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Abstract

We analyze the asymptotic convergence of all infinite products of matrices

taken in a given finite set by looking only at finite or periodic products. It is

known that when the matrices of the set have a common nonincreasing polyhe-

dral norm, all infinite products converge to zero if and only if all infinite periodic

products with periods smaller than a certain value converge to zero. Moreover,

bounds on that value are available [1].

We provide a stronger bound that holds for both polyhedral norms and

polyhedral seminorms. In the latter case, the matrix products do not necessarily

converge to 0, but all trajectories of the associated system converge to a common

invariant subspace. We prove that our bound is tight for all seminorms.

Our work is motivated by problems in consensus systems, where the matrices

are stochastic (nonnegative with rows summing to one), and hence always share

a same common nonincreasing polyhedral seminorm. In that case, we also

improve existing results.
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1. Introduction

We consider the problem of determining the stability of matrix sets, that

is, determining whether or not all infinite products of matrices from a given

set converge to zero, or more generally to a common invariant subspace. This

problem appears in several different situations in control engineering, computer

science, and applied mathematics. For instance, the stability of matrix sets char-

acterizes the stability of switching dynamical systems [2], which have numerous

application in control [2, 3, 4]. Stability of matrix sets is instrumental in prov-

ing the continuity of certain wavelet functions [2, 5]. Somewhat surprisingly, it

also helped establishing the best known asymptotic bounds on the number of

α-power-free binary words of length n, a central problem in combinatorics on

words [6, 7].

Deciding the stability of a matrix set is notoriously difficult and the decid-

ability of this problem is not known. The related problem of the existence of an

infinite product whose norm diverges is undecidable [8]. However, it is possible

to decide stability when the set has the finiteness property, that is, when there is

a bound p such that the existence of an infinite nonconverging product1 implies

the existence of an infinite nonconverging periodic product with period smaller

than or equal to p. Indeed, checking the stability of the set can be done by

checking the stability of all products whose length is smaller than or equal to

p. In this work, we look for the smallest valid bound p.

A similar question is particularly relevant in the context of consensus prob-

lems. These systems are models for groups of agents trying to agree on some

common value by an iterative process. Each agent has a value xi which it up-

dates by computing the weighted average of values of agents with which it can

communicate. Consensus systems have attracted considerable attention due

to their applications in control of vehicle formations [9], flocking [10, 11] or

distributed sensing [12, 13]. They typically have time-varying communication

1i.e., an infinite product that does not converge to zero.
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networks due to e.g. communication failures, or to the movements of the agents.

This leads to systems whose (linear) dynamics may switch at each time-step.

When a set of possible linear dynamics is known, one fundamental question is

whether the system converges for any switching sequence [14].

Consensus systems can be modeled by discrete-time linear switching sys-

tems, x(t + 1) = Atx(t), where the transition matrices At are stochastic (non-

negative matrices whose rows sum to 1) because the agents always compute

weighted averages. In this case, the products certainly do not converge to zero,

since products of stochastic matrices remain stochastic. The central question

is whether the agents asymptotically converge to the same value. Deciding

whether a consensus system converges for any sequence of transition matrices

and any initial condition corresponds to determining whether all left-infinite

products of matrices taken from a set converge to a rank one matrix. Indeed,

a stochastic matrix is rank one if and only if all its rows are the same, and

this situation corresponds to consensus. This particularization to stochastic

matrices has other applications, including inhomogeneous Markov chains, and

probabilistic automata [15].

Stochastic matrices share a nonincreasing polyhedral seminorm and this

property provides important information on the asymptotic convergence of prod-

ucts of these matrices. Indeed, for sets of matrices sharing a common nonin-

creasing polyhedral seminorm, a bound p as discussed above is available. This

was first established by Lagarias and Wang [1]. The authors also give an explicit

value for p (namely half the number of faces of the unit ball of the norm). This

result can easily be extended from norms to seminorms and we do so in the

proof of Theorem 1.

The case of stochastic matrices has been analyzed earlier in the context of in-

homogeneous Markov chains [5, 15, 16, 17] and later in the context of consensus

systems [14]. A finiteness result has been known since Paz [15], who proved that

all left-infinite products converge to a rank one matrix if and only if a certain

condition on all products of length B = 1
2 (3

n − 2n+1 +1) is satisfied. In our re-

cent paper [18], we showed that this bound can be derived from a generalization
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of the result of Lagarias and Wang applied to a particular seminorm.

Our Contribution

In this article, we consider a general problem that includes these particular

cases: we study matrix sets for which there exists a polyhedral seminorm which

is nonincreasing for all matrices in the given set, and we wonder whether long

products of these matrices are asymptotically contractive. We improve all the

bounds previously known in the particular cases, and prove that our bound is

tight. Our analysis relies on the fact that the convergence of the dynamical

system can be encapsulated in a discrete representation by a dynamical system

on the face lattice of the polyhedral (semi)norm. Our results then rely on a

careful study of the combinatorial structure of the trajectories in this discrete

structure.

The improvement over the previously known bound depends on the semi-

norm. In the case of stochastic matrices, the improvement is a multiplicative

factor of about 3
2
√
πn

.

2. Problem Setting

Let Σ = {A1, . . . , Am} be a set of matrices and σ an infinite sequence of

indices. We say that the product . . . Aσ(2)Aσ(1) is periodic if the sequence σ

is periodic. We recall that a seminorm on Rn is an application ‖.‖ with the

following properties:

• ∀x ∈ Rn, a ∈ R, ‖ax‖ = |a|‖x‖

• ∀x, y ∈ Rn, ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

We call a polyhedral seminorm a seminorm whose unit ball is a polyhedron, that

is, a set that can be defined by a finite set of linear inequalities

{x : ||x|| ≤ 1} = {x : ∀i, b⊤i x ≤ ci}.

We say that a seminorm ‖.‖ is nonincreasing with respect to a matrix A if

∀x ∈ Rn, ‖Ax‖ ≤ ‖x‖.
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Geometrically, this corresponds to its unit ball being invariant

A{x : ||x|| ≤ 1} ⊆ {x : ||x|| ≤ 1}.

We say that a seminorm is nonincreasing with respect to a set Σ of matrices

if it is nonincreasing with respect to each of the matrices in Σ. We say that a

matrix A contracts a seminorm ‖.‖ if ∀x ∈ Rn, ‖Ax‖ < ‖x‖. We say that an

infinite product . . . Aσ(2)Aσ(1) contracts a seminorm ‖.‖ if there is a t such that

Aσ(t) . . . Aσ(2)Aσ(1){x : ||x|| ≤ 1} ⊂ int({x : ||x|| ≤ 1}).

One can easily verify that if there is a p such that all products of length p of

matrices in Σ contract a seminorm ‖.‖, then all trajectories x(t) of the corre-

sponding switching system x(t + 1) = Aσ(t)x(t) asymptotically approach the

set {x : ‖x‖ = 0}, and that their distance to that set decays exponentially as

t increases. In particular, if ‖.‖ is a norm, x converges exponentially to 0. In

addition, if ‖.‖ is the seminorm ‖x‖P = 1
2 (maxi xi − mini xi) – a seminorm

that is nonincreasing for stochastic matrices – then x approaches the consensus

space {α1}. We have proved in previous work [18] that each trajectory actually

converges in that case to a specific (but possibly different) point in that set, as

opposed to just approaching the set. For these reasons, we will investigate con-

traction of seminorms, keeping in mind that this question is intimately related

to that of convergence.

Question 1. Let ‖.‖ be a polyhedral seminorm in Rn for some fixed n; what is

the smallest p such that for any set Σ for which ‖.‖ is nonincreasing, the exis-

tence of an infinite noncontracting product implies the existence of an infinite

periodic noncontracting product with period smaller than or equal to p?

3. The General Case

In this section, we answer Question 1. We start by recalling some definitions

(see [19] for more details). A partially ordered set or poset is a set P with a

binary relation � that is transitive, antisymmetric and reflexive. We also note

x ≺ y for the relation x � y and x 6= y. A poset (P,�) is called graded if it can

5



be equipped with a rank function r : P 7→ N such that x � y ⇒ r(x) ≤ r(y) and

(y ≺ x and ∄z, y ≺ z ≺ x) ⇒ r(x) = r(y)+ 1. The set of all elements of a given

rank is called a rank level. A poset is called a lattice if any pair of elements has

a unique infimum and a unique supremum.

Intuitively, a face is the generalization of a vertex (or an edge, or a facet) to

an arbitrary dimension. The formal definition is the following.

Definition 1 (Faces of a Polyhedron). A nonempty subset F of an n-dimensional

polyhedron Q is called a face or closed face if one of the following holds:

• F = Q,

• F = ∅

• or F can be represented as F = Q ∩ {x : b⊤x = c} where b ∈ Rn, c ∈ R

are such that

∀x ∈ Q, b⊤x ≤ c.

If the face contains exactly d+ 1 affinely independent points2, we call d the

dimension of the face. A proper face is a face that is neither the polyhedron itself

nor the empty face. An open face is the relative interior of a face. Finally, a

facet is a face of dimension n− 1.

It is well known that faces of any dimension are intersections of facets and

their number is therefore finite. It is also known that any polyhedron decom-

poses into a disjoint union of open faces.

We use the term double-face to denote the set F ∪−F , for some proper face

F . A double-face is called open if the face F is open, and closed otherwise.

Definition 2 (lattice of double-faces). Given a centrally symmetric polyhedron

Q (i.e., a polyhedron Q = −Q), we call lattice of double-faces the poset (P,⊆)

where ⊆ is the inclusion relation and P is a set whose members are

2The points u0, u1, . . . , ud are called affinely independent if u1−u0, u2−u0, . . . are linearly

independent.
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• double-faces of Q (r = dimension of the face)

• Q (r = n)

• ∅ (r = dmin − 1, where dmin is the lowest dimension of faces of Q).

It can be verified that this poset is a lattice and that it is graded; a rank function

is given between brackets.

Definition 3 (Antichain). Let (P,�) be a poset. An antichain is a subset

S ⊆ P whose elements are not comparable:

∀S1, S2 ∈ S, S1 6� S2.

For instance, a set of double-faces that are not included in one another form

an antichain in the lattice of double-faces.

Example 1. The unit ball of the seminorm ‖x‖P = 1
2 (maxi xi − mini xi) in

dimension 3 is represented in Figure 1. We will study this seminorm and its

relation to stochastic matrices in detail in the next section. The lattice of double-

faces of this unit ball and its largest antichain are represented in Figure 2.

f1

f1

f3
f3

e3

e3

Figure 1: The polyhedron P for n = 3. The gray arrow indicates the direction a1. The

polyhedron has 6 facets, one for each constraint of the form 1

2
(xi − xj) ≤ 1. The sets f1, f3

and e3 are double-faces.
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∅

e1 e2 e3

f1 f2 f3

P

Figure 2: The lattice of double-faces of the polyhedron P for n = 3. The elements f1, f2 and

f3 represent the three pairs of opposite facets while e1, e2 and e3 represent the three pairs of

opposite edges. In dark gray, a largest antichain in this lattice.

Definition 4 (Width of a Poset). We call the width W (P ) of a poset P the

number of elements of the largest antichain of P . We also write W (Q) for the

width of the lattice of double-faces of a given centrally symmetric polyhedron Q.

The following lemma by Lagarias and Wang allows abstracting Question 1

as a combinatorial problem, as it shows that matrices in Σ can be completely

abstracted (for our purpose) as functions mapping each face of the invariant

polyhedron into another one.

Lemma 1. Let Σ be a finite set of matrices having a common invariant polyhe-

dron Q. Then, for any A ∈ Σ and any double-face O1 of Q, there exists exactly

one double-face O2 (possibly int(Q)) such that

AO1 ⊆ O2.

Proof. The result is established in [1, Claim in the proof of Theorem 4.1] for

faces instead of double-faces. It is clear that the open faces O1, O2 satisfy

AO1 ⊆ O2 if and only if the open double-faces O1 ∪−O1 and O2 ∪−O2 satisfy

A(O1 ∪−O1) ⊆ (O2 ∪−O2). The result therefore extends to double-faces.
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The next theorem is an improvement of [1, Theorem 4.1]. We extend it to

seminorms and we provide a stronger bound.

Theorem 1. Let Σ be a set of matrices and let ‖.‖ be a polyhedral seminorm

that is nonincreasing for Σ. If there is a left-infinite product of matrices from

Σ that does not contract ‖.‖, there is one that is periodic with a period p not

larger than

p∗ = W (B), with B = {x : ||x|| ≤ 1}.

Proof. We first prove that p is finite. Suppose there exists an infinite noncon-

tracting product . . . Aσ(2)Aσ(1) and therefore a point x0 such that

∀i, Aσ(i) . . . Aσ(1)x0 /∈ int(B).

Since the number of faces is finite, there is an open double-face O and indices

i < j such that

Aσ(i) . . . Aσ(1)x0 ∈ O and Aσ(j) . . . Aσ(1)x0 ∈ O.

By Lemma 1, we have

Aσ(j) . . . Aσ(i+1)O ⊆ O.

Therefore, the infinite power of Aσ(j) . . . Aσ(i+1) is an infinite periodic noncon-

tracting product, proving that the theorem is true for some finite period p = j−i

smaller than the number of double-faces.

We now prove the full theorem. Let P be such that . . . PPP is an infinite

noncontracting product with the smallest period p and

P = Aσ(p) . . . Aσ(1).

Let O1 be a double-face such that

∀t ≥ 0, (P )tO1 6⊆ int(B)
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(such a face exists due to Lemma 1 and the fact that . . . PPP is noncontract-

ing), let O2 be the double-face containing Aσ(1)O1 (by Lemma 1, there is ex-

actly one such double-face), O3 containing Aσ(2)Aσ(1)O1 up to Op containing

Aσ(p−1) . . . Aσ(1)O1. Let also F1 = cl(O1), . . . , Fp = cl(Op).

We now prove that {F1, . . . , Fp} in an antichain in the lattice of double-faces.

Suppose, to obtain a contradiction, that for some i, j with i > j, Fi ⊆ Fj . Then,

Aσ(i−1) . . . Aσ(j)Fj ⊆ Fi⊆ Fj ,

and thus

∀t ≥ 0, (Aσ(i−1) . . . Aσ(j))
tFj ⊆ Fj .

This contradicts the assumption that . . . PPP is the infinite periodic noncon-

tracting product with the smallest period. Similarly, if for some i, j with i < j,

Fi ⊆ Fj , then

∀t ≥ 0, (Aσ(i−1) . . . Aσ(1)Aσ(p) . . . Aσ(j))
tFj ⊆ Fj ,

and again we have a contradiction.

The bound p∗ of Theorem 1 cannot be decreased: it is tight for any polyhe-

dron, as we show next.

Theorem 2. Let ‖.‖ be a polyhedral seminorm. There is a set Σ for which ‖.‖

is non increasing and such that

• all infinite periodic products with periods smaller than p∗ are contracting,

• not all products are contracting.

Proof. Let again B = {x : ||x|| ≤ 1}. We construct a set of matrices such that

the infinite noncontracting product that has the smallest period has a period

equal to p∗ = W (B). Let X = {F1, . . . , Fp∗} be the largest antichain in the

lattice of double-faces and let O1, . . . , Op∗ be the corresponding open double-

faces.
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By definition, each double-face Fi is the union of two opposite proper faces

Gi,−Gi and the proper face Gi is the intersection of B with a hyperplane

Gi = B ∩ {x : b⊤i x = ci}

such that B is in one halfspace defined by the hyperplane:

B ⊆ {x : b⊤i x ≤ ci}.

We also have ci 6= 0. Indeed, if ci = 0, then B ⊆ {x : b⊤i x ≤ 0} and because ,

B is the unit ball of a seminorm, B = −B, and B ⊆ {x : −b⊤i x ≤ 0} and this

implies Gi = B ∩ {x : b⊤i x = 0} = B and Gi is not a proper face. Therefore,

ci 6= 0 and we can scale bi and ci to have ∀i, ci = 1. Finally, Fi = Gi ∪ −Gi =

B ∩ {x : b⊤i x = ±1}.

By taking any vi in the open double-face O(i mod p∗)+1 and defining

Ai = vib
⊤
i and Σ = {A1, . . . , Ap∗},

we have

∀i, AiFi = Ai(B ∩ {x : b⊤i x = ±1})

⊆ Ai{x : b⊤i x = ±1}

= {Aix : b⊤i x = ±1}

= {vib
⊤
i x : b⊤i x = ±1}

= {±vi}

⊆ O(i mod p∗)+1.

(1)

We have as well

∀i, Ai(B\Fi) = Ai(B ∩ {x : −1 < b⊤i x < 1})

⊆ {vib
⊤
i x : −1 < b⊤i x < 1}

= {λvi : −1 < λ < 1}

⊆ {λy : −1 < λ < 1, y ∈ B}

= int(B).

(2)
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By (1) and (2), for any j 6= (i mod p∗) + 1 and any subset S of B,

AjAiS ⊆ Aj

(

int(B) ∪O(i mod p∗)+1

)

= Aj int(B) ∪ AjO(i mod p∗)+1 ⊆ int(B).

Therefore,

. . . A(h+2 mod p∗)+1A(h+1 mod p∗)+1A(h mod p∗)+1Ah

is the only infinite noncontracting product starting with Ah. For any h, this

product has a period of p∗ (because the matrices A1, . . . , Ap∗ are all different).

We conclude that all infinite periodic products with periods smaller thanm = p∗

are contracting and the theorem is proven.

Giving an explicit value to the size of the largest antichain may prove difficult

in some cases. However, since a set of double-faces of same dimension always

constitute an antichain, the largest antichain has at least maxi fi elements, and

we have the following lower bound

p∗ = W (B) ≥ max
i

fi,

where fi is the number of faces of dimension i. If the equality holds, the exact

value of p∗ can be known. This is the case when the lattice of double-faces of

Q has the Sperner property:

Definition 5 (Sperner Property [20]). A graded poset is said to have the Sperner

property if the largest antichain is equal to the largest rank level.

4. Stochastic Matrices

We now investigate sets of stochastic matrices, with respect to which the

following seminorm is always nonincreasing

‖x‖P =
1

2
(max

i
xi −min

i
xi).
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The (polyhedral) unit ball of that seminorm:

P =

{

x :
1

2
(max

i
xi −min

i
xi) ≤ 1

}

,

is thus invariant under multiplication by any stochastic matrix.

Example 2. Suppose one wants to know whether all products made of the

following two matrices converge.

A1 =











.5 0 .5

1 0 0

0 .5 .5











, A2 =











0 1 0

.5 0 .5

1 0 0











.

Since the matrices are stochastic, the seminorm ‖.‖P is nonincreasing under

multiplication by these matrices, as can be seen in Figure 3. In this section, we

Figure 3: The cross-sections of polyhedra P (left), A1P (center, dashed) and A2P (right,

dashed). The three polyhedra are infinite in the direction in the direction 1.

will see (Theorem 4) that any infinite product of these two matrices converges

to a rank one matrix if and only if any infinite periodic product, with period ≤ 3

converges to a rank one matrix.

We prove that the lattice of double-faces of this polyhedron has the Sperner

property, allowing us to compute an explicit value for our bound p∗.

Definition 6 (Upper and Lower Shadow [20]). Let (P,�) be a graded poset and

let S ⊆ P be such that ∃k, ∀x ∈ S, rank(x) = k. We call the upper shadow

∇(S) = {x ∈ P : ∃y ∈ S, y � x, rank(x) = k + 1} .

13



Similarly, we define the lower shadow

∆(S) = {x ∈ P : ∃y ∈ S, x � y, rank(x) = k − 1} .

We now describe the structure of the polyhedron P : it has no face of dimen-

sion 0 because ∀x ∈ P , a ∈ R, x+ a1 ∈ P . The face of dimension n is equal to

P itself. Each double-face of dimension 1 ≤ d ≤ n− 1 of P can be written as

F = {x ∈ P :∀i ∈ S1, j ∈ S2, xi = 2− xj} (3)

for some disjoint nonempty sets S1, S2 ⊂ {1, . . . , n} with |S1∪S2| = n−(d−1).

Therefore, the lower shadow of each single double-face F of P of dimension

2 ≤ d ≤ n− 1 contains

|∆({F})| = 2(d− 1)

elements (the double-faces obtained by adding an element to either S1 or S2)

and the upper shadow has

|∇({F})| = n− d+ 1 or |∇({F})| = n− d

elements (the double-faces obtained by removing an element from either S1 or

S2, while keeping them both nonempty).

Theorem 3. The lattice of double-faces of P has the Sperner property. Its

largest antichain is the set of double-faces of dimension d∗ = ⌊n/3⌋+ 1.

Proof. Let S = {F1, . . . F|S|} be any set of double-faces of P of the same dimen-

sion d, that is, a subset of a rank level in the lattice of double-faces. Let E+ be

the set of pairs of double-faces of respectively S and ∇(S) being neighbors to

each other:

E+ = {(F1, F2) : F1 ∈ S, F2 ∈ ∇({F1})}.

Since the upper shadow of each element of S has at least n − d elements, we

have

|E+| ≥ |S|(n− d).

14



Since the lower shadow of each element of ∇S contains exactly 2d elements –

not all of which belonging to S –, we have

|E+| ≤ |∇(S)|2d.

Combining the two inequalities, we obtain |∇(S)| ≥ |S|n−d
2d and

∀d ≤
n

3
, |∇(S)| ≥ |S|. (4)

By a similar reasoning, we obtain |∆(S)| ≥ |S| 2(d−1)
n−d+2 and

∀d ≥
n+ 4

3
, |∆(S)| ≥ |S|. (5)

Let now X be the largest antichain, let d− be the smallest dimension of an

element in Xand let S− be the intersection of the antichain with the level d−.

If d− ≤ n
3 , Equation (4) tells us that the antichain

(X\S−) ∪ ∇(S−)

has at least as many elements as X . We can repeat this process until the

antichain contains only faces of dimension strictly larger than n
3 . Similarly we

use (5) to obtain an antichain with at least as many elements of rank strictly

smaller than n+4
3 . Since

n

3
< d <

n+ 4

3

has a unique integer solution d∗ = ⌊n/3⌋+ 1, the final antichain contains only

faces of dimension d∗.

4.1. A New Finiteness Bound for Consensus

By Theorem 3, the largest antichain in the lattice of double-faces is the set

of all double-faces of dimension d∗ = ⌊n/3⌋+1. From Equation (3), one can see

that the number of double-faces of dimension d is

fd =

(

n

d− 1

)

(2n−d − 1)

15



and the size of the largest antichain is equal to

p∗ =

(

n

⌊n/3⌋

)

(2n−⌊n/3⌋−1 − 1). (6)

Combining this value of p∗ with Theorem 1 and [18, Proposition 1.a] yields

the next theorem.

Theorem 4. Let Σ be a set of stochastic matrices. Any left-infinite product

of matrices from Σ converges to a rank one matrix if and only if any periodic

left-infinite product, with period ≤ p∗ =
(

n
⌊n/3⌋

)

(2n−⌊n/3⌋−1 − 1), converges to a

rank one matrix.

As announced in Example 2, if one wants to know if all infinite products

of matrices from the set {A1, A2} converge to a rank one matrix, Theorem

4 implies that it is the case if and only if all infinite products with periods

≤ p∗ =
(

3
⌊3/3⌋

)

(23−⌊3/3⌋−1 − 1) = 3 converge to a rank one matrix.

A finiteness result such as Theorem 4 was known [14, 15] with B = 1
2 (3

n −

2n+1 + 1) instead of p∗. The new value p∗ is approximately equal to 3
2
√
πn

B.

Moreover, we prove next that Theorem 4 is tight. This is not a consequence

of Theorem 2. Indeed, Theorem 2 applied to polyhedron P guarantees that for

any dimension n, there is a set of matrices such that Theorem 1 is tight for P .

However, the matrices in this set are not necessarily stochastic.

Theorem 5. For any n ≥ 2, there is a set of stochastic matrices such that:

• There is a product of length p∗ whose powers do not converge to a rank

one matrix

• For any product P of length ≤ p∗− 1, the sequence of powers converges to

a rank one matrix.

Proof. We will construct stochastic matrices that have the two properties:

∀i, AiFi ⊆ O(i mod p∗)+1 (7)

∀i, Ai(P\(Fi ∪ −Fi)) ⊆ int(P). (8)
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Then the same argument as in the proof of Theorem 2 will allow allow us to

conclude. Recall that each face can be written as

F = {x ∈ ∂P : ∀i ∈ Sm, xi = min
j

xj , ∀i ∈ SM , xi = max
j

xj} (9)

for certain disjoint nonempty sets Sm, SM ⊂ {1, . . . , n}. Let Fi be a face such

that Smi = {1, . . . , ai} and SMi = {n − ci + 1, . . . , n} for some ai and ci and

similarly let Fj = F(i mod p∗)+1 be such that Smj = {1, . . . , aj} and SMj =

{n− cj +1, . . . , n} for some ai and ci. Let bi = n− ai − ci and bj = n− aj − cj .

One matrix satisfying properties (7) and (8) is

Ai =











+aj×ai
0 0

+bj×ai
+bj×bi +bj×ci

0 0 +cj×ci











where + represents a positive element chosen such that the sum of the elements

on each row sum to one. Let us see why property (7) is satisfied. Let x ∈ Fi,

we have that the first aj elements of Aix are weighted averages of the first ai

elements of x and therefore they are equal to mink xk. Similarly, the last cj

elements of Aix are weighted averages of the last ci elements of x and therefore,

they are equal to maxk xk. The remaining elements are weighted averages of all

elements of x and therefore they are strictly smaller than maxk xk and strictly

larger than mink xk. These three facts imply Aix ∈ Oj and since it is the case

for any x ∈ Fi, property (7) is satisfied. Property (8) is proved in a similar

manner.

Without the assumption on the specific form of the faces Fi and Fj , the

matrix Ai is the same up to some permutations of the rows and of the columns.

Conclusion

Deciding the asymptotic convergence of long matrix products has various

applications in engineering and computer science [5, 6]. In this paper, we have
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studied this problem for the case where the given set of matrices admits a non-

increasing polyhedral seminorm, and one wonders whether all long products

of these matrices map the state space onto points whose seminorm is equal to

zero (the so-called consensus problem is a particular case of this setting). We

have significantly improved the available bound by leveraging the combinato-

rial structure of (an abstraction of) the dynamical system described by these

matrices.

We see several further directions for our work: a major tool in our analysis

is Lemma 1, derived from Lagarias and Wang’s work. In [1], they also provide

a similar result when the invariant set is not a polyhedron, but has a more

involved algebraic structure (namely, piecewise analytic). We believe that our

analysis could be further applied to piecewise analytic seminorms, but it is not

clear whether there would be particular relevant applications in that setting.
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