
Runtime Monitoring and Resolution of Probabilistic Obstacles to System Goals

Antoine Cailliau and Axel van Lamsweerde
ICTEAM – Institute for Information & Communication Technologies, Electronics and Applied Mathematics

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{antoine.cailliau, axel.vanlamsweerde}@uclouvain.be

Abstract—Software systems are deployed in environments that
keep changing over time. They should therefore adapt to
changing conditions in order to meet their requirements. The
satisfaction rate of these requirements depends on the rate at
which adverse conditions prevent their satisfaction. Obstacle
analysis is a goal-oriented form of risk analysis for
requirements engineering (RE) whereby obstacles to system
goals are identified, assessed, and resolved through
countermeasures yielding new requirements. The selection of
appropriate countermeasures relies on the assessed likelihood
and criticality of obstacles together with environmental
assumptions. These various factors are estimated at RE time;
they may however evolve during software development and at
system runtime.

To meet the system’s goals under changing conditions, the
paper proposes to defer obstacle resolution to system runtime.
Following Monitor–Analyze–Plan–Execute cycles, techniques
are presented for monitoring goal/obstacle satisfaction rates;
deciding when adaptation should be triggered; and adapting
the system on the fly to countermeasures that are more
appropriate under the monitored conditions. The approach
relies on a model where goals and obstacles are refined and
specified in a probabilistic linear temporal logic. The proposed
techniques allow for (a) monitoring the satisfaction rate of
probabilistic leaf obstacles; (b) determining the severity of
their consequences by up-propagating satisfaction rates
through refinement trees from leaf obstacles to high-level
probabilistic goals; and (c) dynamically shifting to alternative
countermeasures that better meet the required satisfaction rate
of the system’s high-level goals under imposed cost constraints.
Our approach is evaluated on fragments of an ambulance
dispatching system.

Keywords - adaptive systems; runtime requirements
monitoring; probabilistic goals; obstacle analysis; goal-oriented
requirements engineering.

I. INTRODUCTION
Software systems are increasingly deployed in

unpredictably varying environments. Autonomous vehicle
control [12], disaster management [28], or adaptive security
[41] are examples of problem domains where the system
must adapt to changing environments to guarantee its goals.

For runtime system adaptation, Monitor-Analyse-Plan-
Execute cycles are often followed [13, 31, 34]. The Monitor
step collects, filters and aggregates data from the running
system such as performance metrics and configuration
characteristics. The Analyze step determines whether a
change is required or not based on data analysis and
reasoning about the running system. The Plan step structures

the actions to apply in order to guarantee that the system will
subsequently meet its objectives. During the Execute step,
the system is updated with the planned actions.

Probabilistic requirements often emerge in the
requirement engineering (RE) phase of system development.
Typically, they require some target property to be satisfied in
at least X% of cases [4, 7, 20, 23, 35]. At system runtime,
they may not be satisfied due to adverse conditions. This
paper focuses on runtime adaptation mechanisms to
guarantee that the minimal thresholds required by
probabilistic requirements are still met at system runtime in
spite of environment changes.

In goal-oriented RE, adverse conditions to requirements
satisfaction are called obstacles. An obstacle is a
precondition to the non-satisfaction of a corresponding goal
[20, 32, 33, 37]. While building an AND/OR goal refinement
graph (called goal model), the analyst performs obstacle
analysis cycles, each consisting of three steps: (i) obstacles
are systematically identified from specifications of goals and
domain properties [1, 32]; (ii) the likelihood and criticality of
the identified obstacles are assessed [7, 9, 20]; (iii) the likely
and critical obstacles are resolved through countermeasures
integrated as new goals in the goal model [2, 8, 32]. The
problem is that the selection of “best” countermeasures is
based on environment assumptions and obstacle satisfaction
rates determined at RE time. These influencing factors may
turn to be different at system runtime. Some assumptions
might no longer hold; new characteristics might emerge;
experts’ estimates at RE time for obstacle assessment might
prove inaccurate at system runtime; other estimates might
not be available at RE time; and so forth. For better fit to the
system’s goals under changing or originally unknown
conditions, it might thus be better to defer decisions on
selecting most appropriate countermeasures to system
runtime [19].
The paper presents obstacle-driven runtime adaptation
techniques for increased satisfaction of probabilistic system
goals. These techniques are intended to address the following
more specific objectives.
• Precise semantics in terms of observed states and

behaviors. In contrast with [28, 39, 42], the monitored
items have a clear and precise meaning. A formal
semantics enables their interpretation as real-world
phenomena which reduces subjective assessments. A
formal semantics also allows model checking techniques
to be used for monitoring probabilistic obstacles.

• Traceability of monitored indicators and deployed
countermeasures. Unlike [24], the monitored indicators
and decision criteria for system adaptation are traceable
to system objectives; why such or such monitored
information is required is thereby documented.

• Model-based adaptation. The adaptation process is
driven by a goal/obstacle model; only those adaptations
which are required to meet the probabilistic assertions
from this model are made. Model-based adaptation also
reduces the need for application-specific manipulations.

• No explicit behavior modelling. Unlike [25, 26], the
model used is declarative; system behaviors need not be
explicitly modelled. Building a consistent and complete
behavior model for large distributed systems with many
complex states and parallelism is often quite challenging.

The paper makes the following contributions.
• A formal characterization of satisfaction rates of

probabilistic goals and obstacles is provided in terms of
observed states and behaviors.

• Probabilistic obstacles are monitored at system runtime.
Our approach extends the monitoring technique
introduced in [6] for non-probabilistic linear temporal
logic (LTL) to monitor probabilistic LTL assertions at
system runtime. From such monitoring of leaf obstacles,
the satisfaction rate of high-level goals is obtained by up-
propagation through obstacle/goal refinement trees.

• Alternative countermeasures are selected on the fly,
among those identified at RE time, when the satisfaction
rate obtained for high-level goals is below their required
threshold. A cost-benefit tradeoff analysis guides the
selection to maximize satisfaction rates under cost
constraints.

• The selected countermeasures are integrated into the goal
model and deployed in the running software system.
The paper is organized as follow. Section II provides

some necessary background on goal/obstacle modeling with
probabilistic specifications and on monitoring non-
probabilistic LTL assertions. Section III outlines the general
approach proposed for runtime system adaptation. Section
IV presents our technique for runtime monitoring of
probabilistic assertions. Section V explains how satisfaction
rates for high-level goals are obtained from monitored leaf
obstacles in order to determine when an adaptation is
required. Section VI describes how most appropriate
countermeasures are selected to yield a required adaptation.
Section VII discusses how the selected countermeasures are
deployed into the running system. Section VIII reports on a
preliminary evaluation of our techniques on a real ambulance
dispatching system. Section IX discusses related work.

II. BACKGROUND
Goal-oriented system modeling [33]. A goal is a prescriptive
statement of intent to be satisfied by cooperation of the
agents forming the system. The word “system” refers to both
the software and its environment, including people, legacy
software, devices like sensors and actuators, etc. A domain
property is a descriptive statement about the system, e.g., a
physical law.

The paper focuses on behavioral goals. Unlike soft goals,
these goals can be satisfied in a clear-cut sense [33]. A
behavioral goal defines a maximal set of behaviors
declaratively and implicitly. A behavior violates a goal if it is
not among the behaviors captured by the goal specification.

A metric linear temporal logic (MTL) is used for
formalizing behavioral goals to enable their analysis [33].
The temporal operators include ¡ (in the next state), ◊
(eventually), ◊≤d (eventually before deadline d), o (always in the
future), o≤d (always up to deadline d), W (always in the future
unless). The standard logical connectives include Ù (and), Ú
(or), ¬ (not), ® (implies). A behavioral goal is of type Achieve
or Maintain. The specification pattern for Achieve goals is o

(C ® ◊T), where C and T refer to a current and a target
condition, respectively. The specification pattern for
Maintain goals is o (C ® G), where G refers to a "good"
condition.

A goal model is an AND/OR-graph showing how goals
contribute positively or negatively to each other. An AND-
refinement captures a combination of subgoals entailing the
parent goal; an OR-refinement captures an alternative way of
satisfying the parent goal. A goal may be refined into
subgoals by asking “how” questions whereas it may be
abstracted into parent goals by asking “why” questions. Leaf
goals are assigned to specific system agents. A goal assigned
to a single software agent is a requirement whereas a goal
assigned to a single environment agent is an assumption.

Fig. 1 shows a goal model fragment for a flood detection
system [30]. Goals and agents are represented by
parallelograms and hexagons, respectively. The top goal in
Fig. 1 is AND-refined into four leaf goals assigned to
corresponding agents.
Obstacle Analysis [33]. An obstacle O to a goal G in the
considered domain Dom is a satisfiable precondition for the
non-satisfaction of this goal:

{O, Dom} ⊨ ¬ G (obstruction)
{O, Dom} ⊭ false (domain consistency)

Figure 1. Goal model fragment for a flood detection system

Figure 2. Obstacle model fragment with a countermeasure

Obstacles are also formalized in MTL. The specification
pattern for an obstacle to an Achieve goal is ◊ (C Ù o¬T); for
an obstacle to a Maintain goal the pattern is ◊ (C Ù ¬G).

Obstacles are also structured as AND/OR graphs rooted
on negations of corresponding leaf goals. An obstacle AND-
refinement captures a combination of sub-obstacles entailing
the parent obstacle. An obstacle OR-refinement captures an
alternative combination. The consequences of an obstacle are
the falsification of the ancestors of the obstructed leaf goal.

Obstacles are resolved through countermeasures aimed at
reducing their likelihood or mitigating their consequences.
Fig. 2 shows two obstacle trees anchored on corresponding
goals (obstacles are depicted by left parallelograms). The
countermeasure goal Achieve[SpeedAcquiredEvery5Sec] there
resolves the leaf obstacle UltraSoundSensorBroken obstructing
the goal Achieve[SpeedAcquiredEvery5SecondsByUltrasound].

The integration of countermeasures to obstacles in a goal
model increases the completeness of this model. The
integration either adds a new goal in the model or replaces
the obstructed goal or an ancestor of it by another goal [8]. A
countermeasure goal CG is said to be valid if some ancestor
goal AG' of the obstructed goal is entailed by it:

{CG, SG1’, … , SGn’, Dom’} ⊨ AG’ (ancestor entailment)

where AG' and SGi' denote possibly weakened versions of
the original ancestor AG with subgoals SGi, respectively.

The anchor for a countermeasure goal is the lowest
ancestor goal meeting the ancestor-entailment condition. In
the augmented goal model, the countermeasure goal is
anchored to this goal [8].

Various strategies are available for exploring alternative
countermeasures [32, 33].
Probabilistic Goals and Obstacles [7]. Behavioral goals
might in practice not be always satisfied in any possible
situation. A probabilistic goal prescribes a minimal threshold
for its satisfaction rate —e.g., “locals shall be warned when
flooding is imminent in at least 95% of cases”.

The required degree of satisfaction (RDS) of a goal is the
minimal admissible satisfaction rate to be ensured by the
system-to-be. It is often imposed from regulations, standards,
common practice, and so forth.

The estimated satisfaction rate (ESR) of a leaf obstacle is
the obstacle’s satisfaction rate estimated by domain experts
at RE time. The ESR of a goal is its satisfaction rate in view
of its possible obstructions by obstacles. As seen in Section
V, a goal's ESR can be obtained from the ESR of its leaf
obstacles by up-propagation through the goal/obstacle model
[9]. A goal’s ESR shall ideally be greater than its RDS.
Monitoring Non-Probabilistic LTL Assertions [6].
Monitoring the runtime satisfaction of a LTL formula relies
on the finite trace observed so far. The monitoring technique
in Section IV extends the automata-based approach in [6] to
probabilistic LTL assertions. The latter approach is chosen
as it reports LTL formula satisfaction or violation as early as
possible.

LTL3, the LTL considered in [6], uses true, false, and
inconclusive as truth values. A finite trace is labelled as true
if any continuation of it satisfies the formula; false if any
continuation falsifies the formula; and inconclusive

otherwise. A LTL3 formula monitor is a finite state machine
(FSM) that reads finite traces and outputs the corresponding
truth value. As suggested by Fig. 3, this FSM is built from
the formula and its negation [6].

(1) The associated non-deterministic Büchi automaton
(NBA) is generated using a standard algorithm [15].

(2) A non-deterministic finite automaton (NFA) is then
generated by performing an emptiness check for each
NBA state. A state s is labelled with true if a
continuation satisfying the formula exists (that is, if
the language corresponding to the NFA with initial
state s is not empty); it is false otherwise.

(3) The NFA is determinized to produce a deterministic
finite automaton (DFA) using powersets.

The monitor FSM results from the product of both DFAs.
Let (s1,s2) denote a state in this product, where s1 is the DFA
state corresponding to the formula j and s2 the DFA state
corresponding to its negation ¬j. This monitor FSM state is
labeled as:
• true if s1 is labeled as true and s2 as false (no continuation

exists such that the formula is falsified);
• false if s1 is labeled as false and s2 as true (no

continuation exists such that the formula is satisfied);
• inconclusive otherwise.
At runtime, the current state of the monitor FSM is updated
according to the truth value of the observed predicates and
state assertions on FSM transitions. More details about the
approach can be found in [6].

III. OVERVIEW OF THE APPROACH
Based on the background outlined in the previous section,
the objective in this paper is to let the system dynamically
switch to more appropriate countermeasures to leaf obstacles
in view of evolving environment conditions and obstacle
satisfaction rates. The satisfaction rate of leaf obstacles was
estimated at RE time and is now being observed at system
runtime. The alternative countermeasure goals to those leaf
obstacles were identified and specified at RE time.

A countermeasure should dynamically replace the current
one when, unlike the latter, it makes the satisfaction rate of
high-level goals exceed their required degree of satisfaction.
The satisfaction rate of high-level goals is obtained from the
monitored satisfaction rate of the leaf obstacles by up-
propagation through the goal/obstacle model. The monitored
satisfaction rate of a leaf obstacle is obtained by counting the
observed behaviors.
Our approach comprises 6 steps detailed in the next sections.

(1) LTL3 monitors for the leaf obstacles are built at RE
time. The list of predicates to observe at runtime is
thereby provided. (See Section IV.A.)

(2) At runtime, the states of the monitored system are
observed at a regular pace. (The pace may be chosen to
fit a specific domain.) At every observation, a new

Figure 3. Steps for computing monitor FSM from input formula 𝜑

virtual monitor for each leaf obstacle is started while
existing monitors are updated. (See Section IV.B.)

(3) The monitored satisfaction rate of leaf obstacles is up-
propagated through obstacle/goal refinement trees up to
high-level goals. (See Section V.)

(4) Comparing the monitored satisfaction rates obtained for
those goals with their RDS determines whether the
current countermeasures to the monitored obstacles are
still appropriate. If a monitored goal satisfaction rate
falls below the goal’s RDS, alternative more
appropriate countermeasures are selected among those
available. (See Section VI.A and Section VI.B.)

(5) The goal/obstacle model is updated accordingly by
integrating the new current countermeasures and
updating the propagation in Step 4. (See Section VI.)

(6) The software is automatically adapted according to the
selected countermeasures. (See Section VII.)

IV. MONITORING PROBABILISTIC OBSTACLES
At RE time, domain experts estimate the satisfaction rates of
the leaf obstacles based on their knowledge of the system or
their experience with similar systems [9]. These estimates
might prove inaccurate at system runtime —they might be
too rough or environment properties or assumptions might
have changed in the meantime. Moreover, some variables
might be hard to estimate at RE time —prior data might not
be available or might be too costly to acquire; too many
parameters might be involved; etc. Monitoring the actual
satisfaction rate of leaf obstacles at system runtime helps
filling this gap; former estimates may be made more
accurate, and missing data may be made available.

Section IV.A provides a precise definition of satisfaction
rates in terms of states and behaviors. Section IV.B explains
how monitors for probabilistic assertions are built and used
on top of non-probabilistic LTL3 monitors.
A. Formal Framework for Probabilistic Assertions
As introduced in Section II, probabilistic goals might be
satisfied only partially. A precise characterization in terms of
observed states and behaviors enables the monitoring of their
satisfaction rates.

An Achieve goal o (C ® ◊T) requires all possible system
states to satisfy C ® ◊T. As the goal might be satisfied only
partially, a state s has a probability that the behaviors starting
from it satisfy C ® ◊T.

The state probability of a non-probabilistic formula 𝜑 in
state s, denoted by 𝑃𝑟(𝑠, 𝜑), is defined as the ratio between
(a) the number of possible behaviors from s satisfying	𝜑, and
(b) the number of possible behaviors from s. The notation
𝑃)*+ (𝜑) denotes the statement “the state probability of 𝜑 in 𝑠 is
greater than 𝑥”, that is, 𝑃𝑟(𝑠, 𝜑) ≥ 𝑥.

The satisfaction rate of an Achieve goal o(C ® ◊T) is the
lowest state probability of C ® ◊T for any possible state s.
Note that the “o” goal prefix requires a lower bound as we
focus on the lowest chance of goal satisfaction.

A goal o (C ® ◊T) with satisfaction rate x states that the
system satisfies the formula in at least x % of cases. This may
be written as o𝑃)*(C ® ◊T) where the assertion o𝑃)*(𝜑) is

satisfied by a behavior if all states 𝑠 along this behavior
satisfy 𝑃)*+ (𝜑) . The preceding definitions are similar for
Maintain goals.

For example, consider a system with three states and the
goal Achieve[LocalsWarnedWhenLevelsCritical], specified by

o (LevelsCritical ® ◊<5min LocalsWarned).
Assume that LevelsCritical ® ◊<5min LocalsWarned has a state
probability .1 in s1; .2 in s2; and .3 in s3. The satisfaction
rate for this goal is its lowest state probability, that is, .1. The
system satisfies o𝑃)./(LevelsCritical ® ◊<5min LocalsWarned).

An obstacle ◊ (C Ù o¬T) states that there is one future
state at least that satisfies C Ù o¬T. A state has a probability
that behaviors starting from it satisfy C Ù o¬T.

The satisfaction rate of an obstacle ◊ (C Ù o¬T) is the
highest state probability of C Ù o¬T for any possible state s.
Dually to goals, the “◊” obstacle prefix states an upper bound
as we focus on the highest chance of goal violation.

An obstacle ◊ (C Ù o¬T) with satisfaction rate x states that
the system satisfies the formula in at most x % of cases. This
may be written as o𝑃≤𝑥(C Ù o¬T). The preceding definitions
are similar for obstacles to Maintain goals.

In our example, consider the obstacle GSMNetworkDown,
specified by

◊ (LevelsCritical Ù o<5min GSMNetDown).
Let us assume that LevelsCritical Ù o<5min GSMNetDown has a
state probability .9 in s1; .8 in s2; and .1 in s3. The
satisfaction rate for this obstacle is its highest state
probability, that is, .9. The system satisfies the assertion
o𝑃1.2(LevelsCritical Ù o<5min GSMNetDown).

The definitions presented here differ from those in [7] by
relying on state probabilities. They are needed for extending
the LTL3 monitoring technique [6] to probabilistic obstacles.
B. Monitoring-Based Estimation of Satisfaction Rates
As the satisfaction rate of an obstacle ◊ 𝜑 is the upper bound
among the state probabilities of 𝜑, we may at runtime count
the number of observed behaviors satisfying 𝜑	from states s;
this estimates the corresponding state probability. The
automata-based monitoring procedure for LTL3 determines
at runtime whether 𝜑 is satisfied from s.

The monitored satisfaction rate of an obstacle or a goal is
its actual satisfaction rate as observed in the running system.

For an obstacle ◊ 𝜑 , the monitored satisfaction rate is
determined from the monitored state probabilities. The latter
are obtained by monitoring the satisfaction of 𝜑 for all
observed states.

Fig. 4 shows the process of monitoring the satisfaction
rate of the obstacle ◊(¨>2s dustyEnvironment) during 8
observations. The squares represent states of the observed
system. Three states A, B, C are observed; A and B satisfy the
predicate dustyEnvironment while C does not. The circles show
the label of the current state of the LTL3 monitors.

As the semantics of our language is synchronous [36],
observations are made at a regular pace. If observations are
performed every second, the MTL formula 𝜑 inside the ◊-
operator can be transformed into an LTL conjunction:
𝜑: dustyEnvironment Ù o dustyEnvironment Ù o o dustyEnvironment

Fig. 5 shows the corresponding LTL3 monitor. The top
left monitor state labelled with ? is the initial state. Each
transition is labelled with a state formula. The label on states
are: T for true, F for false, ? for inconclusive.

For a monitored leaf obstacle, at each observation of the
running system, an LTL3 monitor is started to check whether
the behavior from the current state satisfies 𝜑 . As seen
below, virtual copies are used in practice to avoid creating
new monitors at runtime.
Let us have a closer look at the example in Fig. 4.
- At observation 0, we start a monitor M0 to check whether

the future system behavior satisfies 𝜑.
- At observation 1, the monitor M0 is still inconclusive; a

new monitor M1 is started.
- At observation 2, the current state of the monitor M0 is

updated to true. For state A, one observed behavior so far
satisfies 𝜑 (see "1/1" at the bottom of Fig. 4). A new
monitor M2 is started.

- At observation 3, the current state of the monitors started
at observations 1 to 3 is labeled false. For state B, two
behaviors were observed to not satisfy 𝜑 (see "0/2" at the
bottom of Fig. 4). For state C, one behavior is seen to not
satisfy 𝜑 ("0/1").

- At observation 7, one observed behavior from state A
satisfies 𝜑 among the two observed ones (the third one is
still inconclusive). The two observed behaviors from B
violate the formula. The three observed behaviors from C
also violate the formula.

In this setting, the monitored state probability of state s is the
ratio between (a) the number of monitors started in s whose
current state is labelled as true, and (b) the number of
monitors started in s whose current state is labeled as true or
false.

In our example, the monitored state probability of state A
is not available for the two first observations; it is equal to 1
for the five next observations, and to .5 for the last one. The
satisfaction rate for our obstacle is the upper bound of these
state probabilities. It changes from ‘not available’ to 100% at
observation 2, then decreases from 100% to 50% at
observation 7 (see the bottom of Fig. 4).

In practice, creating a new LTL3 monitor at each

observation is clearly unrealistic as the complexity is 𝑂(267)
where 	𝑛 is the size of the formula [6]. To avoid creating
multiple instances of the same monitor, one LTL3 monitor is
built at RE time; the monitors being started at runtime are
virtual copies of the former. A virtual copy only contains a
pointer to the current state of the LTL3 monitor. The
complexity of starting a “new” virtual monitor is thus 𝑂(1).

The complexity of updating all monitors is 𝑂(𝑛) where 𝑛
is the number of virtual monitors. This number depends on
the number of observations. The worst-case situation
corresponds to a system where all observed states are unique
and all monitors remain inconclusive forever. Such system is
unlikely. Our running example and the validation case study
in Section VIII suggest that monitors have a short life which
reduces the cost of updating monitors.

To implement the monitoring of leaf obstacles, a list of
monitors is kept in memory for each observed state. To
increase efficiency, the number of behaviors satisfying the
formula 𝜑 and the number of behaviors violating it are kept
in registers. Once a monitor reaches a monitor state labelled
as True or False, it can be removed from the list and the
corresponding register updated. Computing the state
probability is then reduced to arithmetic operations on these
registers.

To mitigate the risk of unnecessary system adaptations,
“enough” observations should be made before deciding
whether an adaptation is required. Otherwise, decisions
would be based on non-statistically significant data, possibly
leading to adaptations that deteriorate the system instead of
improving it. To address this problem, standard statistical
techniques may be used to compute the number of
observations required to achieve a specified level of
accuracy. Achieving such statistical significance imposes
limits on the rate at which the system can adapt. Details are
skipped here for lack of space; they can be found in [10].

Note that other monitoring techniques such as [17, 27,
29, 50] might be used to determine the satisfaction of 𝜑 .
LTL3, however, reports both violation and satisfaction of the
formula as early as possible. Its three-value semantics
distinguishes cases where a formula is satisfied, not satisfied,
or none applies. Techniques such as [17] amalgamate the last
two cases.

V. OBSTACLE-BASED SYSTEM ADAPTATION
A system adaptation is required at runtime when the current
configuration of countermeasures does not guarantee the
required degree of satisfaction (RDS) of the system’s high-
level goals. The actual satisfaction rate of these goals must
therefore be determined from the monitored satisfaction rates
of leaf obstacles. When falling below their RDS, alternative
countermeasures maximizing the satisfaction rate of these
goals should replace the current configuration.

The model up-propagation procedure in [9] is borrowed
for determining the satisfaction rate of high-level goals. We
summarize it here for a single high-level goal. Multiple ones
are handled by use of a weighted sum combining goal
satisfaction rates, where the weights capture goal priorities.

An obstruction set for a goal captures an AND-
combination of leaf obstacles that prevents the goal from

Figure 4. Monitoring a probabilistic obstacle

Figure 5. LTL3 monitor for DustyEnvironment

being satisfied. A goal may have multiple alternative
obstruction sets. An obstruction superset for goal G, denoted
by OS(G), is the set of all its obstruction sets.

To obtain the monitored satisfaction rate of a goal, we
need to compute its obstruction superset by up-propagation
of satisfaction rates through the goal/obstacle model, from
leaf obstacles to root obstacles to leaf goals to root goal. This
is done at RE time; it needs not be repeated at runtime.
1. From leaf obstacle to root obstacle. Let LG, RO and LO

denote a leaf goal, obstructing root obstacle, and
corresponding leaf obstacles, respectively. Let
OS(LG|RO) denote the obstruction superset for LG
considering all sub-obstacles in the tree rooted on RO.
This obstruction superset is computed by structural
induction:

 OS(LG|LO) = {LO} (leaf obstacle)
 OS(LG|O) = OS(LG|SO1) ´ OS(LG|SO2) (for AND-Refinement)
 OS(LG|O) = OS(LG|SO1) È OS(LG|SO2) (for OR-Refinement)

where ´ represents the Cartesian Product over sets.
2. From root obstacle to leaf goal. For leaf goal LG

obstructed by root obstacle RO, the obstruction superset
is simply given by OS(LG) = OS(LG|RO).

3. From leaf goals to root goal. The obstruction superset for
a root goal is obtained by bottom-up propagation along
AND-refinements in the goal model according to the rule

OS(PG) = OS(SG1) È OS(SG2)
 for an AND-refinement with two subgoals SG1 and SG2.
The obstruction superset for a root goal captures an
AND/OR combination of leaf obstacles. The corresponding
Boolean formula is encoded as a binary decision diagram
(BDD) to enable efficient subsequent manipulations. The
internal BDD nodes correspond to leaf obstacles. A positive
(resp. negative) edge indicates that the leaf obstacle is (resp.
is not) in the combination —a combination being a path of
positive/negative edges from root to terminal node. The
terminal nodes indicate whether the combination obstructs
the goal.

At system runtime, the probability for a goal's obstruction
superset is computed from the monitored values for the leaf
obstacles. The satisfaction rate SR(G) for goal G is given by
SR(G) = 1 - Pr(OS(G)) where Pr(OS(G)) denotes the probability
of OS(G). To compute Pr(OS(G)), the positive BDD edges
are decorated with the monitored satisfaction rates SR(LO) for
leaf obstacles LO whereas negative edges are decorated with
1 - SR(LO). The probability Pr(OS(G)) is then computed
bottom-up from the leaves of the BDD to its root. More
details can be found in [9].

The satisfaction rate obtained for the high-level goal is
compared with the goal’s RDS. When falling below, an
adaptation is required through alternative countermeasures
maintaining the monitored satisfaction rate above the RDS.

Back to our running example, consider the goal Maintain
[AcquiredRadarDepthAccurate]. Its obstruction superset is:

OS(G) = { { DustyEnvironment } , { FalseEcho } },
corresponding to the formula DustyEnvironment Ú FalseEcho. A
candidate BDD is the following:

DustyEnvironment
® Positive edge: Terminal node 1

® Negative edge: FalseEcho
® Positive edge: Terminal node 1
® Negative edge: Terminal node 0

Let us assume that the probability for FalseEcho is 2%. The
positive edge is decorated with .02 and the negative one with
.98. The propagated probability for that internal node will be

1 ´ .02 + 0 ´ .98 = .02.
Assume that the probability for Dusty Environement is 5%; the
propagated probability for that internal node will be

1 ´ .05 + 0.02 ´ .95 = .069.
The monitored satisfaction rate for the goal Maintain [Acquired
RadarDepthAccurate] is found to be 1 - .069 = 93.1%. If the
goal’s RDS is 92%, an adaptation is required.

VI. SELECTING MOST APPROPRIATE COUNTERMEASURES
TO CRITICAL OBSTACLES

Section VI.A describes how the impact of alternative
countermeasures is assessed. Section VI.B clarifies what are
"most appropriate" countermeasures to be selected and
deployed when an adaptation is required. Section VI.C
explains how such selection is computed.
A. Assessing the Impact of Countermeasures
The satisfaction rate of an alternative countermeasure goal to
be considered impacts on the satisfaction rate of the system’s
high-level goals. Such impact needs to be quantified in order
to decide whether the countermeasure should be selected.
Assessing a countermeasure's maximal impact at RE time.
A countermeasure goal may itself be refined down to leaf
goals assignable to single agents. As the latter might be
obstructed by new obstacles, a new cycle of obstacle analysis
may be needed at RE time. At runtime, the new
corresponding leaf obstacles might be monitored as well for
more accurate assessment of their satisfaction rate.

To determine whether a new obstacle analysis cycle is
required, the maximal change in satisfaction rate of the
considered high-level goal should be considered. At best, the
satisfaction rate of the countermeasure goal is 1 (no possible
obstruction of it). By up-propagation, this satisfaction rate
leads to a satisfaction rate sr1 for the high-level goal. At
worst, the satisfaction rate is 0. This leads to another
satisfaction rate sr0 for the high-level goal. The
countermeasure’s maximal impact is obtained by taking the
difference sr1 - sr0. Based on this, the analyst may decide at
RE time whether a new cycle is needed or not.

For example, consider the countermeasure goal Achieve
[LocalsWarnedBySMSWhenLevelsCritical]. If the satisfaction rate
of this countermeasure is 0, the satisfaction rate of the high-
level goal Achieve [LocalsWarnedWhenRiskImminent] is 52.3%.
If the satisfaction rate of this countermeasure is 1, the
satisfaction rate of the high-level goal is 61.6%. The
maximal impact on the high-level goal is thus 9.2%. As the
impact is important, it may be worth spending time in
studying obstacles to this countermeasure goal at RE time to
better estimate the impact of its deployment.

Depending on the selected obstacle resolution strategy
and associated countermeasure integration schema, the
obstructed goal is removed from the goal model or kept [8,
32]. In the former case, the obstructed goal is replaced by the

countermeasure goal; in the latter case, a new refinement is
introduced involving both the obstructed goal and the
countermeasure goal.
Assessing countermeasure impact at runtime when the
obstructed goal is replaced. In this case, when the monitored
satisfaction rate of the high-level goal is computed at
runtime, the propagation procedure shall use the satisfaction
rate of the countermeasure goal in place of the satisfaction
rate of the replaced goal.

For example, the goal Achieve [SpeedAcquiredEvery
5SecByCamera] was generated using the goal substitution
strategy. When integrated, it replaces the goal Achieve [Speed
AcquiredEvery5SecByUltrasound]. The computation of the
satisfaction rate of the parent goal Achieve [LocalsWarnedWhen
RiskImminent] uses the satisfaction rate of this countermeasure
goal rather than the satisfaction rate of the replaced goal.
When integrated, the satisfaction rate for the top goal
increases from 52.3% to 58.1%.
Assessing countermeasure impact at runtime when the
obstructed goal is kept. In this case, the anchor goal is
refined into two subgoals; one subgoal is the obstructed goal
conjoined with the negation of the obstacle condition; the
other subgoal is the countermeasure goal [8]. (To preserve
the correctness of goal/obstacle refinements, the new
conjunct is propagated down to leaf obstacles.) The
satisfaction rate for the anchor goal is therefore a
combination of the satisfaction rates of those two subgoals.

For example, integrating the countermeasure goal Achieve
[LocalsWarnedWhenEmergencySituation] causes the root goal to
be refined in two subgoals: Achieve [LocalsWarnedWhen
NoEmergencySituation] and Achieve [LocalsWarnedWhenEmer-
gencySituation]. The satisfaction rate of the root goal increases
from 52.3% to 65.4%: The down-propagation of changes in
the goal graph reduces the formal specification of the
obstacle LowAcquisitionRateInEmergencySituation to false; The
satisfaction rate of the latter is therefore 0.
B. What are Most Appropriate Countermeasures?
Countermeasure selection at runtime should at reasonable
cost increase the satisfaction rate of high-level goals above
their RDS.

A safe selection of countermeasures is a set of
countermeasures that, once integrated, guarantees that the
monitored satisfaction rate of the high-level goals is greater
than their respective RDS.

A selection of countermeasures must be consistent;
conflicting countermeasures shall not be selected together:

{CMi, CMj, Dom} ⊭ false for i ≠ j (selection consistency)
Countermeasures come with a cost. The latter are elicited

with regard to the countermeasure’s contributions to soft
goals in the goal model —such as Minimize[PowerConsumption]
or Maximize[Speed Computation] [33]. For ease of presentation,
only single costs are considered here. Multiple costs are
combined by a weighted sum where weights correspond to
the priorities of the considered soft goals.

The resolution cost of a selection is the sum of the costs
associated with the selected countermeasures.

A selection is cost-optimal if no other selection increases
the probability of satisfaction of the high-level goal without
increasing the resolution cost.

The selection of most appropriate countermeasures is
defined as the one having the lowest resolution cost such that
the satisfaction rate for the high-level goals is maximized
while being safe, consistent, and cost-optimal.
C. Selecting Countermeasures at Runtime
The selection of most appropriate countermeasures amounts
to solving two optimization problems, namely,
• finding the minimal cost for guaranteeing the RDS of the

high-level goals;
• finding the selection that maximizes the satisfaction rate

of the high-level goals given this cost.
This cannot be done at RE time as the satisfaction rates of
obstacles might be unavailable or estimated inaccurately. If
no solution is found, the system might leave the self-
adaptation mode to prompt for manual adaptation.
Computing the minimal cost. We may iteratively generate
all possible selections and keep the selection that minimizes
cost while guaranteeing that the RDSs are met. The
complexity of this naïve approach is 𝑂(2:) where 𝑛 is the
number of countermeasures.
Computing the cost-optimal selection. We may then
generate all possible selections, compute their cost, and keep
the selection with a minimal cost and the largest satisfaction
rate for the high-level goals. The complexity of this naïve
computation is 𝑂(2:) for 𝑛 countermeasures.

In our example, the minimal cost for guaranteeing the
RDS of 80% for the goal Achieve [LocalsWarnedWhen
RiskImminent] is 2. There are 8 possible combinations
guaranteeing the RDS with costs ranging from 2 to 4,
partially shown in grey in Table I. The first 6 rows show the
selection of countermeasures: 1 for selected goals, 0
otherwise. The row before the last one is the satisfaction rate
for the root goal. The best selection costs 2 and maximizes
the satisfaction rate, shown in bold in Table I.

The problem of finding the cost-optimal selection shares
similarities with the NP-hard Knapsack optimization
problem [16]. The latter is concerned with filling a bag with
valued items without exceeding a maximal weight while
maximizing value. The problem here differs in that (i) the
value and weight of items do not simply sum; and (ii) adding
a new countermeasure goal does not necessarily increase the
satisfaction rate of a high-level goal. Improvements of our

Achieve [LocalsWarned
ByEmailWhenLevelsCritical] 0

…

0 1 1

…

1

Achieve [LocalsWarned
BySMSWhenLevelsCritical] 0 1 0 0 0

Achieve [SpeedAcquired
Every5SecondsByCamera]

0 0 0 0 1

Achieve [SpeedAcquired
Every10SecondsByUltrasound] 0 1 1 0 0

Achieve [localsWarned
WhenRiskImminent
AndEmergencySituation]

0 0 0 1 1

Maintain [CameraSpeed
Accurate] 0 0 0 0 1

Achieve [LocalsWarned
WhenRiskImminent] .52 .68 .72 .81 .77

Cost 0 2 2 2 4

TABLE I. COMBINING COUNTERMEASURES

naïve algorithms are however expected as a pseudo-
polynomial algorithm exists for the Knapsack problem [16].
Other techniques such as [38] might also improve selections.

VII. RUNTIME DEPLOYMENT OF MOST APPROPRIATE
COUNTERMEASURES

When most appropriate countermeasures are integrated in the
goal model and selected, the running software system must
be adapted to match the updated goal model. The software
component responsible for adapting the running system is
named Adaptor in the following discussion. This component
keeps track of a current selection of countermeasures. When
the most appropriate countermeasures are computed, it
identifies the countermeasures that are (i) added —that is,
not found in the current selection but in the selection of the
most appropriate ones; and (ii) removed —that is, no longer
in the selection of the most appropriate ones.

To adapt the software system, the Adaptor calls the
activation and deactivation procedures associated with the
countermeasures to be added or removed. The activation
procedure is the code-related procedure responsible for the
deployment of the corresponding countermeasure in the
running system. The deactivation procedure is responsible
for its removal. These procedures are used to: add, remove or
replace a running component; update configuration
parameters; activate hardware components; and so forth. The
countermeasure goals are decorated with these procedures.

For example, let us consider that the monitored
satisfaction rate of the leaf obstacle UltrasoundSensorBroken
For5Sec increases, as shown in dashed line in Fig. 6. This
increase causes a decrease in the monitored satisfaction rate
of the high-level goal Achieve[LocalsWarnedWhenRiskImminent]
(in solid line in Fig. 6) below its RDS. This decrease causes
the countermeasure Achieve [SpeedAcquiredEvery5SecBy
Camera] to be selected as most appropriate countermeasure.
The activation procedure for Achieve [SpeedAcquiredEvery5Sec
ByCamera] is called and replaces the software component
acquiring the speed by the camera-related component. As
Fig. 6 shows, the satisfaction rate of the high-level goal
increases above its RDS after software adaptation.

VIII. VALIDATION
Our approach was applied to a benchmark commonly used
for evaluating obstacle analysis techniques [1, 7, 8]. The
goal/obstacle model for the ambulance dispatching system is
based on [32]. Section VIII.A outlines this model. Section
VIII.B overviews the monitored software and the monitoring
infrastructure. Section VIII.C presents the results of our
simulations. These results are discussed in Section VIII.D.
A. Goals and Obstacles in Ambulance Dispatching
The goal model contains 44 goals, 18 refinements and 5
agents. The obstacle model includes 8 root obstacles and 158
leaf obstacles. The full model can be found in [11].

A top goal in this model is Achieve [IncidentResolved]. It is
refined into two subgoals: Achieve [AmbMobilizedWhen
IncReported] and Achieve [PatientAtHospitalWhenAmbMobilized].
The former is further refined into two subgoals: Achieve
[AmbAllocatedWhenIncReported] and Achieve [AllocatedAmb

Mobilized]. These goals are in turn refined until they are
assignable to single agents.

The Allocator software agent is assigned to the goal
Achieve [AmbAllocatedBasedOnAmbulanceInfo], a subgoal of
Achieve [AmbAllocatedWhenIncReported]. The Mobilizator
software agent is assigned to the goal Achieve
[MobilizationOrderSentWhenAmbAllocated], a sub-goal of Achieve
[AllocatedAmbMobilized].

Obstacles to leaf goals were identified and refined. Here
is a small sample of obstacle trees:

Obstacles to Achieve [AmbulanceOnSceneWhenMobilized]:
 MobilizedAmbulanceNotOnSceneInTime
 ß AmbulanceStuckInTrafficJamTowardIncident
 ß DestinationUnreachable
Obstacle to Achieve [AtStationStatusEncoded]
 ß AtStationButtonNotPressed

Obstacles such as AtStationButtonNotPressed were further
refined for different ambulances: Amb1AtStationButton
NotPressed, Amb2AtStationButtonNotPressed, and so forth.

Countermeasures to leaf goals were explored using
available resolution strategies [32]. For example, the obstacle
AmbStuckInTrafficJamTowardIncident is resolved by the
countermeasure goal Achieve [AmbulanceReallocatedWhen
StuckInTrafficJam] by use of the strong mitigation strategy.
B. Ambulance Dispatching: the Software and its Monitors
The ambulance dispatching software (ADS) was developed
in C# [11]. Among its components, the default ambulance
allocator can be replaced by an alternative
AtStationAllocator which first allocates ambulances that are
available at station. Extra components include
TrafficJamAllocator or StatusDetector. The former re-
allocates incidents for which the allocated one is stuck in a
traffic jam; the latter automates the status reporting.

The environment simulator simulates the behavior of
ambulance staff, dispatchers and other environment agents.
For example, it “presses” buttons on mobile data terminals
(MDT), “drives” the ambulance to the incident location, and
so forth. The simulator runs in a separate process and
communicates with the ADS through a network socket.

The adaptation tool, developed in C#, implements our
techniques [11]. The tool accepts a textual representation of
the goal/obstacle model as input together with their formal
specifications. It runs in a separate process.
C. Results
We simulated the operation of the ambulance dispatching
system in Brussels, considering 15 ambulances and 10
simultaneous incidents. Over a 4-hour simulation, a total of
100 incidents was reached. In comparison, the real Brussels

Figure 6. Adaptation after an increase in the satisfaction rate of

obstacle UltrasoundSensorBrokenFor5Sec

ambulance dispatching system handles about 25 ambulances
and 250 incidents per day. The simulation was performed on
a MacBook Pro 3Ghz equipped with 16Gb of RAM.

At RE time, our monitoring tool built 158 monitors for
all probabilistic leaf obstacles in about 10 seconds. At
runtime, every second, 351 predicates were monitored, the
monitors were updated, and the satisfaction rate of the high-
level goals Achieve [IncidentResolved] and Avoid [Ambulance
MobilizedOnRoad] was computed. Every 5 minutes, the tool
compared the monitored satisfaction rate of these goals with
their respective RDS. When required, it computed the most
appropriate countermeasures. Later on, the tool called the
corresponding activation/deactivation procedure for
reconfiguring the ADS. The optimization process took about
2 minutes. During simulation, however, one elapsed second
corresponds to ten seconds in reality. This explains why
Fig. 7 exhibits a delay between the time at which an adaption
is found necessary and the time at which it is deployed.

We ran three simulations over 4 hours to cover the
following three scenarios.
1. Rush Hour. During rush hour, the obstacles
AmbulanceStuckInTrafficJamTowardsIncident and AmbulanceStuck
InTrafficJamTowardsHospital have an increased satisfaction rate.
This caused the countermeasures Achieve [AmbStuckIn
TrafficJamReAlloc] and Achieve [PatientToHospitalWhenOnScene
AndTrafficJam] to be selected, integrated and deployed in the
running system. Fig. 7(a) shows the satisfaction rate of the
root goal increasing again beyond its RDS threshold, as it is
no longer obstructed by the two obstacles. The deployment
of the first countermeasure changes the software. The second
countermeasure does not change it; the goal specification is
only relaxed to allow more time between the incident scene
and the hospital.
2. On-Road Mobilization. At night, the RDS for the goal
Avoid [AmbulanceMobilizedOnRoad] is .5. During the day,
however, ambulance staff prefer to not intervene on multiple
incidents without going back to their station. The RDS is
increased to .8, as Fig. 7(b) shows. As a result, the
countermeasure Achieve [AmbAllocAtStationWhenIncReported]

was deployed during the day. The adaptation replaced the
DefaultAllocator component. The new allocation strategy
reduced the satisfaction rates of the obstacle AmbMobilized
OnRoad and guaranteed the goals’s RDS.
3. Forgetting Ambulance Status. Late at night and early in
the morning, ambulance staff tend to forget to push buttons.
This results in an increase in the satisfaction rate of obstacles
such as StatusAtHospitalNotEncoded. During that period, the
goals Achieve [AutomatedOnSceneDetection] and Achieve
[AutomatedAtHospitalDetection] were selected, integrated and
deployed. This caused their satisfaction rate to increase again
beyond their RDS threshold. Fig 8(c) shows the satisfaction
rate of Achieve[IncResolvedWhenReported].
D. Discussion
Our techniques were felt to help significantly for the
following reasons.
Precise semantics in terms of behaviors. Thanks to formal
specifications being anchored on real-world phenomena, the
mapping between predicates and the running software
system was straightforward. For example, the evaluation of
the predicate ambulanceA9OnScene triggered a simple query in
the database.

All monitored items had a clear, precise meaning.
Surprising results were easily understandable, e.g., our
technique identified inaccurate specifications with missing
conditions or unrealistic time constraints.
Traceability of monitored indicators and deployed
countermeasures. The monitored satisfaction rates of high-
level goals significantly helped understanding whether an
increase in the satisfaction rate of an obstacle is critical.
Comparing their monitored satisfaction rate with their RDS
provided a traceable criterion for system adaptation.

For example, the activation of the TrafficJamAllocator
software component in the ADS is directly traceable to its
countermeasure goal Achieve [AmbulanceInTrafficJamReAlloc].
The latter in turn is traceable to high-level goals such as “an
ambulance shall be on scene within 10 minutes”.
Model-based adaptation. The selection of most appropriate
countermeasure was driven by the goal/obstacle model. As
the results showed, their dynamic selection ensured that the
high-level probabilistic goals remained satisfied. Without our
technique, the monitoring and adaptation of the ambulance
dispatching software would have required dedicated,
application-specific code to be written.
No explicit behavior modelling. The ambulance dispatching
system exhibits complex states and parallelism among
processes. Building a complete, consistent, and adequate
state machine model for this system appears quite hard.
Other benefits. The formalization effort is kept minimal as
only leaf obstacles need to be formalized. In addition, a
change in the formal specification of a leaf obstacle does not
require source code modification.

This validation case study also highlighted areas for
improvement. In particular, the satisfaction rates estimated
by experts [8] might be used to improve the accuracy of the
monitored satisfaction rates in case only few data are
available. The monitored satisfaction rates should also be

(a) Rush Hour

(b) Night Mobilization

(c) Status Forgetting

Figure 7. Simulation Scenarios

filtered to smooth out the noise caused by a low number of
observations. The technique in [22] might be used to
improve the quality of monitoring.

As in many monitoring-based self-adapting systems, the
monitoring task may impact on the performance of the
monitored system. Our preliminary experience suggests that
most of the impact may be transferred to a separate computer
to reduce the footprint on the monitored system.

IX. RELATED WORK
Earlier research efforts were devoted to self-adaptation
driven by runtime goal replacement in view of obstacle-
based uncertainty [4, 14, 19]. In particular, [14] describes an
overall process, with accompanying tactics, whereby goals
specified in the RELAX language can be added or weakened
to address obstacle-based uncertainty. Claims may be further
added to record the rationale for decisions under uncertainty;
when falsified they may be RELAXed or alternative goals
may be selected [45]. In [4], adaptive goals are introduced to
trigger adaptations when they are violated. Both [4] and [45]
capture partially satisfied goals in fuzzy logic. All those
efforts differ from ours in that our goals and obstacles are
probabilistic; moreover, they are specified in a temporal
logic enabling: a precise semantics in terms of observed
states and behaviors; model checking techniques for
probabilistic obstacle monitoring; formal up-propagation of
obstacle consequences through the goal model; and formal
goal replacements at runtime.

Awareness requirements capture requirements about the
runtime success or failure of other requirements [48].
Runtime monitors can be produced to check whether such
requirements are satisfied. In [49], evolution requirements
are introduced to specify changes to other requirements. The
focus there is on meta-requirements on requirements.

Other RE frameworks were introduced to reason about
requirements of self-adaptive systems. In [39], TROPOS is
extended for modeling self-adaptive systems with faults.
Requirements on self-adaptive systems were also studied
[42, 43, 44, 40]. Alternatives are selected there to meet high-
level requirements and user preferences. These efforts are
somewhat limited by lack of precise characterization in terms
of observed states and behaviors.

Other efforts have focused on non-functional
requirements that can be probabilistically quantified [18, 21,
23, 25, 26]. The software is modeled as a dynamic product
line; different configurations define the space of possible
adaptations. Runtime verification drives the selection of most
appropriate configurations at system runtime. Our approach
shares similarities in terms of probabilistic formalization and
use of formal verification techniques. It does however not
require building an explicit behavior model, and benefits
from the goal/obstacle refinement structure.

Monitoring techniques such as [5, 46, 51] focus on
failure detection; our focus in on probabilistic assessment. In
[46, 47], the observed trace is divided into smaller samples
so that properties can be checked on each sample; statistical
reasoning is then applied to extract a probability. Our
approach proposes an alternative without sampling the
observed behavior into fixed-size samples.

Goals with partial degrees of satisfaction were also
considered in [35] to evaluate alternative options and derive
quantitative requirements at RE time. In contrast with our
probabilistic framework, the reasoning there relies on ad-hoc
domain-specific variables and equations.

X. CONCLUSION
Software systems should adapt to changing environmental
conditions in order to keep their goals satisfied. The paper
proposed an obstacle-driven runtime adaptation approach
aimed at increasing the actual satisfaction rate of
probabilistic system goals. Leaf obstacles are monitored at
runtime to let the system dynamically switch to more
appropriate countermeasure goals that increase the
satisfaction rate of the system’s high-level goals under the
current conditions. The approach ensures that the required
degree of satisfaction of high-level goals remains satisfied
when obstacle satisfaction rates are changing.

Monitored satisfaction rates are defined precisely in
terms of observed states and behaviors. Our monitoring
technique extends the LTL3 approach [6] to support
monitoring of probabilistic assertions. The monitors are built
at RE time from the formal specification of leaf obstacles; at
runtime, virtual copies of LTL3 monitors keep track of
obstacle satisfaction. State probabilities for each observed
state can thereby be obtained to yield satisfaction rates for
the monitored obstacles. The latter are propagated through
the obstacle/goal model up to the system’s high-level goals.
The satisfaction rates obtained for these goals are compared
with their required degree of satisfaction; when the former
falls below the latter, more appropriate countermeasures
replace the current ones to remain above the required
threshold.

Our techniques were applied to two non-trivial mission
critical systems: a flood detection system and an ambulance
dispatching system. They are supported by a prototype tool
in C# [11]. The tool enables the monitoring of C# programs
and triggers adaptations of these. The software for the flood
detection system and for the ambulance dispatching system
are both available to replicate our experiments [11].

A next possible step for runtime adaptation would
monitor the costs of countermeasures, such as performance
cost or energy cost, and their activation/deactivation costs.
Supporting expert estimates with uncertainty margins might
also improve the selection of countermeasures. More
advanced reasoning based on stochastic processes to
anticipate changes and trigger adaptation before the goals
become unsatisfied would be worth investigating as well.
Last but not least, machine learning techniques might
usefully complement our approach to support “unknown
unknowns”, where new obstacles and their resolution would
be identified at system runtime.

Dynamic countermeasure replacement raises problems of
consistency and stability of the running software. These
problems are common to self-adapting systems; they should
be better understood and further studied.

Acknowledgment. This work was supported by the RICOSORE
project (FRS Nr. T.0134.14). Thanks to S. Busard and B. Lambeau
for useful discussions, and to the reviewers for their comments.

REFERENCES
[1] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo and S. Uchitel,

“Generating Obstacle Conditions for Requirements Completeness”,
Proc. ICSE'2012: 34th Intl. Conf. Softw. Eng., Zürich, 2012.

[2] D. Alrajeh, A. van Lamsweerde, J. Kramer, A. Russo, S. Uchitel,
“Risk-Driven Revision of Requirements Models”, 38th International
Conference on Software Engineering, Austin, TX, 2016.

[4] L. Baresi, L. Pasquale, P. Spoletini, "Fuzzy goals for requirements-
driven adaptation." 18th IEEE Intl. Requirements Eng. Conf., 2010.

[5] H. Barringer et al., "Rule-based runtime verification." Intl. Wkshop
on Verif., Model Checking, and Abstract Interpr. Springer, 2004.

[6] A. Bauer, M. Leucker, C. Schallhart, “Runtime verification for LTL
and TLTL”, ACM Trans. Softw. Eng. (TOSEM), 20(4), 2011.

[7] A. Cailliau, A. van Lamsweerde, “Assessing requirements-related
risks through probabilistic goals and obstacles”, Req. Eng. Journal,
18(2), 2013.

[8] A. Cailliau, A. van Lamsweerde, “Integrating Exception Handling in
Goal Models”, 22th IEEE Intl. Req. Eng. Conf., 2014.

[9] A. Cailliau, A. van Lamsweerde, “Handling Knowledge Uncertainty
in Risk-Based Requirements Engineering”, Proc. RE 2015: 23th
IEEE Intl. Req. Eng. Conf., 2015.

[10] A. Cailliau, A. van Lamsweerde, “Runtime Monitoring and
Resolution of Probabilistic Obstacles to System Goals”, UCL
Report, Dept. Ingénierie Informatique, Jan. 2017.

[11] A. Cailliau, https://www.github.com/ancailliau.
[12] B. H. C. Cheng, et al., “Software Engineering for Self-Adaptive

Systems: A Research Roadmap”, Software Engineering for Self-
Adaptive Systems, LNCS 5525, 2009.

[13] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
Software Engineering for Self-Adaptive Systems, LNCS 5525, 2009.

[14] B.H.C. Cheng, et al, "A goal-based modeling approach to develop
requirements of an adaptive system with environmental
uncertainty." Model Driven Eng. Lang. and Sys.. Springer, 2009.

[15] E. M. Clarke, O. Grumberg, D. Peled., Model checking, MIT, 1999.
[16] T. H. Cormen, Introduction to algorithms, MIT press, 2009.
[17] M. d’Amorim, G. Roşu, "Efficient monitoring of ω-languages." Intl.

Conf. on Computer Aided Verification. Springer, 2005.
[18] I. Epifani, C. Ghezzi, R. Mirandola, G. Tamburrelli, "Model

evolution by run-time parameter adaptation." Proceedings of the 31st
International Conference on Software Engineering, IEEE, 2009.

[19] M.S. Feather, S. Fickas, A. van Lamsweerde, C. Ponsard,
"Reconciling system requirements and runtime behavior." Intl.
workshop on Software specification and design, IEEE, 1998.

[20] M.S. Feather and S.L. Cornford, “Quantitative Risk-Based
Requirements Reasoning”, Req. Eng. Journal, 8(4), 2003.

[21] A. Filieri, C. Ghezzi, A. Leva, M. Maggio, “Self-adaptive software
meets control theory: A preliminary approach supporting reliability
requirements,” Intl. Conf. on Auto. Soft. Eng. (ASE), IEEE, 2011.

[22] A. Filieri, L. Grunske, A. Leva, "Lightweight adaptive filtering for
efficient learning and updating of probabilistic models." IEEE/ACM
Intl. Conf. on Software Engineering (ICSE), IEEE, 2015.

[23] A. Filieri, G. Tamburrelli, C. Ghezzi, “Supporting Self-adaptation
via Quantitative Verification and Sensitivity Analysis at Run Time”,
IEEE Transaction on Software Engineering, vol. 43, no. 1, 2016.

[24] D. Garlan et al, "Rainbow: Architecture-based self-adaptation with
reusable infrastructure.", Computer 37(10), pp 46-54, 2004.

[25] C. Ghezzi, G. Tamburrelli, "Reasoning on non-functional
requirements for integrated services." 17th IEEE International
Requirements Engineering Conference, IEEE, 2009.

[26] C. Ghezzi, A. M. Sharifloo, "Dealing with non-functional
requirements for adaptive systems via dynamic software product-
lines." Soft. Eng. for Self-Adapt. Syst. II, Springer, 2013.

[27] D. Giannakopoulou, K. Havelund, "Runtime analysis of linear
temporal logic specifications." Proc. of the 16th IEEE Intl Conf. on
Automated Software Engineering, 2001.

[28] H. J. Goldsby et al, "Goal-based modeling of dynamically adaptive
system requirements." 15th Annual IEEE Intl. Conf. and Workshop
on the Engineering of Computer Based Systems, 2008.

[29] K. Havelund, G. Roşu, “Efficient monitoring of safety properties”
Intl Jour. on Soft. Tools for Tech. Transfer, 6(2), 158-173, 2004.

[30] D. Hughes et al, “GridStix: Supporting Flood Prediction using
Embedded Hardware and Next Generation Grid Middleware”, Intl.
Symp. on a World of Wireless, Mob. and Multim. Netw., IEEE, 2006.

[31] J. O. Kephart, D. M. Chess, "The vision of autonomic computing."
Computer 36(1), 2003.

[32] A. van Lamsweerde and Emmanuel Letier, "Handling Obstacles in
Goal-Oriented Requirements Engineering", IEEE Trans. Softw. Eng.,
26(10), October 2000, 978-1005.

[33] A. van Lamsweerde, Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley, January 2009.

[34] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, Software
Engineering for Self-Adaptive Systems II, LNCS 7475, 2010.

[35] E. Letier, A. van Lamsweerde, "Reasoning about Partial Goal
Satisfaction for Requirements and Design Engineering", Proc. FSE
2004: 12th ACM Symp. on Found. of Software Engineering, 2004.

[36] E. Letier, J. Kramer, J. Magee, and S. Uchitel, “Deriving event-
based transition systems from goal-oriented requirements models”,
Automated Software Engineering 15(2), 2008, 175-206.

[37] R. Lutz et al, “Using Obstacle Analysis to Identify Contingency
Requirements on an Unpiloted Aerial Vehicle”, Requirements
Engineering Journal Vol. 12 No. 1, 2007, 42-54.

[38] T. Menzies, E. Chiang, M. Feather, Y. Hu, J. Kiper, "Condensing
uncertainty via incremental treatment learning." Soft. Eng. with
Computational Intelligence, Springer, 2003, 319-361.

[39] M. Morandini, L. Penserini, A. Perini, "Towards goal-oriented
development of self-adaptive systems." Proc of the 2008 Intl. Wksh.
on Soft. Eng. for adaptive and self-managing systems, ACM, 2008.

[40] M. Oriol et al, "Requirements monitoring for adaptive service-based
applications." Requirements Engineering: Foundation for Software
Quality, Springer-Verlag, 2012.

[41] L. Pasquale, P. Spoletini, M. Salehie, L. Cavallaro, B. Bashar
Nuseibeh, “Automating trade-off analysis of security requirements”,
Requirement Engineering Journal, Vol. 20, 2015.

[42] N. A. Qureshi, A. Perini, "Engineering adaptive requirements." ICSE
Workshop on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS'09, IEEE, 2009.

[43] N. A. Qureshi, A. Perini, "Requirements engineering for adaptive
service based applications." 18th Intl. Req. Eng. Conf., IEEE, 2010.

[44] N. A. Qureshi, I. J. Jureta, A. Perini, "Requirements engineering for
self-adaptive systems: Core ontology and problem statement." Adv.
Information Systems Engineering, Springer-Verlag, 2011.

[45] A. J. Ramirez et al, "Relaxing claims: Coping with uncertainty while
evaluating assumptions at run time." Intl. Conf. on Model Driven
Eng. Lang. and Sys, Springer-Verlag, 2012, 53-69.

[46] U. Sammapun et al, "RT-MaC: runtime monitoring and checking of
quantitative and probabilistic properties." 11th IEEE Intl. Conf. on
Embedded and Real-Time Computing Sys. and App., IEEE, 2005.

[47] U. Sammapun, L., Insup, O. Sokolsky, J. Regehr, "Statistical
runtime checking of probabilistic properties." Intl. Workshop on
Runtime Verification, Springer-Verlag, 2007, pp. 164-175.

[48] V. E. S. Souza et al, "Awareness requirements for adaptive systems."
Proc. 6th Intl. Symp. on Software Engineering for Adaptive and Self-
managing systems, ACM, 2011.

[49] V. E. S. Souza, A. Lapouchnian, J. Mylopoulos, "(Requirement)
evolution requirements for adaptive systems." Proc. 7th Intl Symp.
on Soft Eng for Adaptive and Self-Managing Systems, IEEE, 2012.

[50] P. Thati, G. Roşu, “Monitoring algorithms for metric temporal logic
specifications”. Electronic Notes in Theoretical Computer Science,
113, pp.145-162, 2005.

[52] P. Zhang, W. Li, D. Wan, L. Grunske, “Monitoring of probabilistic
timed property sequence charts”, Software: Practice and Experience,
41(7), 2011, pp.841-866.

