
Implementing IPv6 Segment Routing in the Linux Kernel

David Lebrun, Olivier Bonaventure
ICTEAM, Université catholique de Louvain

Louvain-La-Neuve – Belgium
firstname.lastname@uclouvain.be

ABSTRACT
IPv6 Segment Routing is a major IPv6 extension that provides a
modern version of source routing that is currently being developed
within the Internet Engineering Task Force (IETF). We propose the
first open-source implementation of IPv6 Segment Routing in the
Linux kernel. We first describe it in details and explain how it
can be used on both endhosts and routers. We then evaluate and
compare its performance with plain IPv6 packet forwarding in a
lab environment. Our measurements indicate that the performance
penalty of inserting IPv6 Segment Routing Headers or encapsulat-
ing packets is limited to less than 15%. On the other hand, the
optional HMAC security feature of IPv6 Segment Routing is costly
in a pure software implementation. Since our implementation has
been included in the official Linux 4.10 kernel, we expect that it
will be extended by other researchers for new use cases.

1. INTRODUCTION
Segment Routing (SR) is a modern source routing architec-

ture that is being developed within the Internet Engineering Task
Force [1, 2]. While traditional IP routing uses destination-based
hop-by-hop forwarding, Segment Routing can forward packets
along non-shortest paths towards their destination by specifying
a list of detours or waypoints called segments. Packets are for-
warded along the shortest path from the source to the first segment,
then through the shortest path from the first segment to the second
segment, and so on. Segment Routing defines two main types of
segments representing topological instructions. A node segment is
used to steer packets through a specific network node. An adja-
cency segment allows to steer packets through a particular link.

The Segment Routing architecture has been instantiated in two
different dataplanes: MPLS [3] and IPv6 [4]. The MPLS variant
of SR is already implemented by network vendors and deployed
by operators. Several researchers have proposed new traffic engi-
neering solutions that leverage the unique characteristics of SR [5,
6, 7, 8, 9]. Other researchers have proposed improved monitoring
solutions [10]

The IPv6 SR dataplane is younger and its specification became

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

stable in early 2017 [4]. We argue that the inherent features of
the IPv6 flavor of Segment Routing (SRv6) open the doors to a
large, yet mostly unexplored, research area enabling the endhosts
to actively participate in the selection of the paths followed by their
packets.

SRv6 is realised through an IPv6 extension header, the routing
header (RH). This header was already defined in the IPv6 proto-
col specification [11]. The IPv6 Segment Routing Header (SRH)
is defined as an extension of the routing header [4]. The SRH con-
tains a list of segments, encoded as IPv6 addresses (usually glob-
ally routable and announced by an underlying IGP such as OSPF
or IS-IS). A segment can represent a topological instruction (node
or link traversal) or any operator-defined instruction (e.g., virtual
function). An SRH can be used to steer packets through paths with
given properties (e.g., bandwidth or latency) and through various
network functions (e.g., firewalling). The list of segments present in
the SRH thus specifies the network policy that applies to the packet.
Each SRH contains at least a list of segments [4] and a Segments
Left pointer that references the current active segment (a value
of 0 refers to the last segment). In addition, an SRH can option-
ally include extended information encoded as Type-Length-Value
(TLV) fields. One example is the optional HMAC TLV, used for
authenticity and integrity checks.

When a router must impose an SRH on a forwarded packet, the
packet is encapsulated in an outer IPv6 header containing the SRH.
The original packet is left unmodified as the payload. The router
is called the SR ingress node. The destination address of the outer
IPv6 header is set to the first segment of the list and the packet is
forwarded to the corresponding node following the shortest path.
This node (called a segment endpoint) then processes the packet
by updating the destination address to the next segment. The last
segment of the list is the SR egress node. It decapsulates the inner
packet and forwards it to its original destination. Figure 1 shows an
illustration of path steering with Segment Routing.

Another SRH insertion technique is direct (or inline) insertion.
In this case, the original packet is not encapsulated. Rather, the
SRH is directly inserted immediately after the IPv6 header. This
method yields less overhead than encapsulation, but is more sus-
ceptible to disruptions in case of network errors. For example, an
ICMP generated for such a packet will reach the original source of
the packet, which does not know about the inserted SRH. However,
such a technique might be used within an SRv6 domain to, e.g.,
decouple the IPv6 encapsulation and the SRH insertion.

A particular feature of SRv6 is that it can be used in the net-
work up to the endhosts, as they already support (or are meant to
support) IPv6, as opposed to MPLS which is only used in core net-
works. Such feature enables the endhosts to actively participate in

10.1145/1235

I A B C

D

E

F

(a) Segment Routing domain.
I A B C

D

E

F

(b) Forwarding path for segments node(D), adj(D, B, left),
node(F), node(E) imposed by SR ingress node I. Hollow nodes are
segment endpoints.

Figure 1: Illustration of Segment Routing topological instructions.

the management and policing of their network traffic, with the help
of an SDN-like controller. The first step in realising such an ar-
chitecture would be to enable the support of SRv6 in the endhosts.
Thus, we implemented SRv6 in the Linux kernel.

This paper is organised as follows. We first describe our open-
source implementation of IPv6 Segment Routing in the Linux ker-
nel in Section 2. We then analyse its performance in Section 3.

2. IMPLEMENTATION
Open-source implementations have played an important role on

the development of all major Internet protocols. When the imple-
mentation is developed in parallel with the protocol specification,
it helps to validate key design choices and also triggers new ideas.
Our first implementation of IPv6 Segment Routing was written in
April 2014. During the last three years, we have refined and im-
proved it to track the evolution of the protocol specification. We
describe in this section the latest version of this implementation that
has been merged in the official Linux tree and is part of Linux 4.10
released in February 2017 [12, 13]. To the extent of our knowledge,
this is the only open-source implementation of Segment Routing
that supports both endhosts and router functionalities. The fd.io
project has recently announced another implementation that focuses
on router functionalities1. In this section, we first briefly explain
the basic principles of networking in the Linux kernel. Then, we
describe the key components of our SRv6 implementation and the
supporting userspace tools.

2.1 Networking in the Linux Kernel
The Linux networking subsystem is very complex, comprising

more than 700,000 lines of code, without counting the drivers. Our
IPv6 SR implementation mainly interacts with the IPv6 packet pro-
cessing and the routing engine codes. Internally, packets are rep-
resented as socket buffers, or skb’s. An skb is a kernel structure
of type struct sk_buff that represents a network packet, with
metadata and payload. The metadata includes the ingress interface,
checksum, header offsets, and other layer-specific data. The actual
packet data is most often stored in a contiguous memory area, called
the skb header. When all the packet data is contained in this area,
the skb is said to be linear. The header is divided in three zones:
headroom, packet data, and tailroom. Headroom and tailroom are
space resp. before and after the packet data. They enable to prepend
1See http://www.segment-routing.net/open-software/vpp/

Figure 2: Linux routing decision process.

and append data to the packet. As packets are constructed from bot-
tom to top, data is often prepended. If there is not enough head or
tail room, the header is reallocated to a larger memory area. The
skb also contains various offsets to easily access to different parts
of the packet, such as the network header, transport header, inner
headers (in case of encapsulation), etc.

2.1.1 Packet processing
The networking subsystem of the Linux kernel is divided into

several layers. The lowest level is the network driver, which is clos-
est to the hardware. When a packet arrives at the network interface
card (NIC), it is copied into main memory and handed to the net-
work driver. The driver transforms the raw packet into a socket
buffer. Once the skb is filled, it is handed over to the upper layer,
e.g. IPv4 or IPv6. The driver may concatenate several skb’s using
Generic Receive Offloading (GRO). GRO is a software mechanism
that enables network drivers to group similar contiguous packets
before handing them over to the upper layer, reducing the number
of calls.

Upon reception of an IP packet, the kernel decides whether
its should be delivered locally, or forwarded to another network
node. Figure 2 provides an overview of the routing Linux deci-
sion process. Each packet goes through several processing stages.
Consider an IPv6 packet that was just delivered by the network
driver. It enters the ipv6_rcv() function that corresponds to the
PREROUTING stage. This function parses the IPv6 header, then
decides whether the packet is intended to the local host or must be
forwarded elsewhere. To realise this, it looks up the packet des-
tination in the IPv6 routing table entries 2. If the packet must be
forwarded, it is handed to the ip6_forward() function, corre-
sponding to the FORWARD stage. This function selects the next hop,
decrements the hop limit, etc. Then, it enters the ip6_output()
function, corresponding to the POSTROUTING stage. In this stage,
the packet is ready to be transmitted and is handed over to the
lower layers, ultimately being transmitted by the NIC. On the other
hand, if the packet is to be locally delivered (i.e., the destination ad-
dress matches a local address), it enters the ip6_input() func-
tion, corresponding to the INPUT stage. This function iteratively
processes each extension header in the IPv6 header chain until it
reaches a final payload (e.g., TCP, UDP), which is processed by its
own input function.

When an application sends packets, they are built from bottom to
top. First, the transport header is pushed above the payload. Then,
optional IPv6 extension headers are pushed on top of the trans-
port header thanks to the ipv6_push_nfrag_opts() func-
tion. Finally, the IPv6 header is pushed on top and the correspond-

2In practice, other parameters can be used in the routing decision process, such as the
source address. For the sake of simplicity, we only consider destination addresses.

http://www.segment-routing.net/open-software/vpp/

Listing 1: SRH structure.
s t r u c t i p v 6 _ s r _ h d r {

__u8 n e x t h d r ;
__u8 h d r l e n ;
__u8 t y p e ;
__u8 s e g m e n t s _ l e f t ;
__u8 f i r s t _ s e g m e n t ;
__u8 f l a g s ;
__u16 r e s e r v e d ;

s t r u c t i n 6 _ a d d r segmen t s [0] ;
} ;

ing skb enters the OUTPUT stage through, e.g., the ip6_xmit()
function for TCP or the ip6_local_out() function for other
transport protocols. The routing decision is performed and the
skb then enters the POSTROUTING stage and is transmitted to the
network.

2.2 IPv6 SR data plane
The core of our IPv6 SR implementation is the Segment Routing

Header processing capability. It enables a Linux node to act as both
a segment endpoint and an SR egress node. When a segment end-
point receives an IPv6 packet containing an SRH, the destination
address of the packet is local to the segment endpoint. To process
this packet, we add the ipv6_srh_rcv() function the INPUT
stage. This function is called whenever the IPv6 input function en-
counters an SRH in the header chain. We use the C structure shown
in Listing 1 to hold an SRH.

The ipv6_srh_rcv() function performs several operations.
First, it checks that the node is allowed to act as a segment
endpoint for SR-enabled packets coming from the ingress inter-
face (skb->dev). This policy is configured through the per-
interface seg6_enabled sysctl boolean parameter. If this
boolean is set to false, then the skb is discarded. Otherwise,
the processing continues. The packet then goes through an op-
tional HMAC validation. Our implementation supports SHA-1 and
SHA-256 based HMAC. The behavior to adopt when encounter-
ing HMAC-enabled packets is controlled through the per-interface
seg6_hmac_require sysctl. This parameter can take three
different values: (i) a value of −1 means that the node accepts all
SR packets, regardless of the status (absent/present, valid/invalid)
of the HMAC TLV, (ii) a value of 0 means that the node must
accept packets that contain an SRH and either do not include the
HMAC TLV or a valid HMAC TLV, and (iii) a value of 1 means
that only the SR packets that include a valid HMAC can be pro-
cessed.

Once those preliminary checks have been performed, the func-
tion handles two main cases: Segments Left being non-zero,
and Segments Left being equal to zero. Let us first consider
the latter case, where the node acts as an SR egress node. As the
node is the last segment of the path, it must inspect the inner header
to decide the fate of the packet. If the next header is another IPv6
extension header or a transport protocol (e.g., TCP, UDP), then the
header chain processing continues as normal, and the skb is even-
tually delivered to the corresponding local process. Conversely, if
the original packet was encapsulated by an SR ingress node, then
the next header would typically be an IPv6 header (i.e., IPv6-in-
IPv6 encapsulation). However, nothing forbids, e.g., the encapsu-
lation of an IPv4 packet within the outer IPv6 header and the SRH.
As such, it would make sense to allow the kernel to continue the

(a) SR egress node.
(b) Remote next seg-
ment.

(c) Local next seg-
ment.

Figure 3: Possible codepaths for SRH processing.

default processing of the next header, as for the non-encapsulated
case. However, the kernel handles IP headers differently, depend-
ing on whether it is the outermost header (the first header processed
on the ingress interface, not counting the possible Ethernet header)
or an inner, encapsulated header. When the kernel encounters an
encapsulated inner header, it attempts to find an existing stateful
tunnel interface, corresponding to the source and destination of the
outer header. As no such interface exists, the skb is dropped. To
avoid this issue, we bypass the default processing and reinject the
inner packet in the ingress interface. The side-effect is that the func-
tion explicitly checks for an inner IP header. As of Linux 4.10, only
IPv6-in-IPv6 encapsulation is supported, meaning that, e.g., IPv4
packets cannot be transported in an IPv6 and SRH encapsulation.

When the Linux node is an intermediate segment endpoint (i.e.,
Segments Left > 0), it must forward the packet towards the
next segment. To realise this, the ipv6_srh_rcv() function
decrements the number of segments left and updates the destination
address of the packet to the next segment. Afterwards, a routing de-
cision is applied to the skb thanks to the ip6_route_input()
function. If the next segment is local to the node, then the skb is
looped back to the beginning of the SRH receive function, after
decrementing and checking the hop limit. This is an implemen-
tation choice that enables to skip a redundant re-entry into the
ip6_input() function. In the future, this behavior might be con-
trolled by a user-defined parameter. This parameter would enable
to choose between fast-path loop-back and slow-path re-entry. The
rationale is that the fast re-entry skips the INPUT netfilter hook,
which may be needed in some usecases. If the next segment is non
local, then the skb enters the FORWARD stage.

Figure 3 summarises the flow of an IPv6 SR packet through the
networking subsystem. The codepath of the skb to the SRH pro-
cessing function is shown with plain arrows. The dashed arrows
show the codepath of the skb immediately after the SRH process-
ing. Figure 3a shows the reinjection of the decapsulated skb at the
interface level. Figure 3b shows the skb being forwarded to the
next segment. Figure 3c shows the skb being looped back within
the SRH processing function to handle a local next segment.

2.3 IPv6 SR control plane
An SR router must be able to add and remove SRH in IPv6

packets. We first describe how our implementation supports the
insertion of an SRH inside an IPv6 packet[4, 14]. Our imple-
mentation leverages the lightweight tunnels (LWTs). LWTs are
a technique to implement interfaceless, virtual tunnels. The idea

Listing 2: iproute2 command to insert an IPv6 SR encapsulation
route.
i p −6 r o u t e add fc42 : : / 6 4 encap seg6 mode encap

s e g s f c00 : : 1 , 2 0 0 1 : db8 : : 1 , f c10 : : 7 dev e t h 0

of lightweight tunnels is the following. Each route in the ker-
nel routing table is associated with two function pointers, input
and output. Those pointers are initialized at the creation of
the route. For an IPv6 route, the output function pointer refer-
ences the ip6_output() function, that transmits the skb to the
egress interface. The input function pointer depends on whether
the route is local (packets matching this route must be delivered
to a local process) or non-local (packets must be forwarded to a
next hop). If the route is local, the function pointer references the
ip6_input() function. Otherwise, it is ip6_forward() that
is referenced. Lightweight tunnels allow to override those function
pointers with custom functions. To implement a lightweight tunnel,
one needs to define specific input and/or output functions. Then,
each route created to specifically use this LWT will have its input
and/or output function pointers reference the custom functions.
Per-tunnel stateful data (tunnel state) is also stored inside the route.
This technique has the advantage of using the existing routing table,
thus avoiding the need to define a custom data structure for packet
matching. It is also highly customizable, enabling differentiated
treatment for forwarded packets and for locally generated pack-
ets. Lightweight tunnels are configured from userspace through the
rtnetlink protocol, which is commonly used by the iproute2
tool to configure the routing tables.

Consequently, we implemented SRH insertion using the
lightweight tunnels. When such SRH insertion is associated to a
route, the entire SRH is passed to the kernel through rtnetlink.
After checking the consistency of the SRH, it is stored as the
tunnel state of the route. Our implementation also stores an op-
tional parameter stating whether the SRH should be directly in-
serted or encapsulated. Finally, a dst_cache entry stores the
routing entry associated with the first segment of the SRH, enabling
the route lookup for the first segment to be performed only once.
Both the input and output function pointers of the route ulti-
mately call the seg6_do_srh() function. This function effec-
tively inserts the SRH on the skb. The direct insertion function
(seg6_do_srh_inline()) simply inserts the SRH between
the IPv6 header and the rest of the packet. The encapsulation func-
tion (seg6_do_srh_encap()) needs to provision a new IPv6
header. The traffic class and the flowlabel are copied from the in-
ner IPv6 header. In the future, this behaviour will likely be made
configurable, e.g., by letting the kernel compute the outer flowlabel
based on the inner packet’s 5-tuple. Such a behavior would ensure
proper ECMP support when the inner flowlabel is null or unrelated
to the packet’s flow. The hop limit is also copied from the inner
IPv6 header. The destination address is obviously set to the address
of the first segment. The source address is selected according to
a namespace-wide configuration parameter. In the future, this pa-
rameter could be directly attached to the routes for a finer-grained
configuration. Once an skb is augmented with an SRH, it is for-
warded to the first segment according to the normal kernel routing
mechanisms.

We also modified the iproute2 userspace tool to insert, mod-
ify and read routes that use the SRH lightweight tunnels ex-
tension. Figure 2 shows an example of a route insertion com-

Listing 3: Sample code to define a per-socket SRH.
s t r u c t i p v 6 _ s r _ h d r ∗ s r h ;
i n t s r h _ l e n ;

s r h _ l e n = b u i l d _ s r h (& s r h) ;
fd = s o c k e t (AF_INET6 , SOCK_STREAM, IPPROTO_TCP) ;
s e t s o c k o p t (fd , IPPROTO_IPV6 , IPV6_RTHDR , s rh , s r h _ l e n) ;

mand. This route matches packets whose destination belongs to the
fc42::/64 prefix and inserts an SRH on these packets (encap
seg6). The original packet is encapsulated in an outer IPv6 header
(mode encap). To directly insert the SRH in the original packet,
one can use mode inline. The list of segments is specified as
a comma-separated list of IPv6 addresses. Finally, a non-loopback
device must be specified.

The routes configured by iproute2 are namespace-wide. To
support a finer-grained control of the SRH insertion, we also imple-
mented a per-socket interface through the setsockopt() system
call. This enables applications to specify the SRH to be inserted on
a socket level. When the kernel builds a packet for a local appli-
cation, it calls ipv6_push_nfrag_opts() before pushing the
top IPv6 header. If an SRH is attached to the socket, the function
calls ipv6_push_rthdr4() that effectively pushes the SRH on
the packet. The last segment of the SRH is set to the original desti-
nation. The first segment is returned, to be set as the actual destina-
tion of the packet. Listing 3 shows how a C application can define
an SRH for a TCP socket.

2.4 HMAC
To support the HMAC TLV, we leverage the kernel crypto API,

which implements various cryptographic functions. This crypto
API requires the allocation of algorithm descriptors. To prevent
allocating one such descriptor per packet, we leverage global per-
CPU allocations. We pre-allocate algorithm descriptors at the ini-
tialization of the IPv6 SR and reuse them in the packet processing
function. We support the SHA-1 and SHA-256 hashing algorithms.

The seg6_hmac_compute() function handles most of the
HMAC computation. It takes as input an SRH, an IPv6 source ad-
dress and computes the corresponding HMAC. The function does
not use locks as it uses per-CPU buffers. However, it needs to dis-
able preemption, to avoid being switched to another CPU in the
middle of a computation. The seg6_hmac_compute() func-
tion can be called by several parts of our implementation. One of
them is in the ipv6_srh_rcv() function, to verify the validity
of an SR-enabled packet containing an HMAC TLV. Another one
is the seg6_do_srh() function, that augments packets with an
SRH including an HMAC TLV. Finally, an HMAC may also be
computed for a packet generated through a local socket that has
received an SRH through the setsockopt() system call.

To define an IPv6 SR encapsulation route with an HMAC,
iproute2 provides the hmac parameter that takes a key ID as
argument. The SRH sent to the kernel contains a template HMAC
TLV with the key ID set and the HMAC value zeroed. The same
construction applies for a per-socket SRH. Those key IDs are con-
figured through the genetlink protocol.

3. PERFORMANCE EVALUATION
To measure the performance of our IPv6 SR implementation in

the Linux kernel, we ran several measurement campaigns on Xeon
servers.

Figure 4: Network setup for performance measurements.

Our measurement setup uses three identical machines, equipped
with Intel Xeon X3440 processors with 4 cores and 8 threads
clocked at 2.53 GHz. Each server has 16 GB of RAM and two
Intel 82599 10 Gbps network interface cards. One of them acts as a
router and the two others act as sources and destinations as shown
in Figure 4. The router acts as an SR node where we configure dif-
ferent operations. The source has a route to prefix fc01::/64 via
fc00::5 and the sink has a route to fc00::/64 via fc01::5.

Each server runs Linux kernel 4.11-rc33. We compiled this ker-
nel with all SR-related options enabled. The preemption model is
voluntary and the clock ticks are set to 100 Hz periodic. We have
disabled GRO and GSO on the network interfaces, as well as all
hardware transmit and receive offloading features. On such servers,
Linux usually configures each network interface with one queue
per CPU (i.e., 8 queues in our setup) and the IRQ associated with
each queue is handled by the corresponding CPU. In order to ob-
serve performance bottlenecks, we change this setting to force all
the queues of a network interface to be served by a single CPU. The
other interface parameters are left at their default setting.

We use pktgen [15] to generate IPv6 packets. It is directly
included in the kernel. As such, packets are directly handed
over to the network driver, without further preprocessing. Conse-
quently, pktgen is much faster than userspace counterparts such
as iperf3. A drawback is that pktgen is not able to support re-
liable protocols such as TCP. It only sends raw UDP packets. How-
ever, this is sufficient for our tests since our objective is to evaluate
the additional processing overhead imposed by IPv6 Segment Rout-
ing in comparison with regular IPv6 processing.

3.1 Measurements
To evaluate the performance impact of our IPv6 Segment Rout-

ing implementation, we carried out four measurement campaigns.
We first measure Plain, regular IPv6 forwarding, without any SRH
as a baseline. Our second campaign, Encap, evaluates the perfor-
mance impact of encapsulating each IPv6 packet inside an outer
packet that includes an SRH that contains one segment. Our third
campaign, Inline, evaluates the impact of inserting an SRH inside
each packet as proposed in [14]. Finally, we analyse during the
HMAC campaign the cost of validating the HMAC TLV.

Unless stated otherwise, for each measurement we run 100
batches of five millions IPv6 packets having a length of 64 bytes,
which is the minimum length supported by pktgen. Each packet
includes an IPv6 header (40 bytes), a UDP header (8 bytes) with
source and destination ports set to 9 (discard service) and a UDP
payload of 16 bytes. The source IPv6 address is set to fc00::44
(source server in Figure 4) and the destination address is set to
fc01::66 (the sink). When the SR node inserts an SRH with
one segment, the SRH contains the segment fc01::6.

Our first measurement analysed the forwarding capacity of our
test server with plain IPv6 packets. In the lab shown in Figure 4,
we managed to forward packets at 1,165 Kpps. Figure 5 shows that
this forwarding rate was pretty stable and did not vary significantly
from one measurement to another. In the same setup, we compare
encapsulation and direct insertion. They reached only 776 Kpps

3The exact version is at commit
add641e7dee31b36aee83412c29e39dd1f5e0c9c in net-next.

Plain Inline Encap
200

300

400

500

600

700

800

900

1000

1100

1200

Th
ro
ug

hp
ut
 (K

pp
s)

Performances comparison (unpatched)

Figure 5: Initial performances for encapsulation and insertion.

for encapsulation and 784 Kpps for insertion. While the results re-
ported in Figure 5 are not catastrophic, they are roughly one third
lower than plain IPv6 forwarding performance on the same hard-
ware.

We analysed the reason for this lower performance with the
perf tool on the SR node while transmitting packets and com-
pared the functions that were active during plain IPv6 forward-
ing and SRH insertion. This analysis pinpointed two kernel func-
tions that were consuming more CPU time: fib6_lookup()
and __slab_free(). The former is the IPv6 route lookup func-
tion. We realised that it was called once too often per SR-processed
packet. This is because we implemented the dst_cache mecha-
nism for locally generated packets (in seg6_output()) but not
for forwarded packets (in seg6_input()). We fixed this prob-
lem by implementing the caching mechanism in both functions.
The root cause of the __slab_free() increased usage was a lit-
tle more difficult to determine. This function is called by kfree()
(freeing kernel memory) when the data to free was not allocated by
the same CPU as the one attempting to free the memory. In this
case, a slowpath is taken which calls the __slab_free() func-
tion, itself taking a spinlock. This was likely because we were per-
forming some memory allocation in the SRH insertion codepath.
Indeed, pskb_expand_head() was called for each packet to
increase the size of the skb’s headroom by the length of the IPv6
header and SRH that we were pushing onto the packet. However,
the skb was originally allocated by the CPU that handled the hard-
ware interrupt generated by the network card when receiving the
packet. Unfortunately, the CPU that handles the IPv6 SR process-
ing functions is not necessarily the same as the one that allocated
the skb. As such, when the initial CPU attempts to free the skb,
part of its data has been reallocated by another CPU, and thus the
freeing process must take the slowpath through __slab_free().
To fix this issue, we leverage the already available headroom in-
side skb’s. We replace the pskb_expand_head() calls by
skb_cow_head(), which reallocates the skb header only if the
headroom is not large enough. After applying the two patches4,
we performed a second measurement campaign whose results are
shown in Figure 6. The performance gain is clearly noticeable,
with direct insertion and encapsulation reaching average forward-
ing rates of resp. 1,019 Kpps and 1,001 Kpps (standard deviation
resp. 11.1 Kpps and 7.8 Kpps).

We then analysed the effect of the packet size on the performance
of the SRH insertion. For this campaign, we replaced the 64-byte

4These two patches have been sent on the netdev mailing list. They have been accepted
by the Linux kernel maintainers and will be part of Linux 4.12.

Plain Inline Encap
200

300

400

500

600

700

800

900

1000

1100

1200
Th

ro
ug

hp
ut
 (K

pp
s)

Performances comparison (patched)

Figure 6: Performance for encapsulation and insertion after optimiza-
tions.

Plain (1000) Plain (64) Inline (1000) Inline (64) Encap (1000) Encap (64)
200

300

400

500

600

700

800

900

1000

1100

1200

Th
ro

ug
hp

ut
 (K

pp
s)

Performances comparison (1000B packets)

Figure 7: Performance for encapsulation and insertion using small and
large packets.

packets by 1000-bytes packets. Figure 7 shows the results for the
Plain, Inline and Encap measurements, with both packet sizes. We
observe that the performance with 1000-bytes packets is slightly
better, especially for peak throughput. The average is almost the
same for 1000-bytes and 64-bytes packets, but the standard devia-
tion is three times higher for large packets. In any case, our mea-
surements show that the packet size does not significantly impact
the performance of inserting an SRH in each packet.

With our latest modifications, the performance penalty of using
SRH insertion or encapsulation is very small. Among the other fea-
tures of IPv6 Segment Routing, the validation of the HMAC TLV is
likely the one that will have the highest performance impact, even
if there are many environments where it will not be used [4]. Our
fourth measurement campaign analyses the impact of SRH encap-
sulation with an HMAC, using the SHA-256 algorithm. We mea-
sured two implementations of SHA-256: a generic, purely soft-
ware one and a partially hardware-offloaded one that leverages the
ssse3 instruction set. Our measurements with the ssse3 imple-
mentation are reported in Figure 8. The performance penalty of
using the HMAC TLV is huge. Using the generic implementation
of SHA-256, we only reached 240 Kpps. The ssse3-augmented
version reaches 290 Kpps in average, which is a long way from the
1,001 Kpps baseline for encapsulation without HMAC. The stan-
dard deviation is below 1 Kpps for both SHA-256 implementations.
These results indicate that additional hardware offload capabilities
will be required if the HMAC TLV is required for a specific deploy-
ment as noted in [4].

Finally, we measured the performances of parallel SRH process-

Encap HMAC (generic) HMAC (ssse3)
200

300

400

500

600

700

800

900

1000

1100

1200

Th
ro

ug
hp

ut
 (K

pp
s)

Performances comparison (HMAC)

Figure 8: Performances for encapsulation with and without HMAC.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

Plain IPv6 Inline Encap HMAC

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
pp

s)

SRH insertion performances for 64-byte packets

Multi-flows, 8 CPUs
Single-flow, single CPU

Figure 9: Performances summary for SRH encapsulation.

ing. For each measurement campaign, we generated a random des-
tination address for each packet, to simulate multiple flows. We
enabled the Receive Side Scaling feature on the SR node, to uni-
formly distribute the flows over all the 8 CPUs. The results show
that we reach almost 4.5 Mpps for SRH insertion. Figure 9 shows
a summary of the performance measurements.

4. CONCLUSION
IPv6 Segment Routing is a major IPv6 extension that provides a

modern version of source routing. It is gaining a growing interest
within the IETF, with major network operators and vendors con-
tributing to its design, as well as researchers. In this paper, we have
described and evaluated the performance of our implementation of
SRv6 in the Linux kernel. We support the SRv6 functions that are
required on endhosts and routers. To the extent of our knowledge,
this is the first implementation that supports these two use cases.
The other existing implementations focus on router platforms.

On endhosts, our implementation allows applications to attach
an SRH on a per-flow basis. On routers, it can forward SR-enabled
packets, but also impose an SRH on packets matching a specific
route, using direct insertion or encapsulation. We performed mea-
surements on Xeon servers to assess the performance of our imple-
mentation. These results show that SRH processing reaches about
90% of the plain IPv6 forwarding performance.

Since our implementation has been included in the official Linux
4.10 kernel, we expect that it will be extended by other researchers
for new use cases such as [16] and hope that it will become the
reference implementation of IPv6 Segment Routing.

Acknowledgements
This work was partially supported by a Cisco grant and by the ARC
grant 13/18-054 (ARC-SDN) from Communauté française de Bel-
gique. We would like to thank Clarence Filsfils, Stefano Previdi
and Eric Vyncke for fruitful discussions on IPv6 Segment Routing.
We also thank Eric Dumazet, Tom Herbert and David Miller whose
comments have helped us to improve the kernel code.

5. REFERENCES
[1] Clarence Filsfils et al. Segment Routing Architecture.

Internet-Draft draft-ietf-spring-segment-routing-08, Internet
Engineering Task Force, May 2016. Work in Progress.

[2] Clarence Filsfils et al. The segment routing architecture. In
2015 IEEE Global Communications Conference
(GLOBECOM), pages 1–6. IEEE, 2015.

[3] Clarence Filsfils et al. Segment Routing with MPLS data
plane. Internet-Draft
draft-ietf-spring-segment-routing-mpls-07, Internet
Engineering Task Force, February 2017. Work in Progress.

[4] Stefano Previdi, Clarence Filsfils, Brian Field, Ida Leung,
J. Linkova, Ebben Aries, Tomoya Kosugi, Eric Vyncke,
David Lebrun, John Leddy, Kamran Raza,
daniel.voyer@bell.ca, daniel.bernier@bell.ca, Satoru
Matsushima, Dirk Steinberg, and Robert Raszuk. IPv6
Segment Routing Header (SRH). Internet-Draft
draft-ietf-6man-segment-routing-header-06, Internet
Engineering Task Force, March 2017. Work in Progress.

[5] Renaud Hartert, Stefano Vissicchio, et al. A declarative and
expressive approach to control forwarding paths in
carrier-grade networks. In ACM SIGCOMM Computer
Communication Review, volume 45, pages 15–28. ACM,
2015.

[6] Fang Hao, Murali Kodialam, and TV Lakshman. Optimizing
restoration with segment routing. In Computer
Communications, IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on, pages 1–9. IEEE, 2016.

[7] François Aubry, David Lebrun, Yves Deville, and Olivier
Bonaventure. Traffic duplication through segmentable
disjoint paths. In IFIP Networking Conference (IFIP
Networking), 2015, pages 1–9. IEEE, 2015.

[8] Randeep Bhatia, Fang Hao, Murali Kodialam, and
TV Lakshman. Optimized network traffic engineering using
segment routing. In Computer Communications
(INFOCOM), 2015 IEEE Conference on, pages 657–665.
IEEE, 2015.

[9] Stefano Salsano et al. PMSR: Poor Man’s Segment Routing,
a minimalistic approach to Segment Routing and a Traffic
Engineering use case. In Network Operations and
Management Symposium (NOMS), 2016 IEEE/IFIP, pages
598–604. IEEE, 2016.

[10] Francois Aubry, David Lebrun, Stefano Vissicchio,
Minh Thanh Khong, Yves Deville, and Olivier Bonaventure.
Scmon: Leveraging segment routing to improve network
monitoring. In 35th Annual IEEE International Conference
on Computer Communications, INFOCOM 2016, San
Francisco, CA, USA, April 10-14, 2016, pages 1–9, 2016.

[11] Steve Deering. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460, December 1998.

[12] Linux Torvalds. Linux 4.10 networking merge commit.
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/

commit/?id=
ce38aa9cbed3d109355b0169b520362c409c0541, December
2016.

[13] Linux community. Linux 4.10 ChangeLog.
https://kernelnewbies.org/Linux_4.10, February 2017.

[14] D. Boyer et al. Insertion of IPv6 Segment Routing Headers in
a Controlled Domain. Internet draft
draft-voyer-6man-extension-header-insertion-00, work in
progress, March 2017.

[15] Robert Olsson. Pktgen the linux packet generator. In
Proceedings of the Linux Symposium, Ottawa, Canada,
volume 2, pages 11–24, 2005.

[16] C. Filsfils et al. SRv6 Network Programming. Internet draft,
draft-filsfils-spring-srv6-network-programming-00, work in
progress, March 2017.

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ce38aa9cbed3d109355b0169b520362c409c0541
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ce38aa9cbed3d109355b0169b520362c409c0541
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=ce38aa9cbed3d109355b0169b520362c409c0541
https://kernelnewbies.org/Linux_4.10

	Introduction
	Implementation
	Networking in the Linux Kernel
	Packet processing

	IPv6 SR data plane
	IPv6 SR control plane
	HMAC

	Performance evaluation
	Measurements

	Conclusion
	References

