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Abstract Many pattern mining systems are designed to solve one specific problem,
such as frequent, closed or maximal frequent itemset mining, efficiently.
Even though efficient, their specialized nature can make these systems
difficult to apply in different situations than the one they were designed
for. This chapter provides an overview of generic constraint-based min-
ing systems. Constraint-based pattern mining systems are systems that
with minimal effort can be programmed to find different types of pat-
terns satisfying constraints. They achieve this genericity by providing
(1) high-level languages in which programmers can easily specify con-
straints; (2) generic search algorithms that find patterns for any task
expressed in the specification language. The development of generic sys-
tems requires an understanding of different classes of constraints. This
chapter will first provide an overview of such classes constraints, fol-
lowed by a discussion of search algorithms and specification languages.
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1. Introduction

A key component of a pattern mining system is the constraint that
is used by the system. A frequent itemset mining system, for instance,
is characterized by the use of a minimum support constraint; an associ-
ation rule mining system, similary, is defined by a minimum confidence
constraint. Constraints define to a large degree which task a pattern
mining system is performing.

However, the focus of many pattern mining systems on one type of
constraint can make their use cumbersome. As an example, consider a
frequent itemset mining system that one wishes to apply in a context
where the utility of the items is important as well. As a basic frequent
itemset mining system does not support utilities, we cannot use it di-
rectly; we either have to:

understand the code of the frequent itemset mining algorithm to
add an additional constraint to it;

or, write a second algorithm for processing the results of the fre-
quent itemset mining system to evaluate the additional constraint
for each of the itemsets found.

Both options are cumbersome. The second option is likely to be com-
putationally inefficient if the number of frequent itemsets is large. The
first option can be efficient, provided that the programmer has a deep
understanding of the code that is being modified.

These disadvantages have led researchers to develop more general sys-
tems that provide easy-to-use interfaces for specifying the constraints
that the pattern mining systems need to use during the search. The
development of these systems has involved several challenges:

the identification of general classes of constraints, all of which can
be processed in a generic and similar way;

the development of languages in which constraints can be ex-
pressed, such that all expressions in the language correspond to
constraints in a class of constraints supported by a system;

the development of search algorithms that can deal with con-
straints in a certain class.

This chapter will provide an overview of the state-of-the-art for each of
these challenges. We will first formalize the problem of constraint-based
pattern mining, including a discussion of different classes of constraints.
Subsequently, we will discuss the most common search algorithms for
these classes of constraints. Finally, we will discuss the languages that
allow for the expression of constraints in pattern mining.
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2. Problem Definition

Constraint-based mining starts from the observation that many pat-
tern mining problems can be seen as instances of the following generic
problem statement:

Given

a database D with transactions

a pattern language Lπ

a constraint ϕ : Lπ × 2LD 7→ {0, 1}

Find all patterns π ∈ Lπ for which ϕ(π,D) = 1.

The pattern language typically describes the syntax of the patterns
we wish to find in the data. Constraints typically describe the statistical
requirements that we wish these patterns to satisfy on the data.

Frequent itemset mining (see chapter ...), for example, is an instance
of this generic setting, with the following choices:

the database has transactions that are subsets of a given set of
items I;

the pattern language is the set of all subsets of I: Lπ = 2I ;

the minimum support constraint ϕminsup(π,D) is true if and only
if the number of transactions of D that contain π is large enough,
in other words, it is true if and only if:

|cover(π)| = |{d ∈ D|π ⊆ d}| ≥ θ,

where θ is a user-defined threshold.

By modifying the pattern language, the data language and the con-
straints different data mining problems can be formalized. The main
aim of constraint-based pattern mining is to build generic languages in
which programmers can express pattern mining problems in terms of
constraints, and to develop systems that can process statements in these
languages.

Constraints

Constraints can be categorized along several dimensions:

which information is used when evaluating the constraint? Possi-
bilities include that the constraint only evaluates the syntax of the
pattern, that the constraint requires a database of transactions, or
that the constraint requires a database with labeled transactions.
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which properties do the constraints have? The most well-known
property is that of (anti-)monotonicity, but other properties have
been identified as well.

These constraint categories are elaborated on below.

Anti-monotonicity. Most pattern mining algorithms assume the
existence of a coverage relation between patterns and transactions in the
data. In the case of frequent itemset mining, for example, an itemset π
covers a transaction d ∈ D iff π ⊆ d; hence, the subset relation is used as
coverage relation. In graph mining the subgraph isomorphism relation
may be used; in sequence mining, the subsequence relation.

A second important relation is the generality relation. A generality
relation is essentially a partial order on the set of patterns in Lπ. We
will denote this relationship with the symbol �: if pattern π1 is more
general than pattern π2, we will write π1 � π2.

A generality relation � is compatible with a coverage relation if it
satisfies the following property for all possible transactions d: if π1 � π2
and π2 covers example d, then π1 covers example d.

A good generality relation is usually not difficult to choose. If the
coverage relation is transitive, one can always use the coverage relation
as generality relation as well. For instance, in itemset mining, the subset
relation is usually used as generality relation as well: an itemset π1 is
more general than an itemst π2 iff π1 ⊆ π2.

Based on the generality relationship, we can define the anti-monotonicity
property of constraints1. A constraint ϕ(π,D) is called anti-monotonic
iff it holds for all patterns π1, π2 that

if π1 � π2 and ϕ(π2, D) is true, then ϕ(π1, D) is true.

Minimum support is the most well-known constraint that is anti-monotonic,
but also several other constraints are anti-monotonic [20, 11]. Assuming
that we use the subset relation to determine the generality relation, the
following constraints on itemsets are anti-monotonic:

the maximum length constraint |π| ≤ θ for a fixed θ;

the maximum sum of costs constraint c(π) ≤ θ is anti-monotonic,
where c(π) sums up the costs of the items in the itemset, c(π) =∑

i∈π c(i), and c(i) is a cost that is associated to each item;

a generalization constraint, which for a given set I requires that
all itemsets found satisfy π ⊆ I;

conjunctions or disjunctions of other anti-monotonic constraints.

These constraints can be generalized to other types of patterns as well.
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Monotonocity. Closely related to anti-monotonicity is monotonic-
ity. A constraint is called monotonic iff for all patterns π1, π2:

if π1 � π2 and ϕ(π1, D) is true, then ϕ(π2, D) is true.

In other words, monotonicity is the “reverse” of anti-monotonicity; if
a constraint ϕ(π) is anti-monotonic, its negation ¬ϕ(π) is monotonic.
This includes constraints such as:

the maximum support constraint |{d ∈ D|π ⊆ d}| ≤ θ;

the minimum size constraint |π| ≥ θ;

the minimum sum of costs constraint c(π) ≥ θ;

a negated generalization constraint π 6⊆ I;

a specialization constraint π ⊇ I.

Convertible (anti)-monotonicity. Whether a constraint is (anti)-
monotonic depends on the generality relation chosen. One of the most
well-known examples is that of the maximum average cost of an itemset,
c(π) =

∑
i∈π c(i)/|π| ≥ θ. If we use the subset relation to define the

generality, this constraint is not anti-monotonic. Consider the following
two items with their corresponding costs: c(1) = 1 and c(2) = 3. If
our cost threshold is 2, the average cost of {1, 2} is 2 and satisfies the
requirement; however, itemset {2}, while a subset, does not satisfy the
constraint.

However, assume that we would use the following generality order:

π1 � π2 if we can obtain π1 from π2 by repeatedly removing from π2

the item with the highest cost.

Then under this order the constraint is anti-monotonic: after all, by
removing the most costly items from an itemset, the average cost of the
items in the itemset can only go down and it hence also must satisfy the
constraint.

Note that this order is compatible with the use of the subset rela-
tion as coverage relation; hence, this constraint can be combined with a
minimum support constraint.

Constraints which have this property, i.e., that a different gener-
ality relation needs to be used than the coverage relation to obtain
(anti-)monotonicity, are called convertible (anti)-monotonic in the lit-
erature [27].
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Succintness. Succinctness was originally defined for itemsets [24],
but we will use a slightly different definition here which is applicable to
other pattern languages as well: any constaint that can be enforced by
manipulating the data we will call succinct. Consider the following two
examples:

we want to find frequent itemsets without item i: if we remove
item i from the database, we will no longer find such itemsets;

we want to find frequent itemsets that include item i: if we remove
all transactions without item i from the database, and then remove
item i from the remaining transactions, we can add item i to every
itemset we find in the resulting database to obtain the desired set
of itemsets.

These examples can easily be generalized to require the inclusion or
exclusion of an itemset π ⊆ I.

Condensed representations. The set of patterns satisfying the
above constraints may still be large. Condendensed representations con-
situte an additional approach for reducing a set of patterns. The main
idea is to determine a small set of patterns that still is sufficiently large
to determine a full set of patterns. The property that a pattern is part
of condensed representation can also be seen as a constraint.

We will discuss two of the most well-known cases here.

Given a generality relation �, A pattern π is called closed if there is no
more specific pattern π′ with π � π′ such that cover(π) = cover(π′).

Intuitively, closed frequent patterns [26] allow one to recover a set of
frequent itemsets together with their supports.

A subtle issue is the combination of the closedness constraint with
other constraints. As an example, consider the maximum size constraint.
One can distinguish two settings:

a setting in which one searches for patterns satisfying the size
constraint among those patterns that are closed;

a setting in which one searches for patterns that are closed, re-
stricting the set of patterns that are considered in the closedness
definition only to those that satisfy the constraint.

As an example, assume that {1} is not closed and that {1, 2} is closed,
while we have a maximum size constraint of 1. Then itemset {1} would
not be in the output in the first setting, but would be in the output of
the second. Constraint-based pattern mining system can differ in their
approach for dealing with this issue.



Constraint-based Pattern Mining 7

Another condensed representation is that of maximal frequent pat-
terns.

Given a generality relation � and constraint ϕ, A pattern π that satisfies
constraint ϕ is called maximal with respect to constraint ϕ if there is no
more specific pattern π′ with π � π′ such that π′ satisfies the constraint.

Compared to closed itemsets, maximal itemsets [1, 20] no longer allow
one to recover the supports of a set of patterns.

If the constraint ϕ is a minimum support constraint, one typically
refers to maximally frequent patterns. Whereas maximal frequent pat-
terns are the most popular, it can also be useful to study maximality with
respect to other constraints. Essentially, any anti-monotonic constraint
defines a border in the space of patterns where all patterns that satisfy
the constraints are on one side of the border, while all other patterns
that do not satisfy it are on the other side [20, 11].

Similarly, also a monotonic constraint defines a border: in this case,
the border one is looking for is that of minimal patterns that satisfy the
constraints.

Different borders can be combined. Probably the most well-known ex-
ample of this is found in the analysis of supervised data. If the database
consists of two classes of examples, one can ask for all patterns that
are frequent in the one, but infrequent in the other; the resulting set of
patterns has two borders: one of the most specialized patterns in this
set, the other of the most general ones.

Boundable Constraints. The minimum support constraint is one
example of a constraint of the kind f(π) ≥ θ. Over the years, more
complex functions have been studied. One example is that of accuracy
(see the Chapter on supervised patterns), which calculates the accuracy
of a pattern when used as a classification rule on supervised data. Many
such functions no longer have the (anti-)monotonicity property. In some
cases, however, one can identify an alternative function f ′ such that:

it is feasible to mine all patterns with f ′(π) ≥ θ;

f ′(π) ≥ f(π).

In this case, all patterns satisfying f(π) ≥ θ could be determined by
first mining all patterns with f ′(π) ≥ θ and then calculating f(π) for all
patterns found. Function f ′ can be considered a relaxation of function
f [30].

In Chapter ?? it was discussed for supervised data, such bounds often
exist.

Note that in the above definition we do not make it very precise what
it means for a mining task to be feasible. Arguably, the highest possible
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score any pattern could possibly have is also a valid bound on the quality
of a pattern. Despite this lack of formality, however, the idea of bounds
is very common, and experiments have demonstrated that good bounds
exist for several mining tasks [17, 23].

3. Level-Wise Algorithm

Most constraint-based mining algorithms can be seen as generalized
versions of frequent pattern mining algorithms. Similar to frequent
itemset mining algorithms, consequently, there are both depth-first and
breadth-first or level-wise search algorithms.

Generic Algorithm

The setting which is closest to frequent pattern mining is that of
constraint-based mining under anti-monotonic constraints. In this case,
we can perform a level-wise search that is mostly equal to that of the
Apriori algorithm [20]. The search starts from the empty pattern, and
proceeds by specializing this pattern in a breadth-first fashion.

In Algorithm 1 a description is given of this algorithm. In this pseudo-
code, we use two operators: a downward refinement operator ρ to special-
ize patterns and an upward refinement operator δ to generalize patterns.
A downward refinement operator is an operator which for any pattern π
returns a set of more specialized patterns (i.e. for all patterns π′ ∈ ρ(π)
it holds that π � π′). Typically, we assume that this operator is globally
complete, i.e. its repeated application starting from the empty pattern
will produce the complete pattern language2. Furthermore, this oper-
ator works in “small steps”, it tries to create new patterns which are
minimally more specific.

An example of a downward refinement operator for itemset mining is
ρ(π) = {π ∪ {i} | i > max(π)}, assuming a total order > on the items;
eg., if our language is 2{1,2,3,4}, with the natural order of integers over
the items, ρ({2}) = {{2, 3}, {2, 4}}.

Similarly, the upward refinement operator δ returns generalizations.
For a given pattern π, It is assumed to only generate patterns that should
have been seen before pattern π by the level-wise algorithm.

The key property on which the algorithm relies is the anti-monotonicity
of constraint ϕ under the chosen generality relation: by refining only
patterns that satisfy the constraint in line 6 and by checking generaliza-
tions in line 7, patterns are removed from consideration that are known
to specialize patterns that do not satisfy ϕ.

Note that this algorithm can also be applied to convertible and bound-
able constraints [29]: in this case, a modified generality relation or con-
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Algorithm 1 Level-Wise Search(Constraint: ϕ )

1: C := {∅}
2: S := ∅
3: while C 6= ∅ do
4: S := {π ∈ C |ϕ(π) is true}
5: S := S ∪ S
6: C′ :=

⋃
π∈S ρ(π)

7: C := {π ∈ C′ | δ(π)\S = ∅}
8: end while
9: return F

straint is used. It can also be applied in a straightforward manner if there
are both anti-monotonic constraint and non anti-monotonic constraints:
in principle, we can then ignore the non anti-monotonic constraints dur-
ing the search, and evaluate the remaining constraints for all patterns
found in a post-processing phase.

A slightly better solution is possible in the presence of monotonic
constraints ??. The main idea is here to traverse the patterns in a
level-wise fashion in reverse order by starting with the most specialized
patterns. As for a monotonic constraint generalizations of a pattern that
does not satisfy the constraint, will not satisfy the constraint either, we
can stop this reverse traversal at the point at which we no longer have
patterns that satisfy the constraint.

The level-wise algorithm is easily changed to deal with border rep-
resentations. Assume that upward refinement operator δ generates all
least general generalizations of a pattern π (a pattern π′ is a least general
generalization for a pattern π if there is no pattern π′′ with π′ � π′′ � π),
then essentially we can check for each pattern π that satisfies an anti-
monotonic constraint which immediate generalizations are apparently
not maximal, and remove them from the solution set.

For instance, in the case of itemset mining such an operator is δ(π) =
{π\{i} | i ∈ π}. It would remove all immediate subsets of an itemset
from the output. As it is assumed that the upward refinement operator
will always generate patterns that must have been seen already, we do
not need to explicitly remove other generalizations from the output: they
will have been removed at an earlier stage.

With similar ideas, also the minimal patterns on the border of a mono-
tonic constraint can be found.

Note, however, that even though the output of these modified algo-
rithms for finding borders is correct, the running time will not be much
better than that of an algorithm that generates all patterns satisfying the
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constraint. Most algorithms that are able to obtain dramatically better
run times in practice are depth-first algorithms and will be discussed
next.

4. Depth-First Algorithm

Basic Algorithm

The most basic depth-first constraint-based mining algorithm is given
in Figure 2 and only supports anti-monotonic constraints.

Algorithm 2 Depth-First Search(Constraint: ϕ , pattern π)

1: F := ∅
2: if ϕ(π) is true then
3: for π′ ∈ ρ(π) do
4: F := F ∪ Depth-First Search (ϕ,π′)
5: end for
6: end if
7: return F

Essentially, compared to the earlier level-wise algorithm, this algo-
rithm traverses the search space in a different order in which some long
patterns are already considered before some shorter patterns are evalu-
ated. As a result, optimizations based on the fact that short patterns
have been seen before long patterns are not used. In practice, however,
these algorithms can be more efficient. The reason for this is that most
implementations take care to maintain datastructures which allow for
incremental constraint evaluation: for instance, to calculate the support
of a pattern, they do not traverse the whole dataset, but only consider
those transactions covered by the pattern’s parent in the search tree.
As depth-first algorithms do not need to maintain a large number of
candidates, maintaining such additional data structures is feasible. A
well-known datastructure in this context is the FP-Tree (see the chapter
on pattern growth for more details) [28].

Note that the above algorithm works for any pattern language, in-
cluding graphs, strings and trees, as long as we know that the constraint
ϕ is anti-monotonic.

When some constraints are not anti-monotonic, a basic approach for
dealing with them is to ignore them during the search and post-process
the output of the above agorithm. A similar trick can be used for bound-
able constraints. In this case, the anti-monotonic bound is used during
the depth-first search, and each pattern found is finally evaluated using
the original constraint in a post-processing step.
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Many studies have explored the possibilities for deriving more effi-
cient algorithms for more complex constraints than anti-monotonic con-
straints. Most of these studies have focused on the pattern language
of itemsets, as it appears additional pruning is most easily derived for
itemsets. We will discuss these approaches in a generic way in the next
paragraph, inspired by work of Bucila et al. and Guns et al. [8, 14].

Constraint-based Itemset Mining

The key idea in efficient depth-first constraint-based itemset mining
algorithms is to maintain four sets in each node of the search tree, which
are upper- and lower-bounds on the itemsets and transaction sets that
can still be found:

IU , the largest itemset we believe we can still find;

IL, the smallest itemset we believe we can still find;

TU , the largest transaction set we believe we can still find;

TL, the smallest transaction set we believe we can still find.

For some constraints, not all these 4 sets need to be maintained, but in
the most generic setting all 4 sets are maintained.

During the search, any modification of any of these 4 sets may be
a reason to modify another of these 4 sets as well. This process of
modifying one set based on the modification of another set we will refer
to as propagation. Most algorithms differ in the algorithms and data
structures used to do propagation.

An overview of the generic algorithm is given in Algorithm 3, in which
IL = TL = ∅, IU = I and TU = D. Line 1 performs the propagation
for the constraints. Propagation may signal that no solution can be
found in the current branch of the search tree by setting stop to true. If
the lower- and upper-bound for the itemset are identical, a pattern has
been found and is added to the output. Otherwise, in line 6 an item is
selected, which is recursively added to the itemset (line 7), or removed
from consideration (line 8).

Note that the same itemset can never be found twice: an item which
is added in line 7, will never be added to an itemset that is considered
in the search tree explored in the call of line 8.

We will now consider how this algorithm can be instantiated for dif-
ferent types of mining settings.

Frequent Itemset Mining. This is the most simple setting. Es-
sentially, in this case, the following propagation steps are executed:
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Algorithm 3 Depth-First Search(Constraint: ϕ , IL, IU , TL, TU )

1: I ′L, I
′
U , T

′
L, T

′
U , stop := Propagate (IL, IU , TL, TU , ϕ)

2: if not stop then
3: if I ′L = I ′H then
4: return {I ′L}
5: else
6: Pick an item i ∈ I ′U\I ′L
7: return Depth-First Search(ϕ, I ′L ∪ {i}, I ′U , T ′L, T ′U ) ∪
8: Depth-First Search(ϕ, I ′L, I

′
U\{i}, T ′L, T ′U )

9: end if
10: else
11: return ∅
12: end if

1 T ′U is restricted to cover(IL);

2 I ′U is restricted to those items in IU that are frequent in the
database containing only the transactions of T ′U (in other words,
the items that are frequent in the projected database for itemset
IL, see chapter ??);

T ′L and I ′L are not modified by propagation.
For these choices, the search is highly similar to that of Eclat or FP-

Growth; essentially, at every point in the search tree, we maintain a list
of candidate items that can be added to the current itemset; the set of
candidate items is reduced based on the minimum support threshold.

Attentive readers may have noticed that the search tree for the generic
algorithm presented here is binary, whereas for most itemset mining al-
gorithms the tree is not binary. This is however only a minor conceptual
difference: the recursive calls in line 8 of our generic algorithm essen-
tially correspond to a traversal of the candidate list in traditional fre-
quent itemset mining algorithms, where we remember which items we
may no longer consider.

The clear benefit of this perspective is however that other constraints
can be added with minor effort.

Minimum Sum of Cost and Minimum Support. A first ap-
proach for dealing with a monotonic minimum-sum-of-cost constraint is
to add the following propagation [27]:

3 if the sum of costs of itemset I ′U is lower than the desired threshold,
set stop to true.
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The main argument for this propagation step is that we can stop a
branch of the search if the most expensive itemset we can still reach is
not expensive enough.

The benefit of this approach is that this propagation step is relatively
easy to calculate, while for high thresholds it will already prune effec-
tively.

A more elaborate approach was proposed by Bonchi et al. [6, 5, 7]. Its
essential observation is that if an itemset needs to be both frequent and
expensive, this means that a certain number of transactions in the data
needs to be expensive as well. This leads to the following propagation
steps:

1 T ′U is set to TU ∩ cover(IL);

2 I ′U is set to those items in IU that are frequent in the database
restricted to the transactions in T ′U ;

3 from T ′U all transactions d are removed for which c(d ∩ I ′U ) < θ,
where θ is the cost threshold;

4 if T ′U was changed, go back to step 2;

5 if I ′U ⊂ I ′L, set stop to true.

The interesting idea in this approach is the presence of a feedback
loop: the removal of items can make some transactions too cheap; when
a transaction is too cheap, it will not be in the cover of an itemset, and we
can remove it from consideration; this however will reduce the support
of items further, potentially making them infrequent in the projected
database.

The advantage of this approach is that it can reduce the size of the
search tree even further. The disadvantage is that the propagation is
more complex too calculate, as it involves a traversal of the data. To
remedy this, Bonchi et al. [6] studied settings in which the above loop
is not executed in all nodes of the seach tree.

Minimum and Maximum Support. A similar idea can be used
when we have a minimum support threshold on some transactions (D+),
and a maximum support threshold on the other transactions (D−) [9, 18].

1 T ′U is set to cover(IL);

2 I ′U is set to those items in IU that are frequent in the database
restricted to the transactions in T ′U ∩ D+;

3 T ′L is set to cover(IU );
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4 if |T ′L ∩ D−| > θ, where θ is the maximum support threshold for
the negative examples, then set stop to true.

In this approach, the main idea is that if the lowest support we can still
reach on the negative transactions is not low enough, we can stop the
search.

Maximal Frequent Itemsets. Of particular interest in the
constraint-based mining literature is the discovery of border (or bound-
ary) representations. The simplest such setting is the discovery of max-
imal frequent itemsets, which can be obtained by means of the following
propagations:

1 T ′U is set to cover(IL);

2 I ′U is set to those items in IU that are frequent in the database
restricted to the transactions in T ′U ;

3 T ′L is set to cover(I ′U );

4 if some item not in I ′U is frequent in the database restricted to the
transactions in T ′L, set stop to true.

5 if |T ′L| ≥ θ, I ′L is set to I ′U .

The arguments for these steps are the following: the set T ′L represents
those transactions that will be covered by any itemset we will find in
the future; if there is an item that covers a sufficiently large number of
these transactions, but we cannot add this item in the current branch of
the search tree, we stop traversing this branch in line 4, as elsewhere we
will find itemsets that include this item.

On the other hand, if the itemset consisting of all remaining items is
frequent, clearly this itemset must be maximal; we can directly include
all items in the itemset.

This search strategy is embodied in the MaxMiner algorithm [1]. It
was generalized to the case of finding border representations under ar-
bitrary monotonic and anti-monotonic constraints by Bucila et al. [8].

Closed Frequent Itemsets. Closed itemset mining can be achieved
by another modification of the propagation for frequent itemset mining:

1 T ′U is set to cover(IL);

2 I ′U is set to those items in IU that are frequent in the database
restricted to the transactions in T ′U ;
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3 let I ′′ contain those items in I which are present in all transactions
in T ′U ;

4 if I ′′ contains items not in I ′U , set stop to true; otherwise, let I ′L
be I ′′.

Remember that in closed itemset mining the task is to find itemsets such
that no superset has the same coverage. This propagation ensures this:
in line 4, if an item can be added to the current itemset without changing
the coverage, it will be added immediately if this is allowed; however, if
this item may not be added, as we branched over it earlier, we stop the
search, as we can no longer find closed itemsets in the current part of
the search space.

This search strategy is embodied in the LCM closed itemset mining
algorithm [31]. The combination of closed itemset mining with con-
straints was studied in more detail in the D-Miner system by Besson
et al. [2, 3].

Generic Frameworks

The similarity between these depth-first search algorithms indicates
that it may be possible to combine different constraints and condensed
representations. Indeed, this is the key idea underlying most generic
frameworks for constraint-based mining.

The DualMiner algorithm [8] essentially represents a generic depth-
first algorithm for finding border representations that extends the ideas
found in the MaxMiner algorithm. The D-Miner system combines closed
itemset mining (formal concept analysis) with constraints [2, 3].

The Constraint Programming for Itemset Mining framework [14] is
built on the observation that constraint-based search has been studied
extensively in the artificial intelligence literature in general and con-
straint programming in particular. It shows that the mining tasks dis-
cussed earlier can be reformalized in terms of constraints present in
generic constraint programming systems; furthermore, such systems pro-
vide a generic framework for constraint propagation which makes it easy
to combine different constraints.

Implementation Considerations

In the above description, we intentionally left unaddressed how the
indicated propagation is performed in detail. In principle, all different
data structures that have been studied in the frequent itemset mining lit-
erature can be used in this context as well. For instance, the MaxMiner
and DualMiner algorithms use vertical representations of the data most
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similar to that of Eclat; the FP-Bonsai algorithm, on the other hand,
uses FP-Trees [7]. The impact of data structures in a Constraint Pro-
gramming framework was studied by Nijssen et al [25]. These studies
confirm that for good run times the choice of data structure is important;
however, many of the above propagation procedures can be adapted to
different data representations, and hence the two aspects can be consid-
ered orthogonal.

5. Languages

Most of the systems studied earlier require a language for the specifi-
cation of constraints. Roughly speaking, three categories can be distin-
guished within these languages: special purpose languages, SQL inspired
languages, and constraint programming based languages.

Special purpose languages. Many constraint-based mining sys-
tems implement a small special purpose language. As an example, this
is an expression in the language underlying the SeqLog system [19]:

database ca = smiles_file("molecules.ca");

database ci = smiles_file("molecules.ci");

predicate ca = minimum_frequency(ca, 10);

predicate ci = maximum_frequency(ci, 500);

mine ca and ci;

Essentially, this language provides a small set of built-in primitives such
as smiles_file for reading a data file, minimum_frequency for speci-
fying a minimum support constraint and maximum_frequency for spec-
ifying a maximum support constraint. For each of these primitives, the
system is aware of the properties such as (anti-)monotonicity, which en-
sures that any conjunction or disjunction of constraints that is written
is down can be processed by the system.

Similar special purpose languages were proposed by several other au-
thors [30, 22]; they differ in the constraints that are supported and the
type of patterns that can be found (itemsets [30, 22], strings [12, 19],
...).

Languages built on SQL. A clear disadvantage of special purpose
languages is that they are yet other languages that the programmer has
to learn. Given that many datasets are stored in databases, several
projects have studied the integration of constraint-based pattern mining
in database systems.
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The first class such methods aims to extend SQL with additional
syntax for the formalization of data mining tasks. One early example is
the MINE RULE operator [21]:

MINE RULE Associations AS

SELECT DISTINCT 1..n item as BODY, 1..n item AS HEAD,

SUPPORT, CONFIDENCE

FROM Purchase

WHERE price <= 150

GROUP BY transaction

EXTRACTING RULES WITH SUPPORT: 0.1, CONFIDENCE: 0.2

This example mines association rules with minimum support 0.1, con-
fidence 0.2, limiting the search to items with a price lower than $150.
Another example the DMQL language [15]:

FIND association rules

RELATED TO beer, wine, diapers

FROM products

WHERE value >= 100

WITH support threshold = 0.1

WITH confidence threshold = 0.2

In this example we search for association rules related to three specific
products, in those transactions that have a value higher than 100; the
parameters of the association rule discovery process are similar as in the
previous example.

Another example is SPQL [5].
The advantage of these languages is that well-known syntax can be

used for the expression for constraints. Furthermore, common SQL syn-
tax can be used to specify the input of the mining task or to process its
output further.

At the same time, the programmer still has to learn the additional
primitives, such as the FIND or MINE RULE keywords. An alternative
perspective is to avoid extending the language, but to add mining views
to a database [4]. There are virtual tables, which, once queried, will
trigger the execution of mining algorithms. This is an example:

SELECT R.rid, C1.*, C2.*, R.conf

FROM Sets S, Rules R, Concepts C1, Concepts C2,

WHERE R.cid = S.cid AND C1.cid = R.cida AND C2.cid = R.cidc AND

S.supp >= 30 AND R.conf >=80

Here, Sets, Rules and Concepts are virtual mining views.
A limitation of most SQL-based approaches is however that they are

limited to itemset patterns or association rules. How to specify graph
mining or sequence mining tasks in this context is still an open ques-
tion. Most constraint-based graph mining or sequence mining systems
currently use special purpose languages.
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The general idea of linking constraint-based mining to database query-
ing has been studied in the area of inductive databases and inductive
querying [16, 10].

Constraint programming. Constraint-based mining has many
similarities to generic constraint satisfaction problem (CSP) solving as
studied in the Artificial Intelligence (AI) community. Both areas essen-
tially require the discovery of solutions in a space of possible solutions
satisfying constraints. To deal with generic CSPs the AI community
has developed generic systems known as constraint programming sys-
tems. These systems provide languages in which programmers can spec-
ify constraint satisfaction problems; statements in these languages can be
solved by various types of solvers, including generic propagation-based
solvers. As we have seen earlier, many depth-first constraint-based item-
set mining systems are also based on propagation, and hence it is not
surprising that generic constraint-based itemset mining fits naturally in
a constraint programming context as well.

This observation was used by Guns et al. to formalize constraint-based
itemset mining tasks in generic constraint programming languages [14,
13]. This is an example in the most recent version of the MiniZinc
constraint programming language:

int: Nr I; int: NrT; int: Freq;

array[1..NrT] of set of 1..NrI: TDB;

var set of 1..Nr I: Items;

constraint card ( cover ( Items, TDB ) ) >= Freq;

solve satisfy;

It specifies the task of frequent itemset mining; cover is a function
available in a MiniZinc library, implemented in the MiniZinc language
ifself as well.

Statements in the MiniZinc language can be executed by a generic
constraint programming system, or by a specialized data mining sys-
tem, if one exists [13]. However, it was shown that generic constraint
programming systems implement many types of propagation automati-
cally, and hence that specialized systems are often not needed if a task
can be modelled in the MiniZinc language.

Similar to the SQL-based languages, it is at this moment not under-
stood how to integrate graph mining or sequence mining tasks in an
elegant matter in the CP setting.
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6. Conclusions

In this chapter we provided an overview of classes of constraints, algo-
rithms for solving constraint-based mining problems and languages for
specifying contraint-based mining tasks.

The trend in constraint-based mining has been to build increasingly
generic systems. While initially constraint-based mining systems pro-
vided special purpose languages that only supported slightly more con-
straints than specialized frequent itemset mining algorithms did, in re-
cent years the range of constraints has expanded, as well as the genericity
of the languages supporting constraint-based mining, culminating in the
integration with generic constraint satisfaction systems and languages.

Several open challanges remain. These include a closer integration
of constraint-based mining with pattern set mining, getting a better
understanding of how to integrate statistical requirements in constraint-
based mining systems, and mining structured databases such as graph
or sequence databases using sufficiently generic languages.
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