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a b s t r a c t

Optimal timing for annuitization is developed along three approaches. Firstly, the mutual
fund in which the individual invests before annuitization is modeled by a jump diffusion
process. Secondly, instead of maximizing an economic utility, the stopping time is used to
maximize the market value of future cash-flows. Thirdly, a solution is proposed in terms of
Expected Present Value operators: this shows that the non-annuitization (or continuation)
region is either delimited by a lower or upper boundary, in the domain time-assets return.
The necessary conditions are given under which these mutually exclusive boundaries
exist. Further, a method is proposed to compute the probability of annuitization. Finally,
a case study is presented where the mutual fund is fitted to the S&P500 and mortality is
modeled by a Gompertz Makeham law with several real scenarios being discussed.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Buying a fixed-payout life annuity is an efficient solution to preserve standards of living during retirement and it also
protects individuals against poverty in old age. The main drawbacks of this type of insurance are its irreversibility and the
fact that payments are contingent on the recipient's survival. On the other hand, insurance companies or banks distribute
financial products based on mutual funds, designed for people willing to take more risk with their money in exchange for a
larger growth potential of their investments. In this context, the literature provides a great deal of evidence that pre-
retirement people should invest in such schemes rather than in life insurance products. The question then arises whether
and when to switch from such a financial investment to a life annuity.

Numerous papers have covered the various aspects of the annuitization problem since the well-known paper of Yaari
(1965), which showed that individuals with no bequest motive should annuitize all their wealth at retirement. By using a
shortfall probability approach, Milevsky (1998) considers by the setting up of a Brownian motion fund and using CIR interest
rates, the probability of successful deferral, i.e. to defer annuitization as long as investment returns guarantee an income at
least equal to that provided by the annuity. Milevsky et al. (2006) derive the optimal investment and annuitization strategies
for a retiree whose objective is to minimize the probability of lifetime ruin. Hainaut and Devolder (2006) present a
numerical study on the optimal allocation between annuities and financial assets when considering a utility maximization
problem. Stabile (2006) examined the optimal annuitization time for a retired individual who is subject to the constant force
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of mortality in an all-or-nothing framework (i.e. the individual invests all his wealth to buy the annuity) with different
utility functions for consumption before and after annuitization. Milevsky and Young (2007) examined optimal annuitiza-
tion strategies for time-dependent mortality functions based on maximizing the returns from the investment in the case of
the all-or-nothing context compared to the case when the individual can annuitize fractions of his wealth at any time. Emms
and Haberman (2008) discuss both the optimal annuitization timing and the income draw-down scheme by minimizing a
loss function and by using the Gompertz mortality function and a fund based on the Brownian motion. Purcal and Piggott
(2008) explain the low annuity demand by the relative importance of pre-existing annuitization and by considering utility
maximization, a geometric Brownian motion modeling the fund and mortality tables. Horneff et al. (2008) study, using a
discrete time model, the optimal gradual annuitization for a retired individual applying Epstein–Zin preferences and
quantifying the costs of switching to annuities. Gerrard et al. (2012) take the problem of maximizing the value of the
investment to analyze (using a Brownian model and with constant force of mortality) the optimal time of annuitization for a
retired individual managing his own investment and consumption strategy. Di Giacinto and Vigna (2012) consider a
member of a defined contribution pension fund who has the option of taking programmed withdrawals at retirement. They
then explore the sub-optimal cost of immediate annuitization, when minimizing a quadratic cost criterion in a Brownian
motion setting and with a constant force of mortality. Huang et al. (2013) are also interested in the problem of optimal
timing of annuitization, and especially in the optimal initiation of a Guaranteed Lifetime Withdrawal Benefit (GLWB) in a
Variable Annuity. They focus on the problem from the perspective of the policyholder (i.e. when to begin withdrawals from
the GLWB) and they adopt a No Arbitrage perspective (i.e. they assume that the individual is trying to maximize the cost of
the guarantee to the insurance company offering the GLWB). Huang et al. (2013) provide a detailed and relevant overview of
the literature concerning Variable Annuities and their guarantees.

This paper looks at the optimal timing to switch from a financial investment to a life annuity. It differs from previous
publications in several ways. Firstly, the financial asset into which the individual invests (before transferring to
annuitization) is modeled by a jump diffusion process instead of a geometric Brownian motion. Numerical applications,
by which the return from this asset is fitted to the S&P500 index, reveal that the presence of jumps modifies significantly the
point of switching, when compared with the prediction from a Brownian model. Secondly, instead of maximizing an
economic utility, the stopping time maximizes the market value of future cash-flows.

When the discount rate is equal to the risk free rate, the objective is the market value or price of future expected
discounted payouts. Huang et al. (2013) use a similar criterion for GLWB annuities and interpret it as the cost to the
insurance company that provides this service. The investor acts to maximize this cost. In this case and as detailed in the
body of the paper, this cost is split into an immediate lifetime payout annuity and an option to defer this annuity.
By analogous to a classical American option, the annuitization should only be exercised once the value from waiting is zero,
at a point in time when the asset value or return crosses a boundary. Stanton (2000) used a similar approach to estimate
long-lived put option, embedded in 401(k) pension plans.

Since this problem has similarities with American option pricing, this paper proposes a semi-closed form solution in
terms of Expected Present Value (EPV) operators, such as defined by Boyarchenko and Levendorskii (2007). However, for
American options pricing, we know beforehand if the boundary delimiting the exercise region is an upper (call) or a lower
(put) barrier, in the domain time-accrued return. However, in the current approach, this aspect would not be known at the
beginning. On one hand, a basic reasoning suggests that one should consider switching to annuity if the financial asset
performs poorly due to the fear of subsequent erosion of wealth. In this respect the non-annuitization (or continuation)
region should be delimited by a lower boundary, in the space time versus realized returns. On the other hand, another
reasoning leads to consider changing to annuitization when the realized financial return is high enough to receive a
reasonable annuity. In this case, the continuation region should be delimited by an upper boundary. The originality of the
current study is to present necessary conditions under which these mutually exclusive boundaries exist and a method to
compute them.

This reasoning is sustained by empirical observations. Stanton (2000) mentions that in September and October, 1998,
more than three times as many pilots of American Airlines retired as during an average month. According to the Wall Street
Journal, this surge in retirements was occurring because pilots retiring at this date can take away retirement distributions
based on July's high stock-market prices. Similar accelerated retirements occurred after the stock market crash of 1987.
On Monday November 2, 1987, over 600 Lockheed Corp. employees had submitted early retirement papers the previous
Friday, October 30 (approximately three times the usual monthly figure). Stanton (2000) determines in a Brownian
framework that the investor optimally exercises the option to time their retirement or rollovers to another plan if the asset
value crosses a boundary.

A third contribution is the assumption of a time dependent current force of mortality, which is contrary to many existing
papers (e.g. Stabile, 2006, Gerrard et al., 2012). Finally, this paper proposes a method to estimate numerically the probability
of annuitization. Of special note is that the solution based on expected value operators can be extended to constant and time
dependent consumption/contribution rates, or to planned lump sum payments before annuitization. However, the proposed
method does not allow one to dynamically manage the consumption.

Section 2 of this paper presents the dynamics of the financial asset into which the individual invests his savings, before
annuitization. Section 3 discusses the current assumptions related to the mortality process. Section 4 introduces the
maximization problem and in particular the objective function. Section 5 reviews the basic working of the Wiener–Hopf
factorization that is used in Section 6 to locate the optimal annuitization time. Section 7 presents the Laplace transform of
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the hitting time of the asset return to reach the boundary that triggers the annuitization. Its numerical inversion provides
the probabilities relating to annuitization. This paper is concluded by a numerical illustration in which the mutual fund is
calibrated to daily returns of S&P500 and with Gompertz Makeham mortality rates. The calibration is done by loglikelihood
maximization and the density of the fund return is computed by a Discrete Fourier Transform (see Appendix C).
A comparison with the pure Brownian motion case (see Appendix B) as well as several scenarios are then discussed.

2. The wealth process

A life annuity can preserve the standard of living during retirement but it is an irreversible transaction. Financial advisors
propose a wide variety of mutual funds designed for people looking for larger growth potential, and most papers
recommend pre-retirement people to invest in this category of product. The question that arises is whether and when to
switch from a financial investment to a life annuity. In order to answer this question, this paper considers the situation of an
individual who invests all his wealth into a mutual fund and expects to make reasonable profit before converting his
investment into a life annuity. The value and return of the fund are respectively modeled by the processes ðWtÞt and ðXtÞt .
They are stochastic processes defined in a probability space ðΩ;F ; fF gt ; PÞ and are related in the following way:

Wt ¼W0eXt : ð2:1Þ
The return Xt is modeled by a double exponential jump diffusion. This type of process allows a better fit to the actual returns
of investment than for models based on the Brownian motion. Furthermore, jump diffusion processes include asymmetric
and leptokurtic features in modeling asset dynamics. In the numerical applications reported here, this is fitted by
loglikelihood maximization to daily figures off the S&P 500 index, observed between June 2003 and June 2013. Some of the
main features of the jump diffusion process are firstly considered ahead of proceeding to the calibration method. Lipton
(2002) and Kou and Wang (2003, 2004) used this process to price options. They define its dynamics by

dXt ¼ ðθ�αÞ dtþs d ~WtþY dNt with X0 ¼ 0; ð2:2Þ
where θ is the average continuous return from the fund, s is the constant volatility of the Brownian motion component ~Wt

and α is the constant dividend rate. If α is high compared with the average fund return, it can be interpreted as the
withdrawal rate of an immediate variable annuity. Such financial products pay an income equal to a percentage of the fund
market value and this income varies depending on the performance of the managed portfolio. A combination of withdrawals
and market declines could reduce a variable annuity's account value to zero, in which case the contract would terminate.
Huang et al. (2013) give a more complete description of the variable annuity product and its guarantees. If α is negative, it
should be interpreted as a contribution rate, paid during the accumulation phase. Note that the contribution/withdrawal
rate can possibly be time dependent, α(t). Also some planned lump sums, increasing Wt at discrete times before
annuitization, may be considered. Both these cases are discussed later in this paper under the heading Remark 6.1, but
such generalizations do not require any modification of the following developments.

The jump part is modeled by a Poisson process Nt with a constant intensity λ which is independent of the Brownian
motion ~Wt . The step increase is distributed as a double exponential variable Y with the following density:

f Y ðyÞ ¼ pλþ e� λþ y1fyZ0g �ð1�pÞλ� e� λ� y1fyo0g ð2:3Þ
where p and λþ are positive constants and λ� is a negative constant. They represent the probability of observing respectively
upward and downward exponential jumps. The expectation of Y is then equal to a weighted sum of expected average jumps:

E Yð Þ ¼ p
1
λþ

þ 1�pð Þ 1
λ�

: ð2:4Þ

The dynamics of the individual's wealth can be rewritten as

Wt ¼W0eXt ¼W0eðθ�αÞtþs ~Wt þ ∑
Nt

j ¼ 1
Yj: ð2:5Þ

As the jump and diffusion processes are independent, the Laplace transform of Xt is the product of Laplace transforms of the
diffusion and jump components. Shreve (2004) gives the Laplace transform of a compound Poisson process as equal to the
following expression:

E exp z ∑
Nt

j ¼ 1
Yj

 ! !
¼ expðλtðϕY ðzÞ�1ÞÞ ð2:6Þ

where ϕY ðuÞ is the Laplace transform of Y. If ξþ and ξ� are respectively exponential random variables of intensities λþ and
λ� , the function ϕY ðzÞ for λ� ozoλþ is given by

ϕY zð Þ ¼ E exp zYð Þð Þ
¼ pE exp zξþ

� �� �þ 1�pð ÞE exp �zξ�ð Þð Þ

¼ p
λþ

λþ �z
� 1�pð Þ λ�

z�λ�
: ð2:7Þ
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The Laplace transform of Xt is then defined in terms of its related characteristic exponent ψðzÞ:
EðezXt Þ ¼ etψðzÞ

where ψðzÞ is such that:

ψ zð Þ ¼ θ�αð Þzþ1
2
z2s2þ

Z
R

ezy�1
� �

λf Y dyð Þ

¼ θ�αð Þzþ1
2
z2s2þλ ϕY zð Þ�1

� �
: ð2:8Þ

It has already been noted that the jump diffusion process will be fitted in by loglikelihood maximization to daily returns of
the S&P 500 for some numerical applications (Section 8). However, the probability density function of returns which is
required for such an operation has no closed form expression. This is resolved by computing the discrete Fourier's Transform
of its characteristic function and approaching it by a discrete sum, as detailed in Proposition C.1 in Appendix C.

3. The mortality risk

This work considers the case for which the investor is required to annuitize all her wealth at one point in time. The
optimal age is linked to the actuarial force of mortality and obviously gender specific. But it also depends on the individual's
health status, which is unknown from the insurer. Since the development of the theoretical model of Rothschild and Stiglitz
(1976), the role of asymmetric information in insurance markets is well identified. Annuitants have more information about
their life expectancy than insurance companies and adjust their demand in accordance. To formalize implications of this
asymmetric information between the insurance company and annuitants, mortality assumptions used by the insurer differ
from these defining the individual's mortality.

The time of the individual's death, denoted by τd, is modeled by an inhomogeneous Poisson process in ðΩ;F ; fF gt ; PÞ.
The death process is assumed to be independent from Nt and ~Wt . Its intensity, also called the mortality rate, is a
deterministic function of time, denoted by μðtÞ. In this framework, the probability that a person of age η years at time 0
survives the next u years is provided by the following formula:

upη ¼ Pðτd4uÞ
¼ e�

R u

0
μðηþ sÞ ds; ð3:1Þ

and the probability that the same person dies during the next u years is uqη ¼ 1�upη. Moreover, the instantaneous
probability of death at time u, is defined by the derivative of uqη with respect to u. This should be understood as the
probability that an individual of age η dies between times u and uþdu:

∂
∂uuqη ¼ μ ηþuð Þe�

R u

0
μðηþ sÞ ds du: ð3:2Þ

For a constant discount rate ρ, the expected present value of a lifetime annuity, paying one monetary unit from the point t on
until death of the individual is defined as follows:

aηþ t ¼
Z Tm

t
e�ρðs� tÞ

s� tpηþ t ds; ð3:3Þ

where Tm denotes the maximum lifespan of a human being.
On another hand, the insurance company works with mortality rates and survival probabilities that are respectively

denoted by μtf ðtÞ and up
tf
η ¼ e�

R u

0
μtf ðηþ zÞ dz. They are inferred from the observation of a reference population and differ from

these of the individual. If the interest rate guaranteed by the insurer is denoted by ρtf, the annuity coefficient is equal to

atf
ηþ t ¼

Z Tm

t
e�ρtf ðs� tÞ

s� tp
tf
ηþ t ds ð3:4Þ

This coefficient determines the annuity payout: if the person purchases the annuity at time t, the cash flow paid by the
insurer, noted Bηþ t , is calculated by

Bηþ t ¼
Wt�K

atf
ηþ t

1
1�ϵ

; ð3:5Þ

where ϵ is a commercial loading and K is either a fixed acquisition fee ðK40Þ or a tax incentive ðKo0Þ. In later
developments, the following ratio:

f sð Þ ¼ 1
1�ϵ

aηþ s

atf
ηþ s

ð3:6Þ

is used to compare the expected present value of annuity payments with the price paid for the annuity. This conventional
measure in actuarial sciences, called the money's worth (Mitchel et al., 1999), is directly related to the gap between
individual's mortality rates and these used by the insurer to price the annuity. For individuals who are more healthy on
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average than the reference population, this function is greater than 100% and the annuity is underpriced. Such persons are
also more likely to purchase an annuity as shown further on in numerical illustrations. On the other hand, for the less
healthy individuals, the function f(s) is below 100%. The annuity being in this case overpriced by the insurer, early
annuitization is less attractive as illustrated later.
4. The objective function

An investment policy comprises two stages. During the first, the investor both capitalizes on his savings and consumes
dividends. In the event of the investor dying, during this period, beneficiaries inherit the accrued capital. When a sufficient
profit has been taken or when losses are too great, the individual may then switch and purchase a life annuity. During this
second phase, the annuity is consumed. The stopping time is chosen so as to maximize the market value of individual's
investment portfolio. Most of the existing publications on annuitization focus on the optimization of expected economic
utility of cash-flows. Utility functions measure both preference and risk aversion. However determining the risk aversion
parameter of an individual is often a tedious exercise and yet its influence on the annuitization timing is huge, as illustrated
by Milevsky and Young (2007). Huang et al. (2013) adopt a ‘no-arbitrage’ perspective. In particular, these authors assume
that the individual is trying to maximize the cost of the GLWB guarantee to the insurance company offering this service.

Based on a purely financial point of view, this paper uses the market value as the optimization criterion. This value is the
sum of expected discounted future payments. The discount rate used in the calculation is assumed to be constant in this
paper and is henceforth denoted by ρ. Exponential discounting factors have been chosen for the ease of the calculations, but
further study might be necessary to select a model that is more suitable for addressing aspects of the interest risk associated
with the valuation of long-term issues (such as pension matters), which have a social dimension. Brody and Hughston
(2013) discuss this in greater detail.

The moment at which the person purchases the annuity, denoted by τ, depends both on his age and on his available
wealth. A first constraint comes from practical commercial observations. Indeed, in practice, insurers refuse to sell annuities
to the elderly in order to limit the risk of anti-selection. Let us denote this age by ~Tmþη, so that a person aged η years at time
0 will reach the maximal age in ~Tm years. Before reaching this age, the annuitization is triggered when the accrued financial
return crosses an unknown boundary, in the domain time-assets return. This limit is denoted by bt and C denotes the region
of the domain ½0; ~Tm� � R on which it is optimal to postpone the purchase of the annuity (also called the continuation
region). In the following discussion, its complementary is denoted by C .

A first basic reasoning suggests that the individual should switch to an annuity if the financial asset performs poorly, due
to the fear of subsequent erosion of wealth. In this respect, the continuation region should be delimited by a lower
boundary,

C¼ fðt; xÞj0rtr ~Tm;W0exZbtg:

The purchase time τ is then defined as inffsjWsrbs; sZtg4 ~Tm. However an alternative reasoning leads to considering
annuitization only when the financial return achieved is high enough to provide a reasonable annuity. In this case, the
continuation region should be delimited by an upper limit,

C¼ fðt; xÞj0rtr ~Tm;W0exrbtg:

The purchase time τ is then equal to inffsjWsZbs; sZtg4 ~Tm. At this stage, it is not possible to determine whether C is the
upper part or the lower part of the domain ½0; ~Tm� � R. One can only guess that they are mutually exclusive. The necessary
conditions (such that they are indeed mutually exclusive) are given later (Section 6) along with specifying the type of
boundary linked to the actuarial and financial parameters.

The objective pursued by the investor at a time tr ~Tm is to determine the boundary maximizing the market value of his
portfolio. This value of future discounted cash-flows is denoted by Vðt;XtÞ and is defined for an elapsed time tr ~Tm as

Vðt;XtÞ ¼max
τ

E

Z τ4 τd 4 ~Tm

t
e�ρðs� tÞαWs dsþe�ρðτd � tÞ1τd r ðτ4 ~T m

ÞWτd

 
þ
Z τd

τ4 ~T m 4 τd

e�ρðs� tÞBηþðτ4 ~T m
Þ dsjF t

�
; ð4:1Þ

whereas Vð ~Tm;X ~T m
Þ ¼ EðR τd~Tm 4 τd

e�ρðs� ~TmÞBηþ ~Tm
dsjF ~T m

Þ if there was no conversion of funds before reaching ~Tm. Given that

the time of death is independent from the filtration of financial returns Xt, the value function for tr ~Tm is rewritten as
follows:

V t;Xtð Þ ¼max
τ

E

Z τ4 ~T m

t
e�ρðs� tÞ

s� tpηþ tαþ
∂
∂ss� tqηþ t

� �
Ws ds

 
þ

Z
τ4 ~Tm

Tm

e�ρðs� tÞ
s� tpηþ t Bηþ τ4 ~T m

dsjF t

1
CA

¼max
τ

E

Z τ4 ~T m

t
e�
R s

t
ðρþμðηþuÞÞ du αþμðηþsÞð ÞWs ds

 
þ

Z
τ4 ~T m

Tm

e�
R s

t
ðρþμðηþuÞÞ duBηþ τ4 ~T m

dsjF t

1
CA: ð4:2Þ
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In view of Eqs. (3.3) and (3.5) the second term of this last expectation is equal toZ Tm

τ4 ~Tm

e�
R s

t
ðρþμðηþuÞÞ duBηþ τ4 ~Tm

ds¼ e�
R τ4 ~Tm

t ðρþμðηþuÞÞ du Wτ4 ~T m
�K

� � 1
1�ϵ

aηþ τ4 ~Tm

atf
ηþ τ4 ~Tm

where 1=ð1�ϵÞðaηþ τ4 ~Tm
=atf

ηþ τ4 ~T m
Þ ¼ f ðτ4 ~TmÞ is the money's worth, as defined by Eq. (3.6), that compares the expected

present value of annuity payments with the price paid for the annuity. This function is directly related to the gap between
real mortality rates and those used by the insurer to price the annuity. For persons who are more healthy on average than
those used as a reference population by the insurer, this function will be greater than 100%. On the other hand, for the less
healthy individuals, the function f ðτÞ will be below 100%. The value function can then be rewritten as follows for the range
tr ~Tm:

Vðt;XtÞ ¼max
τ

E

Z τ4 ~T m

t
e�
R s

t
ðρþμðηþuÞÞ duðαþμðηþsÞÞWs dsþ

 
e�
R τ4 ~Tm

t
ðρþμðηþuÞÞ duðWτ4 ~T m

�KÞf ðτ4 ~TmÞjF t

�
ð4:3Þ

and similarly Vð ~Tm;X ~T m
Þ ¼ ðW ~Tm

�KÞf ð ~TmÞ (if there is no conversion before reaching ~Tm).
From the theory of stochastic control (e.g. Fleming and Rishel, 1975), for a given boundary, the value function is the

solution of the following system of equations for ðtrsr ~TmÞ:
∂Vðs; xÞ

∂s
� ρþμ ηþsð Þð ÞV s; xð ÞþLV s; xð Þ

¼ �ðαþμðηþsÞÞWteðx�Xt Þ for ðs; xÞAC
Vðs; xÞ ¼ ðWteðx�Xt Þ �KÞf ðsÞ for ðs; xÞAC ;

8>>><
>>>:

ð4:4Þ

where LuðxÞ is the infinitesimal generator of the process Xt, as defined by

Lu xð Þ ¼ θ�αð Þ∂u
∂x

þ1
2
s2

∂2u
∂x2

þλE u xþYð Þ�u xð Þð Þ; ð4:5Þ

and with the following terminal condition Vð ~Tm; xÞ ¼ ðW ~T m
�KÞf ð ~TmÞ (if no conversion before ~Tm). The continuation region is

delimited by an optimal boundary hs≔lnðbs=W0Þ and is set so to guarantee the continuity of the value function on the
boundary:

Vðs;hsÞ ¼ ðWteðhs �Xt Þ �KÞf ðsÞ:
At the time of writing, the authors were unaware of a closed form solution for systems as represented by Eq. (4.4). Thus,
trying to solve it directly by a finite difference method is far from straightforward. For this reason, another approach,
combining the Wiener–Hopf factorization and time stepping, was used.

5. Wiener–Hopf factorization

The fundamental principles of the Wiener–Hopf factorization are now considered along with the expected present value
operators (EPV-operator) such as defined by Boyarchenko and Levendorskii (2007). Let q40 be defined as a riskless rate.
The expected present value operator EPV of a stream gðXtÞ is defined as follows:

ðEqgÞðxÞ ¼ qEx
Z 1

0
e�qtgðXtÞ dt

� �
;

where in general ExðgðXtÞÞ ¼ EðgðXtÞ∣X0 ¼ xÞ. The following result holds for an exponential function gðxÞ ¼ ezx by the definition
of the Lévy exponent and by direct integration:

Eqg
� �

xð Þ ¼ qEx
Z 1

0
e�qtgðXtÞ dt

� �
¼ qezx

q�ψðzÞ; ð5:1Þ

which applies under the condition q4ψðzÞ where z is real and under the condition q4ψðRe zÞ, where z is complex.
Let the two functions Xt ¼ sup0r sr tXs and Xt ¼ inf0r sr tXs be respectively the supremum and the infimum of the

process Xs on the time interval ½0; t�. If a random exponential time Γ is introduced, having an intensity equal to q, the
Wiener–Hopf factorization is in the case that X0¼0 for zA iR :

E0ðezXΓ Þ ¼ E0ðezX Γ ÞE0ðezX Γ Þ: ð5:2Þ
This relation comes from the observation that XΓ ¼ XΓþXΓ�XΓ and the fact that XΓ and XΓ�XΓ are independent from each
other and that XΓ�XΓ is distributed like X

Γ
. Introducing the notation

κþ
q ðzÞ ¼ qE0

Z 1

0
e�qsezX sds

� �
¼ E0ðezX Γ Þ ð5:3Þ
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κ�
q ðzÞ ¼ qE0

Z 1

0
e�qsezX s ds

� �
¼ E0 ezX Γ

� �
: ð5:4Þ

Since E0ðezXΓ Þ ¼ q=ðq�ψðzÞÞ, the Wiener–Hopf factorization formula (5.2) can be represented as

q
q�ψðzÞ ¼ κþ

q zð Þκ�
q zð Þ: ð5:5Þ

For any function gð�Þ defined on C, three EPV operators are defined as follows:

ðEqgÞðxÞ ¼ qEx
Z 1

0
e�qsgðXsÞ ds

� �

ðEþ
q gÞðxÞ ¼ qEx

Z 1

0
e�qsgðXsÞ ds

� �

ðE�
q gÞðxÞ ¼ qEx

Z 1

0
e�qsgðXsÞ ds

� �
: ð5:6Þ

The Wiener–Hopf factors κþ
q ðzÞ and κ�

q ðzÞ defined in Eqs. (5.3) and (5.4) respectively are closely related to these EPV
operators. Indeed, if gð�Þ ¼ ez:, then

Eqez:
� �

xð Þ ¼ q
q�ψðzÞe

zx

ðEþ
q ez:ÞðxÞ ¼ ezxκþ

q ðzÞ
E�
q ez:

� �
ðxÞ ¼ ezxκ�

q ðzÞ ð5:7Þ

which with Eq. (5.1) leads to ðEqez:Þ ¼ ðEþ
q E�

q ez:Þ. It is well-known that the Wiener–Hopf factorization of a given function is
unique under weak conditions, in particular, it is unique in case of a rational function that does not vanish on the imaginary
line. Boyarchenko and Levendorskii (2007) give a proof of this result for all functions gAL1ðRÞ. The operator Eq is the
inverse of the operator q�1ðq�LÞ where L is the infinitesimal generator of the process Xt. Furthermore,
E�1
q ¼ ðEþ

q Þ�1ðE�
q Þ�1 and E�1

q ¼ ðE�
q Þ�1ðEþ

q Þ�1. These results are used in the next section.
Generally, the Wiener–Hopf factors do not have closed form formulae. However, given that q�ψðzÞ is the ratio of two

polynomials P(z) and Q(z), namely

q�ψ zð Þ ¼ PðzÞ
Q ðzÞ; ð5:8Þ

Boyarchenko and Levendorskii (2007) have proven the uniqueness of the Wiener–Hopf factors and found their expressions.
The numerator P(z) is a polynomial of degree 4:

P zð Þ ¼ � θ�αð Þzþ1
2
z2s2�λ�q

� �
λþ �z
� �

z�λ�ð Þ�λpλþ z�λ�ð Þþλ 1�pð Þλ� λþ �z
� �

;

whereas the denominator Q(z) is the product

Q ðzÞ ¼ ðλþ �zÞðz�λ� Þ;
whose positive and negative roots are λþ and λ� . An analysis of variation, reveals that the ratio ðP=Q ÞðzÞ has two asymptotes
located at these roots of Q(z), one thus being located in the left half-plane and the other one in the right half-plane. The
polynomial P(z) has 4 real roots. Indeed, it suffices to note that q�ψð0Þ40, q�ψðzÞ-�1 as z-71, z-λþ �0 and
z-λ� þ0, and q�ψðzÞ-�1 as z-λ� �0 and z-λþ þ0. Then P(z) crosses four times the zero axis and has two positive and
negative roots, denoted by βþ

k and β�
k , k¼1,2 which can be set in the following order:

β�
2 oλ� oβ�

1 o0oβþ
1 oλþ oβþ

2 :

In this context, the Wiener–Hopf factors are provided by

κþ
q zð Þ ¼ λþ �z

λþ
∏
2

k ¼ 1

βþ
k

βþ
k �z

ð5:9Þ

κ�
q zð Þ ¼ λ� �z

λ�
∏
2

k ¼ 1

β�
k

β�
k �z

: ð5:10Þ

These Wiener–Hopf factors can also be rewritten as follows:

κ7
q zð Þ ¼ a7

1
β7
1

β7
1 �z

þa7
2

β7
2

β7
2 �z

ð5:11Þ

where

a7
1 ¼ β7

2

λ7
ðβ7

1 �λ7 Þ
ðβ7

1 �β7
2 Þ; a7

2 ¼ β7
1 ðβ7

2 �λ7 Þ
λ7 ðβ7

2 �β7
1 Þ: ð5:12Þ
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And as shown by Boyarchenko and Levendorskii (2007, p. 201), Eþ
q and E�

q act on bounded measurable functions gð�Þ as the
following integral operators:

ðEþ
q gÞðxÞ ¼ ∑

2

j ¼ 1
aþ
j

Z þ1

0
βþ
j e�βþ

j ygðxþyÞ dy¼ ∑
2

j ¼ 1
aþ
j

Z þ1

x
βþ
j eβ

þ
j ðx�yÞgðyÞ dy; ð5:13Þ

ðE�
q gÞðxÞ ¼ ∑

2

j ¼ 1
a�
j

Z 0

�1
ð�β�

j Þe�β�
j ygðxþyÞ dy¼ ∑

2

j ¼ 1
a�
j

Z x

�1
ð�β�

j Þeβ�
j ðx�yÞgðyÞ dy: ð5:14Þ

It is also easy to check that these formulae are true for exponential functions gðxÞ ¼ ezx or for any linear combination of
exponential functions. Expressions (5.13) and (5.14) will be used later.

6. Time stepping

The system (4.4) is solved using the method of Rothschild and Stiglitz (1976), which is a generalization of Carr's
randomization to price American put options. Therefore, the time interval ½t; ~Tm � is split into n subperiods of time
t ¼ t0ot1o⋯otn ¼ ~Tm . Δj denotes the time interval between tj and tjþ1. On these intervals of time, functions ðρþμðηþsÞÞ
and bs are assumed to be constant:

ðρþμðηþsÞÞ ¼ ðρþμjÞ if sA ½tj; tjþ1½
bs ¼ bj if sA ½tj; tjþ1½

(
ð6:1Þ

where μj ¼ μðηþtjÞ and bj ¼ btj . The derivative with respect to time present in the system (4.4) is broken into time steps.
If Vðtj; xÞ is denoted by vj(x) and f ðtjÞ by fj, the following discrete version of the system (4.4) is obtained:

vjþ1ðxÞ�ð1þΔjðρþμjÞ�ΔjLÞvjðxÞ ¼ �ðαþμjÞΔjWteðx�Xt Þ for ðj; xÞAC
vjðxÞ ¼ ðWteðx�Xt Þ �KÞf j for ðj; xÞAC

(
ð6:2Þ

with vnðxÞ ¼ ðWteðx�Xt Þ �KÞf n. In order to build a solution in terms of EPV operators, a new function is defined:

~vj ðxÞ ¼ vjðxÞ�ðWteðx�Xt Þ �KÞf j ð6:3Þ

which is the difference between the value of the investment policy and the value of purchasing immediately a life annuity.
~vj ðxÞ is the value of the option to delay the annuitization and is strictly positive on C. The first equation of (6.2) can be
rewritten in terms of ~vjðxÞ as follows:

ð1þΔjðρþμjÞ�ΔjLÞ ~vjðxÞ ¼ vjþ1ðxÞþðαþμjÞΔjWteðx�Xt Þ �ð1þΔjðρþμjÞ�ΔjLÞðWteðx�Xt Þ �KÞf j for ðj; xÞAC ð6:4Þ

and the boundary condition becomes

~vjðxÞ ¼ 0 for ðj; xÞAC : ð6:5Þ

Given that the infinitesimal generator can be reformulated as a function of the characteristic exponent of Y (Eq. (2.7))

LWteðx�Xt Þ ¼Wteðx�Xt Þ θ�αð Þþ1
2 s

2þλ ϕY 1ð Þ�1
� �� �

; ð6:6Þ

Eq. (6.4) is rewritten as follows:

1
Δj
þ ρþμj
� ��L

� �
~vj xð Þ ¼ 1

Δj
vjþ1 xð Þ� � αþμj

� �þ f j
1
Δj
þρþμj� θ�αð Þ�1

2
s2�λ ϕY ð1Þ�1

� �� �� �
Wteðx�Xt Þ

þ 1
Δj
þ ρþμj
� �� �

f jK for j; xð ÞAC: ð6:7Þ

In order to simplify the notation in the following calculations, δj is defined as a constant on the interval of time ½tj; tjþ1Þ:

δj≔� αþμj
� �þ f j

1
Δj
þρþμj� θ�αð Þ�1

2
s2�λ ϕY 1ð Þ�1

� �� �
: ð6:8Þ

It is now possible to present the solution in terms of EPV of successive functions. In the following propositions, the wealth
appearing in the equations is expressed as a function of the individual's initial wealth W0. Since the period ½t; ~Tm � is
considered, the replacing of W0 by Wte�Xt in the equations, would better underline the fact that Wt and Xt are known at
time t. However, since these formulae would then turn out to be quite long, it is better to work using W0 for notational use.

Proposition 6.1. Let us define the function gjð�Þ as follows:

gj xð Þ ¼ 1
Δj
vjþ1 xð Þ�δjW0exþqjf jK ð6:9Þ



D. Hainaut, G. Deelstra / Journal of Economic Dynamics & Control 44 (2014) 124–146132
where

qj ¼
1
Δj
þ ρþμj
� �

: ð6:10Þ
(1)
 If gj(x) is monotone decreasing, the value function at time tj is equal to

vjðxÞ ¼ W0ex�KÞf jþq�1
j ðEþ

qj
1ð�1; ln bj=W0 �E�

qj
gj

� �
ðxÞ ð6:11Þ

and the continuation region C is the half plane of ½0; ~Tm� � R below the boundary ln bj=W0.

(2)
 If gj(x) is monotone increasing, the value function at time tj is equal to

vjðxÞ ¼ ðW0ex�KÞf jþq�1
j E�

qj
1½ln bj=W0 ;þ1ÞEþ

qj
gj

� �
ðxÞ ð6:12Þ

and the continuation region C is the half plane of ½0; ~Tm� � R above the boundary ln bj=W0.
Proof. According to Eqs. (6.7) and (6.8), the function ~vjðxÞ is solution of the following system:

ðqj�LÞ ~vjðxÞ ¼ gjðxÞ if ðj; xÞAC
~vjðxÞ ¼ 0 if ðj; xÞAC :

(
ð6:13Þ

Given that E�1
qj

¼ q�1
j ðqj�LÞ, the system (6.13) implies that

E�1
qj

~vjðxÞ ¼ q�1
j gjðxÞþgþ

j ðxÞ

where gþ
j ðxÞ≔E�1

qj
~vjðxÞ�q�1

j gjðxÞ is a function vanishing on C. As E�1
qj

¼ ðE�
qj
Þ�1ðEþ

qj
Þ�1 and E�1

qj
¼ ðEþ

qj
Þ�1ðE�

qj
Þ�1, the last

equation leads to:

ðEþ
qj
Þ�1 ~vjðxÞ ¼ q�1

j E�
qj
gjðxÞþE�

qj
gþ
j ðxÞ

ðE�
qj
Þ�1 ~vjðxÞ ¼ q�1

j Eþ
qj
gjðxÞþEþ

qj
gþ
j ðxÞ: ð6:14Þ

In order to proof the statements in (1), it is assumed that the continuation region is defined by the half plane of ½0; ~Tm� � R

above the given boundary ln bj=W0. Then, by construction, gþ
j ðxÞ ¼ 0 and Eþ

qj
gþ
j ðxÞ ¼ 0 for xZ lnðbj=W0Þ. From Eq. (6.14), the

price of the option to delay the annuitization should then be equal to:

~vjðxÞ ¼ q�1
j ðE�

qj
1½ln bj=W0 ;þ1ÞEþ

qj
gjÞðxÞ:

As gj(x) is monotone decreasing, Eþ
qj
gj and E�

qj
1½ln bj=W0 ;þ1ÞEþ

qj
gj are also monotone decreasing (see Proposition 10.2.1 given

by Boyarchenko and Levendorskii, 2007), but it is also a direct consequence of the definition of the EPV operators. Then ~vjðxÞ
is monotone decreasing. As ~vjðln bj=W0Þ ¼ 0 to guarantee the continuity of the value function on the boundary,
~vjðln bj=W0Þ ¼ 0 is the maximum of ~vj ð�Þ on C: From this, ~vj ð�Þ is negative on C which contradicts the fact that the option
to annuitize is strictly positive everywhere on the continuation region.
The assumption is now made that the continuation region is defined by the half plane of ½0; ~Tm� � R below the given

boundary ln bj=W0. Then gþ
j ðxÞ ¼ 0 for xr lnðbj=W0Þ. By construction, E�

qj
gþ
j ðxÞ is null below lnðbj=W0Þ. From Eq. (6.14), the

price of the option to delay the annuitization is equal to:

~vjðxÞ ¼ q�1
j Eþ

qj
1 �1;ln bj=W0ð �E�

qj
gj

� �
ðxÞ:

As gj(x) is monotone decreasing E�
qj
gj and Eþ

qj
1ð�1;ln bj=W0�E�

qj
gj are also monotone decreasing. In this case ~vjðln bj=W0Þ ¼ 0 is

the minimum of ~vðxÞ on C and ensures that ~vjðxÞ is strictly positive on C.
The second statement (2) can be proven by a similar reasoning. □

The calculation of the EPV operators is done numerically with the method to identify optimal boundaries being given
later. Firstly, β7

k is denoted as the roots of the numerator of qj�ψðzÞ and a7
k the related coefficients such as defined by

Eqs. (5.12). Then analytical expressions of EPV operators are provided in the next result:

Proposition 6.2. The value of ðE�
qj
gjÞðxÞ and ðEþ

qj
gjÞðxÞ is given by

E�
qj
gj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
a�
k β�

k w�
k;jþ1 xð Þ�δjW0κ

�
qj

1ð Þexþqjf jK ð6:15Þ

Eþ
qj
gj

� �
xð Þ ¼ 1

Δj
∑
2

k ¼ 1
aþ
k βþ

k wþ
k;jþ1 xð Þ�δjW0κ

þ
qj

1ð Þexþqjf jK ð6:16Þ
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where the functions w�
k;jþ1ð�Þ and wþ

k;jþ1ð�Þ are defined as follows:

w�
k;jþ1ð�Þ ¼ eβ

�
k x
Z x

�1
e�β�

k yvjþ1ðyÞ dy; ð6:17Þ

wþ
k;jþ1ð�Þ ¼ eβ

þ
k
x
Z þ1

x
e�βþ

k
yvjþ1ðyÞ dy: ð6:18Þ

Proof. The result is a direct consequence of Eqs. (5.13) and (5.14) which state that

ðEþ
qj
vjþ1ÞðxÞ ¼ ∑

2

k ¼ 1
aþ
k βþ

k eβ
þ
k
x
Z þ1

x
e�βþ

k
yvjþ1ðyÞ dy;

ðE�
qj
vjþ1ÞðxÞ ¼ � ∑

2

k ¼ 1
a�
k β�

k eβ
�
k x
Z x

�1
e�β�

k yvjþ1ðyÞ dy

and also of Eq. (5.7). □

In applications, the integrals are computed numerically in order to calculate w�
k;jþ1ð�Þ and wþ

k;jþ1ð�Þ.

Remark 6.1. It is already noted that the distribution/contribution rate can be time dependent, denoted by αðtÞ. In this case,
αðtÞ is approached by a staircase function which is constant between tj and tjþ1. All previous results can be applied by
replacing α by αj in the definition of δj. If some lump sum payments are planned before the annuitization, the arguments can
be easily adapted. Thus if lump sum payments C are scheduled on the date tj, then the value function in the definition of
gj(x), Eq. (6.9), is equal to vjþ1ðxÞ ¼ vjþ1ðxþ Þ�C, where xþ ¼ lnðexþC=W0Þ.

The optimal boundary is determined such that the continuity of the value function is guaranteed on the line delimiting
the domain into continuation and annuitization regions (Section 4). This means that if gj(x) is monotone decreasing,
E�
qj
gjðxÞ ¼ E�

qj
~vjðxÞ ¼ 0 for x¼ lnðbj=W0Þ. Similarly if gj(x) is monotone increasing, Eþ

qj
gjðxÞ ¼ Eþ

qj
~vjðxÞ ¼ 0 for x¼ lnðbj=W0Þ. The

optimal boundaries then easily follow on from the results of Boyarchenko and Levendorskii (2007), as explained in the
following corollary.

Corollary 6.3. When gjð�Þ are respectively monotone decreasing or monotone increasing functions with one root, the optimal
boundaries hn

j ¼ lnðbj=W0Þ are respectively solutions of

E�
qj
gj

� �
hn

j

� �
¼ � 1

Δj
∑
2

k ¼ 1
a�
k β�

k w�
k;jþ1 hn

j

� �
�δjW0κ

�
qj

1ð Þehn

j þqjf jK ¼ 0: ð6:19Þ

Eþ
qj
gj

� �
hn

j

� �
¼ 1
Δj

∑
2

k ¼ 1
aþ
k βþ

k wþ
k;jþ1 hn

j

� �
�δjW0κ

þ
qj

1ð Þehn

j þqjf jK ¼ 0: ð6:20Þ

Proof. The proof is a direct consequence of Proposition 10.2.4 of Boyarchenko and Levendorskii (2007). □

The following proposition presents some necessary conditions satisfied when gj(x) are monotone increasing or
decreasing with one root.

Proposition 6.4. If the function gj(x) is monotone increasing with one root then

1
Δj
f jþ1�δj40 and qjf j�

1
Δj
f jþ1

� �
Ko0: ð6:21Þ

If the function gj(x) is monotone decreasing with one root then

1
Δj
f jþ1�δjo0 and qjf j�

1
Δj
f jþ1

� �
K40: ð6:22Þ

Proof. gjðxÞ is defined by Eq. (6.9)

gj xð Þ ¼ 1
Δj
vjþ1 xð Þ�δjW0exþqjf jK

where vjþ1ðxÞ is an increasing function. Furthermore, vjþ1ðxÞZ ðW0ex�KÞf jþ1 in the continuation region C (if it is not the
case, the investor should move directly to a life annuity) and vjþ1ðxÞ ¼ ðW0ex�KÞf jþ1 in the annuitization region C . Given
these facts, the following limits are inferred:

gj xð Þ ¼ 1
Δj
f jþ1�δj

� �
W0exþ qjf j�

1
Δj
f jþ1

� �
K for xAC

gj xð ÞZ 1
Δj
f jþ1�δj

� �
W0exþ qjf j�

1
Δj
f jþ1

� �
K for xAC: ð6:23Þ
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If gj(x) is monotone increasing then C is bounded from below. Taking Eq. (6.23), where xr lnðbj=W0Þ then 1=Δjðf jþ1�δjÞ
must be positive. As gj(x) has one root, then limx-�1gjðxÞo0 and ðqjf j�1=Δjðf jþ1ÞKo0Þ. The same approach can be used to
prove the conditions (6.22). □

Conditions (6.21) or (6.22) are necessary but not sufficient. However, it has been observed in numerical tests that they
seem to be sufficient, despite the lack of proof offered by the authors. In any case, these conditions are useful to detect
problems for which there appears to be no solution such as developed in Proposition 6.1. When conditions (6.21) or (6.22)
are not satisfied, gj(x) cannot be monotone increasing nor decreasing with one root. In this case, the optimization problem is
not well-formulated. To understand what happens in this case, 1=Δjðf jþ1Þ�δj40 is assumed. Then gj xð Þ is bounded from
below by an increasing exponential function and if gj is monotone increasing, C is delimited by a lower boundary. However,
when ðqjf j�1=Δjðf jþ1ÞÞK40, the function gjðxÞ is strictly positive everywhere on C and cannot be null on its boundary. In
this case, the price of the option to delay the annuitization is positive and increasing with lnðbj=W0Þ. Choosing bj ¼ þ1
optimizes then the value function and the recommendation for annuitization never occurs before ~Tm.

If 1=Δjðf jþ1Þ�δjo0, gjðxÞ is bounded from below by a decreasing exponential function and if gj is monotone decreasing, C
is delimited by an upper boundary. Nonetheless when ðqjf j�1=Δjðf jþ1ÞÞKo0, the function gjðxÞ is then strictly negative
everywhere on C and cannot be null on its boundary. The price of the option to delay the annuitization is here negative and
decreasing with lnðbj=W0Þ. Choosing bj ¼ �1 is optimal and annuitization should be done immediately.

The next proposition presents the value of ðEþ
qj
1ð�1;ln bj=W0 �E�

qj
gjÞðxÞ.

Proposition 6.5. The price at tj of the option to delay annuitization is in the case of a monotone decreasing function gjð�Þ equal to

q�1
j Eþ

qj
1ð�1;ln bj=W0 �E�

qj
gj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
∑
2

l ¼ 1
a�
k β�

k aþ
l βþ

l zþk;l;jþ1 xð Þ
"

�δjW0κ
�
qj

1ð Þ ∑
2

k ¼ 1
aþ
k

βþ
k

1�βþ
k

ex eð1�βþ
k
Þðln bj=W0 �xÞ �1

� �

�qjf jK ∑
2

l ¼ 1
aþ
l eβ

þ
l
ðx� ln bj=W0Þ �1

� �#
q�1
j ð6:24Þ

and in the case of a monotone increasing function gjð�Þ equal to

q�1
j E�

qj
1½ln bj=W0 ;þ1ÞEþ

qj
gj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
∑
2

l ¼ 1
a�
k β�

k aþ
l βþ

l z�k;l;jþ1 xð Þ
"

�δjW0κ
þ
qj

1ð Þ ∑
2

l ¼ 1
a�
l

β�
l

ð1�β�
l Þe

x eð1�β�
l Þðln bj=W0 � xÞ �1

� �

�qjf jK ∑
2

l ¼ 1
a�
l eβ

�
l x� ln bj=W0ð Þ�1

� �#
q�1
j ð6:25Þ

where the functions zþk;l;jþ1ð�Þ and z�k;l;jþ1ð�Þ are defined as follows:

zþk;l;jþ1 �ð Þ ¼ eβ
þ
l
x
Z ln bj=W0

x
e�βþ

l
yw�

k;jþ1 yð Þ dy; xr ln
bj
W0

ð6:26Þ

z�k;l;jþ1 �ð Þ ¼ eβ
�
l x
Z x

ln bj=W0

e�β�
l ywþ

k;jþ1 yð Þ dy; xZ ln
bj
W0

ð6:27Þ

and are null everywhere else.

Proof. The operator Eþ
qj
1ð�1;ln bj=W0 �E�

qj
gj can be seen as the sum of three terms:

Eþ
qj
1ð�1;ln bj=W0 �E�

qj
gj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
a�
k β�

k Eþ
qj
1ð�1;ln bj=W0�w

�
k;jþ1ðxÞ

� �
�δjW0κ

�
qj
ð1Þ Eþ

qj
1ð�1;ln bj=W0�e

x
� �

þqjf jK Eþ
qj
1ð�1;ln bj=W0 �

� �
: ð6:28Þ

In view of Eq. (5.13), the first term equals

Eþ
qj
1ð�1;ln bj=W0 �w

�
k;jþ1ðxÞ

� �
¼ ∑

2

l ¼ 1
aþ
l βþ

l

Z ln bj=W0

x
eβ

þ
l
ðx�yÞw�

k;jþ1ðyÞ dy¼ ∑
2

l ¼ 1
aþ
l βþ

l eβ
þ
l
x
Z ln bj=W0

x
e�βþ

l
yw�

k;jþ1ðyÞ dy:

A direct calculation leads to the following expression for the second term:

Eþ
qj
1ð�1;ln bj=W0 �e

x
� �

¼ ∑
2

l ¼ 1
aþ
l βþ

l

Z ln bj=W0

x
eβ

þ
l
ðx�yÞey dy¼ ∑

2

l ¼ 1
aþ
l

βþ
l

ð1�βþ
l Þe

x eð1�βþ
l
Þðln bj=W0 � xÞ �1

� �
:

Finally the last term of (6.28) can be rewritten as

Eþ
qj
1ð�1;ln bj=W0 �

� �
¼ ∑

2

l ¼ 1
aþ
l βþ

l

Z ln bj=W0

x
eβ

þ
l
ðx�yÞ dy¼ � ∑

2

l ¼ 1
aþ
l eβ

þ
l
ðx� ln bj=W0Þ �1

� �
:

The operator E�
qj
1½ln bj=W0 ;1ÞEþ

qj
gj is obtained in a similar way. □
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The functions zþk;l;jþ1ð�Þ and z�k;l;jþ1ð�Þ are computed numerically. Section 8 presents some results in order to illustrate the
feasibility of the method.

Algorithm 1 summarizes the backward procedure and main steps implemented to retrieve the optimal boundaries in
numerical applications.

Algorithm 1. Backward calculation of upper or lower boundaries.
Initialize vnðxÞ ¼ ðW0ex�KÞf n (compulsory annuitization at time ~Tm)
For j¼n � 1 to 0

1. Calculation of gjðxÞ ¼ 1=Δjðvjþ1ÞðxÞ�δjW0exþqjf jK , monotonicity checked

2. Numerical search of β�
2 , β�

1 , βþ
1 , βþ

2 , λ� and λþ
defining the Wiener Hopf factors, κ�

qj
ðzÞ, κþ

qj
ðzÞ

3. Valuation of E�
qj
gjðxÞ or of Eþ

qj
gjðxÞ,

4. Numerical search of hn

j ¼ ln bj=W0, root of E�
qj
gjðxÞ ¼ 0 or Eþ

qj
gjðxÞ ¼ 0,

5. Valuation of the option to annuitize Eþ
qj
1ð�1;ln bj=W0 �E�

qj
gjðxÞ

or E�
qj
1½ln bj=W0 ;þ1ÞEþ

qj
gjðxÞ,

6. Update of the value function: vjðxÞ ¼ ðW0ex�KÞf jþoption to annuitize
next j
7. Probability of annuitization

As the investor has the right to withdraw his money from the mutual fund at any moment to purchase a life annuity, the
fund manager faces in certain circumstances a surrender risk. For example, in France, due to tax incentives, insurers and
bankers are encouraged to invest their savings in funds with private equity. These funds with non-listed stocks issued by
SME's (small and medium enterprises) provide a higher return in exchange for their liquidity risk. However if the motivation
to withdraw money becomes strong, large outflows of money can cause liquidity shortages. Understanding the probabilities
of annuitization are thus helpful to manage this risk. They can either be calculated by Monte Carlo simulations or by
inverting the Laplace transform of the hitting time τ. The second approach is considered here. By definition, for a given
constant γ, the Laplace transform of τ is given by

Eðe� γτ j F tÞ ¼ γ

Z þ1

t
e� γsPðτrsjF tÞ ds¼ γLγðPðτrsjF tÞÞ ð7:1Þ

where Lγ is the Laplace operator. The probability that the individual leaves the mutual fund to purchase to a life annuity is
then obtained by inverting this operator:

Pðτrs F tj Þ ¼L�1
γ

1
γ
E e� γτjF tð Þ

� �
¼ 1
2πi

lim
T-1

Z γ0 þ iT

γ0 � iT
eγs

1
γ
E e� γτ F tj Þ dγð

where γ0 is larger than the real part of all singularities of Eðe� γτjF tÞ. It is known that the Laplace transform is a function of
the fund return, Xt:

Eðe� γτjF tÞ≔uðt;XtÞ

and it is solution of the following system:

∂uðs; xÞ
∂s

þ L�γð Þu s; xð Þ ¼ 0 if xAC
uðt; xÞ ¼ 1 if xAC :

8<
: ð7:2Þ

where L is the infinitesimal generator of Xt. The authors are unaware of any analytical solutions for this system, but it is
possible to compute numerical estimates by time stepping. Once again, the time interval ½t; ~Tm� is split into n subperiods of
time: t ¼ t0ot1o⋯otn ¼ ~Tm. The term Δj is the length of the time interval between tj and tjþ1. On these intervals, bs is
assumed constant and bs ¼ bj if sA ½tj; tjþ1Þ. Discretizing the derivative with respect to time in Eq. (7.2) and denoting uðtj; xÞ
by uj(x), lead to

ujþ1ðxÞ� 1þΔjγ�ΔjL
� �

ujðxÞ ¼ 0 for xAC
ujðxÞ ¼ 1 for xAC

(
ð7:3Þ

where unðxÞ ¼ 0. The Laplace transform can be obtained in terms of EPV operators, as shown previously in Section 6.
To achieve this, the following function is introduced

~uj ðxÞ ¼ ujðxÞ�1 ð7:4Þ
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and Eqs. (7.3) are rewritten as follows:

1
Δj
þγ�L

� �
~uj xð Þ ¼ 1

Δj
ujþ1 xð Þ� 1

Δj
þγ

� �
for xAC

~ujðxÞ ¼ 0 for xAC :

8<
: ð7:5Þ

Since this last system is similar to (6.2), the following results are inferred:

Corollary 7.1. Defining the function guj ð�Þ as follows:

guj xð Þ ¼ 1
Δj
ujþ1 xð Þ�quj ð7:6Þ

where quj ¼ 1=Δjþγ. If C¼ fðt; xÞj 0rtr ~Tm; xr lnðbj=W0Þg, the Laplace transform at time tj for j¼ n�1;n�2;…;0 is equal to

ujðxÞ ¼ 1þðquj Þ�1 Eþ
quj
1ð�1; ln bj=W0 �E�

quj
guj

� �
ðxÞ: ð7:7Þ

If C¼ fðt; xÞj 0rtr ~Tm; xZ lnðbj=W0Þg, then

ujðxÞ ¼ 1þðquj Þ�1 E�
quj
1½ln bj=W0 ;1ÞEþ

quj
guj

� �
ðxÞ: ð7:8Þ

Proof. According to Eqs. (7.5), the function ~ujðxÞ is solution of the following system:

ðquj �LÞ ~ujðxÞ ¼ guj ðxÞ if xAC
~ujðxÞ ¼ 0 if xAC :

(
ð7:9Þ

Given that E�1
quj

¼ qu�1
j ðquj �LÞ, the system (7.9) implies that

E�1
quj

~ujðxÞ ¼ qu�1
j guj ðxÞþguþj ðxÞ

where guþj ðxÞ≔E�1
quj

~ujðxÞ�qu�1
j guj ðxÞ is a function vanishing on C. As E�1

quj
¼ ðE�

quj
Þ�1ðEþ

quj
Þ�1 and E�1

quj
¼ ðEþ

quj
Þ�1ðE�

quj
Þ�1, the last

equation leads to the following observations:

ðEþ
quj
Þ�1 ~ujðxÞ ¼ qu�1

j E�
quj
guj ðxÞþE�

quj
guþj ðxÞ

ðE�
quj
Þ�1 ~ujðxÞ ¼ qu�1

j Eþ
quj
guj ðxÞþEþ

quj
guþj ðxÞ:

If

C¼ tj; x
� �j 0rtjrTm; xr ln

bj
W0

� �� 	
;

then guþj ðxÞ is null for xr lnðbj=W0Þ. By construction, E�
qj
guþj ðxÞ and ~ujðxÞ are respectively null below and above lnðbj=W0Þ.

Then,

~ujðxÞ ¼ qu�1
j Eþ

quj
1 �1;ln bj=W0ð �E�

quj
guj

� �
ðxÞ:

In the same way, if

C¼ tj; x
� �j0rtjrTm; xZ ln

bj
W0

� �� 	
;

then guþj ðxÞ is null for xZ lnðbj=W0Þ. By construction, Eþ
quj
guþj ðxÞ and ~ujðxÞ are respectively null above and below lnðbj=W0Þ.

This leads to the result which remains to be proven:

~ujðxÞ ¼ qu�1
j E�

quj
1 ln bj=W0 ;1½ ÞEþ

quj
guj

� �
ðxÞ: □

If β7
k denotes the roots of the numerator of quj �ψðzÞ and a7

k are the related coefficients such as defined by Eqs. (5.12),
then the following corollary provides an analytical expression for EPV operators:

Corollary 7.2. The EPV operators ðE�
quj
guj Þ and ðEþ

quj
guj Þ are equal to

E�
quj
guj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
a�
k β�

k wu�
k;jþ1 xð Þ�quj ð7:10Þ

Eþ
quj
guj

� �
xð Þ ¼ 1

Δj
∑
2

k ¼ 1
aþ
k βþ

k wuþ
k;jþ1 xð Þ�quj ð7:11Þ



Table 1
Parameters fitting the S&P 500 index.

Parameters Jump diffusion Parameters Brownian

θ 16.15%/16.65% ~θ 2.38%
s 3.92% ~s 8.61%
p 0.3825
λ 148.2928
λþ 217.1081
λ� �229.5335
Log. Lik. 10 200 Log. Lik. 9720
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where the functions wu�
k;jþ1 and wuþ

k;jþ1 are defined by

wu�
k;jþ1ð�Þ ¼ eβ

�
k x
Z x

�1
e�β�

k yujþ1ðyÞ dy ð7:12Þ

wuþ
k;jþ1ð�Þ ¼ eβ

þ
k
x
Z 1

x
e�βþ

k
yujþ1ðyÞ dy: ð7:13Þ

Corollary 7.3. In the second terms of (7.7) and (7.8), the EPV operators are equal to

Eþ
qj
1ð�1; ln bj=W0�E�

qj
gj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
∑
2

l ¼ 1
a�
k β�

k aþ
l βþ

l zuþk;l;jþ1 xð Þþquj ∑
2

l ¼ 1
aþ
l eβ

þ
l
ðx� ln bj=W0Þ �1

� �
ð7:14Þ

E�
quj
1½ln bj=W0 ;1ÞEþ

quj
guj

� �
xð Þ ¼ � 1

Δj
∑
2

k ¼ 1
∑
2

l ¼ 1
a�
k β�

k aþ
l βþ

l zu�k;l;jþ1 xð Þþquj ∑
2

l ¼ 1
a�
l eβ

�
l ðx� ln bj=W0Þ �1

� �
ð7:15Þ

where the functions zuþk;l;jþ1ð�Þ and zu�k;l;jþ1ð�Þ are given by

zuþk;l;jþ1 �ð Þ ¼ eβ
þ
l
x
Z ln bj=W0

x
e�βþ

l
ywu�

k;jþ1 yð Þ dy; xr ln
bj
W0

ð7:16Þ

zu�k;l;jþ1 �ð Þ ¼ eβ
�
l x
Z x

ln bj=W0

e�β�
l ywuþ

k;jþ1 yð Þ dy; xZ ln
bj
W0

ð7:17Þ

and are null everywhere else.

Proofs of these Corollaries 7.2 and 7.3 are identical to those for Propositions 6.2 and 6.5. Because, the Laplace transform of
the default time is known, the Gaver–Stehfest algorithm can be used to numerically invert it. This approach is detailed by
Davies (2002, chapter 19). Denoting FðγÞ ¼ ð1=γÞEðe� γτ j F tÞ. Let N be an integer. Then, an approximation of the inverse is
provided by the following sum:

Pðτrs F tj Þ � ln 2
ðs�tÞ ∑

N

j ¼ 1
γjF

ln 2
ðs�tÞj
� �

ð7:18Þ

where

γj ¼ ð�1ÞN=2þ j ∑
minðj;N=2Þ

k ¼ ½ðjþ1Þ=2�

kN=2ð2kÞ!
ðN=2�kÞ!k!ðk�1Þ!ðj�kÞ!ð2k� jÞ!:

In numerical applications, it is recommended to work with N set as 12. Note that the Gaver–Stehfest algorithm is sometimes
numerically unstable. In this case, probabilities of annuitization can be obtained from Monte Carlo simulation of Xt.

8. Numerical application

This section presents annuitization regions for a male individual investing his savings in a mutual fund tracking the S&P
500 index. The related mortality rates μðηþtÞ are represented by a Gompertz Makeham distribution such as detailed in
Appendix A. The annuitization must occur before the age of 80ðηþ ~Tm ¼ 80Þ. This choice is motivated by the fact that
insurers refuse to sell annuities to the elderly in order to limit the risk of anti-selection. The time step used in the time
stepping procedure is chosen to be equal to a half year ðΔi ¼ 0:5Þ.

The jump diffusion process that models the mutual fund return is fitted (by loglikelihood maximization), to daily figures
of the S&P500, from June 2003 to June 2013. The parameters are presented in Table 1. The drift θ of Xt is high (16.15%) but the
average yearly return, without dividend, is equal1 to 2.38%. The difference between this drift and this average return, 13.77%,
1 EðX1Þ ¼ θ�αþλðp1=λþ �ð1�pÞ1=λ� Þ and sðX1Þ ¼VðX1Þ1=2 with VðX1Þ ¼ s2þ2λðp1=ðλþ Þ2þð1�pÞ1=ðλ� Þ2Þ.



Table 2
Other parameters.

α 0.5% /1% ηþ ~Tm 80

W0 100 K þ2/�2
ρ 3% f(t) 1.00
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Fig. 1. Optimal boundaries triggering the annuitization and the probabilities of annuitization, for different initial ages.
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corresponds to the yearly expected growth of the jump component. The volatility of the Brownian motion is 3.92% but
the standard deviation of the yearly return is greater at 8.61%. In order to assess the impact of jumps on the optimal
boundaries, the jump diffusion model will be compared later with a pure Brownian model set up, with the same mean and
volatility.

As shown in Table 2, the discount rate and initial wealth are set as ρ¼3% andW0¼100. In a first scenario, the function f(t)
as defined by Eq. (3.6) is constant (f(t)¼100%), K is a positive fee (K¼2, 2% of W0) and the dividend rate is α¼0.5%. The
average return of the mutual fund after dividends, is in this case EðX1Þ ¼ 1:88%. As f(t) is equal to 100%, the individual has the
same anticipation regarding his own survival as that viewed by the insurer (or at least he is not suspicious about the
purchase of an annuity given its irreversibility). With these assumptions, the necessary conditions (6.22) are satisfied.
Moreover, numerical tests reveal that all functions gj(x) are all monotone decreasing, with a single root (this has to be
checked because conditions (6.21) and (6.22) are necessary but not sufficient). As demonstrated in Proposition 6.1, the
continuation region is delimited by an upper boundary.

In a second scenario, K is a tax incentive (K¼�2, �2% of W0), the dividend rate is set to α¼1% and the drift θ is slightly
increased to 16.65%. Under these assumptions, the average mutual fund return remains unchanged when compared with
the first scenario ðEðX1Þ ¼ 1:88%Þ, but higher dividends are expected. These assumptions ensure that conditions (6.21) are
satisfied. Furthermore, numerical tests reveal that all functions gj(x) are monotone increasing with one single root. The
continuation region in this scenario is delimited by a lower boundary. Therefore annuitization should occur only if the
accrued return falls off too sharply.

In both considered scenarios, the money's worth is constant f(t)¼ f, and ρþμj40 8 j. It follows that necessary conditions
(6.21) and (6.22) can respectively be restated as

ð1� f Þ
f

μjþα
� �þ ln E eX1 þα

� �
4ρ; Ko0; ð8:1Þ



Table 3
Average age for annuitization, as a function of the initial age of the individual. These expected ages are computed with probabilities of annuitization,
presented in Fig. 1.

Age EðηþτjηÞ, 1st scenario Age EðηþτjηÞ, 2nd scenario

η¼40 years 67.77 η¼40 years 79.95
η¼50 years 69.41 η¼50 years 79.96
η¼60 years 71.14 η¼60 years 79.97
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Fig. 2. Comparison of boundaries and probabilities of annuitization for Brownian motion and jump diffusion processes. Initial age: 40 years.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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ð1� f Þ
f

μjþα
� �þ ln E eX1 þα

� �
oρ; K40: ð8:2Þ

In these equations,

ln E eX1 þα
� �¼ ln E

W0eX1 þα

W0

� �
¼ θþ1

2
s2þλ ϕY 1ð Þ�1

� � ð8:3Þ

is a kind of measure of financial performance, and is called log-average return in the remainder of this paragraph. This
estimates the global performance of the fund prior dividends, and is independent from the dividends rate. In practice, the
spread between mortality rates of the individual and of the reference population for the insurer, is never huge and f is close
to one. Therefore, the first terms of Eqs. (8.1) or (8.2) are nearly insignificant. Unless a high withdrawal or contribution rate,
α has a marginal effect on the necessary conditions. When f¼1, the existence of a lower boundary is only conditioned to the
fact that the log-average return dominates the risk free rate ln EðeX1 þαÞ4ρ, and that a tax incentive exists, Ko0. In the
absence of a such incentive, the lower boundary does not exist if the log-average return is greater than the risk free rate.
Indeed, as discussed in the paragraph following Proposition 6.4, it is then never recommended to annuitize before ~Tm

because the option to delay the annuitization is positive, whatever the accrued return.
On another hand, when f¼1, an upper boundary exists under the conditions that the log-average return ln EðeX1 þαÞ is

smaller than ρ and that there is a positive acquisition fee, K40. In the absence of a such fee, or in the presence of a tax
incentive, the upper boundary cannot exist when ln EðeX1 þαÞoρ. In this case, whatever the accrued return, the option to
delay the annuitization is negative as mentioned in the discussion following Proposition 6.4. The right decision consists thus
in converting the fund immediately in an annuity.



Table 4
The average ages for annuitization when Xt is modeled by a Brownian motion. Different initial ages of the investor are used.

Age Eðηþτ j ηÞ, 1st scenario Age Eðηþτ j ηÞ, 2nd scenario

η¼40 years 68.77 η¼40 years 79.96
η¼50 years 70.30 η¼50 years 79.96
η¼60 years 71.88 η¼60 years 79.97
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Fig. 3. Influence of the drift factor θ on the location of the optimal boundaries.
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Fig. 1 presents optimal boundaries in the domain time-accrued return and probabilities of annuitization, for different
initial ages, η set as 40, 50 and 60 years. Left and right upper graphs show these boundaries respectively in the first and the
second scenario. The annuitization occurs before 80 years old, if the path followed by the accrued return starting from
X0¼0, crosses one of these boundaries, either from below (left graph) or from above (right graph).

In the first scenario, the purchase of a life annuity is postponed till the financial return achieved is high enough. The
individual waits until the rise in capital can ensure a comfortable annuity. If the fund performs poorly (Xtr�0:30, or
Wtr74), the annuitization should be delayed to the limiting age of 80 years. However, the probability of such a late
annuitization is less than 2%. Furthermore, an analysis of probabilities graphs reveals that annuitization occurs in 95% of
cases before the investor is 75 years old. On average (as shown in Table 3), the annuity is purchased between the ages of 67
and 71 years.

In the second scenario, the purchase of the annuity is postponed unless the accrued return falls off too rapidly. The
probability to annuitize before the age of 80 years, is lower than 2%. Moreover, on average (as shown in Table 3), the annuity
is purchased between 79 and 80 years old. Despite a tax incentive, the individual has no interest in investing too early in a
fixed payout annuity, except if the mutual fund slumps. This is mainly explained by the higher dividend rate paid in this
second scenario (1% instead of 0.5%).

Fig. 2 compares optimal boundaries and probabilities of annuitization, when the S&P 500 return is modeled by pure
Brownian motion (blue dotted line) compared to a jump diffusion process (green continuous line). The optimal boundaries
in the Brownian model are set as described in Appendix B. The presence of jumps in the fund dynamics influences the shape
of optimal boundaries. In the first scenario (left graph), the Brownian boundary is higher than the one for the jump diffusion
model. On the other hand, for the second scenario (right graph), the Brownian boundary is dominated by the one of jump
diffusion. This leads to different probabilities for annuitization. For a given maturity, the probability to annuitize is predicted
in a Brownian framework to be lower than in a jump diffusion model. For the first scenario described above, a comparison of



Table 5
Average age for annuitization, for various drift factors.

Drift EðηþτjηÞ, 1st scenario Drift EðηþτjηÞ, 2nd scenario

θ¼14.15% 56.95 θ¼16.15% 79.96
θ¼15.15% 58.55 θ¼17.15% 80.00
θ¼16.15% 69.41 θ¼18.15% 80.00
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Fig. 4. Influence of volatility on optimal boundaries.
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Tables 3 and 4 reveals that for the Brownian model, the annuity is purchased on average 1 year later than in the case of the
jump diffusion model. For the second scenario presented, annuitization is delayed until reaching 80 years old, whatever the
chosen model.

Intuitively, these results can be explained as follows. Despite that both processes have the same averages and volatilities,
the jump diffusion has heavier tails than the Brownian motion. The tails of the distribution decay slowly at infinity and very
large moves have a significant probability of occurring. Due to these large moves, the process Xt may reach the boundary at
an earlier point than a pure Brownian motion. This triggers an anticipate annuitization and raises probabilities of
conversion, for a given maturity. On another hand, a jump diffusion can generate sudden, discontinuous moves in prices,
contrary to a Brownian motion. Therefore, sometimes it may incur an ‘overshoot’ over the boundary. Optimal boundaries are
then adjusted to mitigate the risk to annuitize when Xt is already deeply in the stopping region.

Fig. 3 shows the boundaries in the case of a 50 year old man and for different drift factors θ. In the first scenario (left
graph) with a drift of 14.15%, the average fund return (after dividends) is close to zero (�0.12%). The lack of expected capital
gains does not encourage an investment in the mutual fund. This absence of incentive pushes down the upper boundary in
comparison with higher drift rates. Moreover (as illustrated in Table 5), the annuitization occurs on average at younger ages.

In the second scenario (right graph), if θ¼18.55%, the yearly fund return (after dividends) is 3.88%. These high expected
capital gains represent an important incentive for investing in the mutual fund and the high dividends ensure a comfortable
income before annuitization. Therefore, there is no reason in this case to purchase a fixed payout annuity, except if the
financial markets slump. When the drift increases in the second scenario, the delimiting boundary is pushed down and
annuitization is postponed.

Since the recent financial crisis, people fear to invest in mutual funds because of their volatility. As illustrated in Fig. 4,
the volatility is also involved in the decision to annuitize. The right and left graphs analyze for the first and second scenarios,
the sensitivity of the boundaries to the Brownian motion volatility (s) in the jump diffusion setting. In both cases, when s



Table 6
Average age for annuitization, for various volatilities.

Volatility EðηþτjηÞ, 1st scenario Volatility EðηþτjηÞ, 2nd scenario

s¼3.92% 69.41 s¼3.92% 79.95
s¼4.92% 68.84 s¼4.92% 79.98
s¼5.92% 71.23 s¼5.92% 79.99
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Fig. 5. Influence of f(t) on optimal boundaries.

Table 7
Average age for annuitization, for various values of f(t).

Money's worth EðηþτjηÞ, 1st scenario Money's worth EðηþτjηÞ, 2nd scenario

f(t)¼1.0 69.41 f(t)¼1.0 79.96
f(t)¼1.1 60.62 f(t)¼0.9 79.98
f(t)¼1.2 57.33 f(t)¼0.8 79.99
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rises, the steepness of the boundaries decreases. Table 6 shows that on average for the first scenario, a higher volatility
delays the annuitization.

The money's worth f(t) measures the spread between individual's mortality rates μðxþtÞ, and these of the insurer's
reference population, μtf ðxþtÞ. If f(t) is above or below 100%, the expected present value of annuity payments is respectively
greater or lower than the price paid for the annuity. It plays an important role in the decision to annuitize, as illustrated by
Fig. 5. In the first scenario (left graph), increasing f(t) pushes down the upper boundary. Because f(t) is not involved in the
dynamics of Xt, this process will on average reach the boundary at an earlier point when f(t) is high. Therefore, the annuity is
purchased earlier on average. This conclusion is supported by results of Table 7: the annuitization occurs on average at
younger age when f(t) is significantly higher than 100%. In this case, the annuity is indeed underpriced and the annuitant
benefits from the asymmetry of information between the insurance company and himself. This represents a strong incentive
to annuitize. In the second scenario (right graph), increasing f(t) pushes up the boundary. As shown in Table 7, the
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consequence of such movement is similar to the one observed in the first scenario: on average the annuitization happens
earlier, but the impact is less important. This leads to the conclusion that whatever the type of boundary, an individual who
has a better longevity than an average person of the insurer's reference population, will be interested in purchasing a life
annuity at an earlier point.
9. Conclusions

The literature provides a great deal of evidence that an investor who intends to purchase a life annuity (in an ‘all or
nothing’ format) will be induced to delay if alternative financial investments are available. This paper presents some new
aspects of this optimal timing problem, for an individual looking to optimize the market value of his investment strategy.

The expected financial return from assets purchased before annuitization is driven by a jump diffusion process, whereas
most of existing studies use a Brownian motion framework. A case study is presented that reveals that the presence of
jumps in asset dynamics substantially modifies the shape of the boundaries delimiting the annuitization region.

The solution is presented in terms of Expected Present Value (EPV) operators. These were initially developed to price
American options by Boyarchenko and Levendorskii (2007) but such operators are not widely used in the actuarial
literature, despite their efficiency. A procedure to estimate the probability of conversion has been developed.

However, the main contribution from the current study has been to show the existence of upper or lower mutually
exclusive boundaries, which define the continuation region in the space time versus realized returns. Contrary to working
with American options, it is not known beforehand if the boundary delimiting the exercise region is an upper or a lower
barrier. Propositions are set out that bind the type of limits to assumptions on (or relations between) the actuarial and
financial parameters. When the financial fund tracks the S&P 500 and under realistic mortality assumptions, two different
scenarios are numerically considered. In the first, the annuitization only occurs if the achieved return reaches an upper
boundary, whereas in the second (with only slightly higher dividends), the annuitization only occurs in the case of poor
financial performances.

There are several relevant topics for future research. One would be to consider a partial annuitization of the individual's
wealth. Another improvement could be to model the fact that before the age of retirement, an investor should buy deferred
annuities, which (by definition) only start paying out from the age of retirement (since annuitizing before the age of
retirement has indeed only little practical sense). Finally, the utility optimization of consumption deserves a deeper
investigation since this problem leads to a Bellman equation that appears unsolvable by EPV operators.
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Appendix A. Mortality assumptions

In the examples presented in this paper, the real mortality rates μðxþtÞ are assumed to follow a Gompertz Makeham
distribution. The chosen parameters are those defined by the Belgian regulator (‘Arrêté Vie 2003’) for the pricing of life
annuities purchased by males. For an individual of age x, the mortality rate is given by

μðxÞ ¼ aμþbμ � cxμ; aμ ¼ � lnðsμÞ; bμ ¼ lnðgμÞ � lnðcμÞ

where the parameters sμ, gμ, cμ take the values given in Table 8. As an example Table 9 presents the progression of mortality
rates with age for the male individual.
Table 8
Belgian legal parameters for modeling mortality rates, for
life insurance products, targeting a male population.

sμ: 0.999441703848
gμ: 0.999733441115
cμ: 1.101077536030



Table 9
Mortality rates, predicted by the Gompertz Makeham model based on parameters of
Table 8.

Age x μðxÞ (%)

30 0.10
40 0.18
50 0.37
60 0.88
70 2.23
80 5.74
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Appendix B. Pure Brownian motion

This appendix presents results when the financial return on assets is driven by a pure Brownian motion without any
jumps. These are used in the preceding numerical applications section to estimate the impacts of jumps on the boundaries
delimiting the annuitization area. For the remainder of this section, the dynamics of Xt are reduced to:

dXt ¼ ð ~θ�αÞ dtþ ~s d ~Wt with X0 ¼ 0; ð9:1Þ
and its characteristic exponent ψðzÞ is a second order polynomial:

ψ zð Þ ¼ ~θ�α
� �

zþ1
2
z2 ~s2:

If βþ and β� are respectively positive and negative roots of q�ψðzÞ ¼ 0,

βþ ¼
�ð ~θ�αÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~θ�αÞ2

q
þ2 ~s2q

s2

β� ¼
�ð ~θ�αÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~θ�αÞ2

q
þ2 ~s2q

s2

the Wiener–Hopf factors are provided by

κþ
q zð Þ ¼ βþ

βþ �z
ð9:2Þ

κ�
q zð Þ ¼ β�

β� �z
: ð9:3Þ

In this case, the EPV operators Eþ
q and E�

q act on bounded measurable functions gð�Þ as follows:

ðEþ
q gÞðxÞ ¼

Z þ1

x
βþ eβ

þ ðx�yÞgðyÞ dy;

ðE�
q gÞðxÞ ¼

Z x

�1
ð�β� Þeβ� ðx�yÞgðyÞ dy:

The value function, rewritten in terms of EPV operators, is still provided by Proposition 6.1 (given earlier) if we define δj as
the following constant on the interval of time ½tj; tjþ1Þ:

δj≔� αþμj
� �þ f j

1
Δj
þρþμj� ~θ�α

� ��1
2
~s2

� �
: ð9:4Þ

Proposition 6.2 has the following analog in the Brownian motion model:

Corollary B.1. The value of ðE�
qj
gjÞðxÞ and ðEþ

qj
gjÞðxÞ in the Brownian model, are given by

E�
qj
gj

� �
xð Þ ¼ � 1

Δj
β�w�

jþ1 xð Þ�δjW0κ
�
qj

1ð Þexþqjf jK ð9:5Þ

Eþ
qj
gj

� �
xð Þ ¼ 1

Δj
βþwþ

jþ1 xð Þ�δjW0κ
þ
qj

1ð Þexþqjf jK ð9:6Þ

where the functions w�
jþ1ð�Þ and wþ

jþ1ð�Þ are defined as follows:

w�
jþ1ð�Þ ¼ eβ

� x
Z x

�1
e�β� yvjþ1ðyÞ dy; ð9:7Þ
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wþ
jþ1ð�Þ ¼ eβ

þ x
Z þ1

x
e�βþ yvjþ1ðyÞ dy: ð9:8Þ

Furthermore, the optimal boundary is given by a simplified version of Corollary 6.3 (given earlier).

Corollary B.2. When gjð�Þ are respectively monotone decreasing or monotone increasing functions with one root, the optimal
boundaries hn

j ¼ lnðbj=W0Þ are respectively the solutions of

E�
qj
gj

� �
hn

j

� �
¼ � 1

Δj
β�w�

jþ1 hn

j

� �
�δjW0κ

�
qj

1ð Þehn

j þqjf jK ¼ 0: ð9:9Þ

Eþ
qj
gj

� �
hn

j

� �
¼ 1
Δj
βþ
k wþ

jþ1 hn

j

� �
�δjW0κ

þ
qj

1ð Þehn

j þqjf jK ¼ 0: ð9:10Þ

Proposition 6.4 (given earlier) remains valid if the return is modeled by a pure Brownian motion and therefore, some
necessary conditions satisfied when gj(x) are monotone increasing or decreasing are given by (6.21) and (6.22) with the
appropriate parameters such as δj in (9.4).

Appendix C. Numerical calculation of the density

The jump diffusion process is adjusted by a loglikelihood maximization to daily figures of the S&P 500 from June 2003 to
June 2013. Since the density of the returns has no closed form expression, it is retrieved numerically by a discrete Fourier
Transform. Indeed, the density, denoted by f Xt

ð�Þ, is approached on the interval ½�xmax; xmax� by a sum as stated in
Proposition C.1 (below).

Proposition C.1. Let N be the number of steps used in the Discrete Fourier Transform (DFT) and Δx ¼ 2xmax=ðN�1Þ be the step of
stepping. Let us denote δj ¼ ð1=2Þ1fj ¼ 1g þ1fja1g, Δz ¼ 2π=N Δx and zj ¼ ðj�1ÞΔz. The values of f Xt

ð�Þ at points
xk ¼ �ðN=2ÞΔxþðk�1ÞΔx are approached by

f Xt
xkð Þ ¼ Re

2
N Δx

∑
N

j ¼ 1
δj etψð i zjÞð�1Þj�1
� �

e� ið2π=NÞðj�1Þðk�1Þ
 !

ð9:11Þ

where ψðzÞ is defined by Eq. (2.8).

Proof. By definition, the characteristic function of Xt, denoted MXt ðzÞ, is the inverse Fourier transform of the density
multiplied by 2π:

MXt ðzÞ ¼
Z þ1

�1
f Xt

ðxÞeizx dx≔2πF �1½f Xt
ðxÞ�ðzÞ:

The density is retrieved by calculating the Fourier transform of MXt ðzÞ ¼ etψðizÞ as follows:

f Xt
xð Þ ¼ 1

2π
F etψðizÞ
h i

xð Þ ¼ 1
2π

Z þ1

�1
etψðizÞe� ixz dz¼ 1

π
Re

Z þ1

0
etψðizÞe� ixz dz

� �
:

The last equality arises from the fact that ψðizÞ and ψð� izÞ are complex conjugate. Approaching this last integral with the
trapezoid rule

R b
a hðxÞ dx¼ ½hðaÞþhðbÞ=2þ∑N�1

k ¼ 1hðaþk ΔxÞ�Δx, leads to the result. □
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