x)x−1)j), so that we can indeed use Definition 3.36.
It remains to check that fCk is a homomorphism. Note that int(gj)◦

φ̃(ev(ζjT ), (F i(x)x−1)j) followed by int(gj
′
) ◦ φ̃(ev(ζj

′
T ), (F i(x)x−1)j

′
)

is just int(gj
′+j) ◦ φ̃(ev(ζj

′+jT ), (F i(x)x−1)j
′+j). Hence, it suffices to

check that int(gk) ◦ φ̃(ev(ζkT ), (F i(x)x−1)k) is the identity on SLn(D).
But since xk ∈ Fpid , gk is diagonal and by definition of g, x−kg−k = 1.
Furthermore, since σ (respectively F ) is the Frobenius element of Fpi((T ))

(respectively Falg
p ((T ))), σ = F i, so that for u ∈ D as in Definition 3.33,

ugku−1 = F i(gk). This concludes the proof.

Remark 3.53. The automorphism int(gj) ◦ φ̃(ev(ζjT ), (F i(x)x−1)j) of
Proposition 3.52 does not depend on the choice of x. This can be seen
by a direct computation, similar to the one we carry out in the proof of
Theorem 3.57, Item 5.

As before, we can also prove a converse to Proposition 3.52.

Proposition 3.54. Let K = Fpi((T )), let D be a division algebra of de-
gree d over K and let G = SLn(D). If k(d) does not divide n, there does
not exist a homomorphism fCk(d) : Ck(d) → Aut(G → SpecK) whose
composition with Aut(G → SpecK) → AutG(K) is the identity on
J(K).

Proof. By Theorem 3.40, it suffices to prove that there exists K ′ ≤ K

such that K/K ′ is finite Galois with Gal(K/K ′) ≤ Ck(d) and such that
gcd(nd, [K : K ′]) does not divide n. Recall from Definition 3.49 that
l(d) is prime to k(d) with k(d)l(d) = pi − 1. Hence K has a k(d)-th
primitive root of unity ζ. Hence, K ′ = Fpi((T

k(d))) is such that K/K ′ is
Galois of degree k(d), and Gal(K/K ′) is generated by the automorphism
of K sending T to ζT , so that Gal(K/K ′) ≤ Ck(d). Finally, gcd(nd, [K :
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K ′]) = gcd(nd, k(d)) does not divide n because by definition k(d) =

gcd(dk(d), k(d)) and k(d) does not divide n.

Finally, we construct a section to Aut(G → SpecK) → Aut(K) for
Gal(Fpi((T ))/Fp((T ))).

Proposition 3.55. Let K = Fpi((T )) and let D be a division algebra of
degree d over K. Assume that gcd(d, i) = 1. Let m ∈ Z be such that
mi + 1 ∈ dZ. Let G = SLn(D) and recall the notation introduced in
Definition 3.36. The map

fGal : Gal(Fpi((T ))/Fp((T )))→ Aut(G→ SpecK)

F j 7→ φ̃(F j(mi+1), 1)

is a homomorphism. Furthermore, its composition with the map Aut(G→
SpecK)→ AutG(K) is the identity on Gal(Fpi((T ))/Fp((T ))).

Proof. First, note that m exists because gcd(d, i) = 1. Since F jmi acts
trivially on Fpi((T )), F j(mi+1) is indeed an extension of F j (seen as re-
stricted to Fpi((T ))) to Fpid((T )). Furthermore, F i(mi+1) acts trivially on
Fpid((T )), because i(mi + 1) ∈ idZ by definition of m. Hence, fGal is
indeed a homomorphism.

Remark 3.56. A section fGal : Gal(Fpi((T ))/Fp((T ))) → Aut(G →
SpecK) exists if and only if gcd(nd, i) divides n. In Proposition 3.65,
we give an explicit formula for fGal assuming only that gcd(nd, i) divides
n. Unfortunately, this formula does not glue well with the formula for
fJ(K) (given in Proposition 3.47) when gcd(d, i) is not equal to 1.

We can finally glue all the previous constructions to obtain a global
splitting of the initial short exact sequence.

Theorem 3.57. Let D be a division algebra of degree d over the local
field K = Fpi((T )) and let G = SLn(D). Assume that for all subfields
K ′ ≤ K such that K/K ′ is finite Galois, gcd(nd, [K : K ′]) divides n.
Also assume that gcd(d, i) = 1. Then the short exact sequence 1 →
(AutG)(K)→ Aut(G→ SpecK)→ AutG(K)→ 1 splits.
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Proof. In view of Proposition 3.58, the hypotheses imply that gcd(d, p) =

1, gcd(nd, pi − 1) divides n and gcd(d, i) = 1. Hence we can apply
Propositions 3.47, 3.50, 3.52 and 3.55. For the rest of the proof, we
strictly adhere to the notations that are introduced in the statements of
those propositions.

Recall that AutG(K) = Aut(K) (Corollary 3.37). Also recall that we
decompose Aut(K) as (J(K)o (Cl(d) ×Ck(d)))oGal(Fpi((T ))/Fp((T ))).
We define a map

f : (J(K)o (Cl(d) × Ck(d)))oGal(Fpi((T ))/Fp((T )))→ Aut(G→ SpecK)

(α, ev(aT ), ev(ζjT ), F j
′
) 7→ fJ(K)(α)fCl(d)(ev(aT ))fCk(d)(ev(ζjT ))fGal(F

j′)

We claim that f is a homomorphism. To prove this claim, it suffices to
compute various commutators in Aut(G→ SpecK).

1. The images of fCl(d) and fCk(d) commute. Indeed, φ̃(ev(aT ), d
√
ar)

readily commutes with int(gj)φ̃(ev(ζjT ), (F (x)x−1)j).

2. We claim that fCl(d)(ev(a−1T ))fJ(K)(α)fCl(d)(ev(aT )) is equal to
fJ(K)(ev(a−1T ) ◦ α ◦ ev(aT )).

Indeed, φ̃(ev(a−1T ),
d
√
a−r)φ̃(α, xα)φ̃(ev(aT ), d

√
ar)= φ̃(ev(a−1T )◦

α◦ev(aT ), ev(a−1T )(xα)). But ev(a−1T )(xα) = xev(a−1T )◦α◦ev(aT ),
because ev(a−1T )(xα) belongs to 1 + TFpi [[T ]], and

ev(a−1T )(xα)d = ev(a−1T )(
α(T r)

T r
)

= ar.
ev(a−1T )α(T r)

T r

=
ev(a−1T ) ◦ α ◦ ev(aT )(T r)

T r

The claimed equality follows.

3. fCk(d)(ev(ζ−jT ))fJ(K)(α)fCk(d)(ev(ζjT )) = fJ(K)(ev(ζ−jT ) ◦ α ◦
ev(ζjT )). This follows from the same kind of computation than in
the previous case.

4. fGal(F
−j′)fJ(K)(α)fGal(F

j′) = fJ(K)(F
−j′αF j

′
).
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Indeed, F−j′(mi+1)(xα) belongs to 1 + TFpi [[T ]], and furthermore

F−j
′(mi+1)(xα)d =F−j

′(mi+1)(α(T r)
T r ) =

F−j
′(mi+1)αF j

′(mi+1)(T r)

T r
.

Hence

φ̃(F−j
′(mi+1), 1)φ̃(α, xα)φ̃(F j

′(mi+1), 1) =

=φ̃(F−j
′(mi+1)αF j

′(mi+1), F−j
′(mi+1)(xα))

=φ̃(F−j
′(mi+1)αF j

′(mi+1), xF−j′(mi+1)αF j
′(mi+1)))

=φ̃(F−j
′
αF j

′
, xF−j′αF j′ ))

as wanted.

5. We readily check the equality fGal(F
j′)fl(d)(ev(aT ))fGal(F

−j′) =

fl(d)(F
j′ ev(aT )F−j

′
). Let us prove that

fGal(F
j′)fk(d)(ev(ζjT ))fGal(F

−j′) = fk(d)(F
j′ ev(ζjT )F−j

′
).

The left hand side is equal to

φ̃(F j
′(mi+1), 1) int(gj)φ̃(ev(ζjT ), (F i(x)x−1)j)φ̃(F−j

′(mi+1), 1),

which in turn is equal to the automorphism f1 =

int(F j
′(mi+1)(gj))φ̃(ev(F j

′(mi+1)(ζj)T ), F j
′(mi+1)(F i(x)x−1)j)

We claim that the automorphism f1 is equal to

f2 = int(F j
′
(gj))φ̃(ev(F j

′
(ζj)T ), F j

′
(F i(x)x−1)j)

To prove the claim, we write an element of Mn(D) as
d−1∑
i=0

uiMi,

with Mi ∈ Mn(Fpid((T ))). Recall that the action of F on Fpid is
just given by y 7→ yp, and that for M ∈ Mn(Fpid((T ))), u−1Mu =

σ(M) = F i(M). Hence,

f1(u) = uF j
′(mi+1)+i(gj)F j

′(mi+1)(F i(x)x−1)jF j
′(mi+1)(g−j)

= uF j
′(mi+1)(F i(gx)(gx)−1)j)

= uF j
′(mi+1)(gx)j(p

i−1) = uF j
′(mi+1)(gx)jk(d)l(d) = u
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where for the last equality, we used the fact that xk(d)gk(d) = 1.
Doing the same computation for f2, we find that f2(u) = u as well.
There just remains to show that for M ∈Mn(Fpid((T ))), f1(M) =

f2(M). Since ζ ∈ Fpi , F j
′(mi+1)(ζj) = F j

′
(ζj). On the other hand,

F j
′(mi+1)(gj) = gjp

j′(mi+1)
= gjp

j′
gjp

j′ (pj
′mi−1). Recalling that k(d)

divides pi − 1 and that gk(d) is a scalar matrix, this shows that
F j
′(mi+1)(gj) is equal to F j

′
(gj) up to a scalar matrix, so that

f1(M) = int(F j
′(mi+1)(gj))(M) = int(F j

′
(gj))(M) = f2(M).

We conclude that f is indeed a homomorphism. The fact that f is a
splitting of the short exact sequence in the statement of the proposition
follows from the fact that the restriction of f to each component is locally
a section of Aut(G→ SpecK)→ AutG(K).

Since existence of Galois subfield plays a crucial role, we end this
section by characterising the existence of a Galois subfieldK ′ ofK whose
degree is divisible by a prime power.

Proposition 3.58. Let K = Fpi((T )), let q be a prime number and let
a ∈ N. There exists a subfield K ′ such that K/K ′ is finite Galois and
qa divides [K : K ′] if and only if q = p or qa divides i(pi − 1).

Proof. Assume that such aK ′ exists. SinceK/K ′ is Galois and qa divides
[K : K ′], there exists K̃ such that K/K̃ is Galois and [K : K̃] = qa. Up
to replacing K ′ by K̃, we can thus assume that [K : K ′] = qa. Let also
K ′ur be the maximal unramified extension of K ′ inside K.

Note that K ′ and K ′ur are local fields, so that in particular K ′ ∼=
Fpk((T )) and K ′ur ∼= Fpi((T )). Since [K ′ur : K ′] divides qa, there exists a1

such that qa1 = i
k . Letting a2 = a− a1, we have that K/K ′ur is a totally

ramified extension of degree qa2 .
If p = q, the proposition is proved, hence there just remains to in-

vestigate the case p 6= q. In this case, K is a tamely totally ramified
extension of K ′ur. Thus, K is isomorphic to K ′ur[X]/(Xqa2 −π) for some
uniformiser π ∈ Fpi((T )). But K is a Galois extension, and hence this
implies that Fpi((T )) has a primitive qa2-th root of unity, so that qa2

divides pi − 1, as wanted.
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To prove the converse, we use a classical fact from local class field
theory: there exists an extension Kπ of K which is Galois and totally
ramified, and such that Gal(Kπ/K) is isomorphic to the group of invert-
ible elements Fpi [[T ]]× of Fpi [[T ]] (see for example [Iwa86, Section 5.3]).
Note that the degree of F×

pi
+T a+1Fpi [[T ]] in Fpi [[T ]]× is equal to pa. Let

L1 be the Galois extension of K corresponding to F×
pi

+ T a+1Fpi [[T ]].

Let also L2 be the splitting field of Xpi−1 − T over Fp((T )). For k = 1

or 2, Lk is totally ramified of finite degree over K, so that there ex-
ists an isomorphism φk : K → Lk. Hence K1 = φ−1

1 (K) (respectively
K2 = φ−1

2 (Fp((T )))) is such that K/K1 (respectively K/K2) is Galois,
and [K : K1] = pa (respectively [K : K2] = i(pi − 1)), which concludes
the proof.

3.A Base change of the algebraic group SLn(D)

We begin by recalling some classical facts about finite dimensional central
simple algebras over local fields.

Theorem 3.59. Let K be a local field. Every central simple algebra over
K is isomorphic to an algebra of the form A(d, r) as in Definition 3.33.
Furthermore, the map inv : Br(K) → Q/Z : [A(d, r)] 7→ [ rd ] is an iso-
morphism of groups.

Proof. See for example [Mor97, Theorem 8] for the first assertion, while
the second is precisely the content of [Pie82, Chapter 17, §10, Theorem].

Corollary 3.60. Let K be a local field and let d, r ∈ N with d ≥ 1. Let
a = gcd(d, r). Then A(d, r) is a division algebra if and only if a = 1,
and A(d, r) ∼= Ma(A(da ,

r
a)).

Proof. The central simple algebra A(d, r) is a division algebra if and
only if all central simple algebras over K in the same Brauer class have
a higher degree. In view of Theorem 3.59, it readily implies that A(d, r)

is a division algebra if and only if a = 1. Furthermore, by Wedderburn’s
theorem, A(d, r) is isomorphic to Mn(D) for some division algebra D
and some 1 ≤ n ∈ N, and by definition of the Brauer group, [D] =
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[A(d, r)]. Hence, using the first part of the Theorem, D ∼= A(da ,
r
a).

Now, comparing degrees readily imply that n = a, and the result is
proved.

We now study the base change of the algebraic group SLn(A).

Lemma 3.61. Let A be a central simple algebra over a field k, and let
SL1,A be the algebraic group over k defined as the kernel of the reduced
norm, so that SL1,A(k) = {x ∈ A | Nrd(x) = 1} = SL1(A). For k′ a
field extension of k, (SL1,A)k′ = SL1,A⊗kk′ .

Proof. Let k′ be the algebraic closure of k′. Since k′ splits A, the reduced
norm is the map f : A→ A⊗kk′ ∼= Mn(k′)

det−−→ k′. Let ϕ denotes the iso-
morphism A⊗k k′ ∼= Mn(k′). If we take a k-basis of A to get coordinates
on A⊗k k′, the map det ◦ϕ is actually a polynomial map on A⊗k k′ with
coefficients in k, by [Bou73, Chapitre VIII, §12, Proposition 11]. Hence,
fk′ = det ◦ϕ. This implies that fk′ : A⊗k k′ → k′ is just the composition

A⊗k k′ → A⊗k k′ ∼= Mn(k′)
det−−→ k′, i.e. fk′ is the reduced norm map of

the algebra A⊗k k′, as wanted.

Remark 3.62. To avoid having too many subscripts, we denote the
algebraic group SL1,A by its group of rational points, i.e. SL1(A). Recall
also that by definition, SL1,Mn(A) = SLn,A. We also denote this equality
at the level of rational points, i.e. SL1(Mn(A)) = SLn(A).

Before giving the formula for a base change of SLn(A), we recall the
effect of extending scalars for central simple algebras over local fields.

Lemma 3.63. Let K be a local field and let A(d, r) be the central simple
algebra over K defined in Definition 3.33. Let L be a finite extension of
K. Then A(d, r)⊗K L ∼= A(d, r[L : K]).

Proof. By Wedderburn’s theorem, a central simple algebra over a field
is uniquely determined by its degree and its Brauer class. By [Pie82,
Chapter 17, Section 17.10, Proposition], we have inv([A(d, r) ⊗K L]) =

[L : K]. inv([A(d, r)]. Hence A(d, r[L : K]) and A(d, r) ⊗K L are in
the same Brauer class. Since they have the same degree as well, this
concludes the proof.
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Proposition 3.64. Let A(d′, r′) be a division algebra over a local field
K ′ as in Definition 3.33. Let K/K ′ be a finite field extension and let
a = gcd(d′, [K,K ′]). Then the base change of SLn′(A(d′, r′)) to K is
isomorphic to SLan′(A(d

′

a ,
[K:K′]
a r′)).

Proof. The base change of SLn′(A(d′, r′)) = SL1(Mn′(A(d′, r′))) to K
is isomorphic to SL1(Mn′(A(d′, r′)) ⊗K′ K) ∼= SLn′(A(d′, r′) ⊗K′ K) by
Lemma 3.61. But by Corollary 3.60 and Lemma 3.63, A(d′, r′) ⊗K′
K ∼= Ma(A(d

′

a ,
[K:K′]
a r′)). To conclude, note that for any central simple

algebra A, SLn′(Ma(A)) ∼= SLan′(A).

3.B More automorphisms of SLn(D)

The following proposition gives explicitly a “partial splitting” of the ho-
momorphism Aut(SLn(D) → SpecK) → AutG(K) for the subgroup
Gal(Fpi((T ))/Fp((T ))) when gcd(nd, i) divides n (d being as usual the
degree of D over K). Unfortunately, we were not able to include this
case in Theorem 3.57 because the formula we found does not glue well
with the map fJ(K) constructed in Proposition 3.47. Yet, this explicit
formula could be of interest, so that we include it here.

Proposition 3.65. Let K = Fpi((T )), let D be a division algebra of
degree d over K and let G = SLn(D). There exists a homomorphism
fGal : Gal(Fpi((T ))/Fp((T ))) → Aut(G → SpecK) whose composition
with Aut(G → SpecK) → AutG(K) is the identity on the subgroup
Gal(Fpi((T ))/Fp((T ))) if and only if gcd(nd, i) divides n.

Proof. First assume that gcd(nd, i) divides n. We begin by setting some
notations. Let r ∈ N be such that inv([D]) = [ rd ]. By Corollary 3.60, r
is prime to d and D is the cyclic algebra (E/K, σ, πr).

Recall that Gal(Fpi((T ))/Fp((T ))) is just (isomorphic to) Gal(Fpi/Fp),
which is isomorphic to the cyclic group Ci of order i. Let k, l ∈ N be
such that kl = i, with gcd(di, i) = gcd(dk, k) = k and gcd(d, l) = 1.
Note that since gcd(nd, i) divides n, it follows that gcd(di, i) = k divides
n as well. Furthermore, gcd(l, k) = 1, so that

Gal(Fpi((T ))/Fp((T ))) ∼= Ci ∼= Ck × Cl
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∼= Gal(Fpi((T ))/Fpl((T )))×Gal(Fpi((T ))/Fpk((T )))

For the rest of the proof, γ denotes the Frobenius automorphism on
Fpi((T )), while γ̃ denotes the Frobenius automorphism on Fpdi((T )). In
particular, γk generates Cl ∼= Gal(Fpi((T ))/Fpk((T ))), while γl generates
Ck ∼= Gal(Fpi((T ))/Fpl((T ))). Furthermore, γ̃s extends γt if and only if
s− t ∈ iZ.

We are going to define fGal on Cl and Ck separately, beginning with
Cl. Letm ∈ Z be such thatml+1 ∈ dZ (which exists since gcd(d, l) = 1).
Recall that γk generates Cl. For j ∈ Z, and using the notation introduced
in Definition 3.36, we define the map

fCl : Cl → Aut(SLn(D)→ SpecK) : γjk 7→ ϕ̃(γ̃j(mi+k), 1).

It follows from the definition of m that fCl(γ
lk) is the identity, so that

fCl is indeed a homomorphism.

We now define a homomorphism fCk : Ck → Aut(SLn(D)→ SpecK).
Recall that γl generates Ck. Since k divides n, let a ∈ N be such
that ak = n. Let also b ∈ N be such that bk = di, which exist since
gcd(di, i) = k. Recall that Kd is the field Fpdi((T )). We define an auto-
morphism α̃(γl) of Kn

d as follows:

α̃(γl) : Kn
d → Kn

d : (esa+t)s∈{0,...,k−1}
t∈{1,...,a}

7→ (xsa+t)s∈{0,...,k−1}
t∈{1,...,a}

xsa+t =

γ̃bi+l(e(s−1)a+t) if s ≥ 1

γ̃(b−1)i+l(e(k−1)a+t) if s = 0

We claim that α̃(γl)k is the identity on Kn
d . Indeed, after k iterations

of α̃(γl), a coefficient is shifted by ka = n places modulo n, hence is fixed.
Furthermore, each coefficient is hit by γ̃(bi+l)(k−1)+(b−1)i+l = γ̃bik+lk−i =

(γ̃id)d
i−1 , which is the identity on Kd, so that the claim holds.

We denote an element of D as
d−1∑
i=0

uiei with ei ∈ Kd. Let w be the
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following element of Mn(D):

w =



0 0 0 . . . 0 u

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0


Let us also identify Kn

d with the algebra of n × n diagonal matrices
with coefficient in Kd via the embedding

Kn
d →Mn(Kd) : (e1, e2, e3, . . . , en) 7→



e1 0 0 . . . 0

0 e2 0 . . . 0

0 0 e3 . . . 0
...

...
...

. . .
...

0 0 0 . . . en


With those notations, an element x in Mn(D) is written uniquely in

the form
nd−1∑
i=0

wixi, for xi ∈ Kn
d . We define the following map onMn(D):

fCk(γl) : Mn(D)→Mn(D) :
nd−1∑
i=0

wixi 7→
nd−1∑
i=0

wiα̃(γl)(xi).

Claim 2. The map fCk(γl) is a ring automorphism which preserves el-
ements of reduced norm 1.

Proof of the claim: The proof is a straightforward adaptation of the
proof of Lemma 3.34. Let us do it for the ease of the reader.

Let Kn
d [w;φ] be a twisted polynomial ring (see [Jac96, Section 1.1]

for the definition of a twisted polynomial ring), where φ : Kn
d → Kn

d is
the ring automorphism sending (e1, . . . , en) to (σ−1(en), e1, . . . , en−1).
The algebra Mn(D) is isomorphic to Kn

d [w;φ] modulo the relations
wnd = πr. Given an automorphism α in Aut(Kd), we can define a map

fα : Kn
d [w;φ] → Kn

d [w;φ] :

w 7→ w

x 7→ α(x) for all x ∈ Kn
d

. By [Jac96,
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Proposition 4.6.20], fα is a ring automorphism as soon as αφ = φα.
For α = α̃(γl), this readily follows from the definition of α̃(γl), recalling
that σ is the Frobenius element of Gal(Kd/K), and hence is equal to γ̃i.
Hence, fα̃(γl) is indeed a ring automorphism of Kn

d [w;φ].
Furthermore, if it passes to the quotient, fα̃(γl) induces the automor-

phism fCk . Hence it suffices to check that fα̃(γl) preserves the relation.
But we have fα̃(γl)(w

nd − πr) = wnd − πr, so that the claim is proved.
It remains to check that fCk(γl) preserves elements of reduced norm

1. In fact, we prove that for g ∈Mn(D), Nrd(fCk(γl)(g)) = γl(Nrd(g)).
Let f : Mn(D)→Mnd2(K) be a representation of Mn(D). Furthermore,
let γ̃l : Mnd2(K) → Mnd2(K) be the automorphism defined by applying
γl coefficient by coefficient. Let us look at the non-commutative diagram

Mn(D) Mnd2(K)

Mn(D) Mnd2(K)

K

K

f

fCk
(γl) γ̃l

det

f det
γl

In the above diagram, the square on the left does not commute, but
the square on the right does commute. By [Pie82, Chapter 16, §1,
Corollary a], for g ∈ Mn(D), Nrd(g) = d

√
(det ◦f)(g). Also note that

since γ̃l ◦ f ◦ fCk(γl)−1 is another representation of D, we have det ◦γ̃l ◦
f ◦ fCk(γl)−1 = det ◦f , again by [Pie82, Chapter 16, §1, Corollary a].
Hence Nrd(fCk(γl)(g)) = (det ◦f ◦ fCk(γl))(g) = (det ◦γ̃l ◦ f)(g) =

(γl ◦ det ◦f)(g) = γl(Nrd(g)), as wanted. �

We also denote by fCk(γl)) the restriction of fCk(γl)) to SLn(D).
The homomorphism fGal : Gal(Fpi((T ))/Fpl((T ))) → Aut(G → SpecK)

is then obtained by glueing fCl and fCk . Namely,

fGal : Cl × Ck → Aut(G→ SpecK) : (a1, a2) 7→ fCl(a1) ◦ fCk(a2)

Since the images of fCl and fCk commute, this is indeed a homomor-
phism. Finally, the fact that the composition of fGal with Aut(G →
SpecK) → Aut(K) is the identity follows directly from the construc-
tion.

For the converse, assume that gcd(nd, i) does not divide n. By Theo-
rem 3.40, it suffices to prove that there exists K ′ ≤ K such that K/K ′ is
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finite Galois and gcd(nd, [K : K ′]) does not divide n. But K ′ = Fp((T ))

is such a subfield.
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