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Abstract—Software systems are deployed in environments that 
keep changing over time. They should therefore adapt to 
changing conditions in order to meet their requirements. The 
satisfaction rate of these requirements depends on the rate at 
which adverse conditions prevent their satisfaction. Obstacle 
analysis is a goal-oriented form of risk analysis for 
requirements engineering (RE) whereby obstacles to system 
goals are identified, assessed, and resolved through 
countermeasures yielding new requirements. The selection of 
appropriate countermeasures relies on the assessed likelihood 
and criticality of obstacles together with environmental 
assumptions. These various factors are estimated at RE time; 
they may however evolve during software development and at 
system runtime.  

To meet the system’s goals under changing conditions, the 
paper proposes to defer obstacle resolution to system runtime. 
Following Monitor–Analyze–Plan–Execute cycles, techniques 
are presented for monitoring goal/obstacle satisfaction rates; 
deciding when adaptation should be triggered; and adapting 
the system on the fly to countermeasures that are more 
appropriate under the monitored conditions. The approach 
relies on a model where goals and obstacles are refined and 
specified in a probabilistic linear temporal logic. The proposed 
techniques allow for (a) monitoring the satisfaction rate of 
probabilistic leaf obstacles; (b) determining the severity of 
their consequences by up-propagating satisfaction rates 
through refinement trees from leaf obstacles to high-level 
probabilistic goals; and (c) dynamically shifting to alternative 
countermeasures that better meet the required satisfaction rate 
of the system’s high-level goals under imposed cost constraints. 
Our approach is evaluated on fragments of an ambulance 
dispatching system. 

Keywords - adaptive systems; runtime requirements 
monitoring; probabilistic goals; obstacle analysis; goal-oriented 
requirements engineering. 

I.  INTRODUCTION 
Software systems are increasingly deployed in 

unpredictably varying environments. Autonomous vehicle 
control [12], disaster management [28], or adaptive security 
[41] are examples of problem domains where the system 
must adapt to changing environments to guarantee its goals. 

For runtime system adaptation, Monitor-Analyse-Plan-
Execute cycles are often followed [13, 31, 34]. The Monitor 
step collects, filters and aggregates data from the running 
system such as performance metrics and configuration 
characteristics. The Analyze step determines whether a 
change is required or not based on data analysis and 
reasoning about the running system. The Plan step structures 

the actions to apply in order to guarantee that the system will 
subsequently meet its objectives. During the Execute step, 
the system is updated with the planned actions. 

Probabilistic requirements often emerge in the 
requirement engineering (RE) phase of system development. 
Typically, they require some target property to be satisfied in 
at least X% of cases [4, 7, 20, 23, 35]. At system runtime, 
they may not be satisfied due to adverse conditions. This 
paper focuses on runtime adaptation mechanisms to 
guarantee that the minimal thresholds required by 
probabilistic requirements are still met at system runtime in 
spite of environment changes.  

In goal-oriented RE, adverse conditions to requirements 
satisfaction are called obstacles. An obstacle is a 
precondition to the non-satisfaction of a corresponding goal 
[20, 32, 33, 37]. While building an AND/OR goal refinement 
graph (called goal model), the analyst performs obstacle 
analysis cycles, each consisting of three steps: (i) obstacles 
are systematically identified from specifications of goals and 
domain properties [1, 32]; (ii) the likelihood and criticality of 
the identified obstacles are assessed [7, 9, 20]; (iii) the likely 
and critical obstacles are resolved through countermeasures 
integrated as new goals in the goal model [2, 8, 32]. The 
problem is that the selection of “best” countermeasures is 
based on environment assumptions and obstacle satisfaction 
rates determined at RE time. These influencing factors may 
turn to be different at system runtime. Some assumptions 
might no longer hold; new characteristics might emerge; 
experts’ estimates at RE time for obstacle assessment might 
prove inaccurate at system runtime; other estimates might 
not be available at RE time; and so forth. For better fit to the 
system’s goals under changing or originally unknown 
conditions, it might thus be better to defer decisions on 
selecting most appropriate countermeasures to system 
runtime [19]. 
The paper presents obstacle-driven runtime adaptation 
techniques for increased satisfaction of probabilistic system 
goals. These techniques are intended to address the following 
more specific objectives. 
• Precise semantics in terms of observed states and 

behaviors. In contrast with [28, 39, 42], the monitored 
items have a clear and precise meaning. A formal 
semantics enables their interpretation as real-world 
phenomena which reduces subjective assessments. A 
formal semantics also allows model checking techniques 
to be used for monitoring probabilistic obstacles. 



• Traceability of monitored indicators and deployed 
countermeasures. Unlike [24], the monitored indicators 
and decision criteria for system adaptation are traceable 
to system objectives; why such or such monitored 
information is required is thereby documented. 

• Model-based adaptation. The adaptation process is 
driven by a goal/obstacle model; only those adaptations 
which are required to meet the probabilistic assertions 
from this model are made. Model-based adaptation also 
reduces the need for application-specific manipulations. 

• No explicit behavior modelling. Unlike [25, 26], the 
model used is declarative; system behaviors need not be 
explicitly modelled. Building a consistent and complete 
behavior model for large distributed systems with many 
complex states and parallelism is often quite challenging.  

The paper makes the following contributions. 
• A formal characterization of satisfaction rates of 

probabilistic goals and obstacles is provided in terms of 
observed states and behaviors.  

• Probabilistic obstacles are monitored at system runtime. 
Our approach extends the monitoring technique 
introduced in [6] for non-probabilistic linear temporal 
logic (LTL) to monitor probabilistic LTL assertions at 
system runtime. From such monitoring of leaf obstacles, 
the satisfaction rate of high-level goals is obtained by up-
propagation through obstacle/goal refinement trees. 

• Alternative countermeasures are selected on the fly, 
among those identified at RE time, when the satisfaction 
rate obtained for high-level goals is below their required 
threshold. A cost-benefit tradeoff analysis guides the 
selection to maximize satisfaction rates under cost 
constraints. 

• The selected countermeasures are integrated into the goal 
model and deployed in the running software system. 
The paper is organized as follow. Section II provides 

some necessary background on goal/obstacle modeling with 
probabilistic specifications and on monitoring non-
probabilistic LTL assertions. Section III outlines the general 
approach proposed for runtime system adaptation. Section 
IV presents our technique for runtime monitoring of 
probabilistic assertions. Section V explains how satisfaction 
rates for high-level goals are obtained from monitored leaf 
obstacles in order to determine when an adaptation is 
required. Section VI describes how most appropriate 
countermeasures are selected to yield a required adaptation. 
Section VII discusses how the selected countermeasures are 
deployed into the running system. Section VIII reports on a 
preliminary evaluation of our techniques on a real ambulance 
dispatching system. Section IX discusses related work. 

II. BACKGROUND 
Goal-oriented system modeling [33]. A goal is a prescriptive 
statement of intent to be satisfied by cooperation of the 
agents forming the system. The word “system” refers to both 
the software and its environment, including people, legacy 
software, devices like sensors and actuators, etc. A domain 
property is a descriptive statement about the system, e.g., a 
physical law.  

The paper focuses on behavioral goals. Unlike soft goals, 
these goals can be satisfied in a clear-cut sense [33]. A 
behavioral goal defines a maximal set of behaviors 
declaratively and implicitly. A behavior violates a goal if it is 
not among the behaviors captured by the goal specification.  

A metric linear temporal logic (MTL) is used for 
formalizing behavioral goals to enable their analysis [33]. 
The temporal operators include ¡ (in the next state), ◊ 
(eventually), ◊≤d (eventually before deadline d),  o (always in the 
future), o≤d (always up to deadline d), W (always in the future 
unless). The standard logical connectives include Ù (and), Ú 
(or), ¬ (not), ® (implies). A behavioral goal is of type Achieve 
or Maintain. The specification pattern for Achieve goals is o 

(C ® ◊T), where C and T refer to a current and a target 
condition, respectively. The specification pattern for 
Maintain goals is o (C ® G), where G refers to a "good" 
condition. 

A goal model is an AND/OR-graph showing how goals 
contribute positively or negatively to each other. An AND-
refinement captures a combination of subgoals entailing the 
parent goal; an OR-refinement captures an alternative way of 
satisfying the parent goal. A goal may be refined into 
subgoals by asking “how” questions whereas it may be 
abstracted into parent goals by asking “why” questions. Leaf 
goals are assigned to specific system agents. A goal assigned 
to a single software agent is a requirement whereas a goal 
assigned to a single environment agent is an assumption. 

Fig. 1 shows a goal model fragment for a flood detection 
system [30]. Goals and agents are represented by 
parallelograms and hexagons, respectively. The top goal in 
Fig. 1 is AND-refined into four leaf goals assigned to 
corresponding agents. 
Obstacle Analysis [33]. An obstacle O to a goal G in the 
considered domain Dom is a satisfiable precondition for the 
non-satisfaction of this goal:  

{O, Dom} ⊨ ¬ G  (obstruction) 
{O, Dom} ⊭ false  (domain consistency) 

 
Figure 1. Goal model fragment for a flood detection system 

   
Figure 2. Obstacle model fragment with a countermeasure 



Obstacles are also formalized in MTL. The specification 
pattern for an obstacle to an Achieve goal is ◊ (C Ù o¬T); for 
an obstacle to a Maintain goal the pattern is ◊ (C Ù ¬G). 

Obstacles are also structured as AND/OR graphs rooted 
on negations of corresponding leaf goals. An obstacle AND-
refinement captures a combination of sub-obstacles entailing 
the parent obstacle. An obstacle OR-refinement captures an 
alternative combination. The consequences of an obstacle are 
the falsification of the ancestors of the obstructed leaf goal.  

Obstacles are resolved through countermeasures aimed at 
reducing their likelihood or mitigating their consequences. 
Fig. 2 shows two obstacle trees anchored on corresponding 
goals (obstacles are depicted by left parallelograms). The 
countermeasure goal Achieve[SpeedAcquiredEvery5Sec] there 
resolves the leaf obstacle UltraSoundSensorBroken obstructing 
the goal Achieve[SpeedAcquiredEvery5SecondsByUltrasound].  

The integration of countermeasures to obstacles in a goal 
model increases the completeness of this model. The 
integration either adds a new goal in the model or replaces 
the obstructed goal or an ancestor of it by another goal [8]. A 
countermeasure goal CG is said to be valid if some ancestor 
goal AG' of the obstructed goal is entailed by it: 

{CG, SG1’, … , SGn’, Dom’} ⊨ AG’       (ancestor entailment) 

where AG' and SGi' denote possibly weakened versions of 
the original ancestor AG with subgoals SGi, respectively. 

The anchor for a countermeasure goal is the lowest 
ancestor goal meeting the ancestor-entailment condition. In 
the augmented goal model, the countermeasure goal is 
anchored to this goal [8]. 

Various strategies are available for exploring alternative 
countermeasures [32, 33]. 
Probabilistic Goals and Obstacles [7]. Behavioral goals 
might in practice not be always satisfied in any possible 
situation. A probabilistic goal prescribes a minimal threshold 
for its satisfaction rate —e.g., “locals shall be warned when 
flooding is imminent in at least 95% of cases”.  

The required degree of satisfaction (RDS) of a goal is the 
minimal admissible satisfaction rate to be ensured by the 
system-to-be. It is often imposed from regulations, standards, 
common practice, and so forth. 

The estimated satisfaction rate (ESR) of a leaf obstacle is 
the obstacle’s satisfaction rate estimated by domain experts 
at RE time. The ESR of a goal is its satisfaction rate in view 
of its possible obstructions by obstacles. As seen in Section 
V, a goal's ESR can be obtained from the ESR of its leaf 
obstacles by up-propagation through the goal/obstacle model 
[9]. A goal’s ESR shall ideally be greater than its RDS. 
Monitoring Non-Probabilistic LTL Assertions [6]. 
Monitoring the runtime satisfaction of a LTL formula relies 
on the finite trace observed so far. The monitoring technique 
in Section IV extends the automata-based approach in [6] to 
probabilistic LTL assertions. The latter approach is chosen 
as it reports LTL formula satisfaction or violation as early as 
possible.  

LTL3, the LTL considered in [6], uses true, false, and 
inconclusive as truth values. A finite trace is labelled as true 
if any continuation of it satisfies the formula; false if any 
continuation falsifies the formula; and inconclusive 

otherwise. A LTL3 formula monitor is a finite state machine 
(FSM) that reads finite traces and outputs the corresponding 
truth value. As suggested by Fig. 3, this FSM is built from 
the formula and its negation [6]. 

(1) The associated non-deterministic Büchi automaton 
(NBA) is generated using a standard algorithm [15].  

(2) A non-deterministic finite automaton (NFA) is then 
generated by performing an emptiness check for each 
NBA state. A state s is labelled with true if a 
continuation satisfying the formula exists (that is, if 
the language corresponding to the NFA with initial 
state s is not empty); it is false otherwise. 

(3) The NFA is determinized to produce a deterministic 
finite automaton (DFA) using powersets.  

The monitor FSM results from the product of both DFAs. 
Let (s1,s2) denote a state in this product, where s1 is the DFA 
state corresponding to the formula j and s2 the DFA state 
corresponding to its negation ¬j. This monitor FSM state is 
labeled as: 
• true if s1 is labeled as true and s2 as false (no continuation 

exists such that the formula is falsified); 
• false if s1 is labeled as false and s2 as true (no 

continuation exists such that the formula is satisfied);  
• inconclusive otherwise.  
At runtime, the current state of the monitor FSM is updated 
according to the truth value of the observed predicates and 
state assertions on FSM transitions. More details about the 
approach can be found in [6].  

III. OVERVIEW OF THE APPROACH 
Based on the background outlined in the previous section, 
the objective in this paper is to let the system dynamically 
switch to more appropriate countermeasures to leaf obstacles 
in view of evolving environment conditions and obstacle 
satisfaction rates. The satisfaction rate of leaf obstacles was 
estimated at RE time and is now being observed at system 
runtime. The alternative countermeasure goals to those leaf 
obstacles were identified and specified at RE time.  

A countermeasure should dynamically replace the current 
one when, unlike the latter, it makes the satisfaction rate of 
high-level goals exceed their required degree of satisfaction. 
The satisfaction rate of high-level goals is obtained from the 
monitored satisfaction rate of the leaf obstacles by up-
propagation through the goal/obstacle model. The monitored 
satisfaction rate of a leaf obstacle is obtained by counting the 
observed behaviors.  
Our approach comprises 6 steps detailed in the next sections. 

(1) LTL3 monitors for the leaf obstacles are built at RE 
time. The list of predicates to observe at runtime is 
thereby provided. (See Section IV.A.) 

(2) At runtime, the states of the monitored system are 
observed at a regular pace. (The pace may be chosen to 
fit a specific domain.) At every observation, a new 

 
Figure 3. Steps for computing monitor FSM from input formula 𝜑 



virtual monitor for each leaf obstacle is started while 
existing monitors are updated. (See Section IV.B.)  

(3) The monitored satisfaction rate of leaf obstacles is up-
propagated through obstacle/goal refinement trees up to 
high-level goals. (See Section V.) 

(4) Comparing the monitored satisfaction rates obtained for 
those goals with their RDS determines whether the 
current countermeasures to the monitored obstacles are 
still appropriate. If a monitored goal satisfaction rate 
falls below the goal’s RDS, alternative more 
appropriate countermeasures are selected among those 
available. (See Section VI.A and Section VI.B.) 

(5) The goal/obstacle model is updated accordingly by 
integrating the new current countermeasures and 
updating the propagation in Step 4. (See Section VI.) 

(6) The software is automatically adapted according to the 
selected countermeasures. (See Section VII.) 

IV. MONITORING PROBABILISTIC OBSTACLES 
At RE time, domain experts estimate the satisfaction rates of 
the leaf obstacles based on their knowledge of the system or 
their experience with similar systems [9]. These estimates 
might prove inaccurate at system runtime —they might be 
too rough or environment properties or assumptions might 
have changed in the meantime. Moreover, some variables 
might be hard to estimate at RE time —prior data might not 
be available or might be too costly to acquire; too many 
parameters might be involved; etc. Monitoring the actual 
satisfaction rate of leaf obstacles at system runtime helps 
filling this gap; former estimates may be made more 
accurate, and missing data may be made available.  

Section IV.A provides a precise definition of satisfaction 
rates in terms of states and behaviors. Section IV.B explains 
how monitors for probabilistic assertions are built and used 
on top of non-probabilistic LTL3 monitors. 
A. Formal Framework for Probabilistic Assertions 
As introduced in Section II, probabilistic goals might be 
satisfied only partially. A precise characterization in terms of 
observed states and behaviors enables the monitoring of their 
satisfaction rates. 

An Achieve goal o (C ® ◊T) requires all possible system 
states to satisfy C ® ◊T. As the goal might be satisfied only 
partially, a state s has a probability that the behaviors starting 
from it satisfy C ® ◊T. 

The state probability of a non-probabilistic formula 𝜑 in 
state s, denoted by 𝑃𝑟(𝑠, 𝜑), is defined as the ratio between 
(a) the number of possible behaviors from s satisfying	𝜑, and 
(b) the number of possible behaviors from s. The notation 
𝑃)*+ (𝜑) denotes the statement “the state probability of 𝜑 in 𝑠 is 
greater than 𝑥”, that is, 𝑃𝑟(𝑠, 𝜑) ≥ 𝑥. 

The satisfaction rate of an Achieve goal o(C ® ◊T) is the 
lowest state probability of C ® ◊T for any possible state s. 
Note that the “o” goal prefix requires a lower bound as we 
focus on the lowest chance of goal satisfaction.  

A goal o (C ® ◊T) with satisfaction rate x states that the 
system satisfies the formula in at least x % of cases. This may 
be written as o𝑃)*(C ® ◊T) where the assertion o𝑃)*(𝜑) is 

satisfied by a behavior if all states 𝑠  along this behavior 
satisfy 𝑃)*+ (𝜑) . The preceding definitions are similar for 
Maintain goals.  

For example, consider a system with three states and the 
goal Achieve[LocalsWarnedWhenLevelsCritical], specified by 

o (LevelsCritical ® ◊<5min LocalsWarned). 
Assume that LevelsCritical ® ◊<5min LocalsWarned has a state 
probability .1 in s1;  .2 in s2;  and .3 in s3. The satisfaction 
rate for this goal is its lowest state probability, that is, .1. The 
system satisfies o𝑃)./(LevelsCritical ® ◊<5min LocalsWarned). 

An obstacle ◊ (C Ù o¬T) states that there is one future 
state at least that satisfies C Ù o¬T. A state has a probability 
that behaviors starting from it satisfy C Ù o¬T.  

The satisfaction rate of an obstacle ◊ (C Ù o¬T) is the 
highest state probability of C Ù o¬T for any possible state s. 
Dually to goals, the “◊” obstacle prefix states an upper bound 
as we focus on the highest chance of goal violation.  

An obstacle ◊ (C Ù o¬T) with satisfaction rate x states that 
the system satisfies the formula in at most x % of cases. This 
may be written as o𝑃≤𝑥(C Ù o¬T). The preceding definitions 
are similar for obstacles to Maintain goals. 

In our example, consider the obstacle GSMNetworkDown, 
specified by 

◊ (LevelsCritical Ù o<5min GSMNetDown). 
Let us assume that LevelsCritical Ù o<5min GSMNetDown has a 
state probability .9 in s1;  .8 in s2;  and .1 in s3. The 
satisfaction rate for this obstacle is its highest state 
probability, that is, .9. The system satisfies the assertion 
o𝑃1.2(LevelsCritical Ù o<5min GSMNetDown). 

The definitions presented here differ from those in [7] by 
relying on state probabilities. They are needed for extending 
the LTL3 monitoring technique [6] to probabilistic obstacles. 
B. Monitoring-Based Estimation of Satisfaction Rates 
As the satisfaction rate of an obstacle ◊ 𝜑 is the upper bound 
among the state probabilities of 𝜑, we may at runtime count 
the number of observed behaviors satisfying 𝜑	from states s; 
this estimates the corresponding state probability. The 
automata-based monitoring procedure for LTL3 determines 
at runtime whether 𝜑 is satisfied from s. 

The monitored satisfaction rate of an obstacle or a goal is 
its actual satisfaction rate as observed in the running system. 

For an obstacle ◊ 𝜑 , the monitored satisfaction rate is 
determined from the monitored state probabilities. The latter 
are obtained by monitoring the satisfaction of 𝜑  for all 
observed states. 

Fig. 4 shows the process of monitoring the satisfaction 
rate of the obstacle ◊(¨>2s dustyEnvironment) during 8 
observations. The squares represent states of the observed 
system. Three states A, B, C are observed; A and B satisfy the 
predicate dustyEnvironment while C does not. The circles show 
the label of the current state of the LTL3 monitors.  

As the semantics of our language is synchronous [36], 
observations are made at a regular pace. If observations are 
performed every second, the MTL formula 𝜑 inside the ◊-
operator can be transformed into an LTL conjunction: 
𝜑: dustyEnvironment Ù o dustyEnvironment  Ù o o dustyEnvironment 



Fig. 5 shows the corresponding LTL3 monitor. The top 
left monitor state labelled with ? is the initial state. Each 
transition is labelled with a state formula. The label on states 
are: T for true,  F for false,  ? for inconclusive. 

For a monitored leaf obstacle, at each observation of the 
running system, an LTL3 monitor is started to check whether 
the behavior from the current state satisfies 𝜑 . As seen 
below, virtual copies are used in practice to avoid creating 
new monitors at runtime. 
Let us have a closer look at the example in Fig. 4. 
- At observation 0, we start a monitor M0 to check whether 

the future system behavior satisfies 𝜑.  
- At observation 1, the monitor M0 is still inconclusive; a 

new monitor M1 is started.  
- At observation 2, the current state of the monitor M0 is 

updated to true. For state A, one observed behavior so far 
satisfies 𝜑  (see "1/1" at the bottom of Fig. 4). A new 
monitor M2 is started. 

- At observation 3, the current state of the monitors started 
at observations 1 to 3 is labeled false. For state B, two 
behaviors were observed to not satisfy 𝜑 (see "0/2" at the 
bottom of Fig. 4). For state C, one behavior is seen to not 
satisfy 𝜑 ("0/1"). 

- At observation 7, one observed behavior from state A 
satisfies 𝜑 among the two observed ones (the third one is 
still inconclusive). The two observed behaviors from B 
violate the formula. The three observed behaviors from C 
also violate the formula. 

In this setting, the monitored state probability of state s is the 
ratio between (a) the number of monitors started in s whose 
current state is labelled as true, and (b) the number of 
monitors started in s whose current state is labeled as true or 
false.  

In our example, the monitored state probability of state A 
is not available for the two first observations; it is equal to 1 
for the five next observations, and to .5 for the last one. The 
satisfaction rate for our obstacle is the upper bound of these 
state probabilities. It changes from ‘not available’ to 100% at 
observation 2, then decreases from 100% to 50% at 
observation 7 (see the bottom of Fig. 4). 

In practice, creating a new LTL3 monitor at each 

observation is clearly unrealistic as the complexity is 𝑂(267) 
where 	𝑛  is the size of the formula [6]. To avoid creating 
multiple instances of the same monitor, one LTL3 monitor is 
built at RE time; the monitors being started at runtime are 
virtual copies of the former. A virtual copy only contains a 
pointer to the current state of the LTL3 monitor. The 
complexity of starting a “new” virtual monitor is thus 𝑂(1).  

The complexity of updating all monitors is 𝑂(𝑛) where 𝑛 
is the number of virtual monitors. This number depends on 
the number of observations. The worst-case situation 
corresponds to a system where all observed states are unique 
and all monitors remain inconclusive forever. Such system is 
unlikely. Our running example and the validation case study 
in Section VIII suggest that monitors have a short life which 
reduces the cost of updating monitors.  

To implement the monitoring of leaf obstacles, a list of 
monitors is kept in memory for each observed state. To 
increase efficiency, the number of behaviors satisfying the 
formula 𝜑 and the number of behaviors violating it are kept 
in registers. Once a monitor reaches a monitor state labelled 
as True or False, it can be removed from the list and the 
corresponding register updated. Computing the state 
probability is then reduced to arithmetic operations on these 
registers. 

To mitigate the risk of unnecessary system adaptations, 
“enough” observations should be made before deciding 
whether an adaptation is required. Otherwise, decisions 
would be based on non-statistically significant data, possibly 
leading to adaptations that deteriorate the system instead of 
improving it. To address this problem, standard statistical 
techniques may be used to compute the number of 
observations required to achieve a specified level of 
accuracy. Achieving such statistical significance imposes 
limits on the rate at which the system can adapt. Details are 
skipped here for lack of space; they can be found in [10]. 

Note that other monitoring techniques such as [17, 27, 
29, 50] might be used to determine the satisfaction of 𝜑 . 
LTL3, however, reports both violation and satisfaction of the 
formula as early as possible. Its three-value semantics 
distinguishes cases where a formula is satisfied, not satisfied, 
or none applies. Techniques such as [17] amalgamate the last 
two cases. 

V. OBSTACLE-BASED SYSTEM ADAPTATION  
A system adaptation is required at runtime when the current 
configuration of countermeasures does not guarantee the 
required degree of satisfaction (RDS) of the system’s high-
level goals. The actual satisfaction rate of these goals must 
therefore be determined from the monitored satisfaction rates 
of leaf obstacles. When falling below their RDS, alternative 
countermeasures maximizing the satisfaction rate of these 
goals should replace the current configuration.  

The model up-propagation procedure in [9] is borrowed 
for determining the satisfaction rate of high-level goals. We 
summarize it here for a single high-level goal. Multiple ones 
are handled by use of a weighted sum combining goal 
satisfaction rates, where the weights capture goal priorities.  

An obstruction set for a goal captures an AND-
combination of leaf obstacles that prevents the goal from 

 
Figure 4. Monitoring a probabilistic obstacle 

 
Figure 5. LTL3 monitor for DustyEnvironment 

 



being satisfied. A goal may have multiple alternative 
obstruction sets. An obstruction superset for goal G, denoted 
by OS(G), is the set of all its obstruction sets.  

To obtain the monitored satisfaction rate of a goal, we 
need to compute its obstruction superset by up-propagation 
of satisfaction rates through the goal/obstacle model, from 
leaf obstacles to root obstacles to leaf goals to root goal. This 
is done at RE time; it needs not be repeated at runtime.  
1. From leaf obstacle to root obstacle. Let LG, RO and LO 

denote a leaf goal, obstructing root obstacle, and 
corresponding leaf obstacles, respectively. Let 
OS(LG|RO) denote the obstruction superset for LG 
considering all sub-obstacles in the tree rooted on RO. 
This obstruction superset is computed by structural 
induction:  

 OS(LG|LO) = {LO}  (leaf obstacle) 
 OS(LG|O) = OS(LG|SO1) ´ OS(LG|SO2) (for AND-Refinement) 
 OS(LG|O) = OS(LG|SO1) È OS(LG|SO2) (for OR-Refinement) 

where ´ represents the Cartesian Product over sets. 
2. From root obstacle to leaf goal. For leaf goal LG 

obstructed by root obstacle RO, the obstruction superset 
is simply given by OS(LG) = OS(LG|RO). 

3. From leaf goals to root goal. The obstruction superset for 
a root goal is obtained by bottom-up propagation along 
AND-refinements in the goal model according to the rule  

OS(PG) = OS(SG1) È OS(SG2) 
 for an AND-refinement with two subgoals SG1 and SG2. 
The obstruction superset for a root goal captures an 
AND/OR combination of leaf obstacles. The corresponding 
Boolean formula is encoded as a binary decision diagram 
(BDD) to enable efficient subsequent manipulations. The 
internal BDD nodes correspond to leaf obstacles. A positive 
(resp. negative) edge indicates that the leaf obstacle is (resp. 
is not) in the combination —a combination being a path of 
positive/negative edges from root to terminal node. The 
terminal nodes indicate whether the combination obstructs 
the goal. 

At system runtime, the probability for a goal's obstruction 
superset is computed from the monitored values for the leaf 
obstacles. The satisfaction rate SR(G) for goal G is given by 
SR(G) = 1 - Pr(OS(G)) where Pr(OS(G)) denotes the probability 
of OS(G). To compute Pr(OS(G)), the positive BDD edges 
are decorated with the monitored satisfaction rates SR(LO) for 
leaf obstacles LO whereas negative edges are decorated with 
1 - SR(LO). The probability Pr(OS(G)) is then computed 
bottom-up from the leaves of the BDD to its root. More 
details can be found in [9]. 

The satisfaction rate obtained for the high-level goal is 
compared with the goal’s RDS. When falling below, an 
adaptation is required through alternative countermeasures 
maintaining the monitored satisfaction rate above the RDS. 

Back to our running example, consider the goal Maintain 
[AcquiredRadarDepthAccurate]. Its obstruction superset is: 

OS(G) = { { DustyEnvironment } , { FalseEcho } }, 
corresponding to the formula DustyEnvironment Ú FalseEcho. A 
candidate BDD is the following: 

DustyEnvironment 
® Positive edge: Terminal node 1 

® Negative edge: FalseEcho 
® Positive edge: Terminal node 1 
® Negative edge: Terminal node 0 

Let us assume that the probability for FalseEcho is 2%. The 
positive edge is decorated with .02 and the negative one with 
.98. The propagated probability for that internal node will be  

1 ´ .02 + 0 ´ .98 =  .02. 
Assume that the probability for Dusty Environement is 5%; the 
propagated probability for that internal node will be  

1 ´ .05 + 0.02 ´ .95 =  .069.  
The monitored satisfaction rate for the goal Maintain [Acquired 
RadarDepthAccurate] is found to be 1 - .069 = 93.1%. If the 
goal’s RDS is 92%, an adaptation is required. 

VI. SELECTING MOST APPROPRIATE COUNTERMEASURES 
TO CRITICAL OBSTACLES 

Section VI.A describes how the impact of alternative 
countermeasures is assessed. Section VI.B clarifies what are 
"most appropriate" countermeasures to be selected and 
deployed when an adaptation is required. Section VI.C 
explains how such selection is computed. 
A. Assessing the Impact of Countermeasures  
The satisfaction rate of an alternative countermeasure goal to 
be considered impacts on the satisfaction rate of the system’s 
high-level goals. Such impact needs to be quantified in order 
to decide whether the countermeasure should be selected. 
Assessing a countermeasure's maximal impact at RE time. 
A countermeasure goal may itself be refined down to leaf 
goals assignable to single agents. As the latter might be 
obstructed by new obstacles, a new cycle of obstacle analysis 
may be needed at RE time. At runtime, the new 
corresponding leaf obstacles might be monitored as well for 
more accurate assessment of their satisfaction rate. 

To determine whether a new obstacle analysis cycle is 
required, the maximal change in satisfaction rate of the 
considered high-level goal should be considered. At best, the 
satisfaction rate of the countermeasure goal is 1 (no possible 
obstruction of it). By up-propagation, this satisfaction rate 
leads to a satisfaction rate sr1 for the high-level goal. At 
worst, the satisfaction rate is 0. This leads to another 
satisfaction rate sr0 for the high-level goal. The 
countermeasure’s maximal impact is obtained by taking the 
difference sr1 - sr0. Based on this, the analyst may decide at 
RE time whether a new cycle is needed or not.  

For example, consider the countermeasure goal Achieve 
[LocalsWarnedBySMSWhenLevelsCritical]. If the satisfaction rate 
of this countermeasure is 0, the satisfaction rate of the high-
level goal Achieve [LocalsWarnedWhenRiskImminent] is 52.3%. 
If the satisfaction rate of this countermeasure is 1, the 
satisfaction rate of the high-level goal is 61.6%. The 
maximal impact on the high-level goal is thus 9.2%. As the 
impact is important, it may be worth spending time in 
studying obstacles to this countermeasure goal at RE time to 
better estimate the impact of its deployment. 

Depending on the selected obstacle resolution strategy 
and associated countermeasure integration schema, the 
obstructed goal is removed from the goal model or kept [8, 
32]. In the former case, the obstructed goal is replaced by the 



countermeasure goal; in the latter case, a new refinement is 
introduced involving both the obstructed goal and the 
countermeasure goal. 
Assessing countermeasure impact at runtime when the 
obstructed goal is replaced. In this case, when the monitored 
satisfaction rate of the high-level goal is computed at 
runtime, the propagation procedure shall use the satisfaction 
rate of the countermeasure goal in place of the satisfaction 
rate of the replaced goal.  

For example, the goal Achieve [SpeedAcquiredEvery 
5SecByCamera] was generated using the goal substitution 
strategy. When integrated, it replaces the goal Achieve [Speed 
AcquiredEvery5SecByUltrasound]. The computation of the 
satisfaction rate of the parent goal Achieve [LocalsWarnedWhen 
RiskImminent] uses the satisfaction rate of this countermeasure 
goal rather than the satisfaction rate of the replaced goal. 
When integrated, the satisfaction rate for the top goal 
increases from 52.3% to 58.1%.  
Assessing countermeasure impact at runtime when the 
obstructed goal is kept. In this case, the anchor goal is 
refined into two subgoals; one subgoal is the obstructed goal 
conjoined with the negation of the obstacle condition; the 
other subgoal is the countermeasure goal [8]. (To preserve 
the correctness of goal/obstacle refinements, the new 
conjunct is propagated down to leaf obstacles.) The 
satisfaction rate for the anchor goal is therefore a 
combination of the satisfaction rates of those two subgoals. 

For example, integrating the countermeasure goal Achieve 
[LocalsWarnedWhenEmergencySituation] causes the root goal to 
be refined in two subgoals: Achieve [LocalsWarnedWhen 
NoEmergencySituation] and Achieve [LocalsWarnedWhenEmer-
gencySituation]. The satisfaction rate of the root goal increases 
from 52.3% to 65.4%: The down-propagation of changes in 
the goal graph reduces the formal specification of the 
obstacle LowAcquisitionRateInEmergencySituation to false; The 
satisfaction rate of the latter is therefore 0.  
B. What are Most Appropriate Countermeasures? 
Countermeasure selection at runtime should at reasonable 
cost increase the satisfaction rate of high-level goals above 
their RDS. 

A safe selection of countermeasures is a set of 
countermeasures that, once integrated, guarantees that the 
monitored satisfaction rate of the high-level goals is greater 
than their respective RDS.  

A selection of countermeasures must be consistent; 
conflicting countermeasures shall not be selected together: 

{CMi, CMj, Dom} ⊭ false    for i ≠ j     (selection consistency) 
Countermeasures come with a cost. The latter are elicited 

with regard to the countermeasure’s contributions to soft 
goals in the goal model —such as Minimize[PowerConsumption] 
or Maximize[Speed Computation] [33]. For ease of presentation, 
only single costs are considered here. Multiple costs are 
combined by a weighted sum where weights correspond to 
the priorities of the considered soft goals. 

The resolution cost of a selection is the sum of the costs 
associated with the selected countermeasures.  

A selection is cost-optimal if no other selection increases 
the probability of satisfaction of the high-level goal without 
increasing the resolution cost. 

The selection of most appropriate countermeasures is 
defined as the one having the lowest resolution cost such that 
the satisfaction rate for the high-level goals is maximized 
while being safe, consistent, and cost-optimal. 
C. Selecting Countermeasures at Runtime 
The selection of most appropriate countermeasures amounts 
to solving two optimization problems, namely,  
• finding the minimal cost for guaranteeing the RDS of the 

high-level goals; 
• finding the selection that maximizes the satisfaction rate 

of the high-level goals given this cost.  
This cannot be done at RE time as the satisfaction rates of 
obstacles might be unavailable or estimated inaccurately. If 
no solution is found, the system might leave the self-
adaptation mode to prompt for manual adaptation. 
Computing the minimal cost. We may iteratively generate 
all possible selections and keep the selection that minimizes 
cost while guaranteeing that the RDSs are met. The 
complexity of this naïve approach is 𝑂(2:) where 𝑛  is the 
number of countermeasures. 
Computing the cost-optimal selection. We may then 
generate all possible selections, compute their cost, and keep 
the selection with a minimal cost and the largest satisfaction 
rate for the high-level goals. The complexity of this naïve 
computation is 𝑂(2:) for 𝑛 countermeasures. 

In our example, the minimal cost for guaranteeing the 
RDS of 80% for the goal Achieve [LocalsWarnedWhen 
RiskImminent] is 2. There are 8 possible combinations 
guaranteeing the RDS with costs ranging from 2 to 4, 
partially shown in grey in Table I. The first 6 rows show the 
selection of countermeasures: 1 for selected goals, 0 
otherwise. The row before the last one is the satisfaction rate 
for the root goal. The best selection costs 2 and maximizes 
the satisfaction rate, shown in bold in Table I. 

The problem of finding the cost-optimal selection shares 
similarities with the NP-hard Knapsack optimization 
problem [16]. The latter is concerned with filling a bag with 
valued items without exceeding a maximal weight while 
maximizing value. The problem here differs in that (i) the 
value and weight of items do not simply sum; and (ii) adding 
a new countermeasure goal does not necessarily increase the 
satisfaction rate of a high-level goal. Improvements of our 

Achieve [LocalsWarned 
ByEmailWhenLevelsCritical] 0 

… 

0 1 1 

… 

1 

Achieve [LocalsWarned 
BySMSWhenLevelsCritical] 0 1 0 0 0 

Achieve [SpeedAcquired 
Every5SecondsByCamera] 

0 0 0 0 1 

Achieve [SpeedAcquired 
Every10SecondsByUltrasound] 0 1 1 0 0 

Achieve [localsWarned 
WhenRiskImminent 
AndEmergencySituation] 

0 0 0 1 1 

Maintain [CameraSpeed 
Accurate] 0 0 0 0 1 

Achieve [LocalsWarned 
WhenRiskImminent] .52 .68 .72 .81 .77 

Cost  0 2 2 2 4 

TABLE I. COMBINING COUNTERMEASURES 



naïve algorithms are however expected as a pseudo-
polynomial algorithm exists for the Knapsack problem [16]. 
Other techniques such as [38] might also improve selections. 

VII. RUNTIME DEPLOYMENT OF MOST APPROPRIATE 
COUNTERMEASURES 

When most appropriate countermeasures are integrated in the 
goal model and selected, the running software system must 
be adapted to match the updated goal model. The software 
component responsible for adapting the running system is 
named Adaptor in the following discussion. This component 
keeps track of a current selection of countermeasures. When 
the most appropriate countermeasures are computed, it 
identifies the countermeasures that are (i) added —that is, 
not found in the current selection but in the selection of the 
most appropriate ones; and (ii) removed —that is, no longer 
in the selection of the most appropriate ones.  

To adapt the software system, the Adaptor calls the 
activation and deactivation procedures associated with the 
countermeasures to be added or removed. The activation 
procedure is the code-related procedure responsible for the 
deployment of the corresponding countermeasure in the 
running system. The deactivation procedure is responsible 
for its removal. These procedures are used to: add, remove or 
replace a running component; update configuration 
parameters; activate hardware components; and so forth. The 
countermeasure goals are decorated with these procedures.  

For example, let us consider that the monitored 
satisfaction rate of the leaf obstacle UltrasoundSensorBroken 
For5Sec increases, as shown in dashed line in Fig. 6. This 
increase causes a decrease in the monitored satisfaction rate 
of the high-level goal Achieve[LocalsWarnedWhenRiskImminent] 
(in solid line in Fig. 6) below its RDS. This decrease causes 
the countermeasure Achieve [SpeedAcquiredEvery5SecBy 
Camera] to be selected as most appropriate countermeasure. 
The activation procedure for Achieve [SpeedAcquiredEvery5Sec 
ByCamera] is called and replaces the software component 
acquiring the speed by the camera-related component. As 
Fig. 6 shows, the satisfaction rate of the high-level goal 
increases above its RDS after software adaptation. 

VIII. VALIDATION 
Our approach was applied to a benchmark commonly used 
for evaluating obstacle analysis techniques [1, 7, 8]. The 
goal/obstacle model for the ambulance dispatching system is 
based on [32]. Section VIII.A outlines this model. Section 
VIII.B overviews the monitored software and the monitoring 
infrastructure. Section VIII.C presents the results of our 
simulations. These results are discussed in Section VIII.D. 
A. Goals and Obstacles in Ambulance Dispatching 
The goal model contains 44 goals, 18 refinements and 5 
agents. The obstacle model includes 8 root obstacles and 158 
leaf obstacles. The full model can be found in [11].  

A top goal in this model is Achieve [IncidentResolved]. It is 
refined into two subgoals: Achieve [AmbMobilizedWhen 
IncReported] and Achieve [PatientAtHospitalWhenAmbMobilized]. 
The former is further refined into two subgoals: Achieve 
[AmbAllocatedWhenIncReported] and Achieve [AllocatedAmb 

Mobilized]. These goals are in turn refined until they are 
assignable to single agents. 

The Allocator software agent is assigned to the goal 
Achieve [AmbAllocatedBasedOnAmbulanceInfo], a subgoal of 
Achieve [AmbAllocatedWhenIncReported]. The Mobilizator 
software agent is assigned to the goal Achieve 
[MobilizationOrderSentWhenAmbAllocated], a sub-goal of Achieve 
[AllocatedAmbMobilized].  

Obstacles to leaf goals were identified and refined. Here 
is a small sample of obstacle trees: 

Obstacles to Achieve [AmbulanceOnSceneWhenMobilized]: 
   MobilizedAmbulanceNotOnSceneInTime 
  ß AmbulanceStuckInTrafficJamTowardIncident 
  ß DestinationUnreachable 
Obstacle to Achieve [AtStationStatusEncoded] 
  ß AtStationButtonNotPressed 

Obstacles such as AtStationButtonNotPressed were further 
refined for different ambulances: Amb1AtStationButton 
NotPressed, Amb2AtStationButtonNotPressed, and so forth. 

Countermeasures to leaf goals were explored using 
available resolution strategies [32]. For example, the obstacle 
AmbStuckInTrafficJamTowardIncident is resolved by the 
countermeasure goal Achieve [AmbulanceReallocatedWhen 
StuckInTrafficJam] by use of the strong mitigation strategy.  
B. Ambulance Dispatching: the Software and its Monitors 
The ambulance dispatching software (ADS) was developed 
in C# [11]. Among its components, the default ambulance 
allocator can be replaced by an alternative 
AtStationAllocator which first allocates ambulances that are 
available at station. Extra components include 
TrafficJamAllocator or StatusDetector. The former re-
allocates incidents for which the allocated one is stuck in a 
traffic jam; the latter automates the status reporting. 

The environment simulator simulates the behavior of 
ambulance staff, dispatchers and other environment agents. 
For example, it “presses” buttons on mobile data terminals 
(MDT), “drives” the ambulance to the incident location, and 
so forth. The simulator runs in a separate process and 
communicates with the ADS through a network socket.  

The adaptation tool, developed in C#, implements our 
techniques [11]. The tool accepts a textual representation of 
the goal/obstacle model as input together with their formal 
specifications. It runs in a separate process.  
C. Results 
We simulated the operation of the ambulance dispatching 
system in Brussels, considering 15 ambulances and 10 
simultaneous incidents. Over a 4-hour simulation, a total of 
100 incidents was reached. In comparison, the real Brussels 

 
Figure 6. Adaptation after an increase in the satisfaction rate of 

obstacle UltrasoundSensorBrokenFor5Sec  



ambulance dispatching system handles about 25 ambulances 
and 250 incidents per day. The simulation was performed on 
a MacBook Pro 3Ghz equipped with 16Gb of RAM. 

At RE time, our monitoring tool built 158 monitors for 
all probabilistic leaf obstacles in about 10 seconds. At 
runtime, every second, 351 predicates were monitored, the 
monitors were updated, and the satisfaction rate of the high-
level goals Achieve [IncidentResolved] and Avoid [Ambulance 
MobilizedOnRoad] was computed. Every 5 minutes, the tool 
compared the monitored satisfaction rate of these goals with 
their respective RDS. When required, it computed the most 
appropriate countermeasures. Later on, the tool called the 
corresponding activation/deactivation procedure for 
reconfiguring the ADS. The optimization process took about 
2 minutes. During simulation, however, one elapsed second 
corresponds to ten seconds in reality. This explains why 
Fig. 7 exhibits a delay between the time at which an adaption 
is found necessary and the time at which it is deployed. 

We ran three simulations over 4 hours to cover the 
following three scenarios. 
1. Rush Hour. During rush hour, the obstacles 
AmbulanceStuckInTrafficJamTowardsIncident and AmbulanceStuck 
InTrafficJamTowardsHospital have an increased satisfaction rate. 
This caused the countermeasures Achieve [AmbStuckIn 
TrafficJamReAlloc] and Achieve [PatientToHospitalWhenOnScene 
AndTrafficJam] to be selected, integrated and deployed in the 
running system. Fig. 7(a) shows the satisfaction rate of the 
root goal increasing again beyond its RDS threshold, as it is 
no longer obstructed by the two obstacles. The deployment 
of the first countermeasure changes the software. The second 
countermeasure does not change it; the goal specification is 
only relaxed to allow more time between the incident scene 
and the hospital. 
2. On-Road Mobilization. At night, the RDS for the goal 
Avoid [AmbulanceMobilizedOnRoad] is .5. During the day, 
however, ambulance staff prefer to not intervene on multiple 
incidents without going back to their station. The RDS is 
increased to .8, as Fig. 7(b) shows. As a result, the 
countermeasure Achieve [AmbAllocAtStationWhenIncReported] 

was deployed during the day. The adaptation replaced the 
DefaultAllocator component. The new allocation strategy 
reduced the satisfaction rates of the obstacle AmbMobilized 
OnRoad and guaranteed the goals’s RDS. 
3. Forgetting Ambulance Status. Late at night and early in 
the morning, ambulance staff tend to forget to push buttons. 
This results in an increase in the satisfaction rate of obstacles 
such as StatusAtHospitalNotEncoded. During that period, the 
goals Achieve [AutomatedOnSceneDetection] and Achieve 
[AutomatedAtHospitalDetection] were selected, integrated and 
deployed. This caused their satisfaction rate to increase again 
beyond their RDS threshold. Fig 8(c) shows the satisfaction 
rate of Achieve[IncResolvedWhenReported]. 
D. Discussion 
Our techniques were felt to help significantly for the 
following reasons. 
Precise semantics in terms of behaviors. Thanks to formal 
specifications being anchored on real-world phenomena, the 
mapping between predicates and the running software 
system was straightforward. For example, the evaluation of 
the predicate ambulanceA9OnScene triggered a simple query in 
the database. 

All monitored items had a clear, precise meaning. 
Surprising results were easily understandable, e.g., our 
technique identified inaccurate specifications with missing 
conditions or unrealistic time constraints. 
Traceability of monitored indicators and deployed 
countermeasures. The monitored satisfaction rates of high-
level goals significantly helped understanding whether an 
increase in the satisfaction rate of an obstacle is critical. 
Comparing their monitored satisfaction rate with their RDS 
provided a traceable criterion for system adaptation. 

For example, the activation of the TrafficJamAllocator 
software component in the ADS is directly traceable to its 
countermeasure goal Achieve [AmbulanceInTrafficJamReAlloc]. 
The latter in turn is traceable to high-level goals such as “an 
ambulance shall be on scene within 10 minutes”. 
Model-based adaptation. The selection of most appropriate 
countermeasure was driven by the goal/obstacle model. As 
the results showed, their dynamic selection ensured that the 
high-level probabilistic goals remained satisfied. Without our 
technique, the monitoring and adaptation of the ambulance 
dispatching software would have required dedicated, 
application-specific code to be written.  
No explicit behavior modelling. The ambulance dispatching 
system exhibits complex states and parallelism among 
processes. Building a complete, consistent, and adequate 
state machine model for this system appears quite hard. 
Other benefits. The formalization effort is kept minimal as 
only leaf obstacles need to be formalized. In addition, a 
change in the formal specification of a leaf obstacle does not 
require source code modification.  

This validation case study also highlighted areas for 
improvement. In particular, the satisfaction rates estimated 
by experts [8] might be used to improve the accuracy of the 
monitored satisfaction rates in case only few data are 
available. The monitored satisfaction rates should also be 
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filtered to smooth out the noise caused by a low number of 
observations. The technique in [22] might be used to 
improve the quality of monitoring. 

As in many monitoring-based self-adapting systems, the 
monitoring task may impact on the performance of the 
monitored system. Our preliminary experience suggests that 
most of the impact may be transferred to a separate computer 
to reduce the footprint on the monitored system. 

IX. RELATED WORK 
Earlier research efforts were devoted to self-adaptation 
driven by runtime goal replacement in view of obstacle-
based uncertainty [4, 14, 19]. In particular, [14] describes an 
overall process, with accompanying tactics, whereby goals 
specified in the RELAX language can be added or weakened 
to address obstacle-based uncertainty. Claims may be further 
added to record the rationale for decisions under uncertainty; 
when falsified they may be RELAXed or alternative goals 
may be selected [45]. In [4], adaptive goals are introduced to 
trigger adaptations when they are violated. Both [4] and [45] 
capture partially satisfied goals in fuzzy logic. All those 
efforts differ from ours in that our goals and obstacles are 
probabilistic; moreover, they are specified in a temporal 
logic enabling: a precise semantics in terms of observed 
states and behaviors; model checking techniques for 
probabilistic obstacle monitoring; formal up-propagation of 
obstacle consequences through the goal model; and formal 
goal replacements at runtime. 

Awareness requirements capture requirements about the 
runtime success or failure of other requirements [48]. 
Runtime monitors can be produced to check whether such 
requirements are satisfied. In [49], evolution requirements 
are introduced to specify changes to other requirements. The 
focus there is on meta-requirements on requirements. 

Other RE frameworks were introduced to reason about 
requirements of self-adaptive systems. In [39], TROPOS is 
extended for modeling self-adaptive systems with faults. 
Requirements on self-adaptive systems were also studied 
[42, 43, 44, 40]. Alternatives are selected there to meet high-
level requirements and user preferences. These efforts are 
somewhat limited by lack of precise characterization in terms 
of observed states and behaviors.  

Other efforts have focused on non-functional 
requirements that can be probabilistically quantified [18, 21, 
23, 25, 26]. The software is modeled as a dynamic product 
line; different configurations define the space of possible 
adaptations. Runtime verification drives the selection of most 
appropriate configurations at system runtime. Our approach 
shares similarities in terms of probabilistic formalization and 
use of formal verification techniques. It does however not 
require building an explicit behavior model, and benefits 
from the goal/obstacle refinement structure.  

Monitoring techniques such as [5, 46, 51] focus on 
failure detection; our focus in on probabilistic assessment. In 
[46, 47], the observed trace is divided into smaller samples 
so that properties can be checked on each sample; statistical 
reasoning is then applied to extract a probability. Our 
approach proposes an alternative without sampling the 
observed behavior into fixed-size samples. 

Goals with partial degrees of satisfaction were also 
considered in [35] to evaluate alternative options and derive 
quantitative requirements at RE time. In contrast with our 
probabilistic framework, the reasoning there relies on ad-hoc 
domain-specific variables and equations. 

X. CONCLUSION 
Software systems should adapt to changing environmental 
conditions in order to keep their goals satisfied. The paper 
proposed an obstacle-driven runtime adaptation approach 
aimed at increasing the actual satisfaction rate of 
probabilistic system goals. Leaf obstacles are monitored at 
runtime to let the system dynamically switch to more 
appropriate countermeasure goals that increase the 
satisfaction rate of the system’s high-level goals under the 
current conditions. The approach ensures that the required 
degree of satisfaction of high-level goals remains satisfied 
when obstacle satisfaction rates are changing. 

Monitored satisfaction rates are defined precisely in 
terms of observed states and behaviors. Our monitoring 
technique extends the LTL3 approach [6] to support 
monitoring of probabilistic assertions. The monitors are built 
at RE time from the formal specification of leaf obstacles; at 
runtime, virtual copies of LTL3 monitors keep track of 
obstacle satisfaction. State probabilities for each observed 
state can thereby be obtained to yield satisfaction rates for 
the monitored obstacles. The latter are propagated through 
the obstacle/goal model up to the system’s high-level goals. 
The satisfaction rates obtained for these goals are compared 
with their required degree of satisfaction; when the former 
falls below the latter, more appropriate countermeasures 
replace the current ones to remain above the required 
threshold. 

Our techniques were applied to two non-trivial mission 
critical systems: a flood detection system and an ambulance 
dispatching system. They are supported by a prototype tool 
in C# [11]. The tool enables the monitoring of C# programs 
and triggers adaptations of these. The software for the flood 
detection system and for the ambulance dispatching system 
are both available to replicate our experiments [11]. 

A next possible step for runtime adaptation would 
monitor the costs of countermeasures, such as performance 
cost or energy cost, and their activation/deactivation costs. 
Supporting expert estimates with uncertainty margins might 
also improve the selection of countermeasures. More 
advanced reasoning based on stochastic processes to 
anticipate changes and trigger adaptation before the goals 
become unsatisfied would be worth investigating as well. 
Last but not least, machine learning techniques might 
usefully complement our approach to support “unknown 
unknowns”, where new obstacles and their resolution would 
be identified at system runtime. 

Dynamic countermeasure replacement raises problems of 
consistency and stability of the running software. These 
problems are common to self-adapting systems; they should 
be better understood and further studied. 
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