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Abstract. One of the key steps in data analysis is the exploration of
data. For traditional relational data, this process is facilitated by rela-
tional database management systems and the aggregates and rankings
they can compute. However, for the exploration of graph data, relational
databases may not be most practical and scalable. Many tasks related
to exploration of information networks involve computation and analy-
sis of connections (e.g. paths) between concepts. Traditional relational
databases offer no specific support for performing such tasks. For in-
stance, a statistic such as the shortest path between two given nodes
cannot be computed by a relational database. Surprisingly, tools for
querying graph and network databases are much less well developed than
for relational data, and only recently an increasing number of studies are
devoted to graph or network databases. Our position is that the devel-
opment of such graph databases is important both to make basic graph
mining easier and to prepare data for more complex types of analysis.
In this chapter, we present the BiQL data model for representing and
manipulating information networks. The BiQL data model consists of
two parts: a data model describing objects, link, domains and networks,
and a query language describing basic network manipulations. The main
focus here lies on data preparation and data analysis, and less on data
mining or knowledge discovery tasks directly.

1 Introduction

Information networks are a popular way of representing information. In its most
basic form, such a network can be seen as a set of objects, interconnected by
links. Because of this link structure, these networks are capable of representing
complex information using a simple data model. Information networks can be
found in a wide variety of domains, for example, as social networks, bibliograph-
ical networks, and biological networks such as gene-protein interaction networks
and pathways. Although all these examples seem very different, their analysis
requires many similar operations. For example, determining the influence of a
publication in a citation network is similar to finding the role of a gene in a bio-
logical pathway, finding the well-connected users in a social network corresponds
to finding the important traffic hubs in a road network, and network analysis
algorithms such as PageRank can be applied to different types of networks such



as the world wide web and social networks. Because of this common structure it
seems natural to look for a common infrastructure to deal with these networks.

Currently, different graph databases are available (e.g. DEX [31] and Neo4j [32]).
However, many of these systems focus mainly on low-level aspects such as data
structures and algorithms, instead of higher level concepts such as providing a
simple data model and query language. In this article, we take a different ap-
proach and we focus on developing a data model for information networks that
is suitable for network analysis and data mining. This data model, called BiQL
(or Bison Query Language), aims at providing a powerful set of operations for
manipulating a wide variety of heterogeneous networks. Within the knowledge
discovery process, BiQL mainly focusses on preprocessing, transformation, anal-
ysis, and, to a lesser extent, data mining.

In this chapter, we give a general overview of the BiQL system. For a more
in-depth discussion on the query language and its underlying operations we refer
the reader to [19, chapter 6].

2 DMotivating example

Consider the bibliographic network shown in Figure 1. This network contains
authors, publications, keywords, citations, authorship and keyword relations.

Such a network can be used and analyzed in many ways. For example, one
could be interested in doing co-authorship analysis. In that case the ‘publication’
nodes are considered to be edges between ‘authors’ and the network can be
represented as shown in Figure 2. The co-author relationship can be expressed
using regular edges (Figure 2a) or using hyperedges (Figure 2b).

Alternatively, one may be interested in analyzing publications for each do-
main separately by splitting up the network into a set of networks, one for each
keyword, as can be seen in Figure 3.

Many more cases can be imagined, for example, citation analysis between
publications, authors, or even keyword domains. In order to be able to perform all
these tasks, we need a data representation and query language that are capable
of representing, manipulating and transforming information networks. Moreover,
we also want to analyse such networks, that is, calculate aggregate measures,
apply ranking functions, and store the results back in the network for future
querying. In general, we can identify a number of key tasks that a network
management system should support:

1. Introduce new relationships in the network, for example, create a ‘co-author’
relationship between authors that have published a paper together, or create
a citation relation between authors based on the citation relation between
publications.

2. Find connections between objects, for example, find co-citations between au-
thors, that is, author A cites author B and author B cites author A (possibly
indirectly).
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Fig. 1: Bibliographic network containing the entities ‘authors’, ‘publications’ and
‘keywords’, and the ‘author of’, ‘has keyword’, and ‘cites’ relationships.
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Fig. 2: Network from Figure 1 transformed for co-authorship analysis.

(¢) “Data Streams” (d) “Information Networks”

Fig. 3: Network from Figure 1 separated by keyword.



3. Find the transitive closure of a relation, for example, find the influence graph
of a publication based on citations, or the co-author neighbourhood of an
author.

4. Rank results, for example, find the authors with the most co-authors, or with
the largest co-author network.

5. Calculate network analysis metrics, for example, centrality of an author in
the co-author network.

6. Introduce weights and probabilities, and use them in probabilistic queries.

7. Discover bisociations or other non-obvious connections, for example, by com-
paring different distance measures.

8. Apply external algorithms on the network, for example, for finding quasi-
cliques [42].

Our goal is to support all these tasks.

3 Requirements

The main motivation and target application for our data model and query lan-
guage is supporting exploratory data analysis on networked data, which means
our system is intended to be part of the knowledge discovery process. This results
in the following requirements and design choices.

Small is beautiful The data model should consist of a small number of concepts
and primitives. As a consequence, we do not wish to introduce special language
constructs to deal with complicated types of networks (directed, undirected,
labeled, hypergraphs, etc.) or sets of graphs.

Uniform representation of nodes and edges The most immediate consequence of
the former choice is that we wish edges and nodes to be represented in a uniform
way. We will do this by representing both edges and nodes as objects that are
linked together by links that have no specific semantics. This also allows one to
generate different views on a network. For instance, in a bibliographic database,
we may have objects such as papers, authors and citations. In one context one
could analyze the co-author relationship, in which case the authors are viewed
as nodes and the papers as edges, while in another context, one could be more
interested in citation-analysis, in which case the papers are the nodes and the
citations the edges.

Closure property The result of any operation or query can be used as the starting
point for further queries and operations. The information created by a query
combined with the original database can therefore be queried again.

SQL-based There are many possible languages that could be taken as starting
point, such as SQL, relational algebra or Datalog. We aimed for a data model
on which multiple equivalent ways to represent queries can be envisioned. The
queries that we propose on this model are expressed in an SQL-like notation
here, as this notation is more familiar to many users of databases, and is the
prime example of a declarative query language.



Aggregates To support a basic analysis of graphs, we need to be able to calculate
statistics such as

— the degree of nodes;

— the number of nodes reachable from a certain node (connected component
size);

— the length of a shortest path between two nodes;

— the length of the longest shortest path from one node to all other nodes
(closeness centrality);

— the sum or product of weights on edges on paths.

These statistics are not only useful when obtaining an initial insight in data. It is
also important that these statistics can be attached to the newly created graph
(representing another context). For instance, in simple random walk models the
probability of going from one node to another node may be determined by the
degrees of the nodes involved. These probabilities can be seen as attributes of the
edges; ideally, a database query would be sufficient to put these probabilities in a
graph. The closure property entails that we can also run queries on the attributes
generated in this way. One such type of query could be a probabilistic query,
which calculates new probabilities from probabilities present in the network.

Ranking Once an aggregate is computed, it can be desirable to rank results on
aggregate values; for instance, one may not be interested in the centrality of all
nodes, but only in the nodes that are most central. A database system should
support such ranking queries and ideally be optimized to answer them more
efficiently than by post-processing a sorted list of all results.

In the following two sections, we translate these requirements into a specifi-
cation for a data representation and a data manipulation language.

4 Data representation

An important choice for any data management system is the representation of
the data it operates on. For example, in Codd’s relational database model [16],
data is represented as sets of tuples. The challenge is to find a data model
that is capable of storing any kind of information network, and that fulfils the
requirements described in the previous section.

In its most basic form, an information network is a collection of objects with
links between them. It is therefore natural to use objects and links as the basic
building blocks for a network representation. However, as we have seen in the
examples of the previous section, it is not always clear which concepts to con-
sider as objects, and which as links. For example, is a publication an object, or a
link between (co-)authors? Usually, the answer to this question depends on the
application at hand. However, BiQL is intended as an application-independent
data management system. This means that the data should be modelled in the
most general way, and the term “object” should be taken as broad as possible.



Intuitively, we define it as any entity that has meaning in reality, or, less ab-
stractly, as any entity that can have additional properties or roles assigned to
it. Following this guideline, we only allow features on objects. That is, links are
modelled as nothing more than ordered pairs of object identifiers, and they only
express that two objects are connected.

Hence, the main choice that we have made is, in a sense, that also edges are
represented as objects. An edge object is linked to the nodes it connects. Even
though this may not seem intuitive, or could seem a bloated representation, the
advantages of this choice outweigh the disadvantages because:

— by treating both edges and nodes as objects, we obtain simplicity and uni-
formity in dealing with attributes;

— it is straightforward to treat (hyper)edges as nodes (or vice versa);

— it is straightforward to link two edges, for instance, when one wishes to
express a similarity relationship between two edges.

In this way, the data representation fulfills the requirements of simplicity, uni-
formity between nodes and edges, and flexibility.

However, not all objects in the network have the same meaning or role. In
the bibliographic network, we had objects that represented authors, publications,
citations, etc. In our data model, we use domains to indicate these categories
of objects. Such a domain is a named set of objects. Objects can belong to any
number of domains, for example, an ‘author’ in the bibliographic network can
also be a ‘person’, or an ‘employee’, at the same time.

Apart from domain membership, each object can have an arbitrary set of
features described by a list of name-value pairs.

5 Basic data manipulation

Now that we have a basic understanding of how the data is organized in the
database, we can focus on manipulating this information. In this section, we give
a general overview of BiQL’s query language. For a more in-depth discussion on
the query language and its underlying operations we refer the reader to [19,
chapter 6].

The primary goal of BiQL is to manipulate a network by querying, analyzing,
and modifying its objects and links. The main operations offered by the query
language are

— adding an existing object to a new domain,

— adding links and attributes to an existing object,

— creating new objects (with links and attributes) and adding them to a new
domain.

Each of these tasks can be specified as an CREATE/UPDATE query of the fol-
lowing form.



CREATE/UPDATE "domain mame" <"variables"> {"object properties"}
FROM "selection from domains"

WHERE "predicate on attributes of objects”

LIMIT "k" ON "sorting criteria”

For example, the query

UPDATE Pubs2010<p>
FROM Publ p
WHERE p.year = 2010

creates a new domain Pubs2010 that contains all articles published in 2010. The
UPDATE keyword indicates that existing objects are used instead of newly created
ones. This means that all existing features for the objects are preserved (unless
they are overwritten by an object property definition in the query).

In general, a query in BiQL consists of the following statements:

The FROM statement defines the structural component of the query and intro-
duces variables that can be used in the other statements.

The WHERE statement defines constraints on these variables based on the fea-
tures of the objects.

The CREATE/UPDATE statement describes the output of the query, that is, how
objects should be created or updated based on the retrieved information, and
where they should be stored.

The LIMIT statement allows for ranking the results of a query and returning
only the top k results.

FROM statement The primary function of the FROM statement is to define a graph
pattern that must be matched in the network. Within this pattern, variables
are defined that can be used in the other parts of the query. In a sense, this
statement has the same role as SQL’s FROM statement, that is, determining which
sources of information to use, and how these sources are related. In BiQL, the
FROM statement consists of a list of path expressions, where each path expression
consists of an alternating sequence of object definitions and link expressions
indicating how the objects are connected. For example, a co-authorship relation
in the publication network can be expressed as the following sequence of objects
and links.

Author a -> Author0f -> Publ p <- Author0Of <- Author b

Every object is described by a domain it belongs to (e.g. Author), and, optionally,
a variable name (e.g. a). The arrows between the objects indicate the direction of
the links between them. A path expression by itself can only express a sequence.
However, the FROM statement can contain multiple path expressions that can
be connected by references. For example, if we are interested in co-authorship
within certain topics, we can include the domain ‘Keyword’ in the graph pattern
by using the path expression

#p —> HasKeyword -> Keyword k



where #p is a reference to the variable p in the previous expression. This pattern
is shown in Figure 4. Variable references can also be used to point to variables
defined in the same path expression, for example, for expressing cycles.

Fig. 4: Example of a graph pattern

Many problems in network analysis are based on finding paths of arbitrary
length. To express such paths, we use regular expression operators. For example,
the path expression

Node (-> Edge -> Node)* -> Edge -> Node

defines a path as an alternating sequence of nodes and edges of arbitrary length.
To specify constraints on this path we can use list variables. These variables
capture a sequence of objects instead of a single object. For example, we can use
this to restrict the length of a path as shown in the following example.

FROM Node (-> Edge [e] -> Node)* -> Edge [e] -> Node
WHERE length(e) <= 4

The list aggregate length counts the number of objects assigned to the variable
e.

WHERE statement The FROM statement generates a set of tuples corresponding
to the possible assignments of objects in the network to the variables defined
in the path expressions. The WHERE statement of the query can impose further
constraints on this set of tuples based on the features of the resulting objects.
For example, given the path expressions above, one can express the constraints

WHERE p.year = 2009 AND k.keyword = ’Data Mining’

to find only publications from 2009 in the field of data mining. This statement
is equivalent to the WHERE/HAVING statements of SQL.

CREATE/UPDATE statement The previous operations produce a set of tuples. How-
ever, the final result of the query should fit into BiQL’s data representation
model. This means that this set of tuples should be transformed into a set of
objects, links and domains. This transformation is defined in the CREATE/UPDATE
statement, which is written as



CREATE/UPDATE DomainName<Varl,Var2,...> {<object properties>}.

A key part of this statement is the partition operation <Varl,Var2,...> which
splits the set of tuples and creates a separate partition for each distinct combi-
nation of the variables Varil, Var2, .... The final results of the query will contain
a separate object for each of these partitions. The features and links of this
object are described by the object properties. After construction, the set of ob-
jects is stored in the domain with the given name. This partition operation is
comparable to the GROUP BY statement in SQL.

For example, if we want to define the co-author relationship, we can use the
following query.

CREATE CoAuthor<a,b> { a ->, -> b, strength: count<p> }
FROM Author a -> Author0Of -> Publ p <- Author(0f <- Author b
WHERE a != b

This query creates a new object for each pair of authors a and b that have pub-
lished at least one article together, that is, for whom the path expression can be
mapped onto part of the network. The object properties specify that this new
object is linked to both authors and that it contains an attribute strength in-
dicating the number of articles the authors have co-written. The created objects
are added to the new domain CoAuthor.

The partition operator is also used in the calculation of aggregate functions,
for example, the function count<p> counts the number of distinct p, that is, the
number of partitions <p> creates. Other aggregates include sum<...>(expr),
min<...>(expr), max<...>(expr), etc.

LIMIT statement Apart from feature-based selection, BiQL also supports rank-
based selection through the LIMIT statement.

LIMIT k BY criteria

For example, we can select the three strongest co-authorship relationships using
the statement

LIMIT 3 BY count<p> DESC

where DESC indicates a descending sort order. This statement is a global limit
statement, that is, it is used to reduce the number of objects returned by the
query. The operation of this statement is comparable to the ORDER BY statement
in SQL, combined with a statement for selecting the top-k results (e.g. FETCH
FIRST in SQL.2008 [25]).

In this section, we provided a limited overview of the features present in the
BiQL query language. For an extensive description of this query language and
its operational model, we refer the reader to [19, chapter 6].



6 Illustrative examples

In Section 2, we introduced a list of key tasks that we want to support in BiQL.
We now revisit this list to evaluate BiQL’s capabilities. Unless stated otherwise,
each of these queries can be evaluated using the prototype implementation on
the ILPnet2 publication database. This database is structurally similar to the
network shown in Figure 1.

1. Introduce new relationships in the network. Throughout this chapter, we have
repeatedly used the co-author relationship as an example of a new relationship.
Here, we express this relationship as a connection between authors that have
more than one publication in common.

CREATE CoAuthor<a,b> { a->, b<-, strength: count<p> }
FROM Author a -> Author0Of -> Publ p <- Author(0f <- Author b
WHERE count<p> > 1 AND a !=b

Another example introduces the ‘InArea’ relation, which expresses whether an
author has published a paper within a certain research area (indicated by a
‘Keyword’).

CREATE InArea<a,k> { a->, k<-, weight: count<pk>/count<p> }
FROM Author a -> Author0f -> Publ pk -> HasKeyword -> Keyword k,
#a -> Author0Of -> Publ p

The attribute ‘weight’ indicates the fraction of the author’s publications that
contain this keyword.

2. Find connections between objects. Using the ‘InArea’ and ‘CoAuthor’ rela-
tions, we can express how far an author is removed from any given research
area.

CREATE RelatedToArea<a,k>{ a->, k<-, distance: min<b>(length(b))}
FROM Author a (-> CoAuthor -> Author [b])* -> InArea -> Keyword k

The expression min<b>(length(b) computes the length of the shortest path (i.e.
the number of intermediate authors) from a specific author to a specific keyword.

8. Find the transitive closure of a relation. The previous query already used
the transitive closure of the ‘CoAuthor’ relation to find a relationship between
authors and research areas. We can also use such a relationship to determine the
size of the neighborhood of an author.

UPDATE <a> { a->, b<-, networksize: count<b> }
FROM Author a (-> CoAuthor [co] -> Author)x*

-> CoAuthor [co] -> Author b
WHERE length(co) < 4



4. Rank results Often we are interested in finding the top-k results according
to some criteria. For example, we might be interested in the top 3 authors with
most co-authors.

SELECT? <a>
FROM Author a -> CoAuthor co
LIMIT 3 BY count<co> DESC

We can also find the authors with the largest network of co-authors up to a
certain distance.

SELECT <a> { network_size: count<b> }
FROM Author a -> CoAuthor [co] —->
(Author -> CoAuthor [co] ->)* -> Author b
WHERE length(co) < 4
LIMIT 3 BY count<b> DESC

5. Calculate network analysis metrics Another interesting task is calculating
network analysis metrics such as centrality measures. Perhaps the simplest cen-
trality measure is degree centrality which calculates, for a given node v, the
fraction of all nodes that v is connected to. In BiQL, this measure can be calcu-
lated, for all authors simultaneously, using the following query.

UPDATE <a> { Cdegree: count<b>/(count<n> - 1)}
FROM Author a -- CoAuthor -- Author b, Author n

Another common centrality measure is closeness centrality, which involves de-
termining the length of the shortest path to all other nodes in the network.
First let us define the notion of shortest path between two authors using the
co-authorship relation.

CREATE ShortestPath<a,b>{ a->, b<-, len: min<co>(length(co))}
FROM Author a -> CoAuthor [co] —>

(Author -> CoAuthor [co] ->)* -> Author b
WHERE a != b

This query creates for each pair of (connected) authors a and b an object with as
attribute the length of a shortest path between them. Using these new objects,
we can easily calculate the closeness centrality as follows.

UPDATE <a>{ Cclose: 1/sum<b>(min*<sp>(sp.len))?}
FROM Author a -> ShortestPath sp -> Author b

3 In our prototype implementation, a SELECT query can be used to output a list of re-
sults without causing changes to the database.

4 Given the definition of ShortestPath we expect the variable sp to be uniquely iden-
tified when a and b are fixed (i.e. there is only one shortest path length be-
tween two given nodes). However, BiQL currently does not support such type of con-
straint reasoning across queries. This is why we need the additional aggrega-
tion min<sp> even though there is only one value for sp.len in this context.



Another type of centrality measure is the betweenness centrality. This mea-
sure expresses the importance of a node based on its occurrence on the shortest
paths in the network. In BiQL this measure can be expressed using the following
two queries. The first query computes the length of the shortest path between
each pair of authors and calculates how many paths of this length there are.’

CREATE ShortestPathCount<a,b> { a ->, b <-,
count: count<co>, length: min<co>(length(co)) }
FROM Author a -> CoAuthor [co] —->
(Author -> CoAuthor [co] ->)* -> Author b
LIMIT 1 KEYS ON length(co) ASC

The second query uses this information to calculate the betweenness cen-
trality of a node v as a fraction of shortest paths in the network that contain
.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }
FROM Author s -> ShortestPathCount sv -> Author v ->
ShortestPathCount vt -> Author t,
#s -> ShortestPathCount st -> #t
WHERE st.length = sv.length + vt.length
AND s !'=t AND s !'=v AND t !=v

This query uses the calculation approach for betweenness centrality described in
[3, section 3.

6. Introduce weights and probabilities Another important aspect of BiQL is its
ability to deal with probabilistic networks. To illustrate this, we first need to
introduce probabilities in our network. For this we assume that the information in
the network is very unreliable by stating that for each publication in the network
there is only 10% probability that it actually exists. Under this assumption we
can attach a probability to each co-author connection using the following query.

UPDATE <co>{ prob: 1-(0.97co.strength) }
FROM CoAuthor co

We can now calculate for each pair of authors the probability that they are
connected using the probabilistic aggregate problog_connect.

CREATE ProbConnect<a,b>{a->, b<-, prob: problog_connect(co.prob)}
FROM Author a -> CoAuthor [co] ->

(Author -> CoAuthor [co] ->)* -> Author b
WHERE a != Db

The problog_connect aggregate uses ProbLog’s [18] approach to calculate the
connection probability between each pair of nodes in the network.

5 For clarity, we omitted the extra aggregation operations on the variables sv, vt and
st as described in the previous footnote.



7. Discover bisociations We can use this domain in combination with the shortest
path to find authors that are very likely connected, but that are relatively far
apart in the co-author network.

SELECT <a,b,pc,sp>{nameA: a.name, nameB: b.name,
prob: pc.prob, dist: sp.length }
FROM Author a -> ProbConnect pc -> Author b,
#a -> ShortestPath sp -> #Db
WHERE sp.length > 2
LIMIT 3 BY pc.prob DESC

Another example of bisociative discovery consists of finding bridging nodes
between different domains. In Example 5 we described betweenness centrality.
If we modify the second part of that query we can express the interdomain
betweenness centrality as the occurrence of a node on the shortest paths between
concepts in different domains.

UPDATE <v> { Cb: sum<s,t>((sv.count*vt.count)/st.count) }
FROM DomainA s -> ShortestPathCount sv -> DomainC v ->
ShortestPathCount vt -> DomainB t,
#s -> ShortestPathCount st -> #t
WHERE st.length = sv.length + vt.length
AND s !'=t AND s !'= v AND t != v

8. Apply external algorithms on the network In the final task of section 2, we
want to apply external algorithms on the networks in BiQL. Unfortunately, there
are still many open questions on how this integration should work in practice.
However, instead of providing integration of external tools within BiQL, we have
integrated BiQL in the data analysis integration platform KNIME [4]. Through
this platform, networks can be passed from BiQL to external algorithms and
back, allowing BiQL to be used as part of a broader knowledge discovery process.

7 Related work

7.1 Knowledge Discovery

Graph mining Graph mining aims at extending the field of pattern mining to-
wards graphs. Most graph mining techniques work in the transactional setting,
that is, on data consisting of sets of graphs. As in item set mining, the focus
lies on finding subgraphs that, for example, occur frequently in such a set [33,
41, 24]. However, many other interestingness measures have been translated to-
wards graph patterns (e.g. correlated patterns [8,15]), and new graph-specific
measures have been introduced (e.g. for finding quasi-cliques [42]). Several tech-
niques have been developed that target subsets of graph representations, such as
sequences or trees [39]. Recently, there has been increasing interest in applying
graph mining techniques to the network setting, that is, to a single graph [10, 9,
26).



Network analysis Network analysis is concerned with analyzing the properties of
networks, by use of graph theoretical concepts such as node degrees and paths [6].
The primary tool in network analysis are measures such as centrality [36], and
specialized algorithms for calculating them efficiently have been developed (e.g.
[5]). This field has also gained a lot of interest in domains outside computer
science, for example, in social sciences (social network analysis) [40].

Another part of network analysis focusses on the spread of information in
a network. This can be used to determine the importance of, for example, web
pages on the World Wide Web [7], or to analyze the transmission of infectious
diseases [38].

7.2 Databases

General-purpose database systems The best-known general purpose database
systems are based on Codd’s relational data model [16]. Many of these database
systems (e.g. Oracle Database, Microsoft SQL Server, MySQL, PostgresQL) use
(a variant of) ISO SQL [25] as the query language of choice. Datalog [13] is an
alternative query language that is based on first order logic. Syntactically, it is
a subset of Prolog restricted as to make efficient query answering possible.

A more recent development is that of object-oriented database systems and
query languages such as OQL (Object Query Language) [12]. These systems use
objects instead of tuples, and they allow for nested objects. Part of the OQL
standard focusses on a tight integration with object-oriented languages such as
Java and C++. However, due to the overall complexity of object databases, there
are few systems that fully support the OQL standard.

Recently, there is a increasing interest in so-called NoSQL databases. These
database systems focus on applications that require extremely large databases.
Such databases typically use non-relational representations specialized for spe-
cific applications, such as Google’s BigTable [14] or Facebook’s Cassandra [11].
Current graph databases such as Dex [31] and Neo4J [32] also fall under this
category, and arguably BiQL does as well.

Graph query languages A number of query languages for graph databases have
been proposed, many of which have been described in a recent survey [2]. How-
ever, none of these languages was designed for supporting the knowledge dis-
covery process and each language satisfies at most a few of the requirements
mentioned in Section 3. For instance, GraphDB [20] and GOQL [37] are based
on an object-oriented approach, with provisions for specific types of objects for
use in networks such as nodes, edges and paths. This corresponds to a more struc-
tured data model that does not uniformly represent nodes and edges. In addition,
these languages target other applications: GraphDB has a strong focus on rep-
resenting spatially embedded networks such as highway systems or power lines,
while GOQL [37], which extends the Object Query Language (OQL), is meant
for querying and traversing paths in small multimedia presentation graphs. Both
languages devote a lot of attention to querying and manipulating paths: for ex-
ample, GraphDB supports regular expressions and path rewriting operations.



GraphQL [22] provides a query language that is based on formal languages
for strings. It provides an easy, yet powerful way of specifying graph patterns
based on graph structure and node and edge attributes. In this model graphs are
the basic unit and graph specific optimizations for graph structure queries are
proposed. The main objective of this language is to be general and to work well
on both large sets of small graphs as well as small sets of large graphs. However,
extending existing graphs is not possible in this language; flexible contexts are
not supported.

PQL [27] is an SQL-based query language focussed on dealing with querying
biological pathway data. It is mainly focussed on finding paths in these graphs
and it provides a special path expression syntax to this end. The expressivity
of this language is, however, limited and it has no support for complex graph
operations.

GOOD |[21] was one of the first systems that used graphs as its underlying
representation. Its main focus was on the development of a database system that
could be used in a graphical interface. To this end it defines a graphical trans-
formation language, which provides limited support for graph pattern queries.
This system forms the basis of a large group of other graph-oriented object data
models such as Gram [1] and GDM [23].

Hypernode [29] uses a representation based on hypernodes, which make it
possible to embed graphs as nodes in other graphs. This recursive nature makes
them very well suited for representing arbitrarily complex objects, for exam-
ple as underlying structure of an object database. However, the data model is
significantly different from a traditional network structure, which makes it less
suitable for modeling information networks as encountered in data mining.

A similar, but slightly less powerful representation based on hypergraphs is
used in GROOVY [30]. This system is primarily intended as an object-oriented
data model using hypergraphs as its formal model. It has no support for graph
specific queries and operations.

More recently, approaches based on XML and RDF are being developed,
such as SPARQL [34]. They use a semi-structured data model to query graph
networks in heterogenous web environments; support for creating new nodes and
flexible contexts is not provided.

While most of the systems discussed here use a graph-based data model and
are capable of representing complex forms of information, none of them uses a
uniform representation of edges and nodes (and its resulting flexible contexts),
nor supports advanced aggregates.

Graph databases Whereas the previous studies propose declarative query lan-
guages, recently several storage systems have been proposed that do not pro-
vide a declarative query language. Notable examples here are Neo4J [32] and
DEX [31], which provide Java interfaces to graphs persistently stored on disk.
For Neo4J an alternative programming language called Gremlin is under devel-
opment [35].



Graph libraries Finally, in some communities, Java or C++ libraries are used for
manipulating graphs in the memory of the computer (as opposed to the above
graph databases which support typical database concepts such as transactions).
Examples are SNAP [28] and igraph [17].

8 Conclusions

In this article, we gave an introduction to BiQL, a novel system for representing,
querying and analyzing information networks. The key features of this system
are:

— It uses a simple, yet powerful representation model. Using only objects (with
attributes), links (as pairs of objects), and domains (as named sets of ob-
jects), it is capable of representing a wide variety of network types, such as
labelled graphs, directed hypergraphs, and even sets of graphs.

— Its query language is declarative. This means that the queries only describe
what the results should be, but not how they should be obtained. This makes
the language more accessible to the average user.

— Its query language uses a powerful mechanism for expressing graph patterns
based on reqular expressions. This makes it possible to, for example, express
paths of arbitrary length.

— Its query language allows for the use of nested aggregates with a syntax
that closely resembles mathematical notation. These aggregates allow the
user to perform all kinds of analysis tasks, such as calculating distances and
centrality measures.

— Its query language provides a powerful mechanism for object creation, which
makes it possible to return structured output from a query. However, the
result of a query always produces a new network that can be queried again.

— The system itself is developed from a knowledge discovery perspective. It
focusses on providing specific support for knowledge discovery operations
such as network analysis, ranking, and tool integration.

In this chapter, we focussed on defining a data model and the syntax and
semantics of the corresponding query language. In future work, the main chal-
lenge is to develop a query optimization model that would form the basis of a
scalable implementation of the BiQL system.
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