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a b s t r a c t

In this study, we propose amodelling framework for evaluating companies financed by random liabilities,
such as insurance companies or commercial banks. In this approach, earnings and costs are driven by
double exponential jump–diffusion processes and bankruptcy is declared when the income falls below
a default threshold, which is proportional to the charges. A change of numeraire, under the Esscher risk
neutral measure, is used to reduce the dimension. A closed form expression for the value of equity is
obtained in terms of the expected present value operators, with and without disinvestment delay. In
both cases, we determine the default threshold that maximizes the shareholder’s equity. Subsequently,
the probabilities of default are obtained by inverting the Laplace transform of the bankruptcy time. In
numerical applications of the proposed model, we apply a procedure for calibration based on market and
accounting data to explain the behaviour of shares for two real-world examples of insurance companies.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Evaluations of companies and determining the optimal stop-
ping time for an activity are both central issues in corporate fi-
nance. Leland (1994) and Leland and Toft (1996) investigated these
topics for a company that maintains a constant debt profile and
by adjusting the criteria for bankruptcy endogenously to maxi-
mize the value of the equity. They showed that a company’s value
depends greatly on its capital structure. This approach is related
closely to the structural models of Merton (1974) and Black and
Cox (1976), where default occurs when the assets first fall below a
threshold. Other studies, including Longstaff and Schwartz (1995)
and Collin-Dufresne and Goldstein (2001), used stochastic inter-
est rates in their models. Duffie and Lando (2001) and Jarrow and
Protter (2004) showed that structuralmodels under incomplete in-
formation can be viewed as intensitymodels, which are competing
approaches for default risk. Hilberink and Rogers (2002) extended
the framework of Leland and Toft (1996) by including jumps in
the dynamics of the assets. Similar models were considered by
Le Courtois and Quittard-Pinon (2006) and by Dao and Jeanblanc
(2012) where the assets return was driven by jump–diffusion. Le
Courtois and Quittard-Pinon (2008) later employed α-stable pro-
cesses. Boyarchenko and Levendorskii (2007) also developed a gen-
eralmethodbasedon expectedpresent value operators to optimize
the entry or exit times in a non-Brownian setting.
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However, models that assume a constant profile for debts, such
as those considered in most of the previous studies mentioned
above, are not applicable to companies financed by uncertain li-
abilities, including insurance companies or banks. In exchange for
premiums, insurers commit to compensating their customers for
claims but their charges can be very volatile. Insurance compa-
nies also invest temporary premiums in financial assets that are
exposed to the fluctuations of the market. Banks also experience a
similar asset–liability risk:return on investments, and the related
cost of funding is both uncertain and subject to serious pertur-
bations. Furthermore, an empirical analysis by Eom et al. (2004)
emphasized that Brownian structural models systematically un-
derestimate credit spreads. Motivated by these observations, we
propose a model where earnings and company charges are driven
by double exponential jump–diffusion processes (DEJDs). These
modelling processes, which were used for option pricing by Lipton
(2002) and by Kou and Wang (2003, 2004), can replicate the sud-
den and extreme shocks caused by major insurance claims, as well
as credit losses or crises on financial markets. The current study is
a continuation of research by Saa-Requejo and Santa-Clara (1999)
and by Gerber and Shiu (1996), except a jump–diffusion frame-
work is applied.

Because the market related to these companies is incomplete
in nature, several equivalent risk neutral measures exist for evalu-
ating stock. In the present study, this evaluation is performed un-
der the Esscher risk neutral measure. This method is popular in the
field of actuarial sciences and it was promoted by Gerber and Shiu
(1994) for appraising liabilities. It provides a general, transparent
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and unambiguous framework that preserves the fundamental fea-
tures of the processes that rule assets and liabilities. Using this
methodology, company equity is valued as the integral of the ex-
pected cash flows until default, which is discounted at the risk-free
rate. Bankruptcy is assumed to occur when the income first falls
below a certain fraction, which is called the ‘‘default threshold’’ of
charges.

In this study,we first use the technique of a change of numeraire
to reduce the number of state variables, as suggested by Margrabe
(1978) and byGerber and Shiu (1996) for pricing exchange options.
The equity value is then expressed in terms of expected present
value operators, as described by Boyarchenko and Levendorskii
(2007). These operators, which are closely related toWiener–Hopf
factorization, comprise an elegantmethod for solving the problems
of timing. Furthermore, it is possible to obtain a closed form
expression for the value of equity and for the default threshold
that maximizes the equity value. We also analyse the impact on
stock prices of a random delay between the decision to declare
bankruptcy and the actual closure of the company, andwe propose
an analytical formula for the Laplace transform of the default time
(with and without disinvestment delay). We provide numerical
illustrations, which include a procedure for calibration based on
stock prices and accounting information. The proposed method is
illustrated by studying the movements of the share prices of two
insurance companies: Generali and Axa.

2. The proposed company model

The set of companies considered in this study are assumed to
receive a continuous income, which is denoted by at , from their
assets and they pay continuous charges, denoted by lt , for their
liabilities. The growth rates of these cash flows are modelled by
two DEJDs, (XA

t , X
L
t ), on a probability space (Ω,F , {F }t , P). Their

dynamics are governed by the following SDEs:

dXA
t = µAdt + σAdW A

t + Y AdNA
t (2.1)

dX L
t = µLdt + σALdW A

t + σLdW L
t + Y LdNL

t , (2.2)
where µA, σA, µL, σL, σAL are constant. NA

t , N
L
t are Poisson pro-

cesses with constant intensities, which are denoted by λA and λL.
The initial values of XA

t and X L
t are zero. The jumps that hit the in-

come and charges (Y A and Y L, respectively) are double-exponential
random variables. The density functions of Y A and Y L are given by:

fYA(y) = pAη1Ae
−η1Ay1{y≥0} + qAη2Ae

η2Ay1{y<0},

fY L(y) = pLη1L e
−η1L y1{y≥0} + qLη2L e

η2L y1{y<0},

where pA, qA, η1A, η
2
A, pL, qL, η

1
L , η

2
L are positive constants. The

parameters pA,L and qA,L satisfy the relation: pA,L + qA,L = 1, and
they represent the probability of observing upward and downward
exponential jumps, respectively. The expectations for Y A,L under P
are:

EP(Y A) = pA
1
η1A

− qA
1
η2A
,

EP(Y L) = pL
1
η1L

− qL
1
η2L
.

Furthermore, η1L is assumed to be greater than one (η1L > 1). This
assumptionmeans that the positive jumps that hit the growth rates
of the liabilities are less than 100% on average. The reasons for this
assumption are explained in Section 5. Thus, the cash flows for
incomes and charges are:

at = a0eX
A
t = a0e

µAt+σAWA
t +

NA
t

j=1
YA
j
, (2.3)

lt = l0eX
L
t = l0e

µLt+σALWA
t +σLW L

t +

NL
t

j=1
Y L
j

(2.4)
which have the following geometric dynamics:

dat
at

=


µA +

1
2
σ 2
A


dt + σAdW A

t +


eY

A
− 1


dNA

t

dlt
lt

=


µL +

1
2
σ 2
L +

1
2
σ 2
AL


dt + σALdW A

t + σLdW L
t

+


eY

L
− 1


dNL

t .

In the proposed model, the Laplace transforms and characteristic
exponents of XA

t and X L
t are needed. Given that jumps are

independent of diffusion, the Laplace transforms are the products
of diffusion and the jumps transforms. The Laplace functions of the
jump processes are given by the following expressions (Schreve,
2004, p. 486):

EP

exp

z
NA
t

j=1

Y A
j

 = exp

λAt


φYA(z)− 1



EP

exp

z
NL
t

j=1

Y L
j

 = exp

λLt


φY L(z)− 1


,

where φYA(u) and φY L(u) are the Laplace functions of Y A and Y L:

φYA(z) = pA
η1A

η1A − z
+ qA

η2A

η2A + z

φY L(z) = pL
η1L

η1L − z
+ qL

η2L

η2L + z
.

In addition, the Laplace transforms of XA
t and X L

t are defined in
terms of their related characteristic exponents ψA(z) and ψ L(z),
as follows: EP


ezX

A,L
t


= etψ

A,L(z), where the values of ψA,L(z) are
such that:

ψA(z) = µAz +
1
2
z2σ 2

A + λA

φYA(z)− 1


(2.5)

ψ L(z) = µLz +
1
2
z2σ 2

AL +
1
2
z2σ 2

L + λL

φY L(z)− 1


. (2.6)

3. Evaluation of the equity under the Esscher measure

For all companies with shares that are traded in financial
markets, the evaluation has to be performed under a risk neutral
measure to avoid any arbitrage. However, themarket is incomplete
in nature, so there is no unique risk neutralmeasure. Instead,many
suitable equivalent measures can be suggested, including those
based on distance minimization such as the relative entropy or
Kullback–Leibler distance. However, we prefer to use the Esscher
Risk Neutral measure. This measure, which was recommended
by Gerber and Shiu (1994), provides a general, transparent and
unambiguous framework for evaluation. The Esscher risk neutral
measure, denoted by Q , is defined by two parameters k := (kA, kL)
and its Radon Nikodym density is equal to:
dQ
dP


t
=

ekAX
A
t +kLXL

t

EP

ekAXA

t +kLXL
t

 .
By construction,

 dQ
dP


t is a martingale under P . Furthermore, the

sum kAXA
t + kLX L

t is equal to

kAXA
t + kLX L

t = (kAµA + kLµL) t + (kAσA + kLσAL)W A
t

+ kLσLW L
t + kA

NA
t

j=1

Y A
j + kL

NL
t

j=1

Y L
j
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and its Laplace transform, under the real measure, is defined as
follows

EP

ez

kAXA

t +kLXL
t


= et ψ

kA,kL (z)

where ψkAkL(z) is the characteristic exponent:

ψkAkL(z) = (kAµA + kLµL) z

+
1
2
z2

k2Lσ

2
L + (kAσA + kLσAL)2


+ λA


φYA(zkA)− 1


+ λL


φY L(zkL)− 1


.

If the cash flows of assets and liabilities come from traded secu-
rities, their market values are denoted by At and Lt , respectively.
Their prices are equal to the expected discounted value of the cash
flows under the Esschermeasure, which are given by the following
proposition.

Proposition 3.1. The market values of the incomes and charges cash
flows, At and Lt , are equal to

At =
1

r + ψkAkL(1)− ψ1+kA,kL(1)
at (3.1)

Lt =
1

r + ψkAkL(1)− ψkA,1+kL(1)
lt (3.2)

under the constraints that r + ψkAkL(1) − ψ1+kA,kL(1) and r +

ψkAkL(1)− ψkA,1+kL(1) are strictly positive.

Proof. These results are obtained by direct integration. Thus, for
income cash flows [A1], it can be shown directly that

At = EQ


∞

t
e−r(s−t)asds | Ft



=


∞

t
e−r(s−t)at

EP

e(1+kA)XA

s−t+kLXL
s−t | Ft


e(s−t) ψkAkL (1)

ds

=


∞

t
e−(s−t)


r+ψkAkL (1)−ψ1+kA,kL (1)


atds. �

At and Lt are comparable to the market values of the assets and
liabilities. They are valued as perpetual annuities, which pay an in-
creasing cash flow, and they are discounted at the risk-free rate.
This finding reflects that given by Gordon and Shapiro (first de-
scribed by Gordon and Myron (1959)). We can also check that un-
der the risk neutral measure, the prices of assets or liabilities are
indeed martingales, e.g., A0 = EQ


e−rtAt +

 t
0 e−rsasds | F0


. This

ensures that themarket is arbitrage-free. If themarket values of as-
sets and liabilities are available, the values of kA and kL satisfy Eqs.
(3.1) and (3.2). In the numerical application, kL is assumed to benull
whereas kA is fitted to best explain the history of the share prices.
We assume that kL = 0 is equivalent to considering that liabilities
have the same behaviour under the real or risk neutral measures.
This assumption is common among actuaries, e.g., for calculating
the net asset value [A2], as defined by the Solvency II regulation.
To conclude this section, the next proposition shows that the dy-
namics of at and lt are preserved under the Esscher measure. Le
Courtois and Quittard-Pinon (2006) obtained a similar result for
one JEDC [A3] process.

Proposition 3.2. When evaluating under the Esschermeasure, at and
lt are still DEJD processes with the following parameters.

Proof. The Laplace transforms of XA
t and X L

t developed by applying
the risk neutralmeasure are transforms ofDJEDprocesses obtained
Table 3.1
DEJD parameters under Q .

µ
Q
A µA + σA (kAσA + kLσAL) µ

Q
L µL+


kLσ 2

L + kAσAσAL + kLσ 2
AL


σ

Q
A σA σ

Q
L


σ 2
AL + σ 2

L

η
1Q
A η1A − kA η

1Q
L η1L − kL

η
2Q
A η2A + kA η

2Q
L η2L + kL

pQA pA
η1A

ξA


η1A−kA

 pQL pL
η1L

ξL


η1L −kL


λ
Q
A λAξA λ

Q
L λLξL

ξA pA
η1A

η1A−kA
+ qA

η2A
η2A+kA

ξL pL
η1L

η1L −kL
+ qL

η2L
η2L +kL

using the parameters provided in this proposition, e.g.,

EQ

ezX

L
t


= EP

 ekAX
A
t +(z+kL)XL

t

EP

ekAXA

t +kLXL
t




= et

ψkA,z+,kL (1)−ψkA,kL (1)


and direct calculations lead to the following equality

et

ψkA,z+,kL (1)−ψkA,kL (1)


= etψ

L,Q (z),

where ψ L,Q (z) is provided by expression (2.6), in which the
parameters are replaced by those given in Table 3.1. �

It should be noted that by construction, the dynamics of Lt are
equal to

dLt = Lt


µ

Q
L +

1
2
σ

Q 2
L +

1
2
σ

Q 2
AL


dt + Ltσ

Q
ALdW

A,Q
t

+ Ltσ
Q
L dW L,Q

t + Lt

eY

L,Q
− 1


dNL,Q

t

and according to Proposition 3.1, the expected growth rate of
liabilities is lower than the risk-free rate

E

dLt
Lt

| Ft


=


µ

Q
L +

1
2
σ

Q 2
L +

1
2
σ

Q 2
AL + λQ (φ

Q
YA(1)− 1)


dt

=

ψkA,1+kL(1)− ψkAkL(1)


dt < r dt. (3.3)

If the latter condition is not satisfied, the market value of Lt
would be infinite. Because all of the following developments are
performed under the risk neutral measure, the index Q in the
terms µQ

A , σ
Q
A , η1QA , η2QA , pQA , λ

Q
A , µ

Q
L , σ

Q
L , η1QL , η2QL , pQL and λQL is

omitted intentionally to simplify the notations. The characteristic
exponents of XA

t and X L
t under the risk neutral measure are

provided by expressions (2.5) and (2.6), where the parameters are
replaced by their equivalents under Q . Thus, they are denoted by
ψA(z) and ψ L(z) in the following sections.

Now, having defined the risk neutralmeasure thatwe apply, the
market value of the company’s equity is the sum of the future ex-
pected cash flows, which are discounted at the risk-free rate until
default. The time to default is denoted by τ , which is the stopping
time on the filtration Ft . In the first example, it is assumed that
the company is closed immediately after the decision to declare
bankruptcy. In the next section, we assume that there is a delay be-
tween filing for bankruptcy and the effective cessation of activity. If
shareholders intend to maximize the market value of their invest-
ment, the value of the equity (denoted by Vt at time t) is equal to:

Vt(at , lt) = max
τ

EQ
 τ

t
e−r(s−t) (as − ls) ds | Ft


. (3.4)

This can also be rewritten as a function of the market value of the
investments and liabilities. From the definition of At and Lt , it can
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be stated that:

V (At , Lt) = (At − Lt)+ max
τ

EQ 
−e−r(τ−t)(Aτ − Lτ ) | Ft


= (At − Lt)− min

τ
EQ e−r(τ−t)(Aτ − Lτ ) | Ft


. (3.5)

The latter equation emphasizes that valuing the equity using this
modelling framework is equivalent to assessing a perpetual ex-
change option between assets and liabilities and determining the
stopping time that minimizes this option, which is referred to as
the ‘‘option to default’’. In the remainder of this study, all of the
model developments that follow fromEq. (3.4) are used to appraise
the company equity. However, the dimension of this stopping time
problem is first reduced by a change of numeraire.

4. Reducing the number of state variables

The time to default, which is denoted by τ , is a stopping time on
the filtrationFt and it is decided by shareholders when the income
falls below a predetermined level. This threshold is a percentage
of charges denoted by h and bankruptcy is declared when at falls
below the threshold, denoted by h lt . By applying the definitions of
assets and liabilities, the latter is equivalent to assuming that the
default is triggered when At falls below the following minimum:

At ≤ h

r + ψkAkL(1)− ψkA,1+kL(1)
r + ψkAkL(1)− ψ1+kA,kL(1)


Lt .

This equation emphasizes the relationship between the approach
proposed in the present study and other structural models. At this
point, h is assumed to be known and thus τ is defined as inf{t |

at ≤ h lt t ≥ 0}. The value of the equity for a given threshold, h, is
given by

V h
t (at , lt) = EQ

 τ

t
e−r(s−t) (as − ls) ds | Ft


. (4.1)

In order to assess this expectation, the number of state variables
must be reduced, thereby implying a transformation of measure.
Let us denote Q̃ as a new measure of probability, which is defined
by the following change of numeraire:

dQ̃
dQ


t

= e

−


µL +

1
2
σ 2
AL +

1
2
σ 2
L + λL


φY L(1)− 1


  

δ

t

lt
l0

= e−δt lt
l0
, (4.2)

where δ = ψ L(1) is the growth rate of the average liabilities such
that EQ (lt | F0) = l0eδt . As explained previously, by construction,
the risk-free rate r will be greater than δ (see Eq. (3.3)). If this were
not the case, the market value of the liabilities would be infinite.
By definition, the Radon Nikodym derivative (4.2) is a martingale
underQ and its expectation is equal to 1. Furthermore, for any fixed
time T , we have

EQ̃
 T

t
e−(r−δ)(s−t)


as
ls

− 1

ds | Ft


=

 T

t
EQ̃

e−(r−δ)(s−t)


as
ls

− 1


| Ft


ds

=

 T

t

EQ

e−(r−δ)(s−t) e−δs

l0
(as − ls)|Ft


EQ


dQ̃
dQ


s
|Ft

 ds

=
1
lt

EQ
 T

t
e−r(s−t)(as − ls)ds | Ft


.

By applying the optional stopping theorem, the value of the equity
defined by Eq. (4.1) can be reformulated as follows:

V h
t (at , lt) = ltEQ̃

 τ

t
e−(r−δ)(s−t)


as
ls

− 1

ds | Ft


. (4.3)

Before determining this expectation, we specify and explain the
dynamics of as

ls
, under both the original and the risk neutral

measures (Q and Q̃ ). For this purpose, we define the process X S
t ,

which is equal to the difference between XA
t and X L

t . The ratio as
ls

for s ≥ t is reformulated as a function of this process, as
ls

=
at
lt
eX

S
s−t ,

where

X S
s−t = (µA − µL) (s − t)+ (σA − σAL)W A

s−t − σLW L
s−t

+

NA
s−t
j=1

Y A
j −

NL
s−t
j=1

Y L
j (4.4)

and with the initial value X S
0 = 0. The Laplace transform of X S

s−t
under the risk neutral measure Q is such that

EQ

ezX

S
s−t | Ft


= e(s−t)ψS (z)

with the following characteristic exponent:

ψ S(z) = (µA − µL) z +
1
2
z2

(σA − σAL)

2
+ σ 2

L


+ λA


φYA(z)− 1


+ λL


φY L(−z)− 1


. (4.5)

The Laplace transform of X S
s−t under Q̃ and its exponent ψ S̃(z) are

obtained by a change of measure:

EQ̃

ezX

S
s−t | Ft


= EQ


e−δ(s−t) ls

lt
ezX

S
s−t | Ft


= e(s−t)ψ S̃ (z),

where

ψ S̃(z) = [(µL − δ)+ z (µA − µL)] +
1
2
[σAL + z (σA − σAL)]2

+
1
2
(σL − zσL)2 + λA


φYA(z)− 1


+ λL


φY L(1 − z)− 1


. (4.6)

We use this result to determine the Wiener–Hopf factorization of
X S
t when using the new measure Q̃ .

5. Wiener–Hopf factorization under Q̃

In this section, we review the basic features of theWiener–Hopf
factorization and of the expected present value operators. Under
the condition that r − δ > 0, the following result is obtained by
direct integration:

EQ̃


∞

t
e−(r−δ)(s−t)ezX

S
s−t ds | Ft


=

1

(r − δ)− ψ S̃(z)
. (5.1)

However, if a random exponential time Γ is introduced with an
intensity equal to r − δ, we obtain the following Wiener–Hopf
factorization for the left-hand side of Eq. (5.1):

(r − δ)EQ̃


∞

t
e−(r−δ)(s−t)ezX

S
s−t ds | Ft


= EQ̃


ezX

S
t+Γ | Ft


= EQ̃


ezX̄

S
t+Γ | Ft


EQ̃

ezX

S
t+Γ | Ft


:= κ+

(r−δ)(z)κ
−

(r−δ)(z), (5.2)
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where X̄ S
t+Γ and X S

t+Γ are the maximum and minimum, respec-
tively, of the process X S

s−t on the time interval [t, t +Γ ]. This rela-
tion is derived from the fact that X S

T = X̄ S
t +X S

T −X̄ S
t . Because X̄

S
t and

X S
T − X̄ S

t are mutually independent and X S
T − X̄ S

t has a similar distri-
bution to X S

t , then Eq. (5.2) is deduced. The remaining calculations
are based on the expected present value (EPV) operators described
by Boyarchenko and Levendorskii (2007, see Chapter 11). For any
function g(.) defined on C, three EPV operators are defined as fol-
lows:

(Eg) (x) = (r − δ)EQ̃


∞

t
e−(r−δ)(s−t)g(x + X S

s−t) ds



E+g


(x) = (r − δ)EQ̃


∞

t
e−(r−δ)(s−t)g(x + X̄ S

s−t) ds


(5.3)


E−g


(x) = (r − δ)EQ̃


∞

t
e−(r−δ)(s−t)g(x + X S

s−t)ds

.

The Wiener–Hopf factors κ+

(r−δ)(z) and κ
−

(r−δ)(z) given above (Eq.
(5.2)) are closely related to EPV operators. Indeed, if g(.) = ez.,
Eez.


(x) =

(r − δ)

(r − δ)− ψ S̃(z)
ezx

E+ez.

(x) = (r − δ)ezxκ+

(r−δ)(z) (5.4)
E−ez.


(x) = (r − δ)ezxκ−

(r−δ)(z)

and the relationships given by Eqs. (5.1) and (5.2) lead to (Eez.) =
E+ez.

 
E−ez.


. Boyarchenko and Levendorskii extended this re-

sult to cover all functions g ∈ L∞(R). E is also the inverse of the
operator (r−δ)−1 ((r − δ)− L), whereL is the infinitesimal gen-
erator of the process X S

t . Furthermore, E−1
=

E+
−1 

E−
−1 or

E−1
=

E−
−1 

E+
−1. These properties are used in further de-

velopments of our model to evaluate the equity of the company.
In general, these Wiener–Hopf factors do not have closed form
formulae, excepted for DEJD processes. Boyarchenko and Leven-
dorskii (2007, Lemma 11.2.1 p. 197) showed that ψ S̃(z)− (r − δ)
is the ratio of the two polynomials P(z) and Q (z),

ψ S̃(z)− (r − δ) =
P(z)
Q (z)

, (5.5)

where the numerator P(z) in this case is a polynomial of degree 6,

P(z) =


µL − r − λA − λL +

1
2
σ 2
AL +

1
2
σ 2
L


Q (z)

+ z

(µA − µL)+ σAL (σA − σAL)− σ 2

L


Q (z)

+ z2

1
2
(σA − σAL)

2
+

1
2
σ 2
L


Q (z)

+ λA

pAη1A


η2A + z


+ qAη2A


η1A − z


×

η1L − 1 + z

 
η2L + 1 − z


+ λL


pLη1L


η2L + 1 − z


+ qLη2L


η1L − 1 + z

 
η1A − z

 
η2A + z


,

whereas the denominator Q (z) is the product:

Q (z) =

η1A − z

 
η2A + z

 
η1L − 1 + z

 
η2L + 1 − z


.

Analysing the variation shows that the ratio (P/Q )(z) has four
asymptotes, which are the roots of Q (z). Two are found in the left
half-plane and the two others are in the right half-plane (under the
condition stated earlier that η1L > 1). Furthermore, P(z) reaches a
maximumat around zero andψ S̃(z) → ∞ as z → ±∞. Thus, P(z)
crosses the zero axis six times and it has three positive and three
negative roots, which are denoted by β+

k and β−

k , k = 1, 2, 3. The
two positive and two negative roots of Q (z) are denoted by λ+

j and
λ−

j , respectively, j = 1, 2. The roots of P(z) and Q (z) follow the
order,

β−

3 < λ−

2 < β−

2 < λ−

1 < β−

1 < 0 < β+

1 < λ+

1 < β+

2 < λ+

2 < β+

3 .

The Wiener–Hopf factors are:

κ+

(r−δ)(z) =

2
j=1

λ+

j − z

λ+

j

3
k=1

β+

k

β+

k − z
(5.6)

κ−

(r−δ)(z) =

2
j=1

λ−

j − z

λ−

j

3
k=1

β−

k

β−

k − z
, (5.7)

which can be restated as the following sums:

κ±

(r−δ)(z) = a±

1
β±

1

β±

1 − z
+ a±

2
β±

2

β±

2 − z
+ a±

3
β±

3

β±

3 − z
, (5.8)

where

a±

1 =
β2β3

λ1λ2

(β1 − λ1)(β1 − λ2)

(β1 − β2)(β1 − β3)
(5.9)

a±

2 =
β1β3(β2 − λ1)(β2 − λ2)

λ1λ2(β2 − β1)(β2 − β3)
(5.10)

a±

3 =
β1β2

λ1λ2

(β3 − λ1)(β3 − λ2)

(β3 − β2)(β3 − β1)
. (5.11)

We note that the symbol ± has been removed from the terms on
the RHS to simplify the equation. Boyarchenko and Levendorskii
(2007) showed that E+ and E− act on bounded measurable func-
tions g(.) as the following integral operators:

(E+g)(x) =

3
j=1

a+

j


+∞

0
β+

j e−β+

j yg(x + y)dy (5.12)

(E−g)(x) =

3
j=1

a−

j

 0

−∞

(−β−

j )e
−β−

j yg(x + y)dy. (5.13)

It is easy to show that this formula is true for all exponential func-
tions of the form g(x) = ezx and for any linear combination of ex-
ponential functions. We use expressions (5.12) and (5.13) later to
evaluate the equity.

6. Evaluation of the company equity

The value of the equity when the bankruptcy is triggered
immediately (if as falls below hls) is given by Eq. (4.3). This can be
rewritten as:

V h
t (at , lt) = at EQ̃

 τ

t
e−(r−δ)(s−t)


eX

S
s−t −

lt
at


ds | Ft


. (6.1)

It is possible to restate this last expectation in terms of EPV
operators in Proposition 6.1, as follows.

Proposition 6.1. f X S
0 = x, the value of the company equity is equal

to:

V h
t (x) = at (r − δ)−1 E−1[b,∞)E

+g

(x), (6.2)

where b = ln


hlt
at


and the function g(.) is defined as

g (x) =


ex −

lt
at


. (6.3)
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Proof. If the infinitesimal generator of X S
t under Q̃ is denoted by

L, the function 1
at
V h
t is a solution of the following system:

((r − δ)− L)


1
at

V h
t


= g(x) if x > ln


hlt
at


1
at

V h
t = 0 if x ≤ ln


hlt
at


.

(6.4)

Given that E−1
= (r − δ) ((r − δ)− L), system (6.4) can be

rewritten as

E−1 1
at

V h
t (x) = (r − δ)−1g(x)+ g−(x),

where g−(x) := E−1 1
at
V h
t (x) − (r − δ)−1g(x) is a function that

vanishes on x > ln


hlt
at


. Because E−1

=

E+
−1 

E−
−1, the

previous equation is equivalent to
E−
−1 1

at
V h
t (x) = (r − δ)−1E+g(x)+ E+g−(x).

Implicit in this construction, E+g−(x) and V h
t are null above and

below ln


hlt
at


, respectively, and this completes the proof. �

Given that the EPV operator of ez. is related to theWiener–Hopf
factorization, the following relationship exists:
E+g


(x) = (r − δ)EQ̃


∞

t
e−(r−δ)(s−t)


ex+X̄S

s−t −
lt
at


ds


= ex(r − δ)EQ̃


∞

t
e−(r−δ)(s−t)eX̄

S
s−t ds


−

lt
at

= exκ+

r−δ(1)−
lt
at

(6.5)

and
E−1[b,∞)E

+g

(xSt )

= (r − δ)EQ̃


+∞

t
e−(r−δ)(s−t)


ex+XS

s−t κ+

r−δ(1)−
lt
at


× 1{x+X s−t>b}ds


. (6.6)

From this equation, we can deduce the closed-form expressions for
the equity and optimal threshold.

Corollary 6.2. The value of the company equity is equal to:

V h
t (at , lt) =

at
r − δ

3
j=1

a−

j κ
+

r−δ(1)
β−

j

1 − β−

j


hlt
at

(1−β−

j )

− 1



−
lt

r − δ

3
j=1

a−

j


1 −


hlt
at

−β−

j

, (6.7)

where the coefficients a−

j for j = 1, 2, 3 are defined by Eqs. (5.9)–
(5.11).

Proof. This result is an immediate consequence of expressions
(5.13) and (6.5):

V h
t (x) =

at
r − δ

3
j=1

a−

j κ
+

r−δ(1)e
x β−

j

1 − β−

j


e(1−β

−

j )

ln

hlt
at


−x

− 1



−
at

r − δ

3
j=1

a−

j
lt
at


1 − e−β−

j


ln

hlt
at


−x

. (6.8)

To conclude, it is sufficient to recall that X S
0 = x = 0. �
Corollary 6.3. In order to maximize the present value of their
investment, shareholders should close the company when the income
at falls below h∗lt , where

h∗
=

1
κ+

r−δ(1)
. (6.9)

Proof. According to Eq. (6.2), the value of the equity is directly
proportional to the quantity (6.6). Then, the constant h∗ that
maximizes the shareholder’s equity is such that the integrand
E+g


(x) = exκ+

r−δ(1) −
lt
at

is null on the boundary x = b =

ln


hlt
at


. Another way to prove this relation is to set the derivative

of Eq. (5.13) with respect to h as zero. �

We test these results numerically in Section 9. First, we study
the impact of a disinvestment delay on the equity value and the
optimal threshold.

7. The period between bankruptcy and the cessation of activity

In practice, there is a period of time between filing for
bankruptcy and the cessation of a company’s activity. The length
of this time is variable and it depends on many concurrent fac-
tors such as negotiating with labour unions or with eventual
prospective buyers. In the remainder of this section, this period
of disinvestment is denoted by ∆ and it is assumed to be an ex-
ponential random variable with the parameter γ . The average de-
lay and its density under Q are equal to EQ (∆) =

1
γ
and f∆(t) =

γ e−γ t , respectively. The time to default is denoted by τ . To recap,
bankruptcy is declared when at falls below the threshold h lt . Thus,
the value of the equity for a given h when considering the disin-
vestment period is now

V h
t (at , lt) = EQ

 τ+∆

t
e−r(s−t) (as − ls) ds | Ft


.

= EQ


∞

0

 τ+ϵ

t
e−r(s−t) (as − ls) ds γ e−γ ϵ dϵ | Ft


. (7.1)

Proposition 7.1 developsV h
t (at , lt) in terms of EPV operators, as fol-

lows.

Proposition 7.1. The three negative roots of the numerator of
ψ S̃(z)− (r + γ − δ) are β ′−

k for k = 1, 2, 3, and

κ+

(r+γ−δ)(1) =

2
j=1

λ+

j − 1

λ+

j

3
k=1

β ′+

k

β ′+

k − 1
.

The term a′−

j is defined for j = 1, 2, 3 by expressions (5.9)–(5.11),
where β ′−

k is substituted with β−

k . The value of the equity for a
disinvestment delay is given by the following expression.

V h
t (at , lt) =

at
(r + γ )− ψA(1)

+
at

r − δ

3
j=1

a−

j κ
+

r−δ(1)
β−

j

1 − β−

j


hlt
at

(1−β−

j )

− 1



−
at

r + γ − δ

3
j=1

a′−

j κ
+

r+γ−δ(1)
β ′−

j

1 − β ′−

j


hlt
at

(1−β ′−

j )

− 1



−
lt

(r + γ )− ψ L(1)
+

lt
r + γ − δ

3
j=1

a′−

j


1 −


hlt
at

−β ′−

j


−
lt

r − δ

3
j=1

a−

j


1 −


hlt
at

−β−

j

.
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Proof. Using Fubini’s theorem, the equity value (7.1) can be
restated as follows:

V h
t (at , lt) = EQ

 τ

t
e−r(s−t) (as − ls) ds | Ft


+ EQ


∞

τ

e−(r+γ )(s−t) (as − ls) ds | Ft


. (7.2)

The first term of (7.2) is provided by Eq. (6.7) in Corollary 6.2. The
second expectation is the difference between the residual values of
the assets and liabilities. This residue is denoted by Rh

t (at , lt) and it
is split as follows:

Rh
t (at , lt) = EQ


∞

t
e−(r+γ )(s−t) (as − ls) ds | Ft


− EQ

 τ

t
e−(r+γ )(s−t) (as − ls) ds | Ft


. (7.3)

Direct manipulation yields the next expression for the first term of
(7.3):

EQ


∞

t
e−(r+γ )(s−t) (as − ls) ds | Ft


=

1
(r + γ )− ψA(1)

at −
1

(r + γ )− ψ L(1)
lt . (7.4)

The second term is obtained by replacing r with r + γ in
Corollary 6.2 from Section 6. �

The optimal threshold is found by cancelling the derivative of the
equity with respect to h.

Corollary 7.2. The threshold h that maximizes the shareholder’s
equity is the solution of the following non-linear equation.

0 =
1

r − δ

3
j=1

a−

j β
−

j


hlt
at

−β−

j 
hκ+

r−δ(1)− 1


−
1

r + γ − δ

3
j=1

a′−

j β
′−

j


hlt
at

−β ′−

j 
hκ+

r+γ−δ(1)− 1

. (7.5)

The next section introduces a method for calculating the
probabilities of bankruptcy, when applied with and without a
disinvestment delay.

8. Estimating the probabilities of default

In this section, we propose a method for determining the
probability that a given company enters bankruptcy in a certain
period of time, with and without disinvestment delay. This is
applied under the risk neutral measure. However, the application
of this method under P does not require major modifications and
it provides useful information for risk management. The approach
employed is based on the inversion of the Laplace transform of the
hitting time τ . By definition, for a given constant α, the Laplace
transform of τ is such that

EQ e−ατ
| Ft


= α


+∞

t
e−αsQ (τ ≤ s | Ft)ds

= αLα(Q (τ ≤ s | Ft)), (8.1)
whereLα is the Laplace operator. The probability of default is then
obtained by inverting this transform:

Q (τ ≤ s | Ft) = L−1
α


1
α

EQ e−ατ
| Ft


=

1
2π i

lim
T→∞

 γ+iT

γ−iT
eαs

1
α

EQ e−ατ
| Ft


dα,
where γ is greater than the real part of all the singularities
of EQ


e−ατ

| Ft

. Using a similar method to that described in

Section 5, it is possible to show that for any given positive α, the
equation

ψ S(z)− α = 0 (8.2)

has exactly six roots, i.e., three negative and three positive roots
denoted by β−

1,α , β
−

2,α , β
−

3,α and β+

1,α , β
+

2,α , β
+

3,α , respectively.
The Laplace transform of the time to bankruptcy derives from
Proposition 8.1 as follows.

Proposition 8.1. The Laplace transform of the default time is

EQ e−ατ
| Ft


= A1e

− ln

hlt
at


β−

1,α + A2e
− ln


hlt
at


β−

2,α

+ A3e
− ln


hlt
at


β−

3,α , (8.3)

where

A1 =
β−

2,αβ
−

3,α

η2Aη
1
L

 
η2A + β−

1,α

 
η1L + β−

1,α


β−

1,α − β−

2,α

 
β−

1,α − β−

3,α

 (8.4)

A2 =
β−

1,αβ
−

3,α

η2Aη
1
L

 
η2A + β−

2,α

 
η1L + β−

2,α


β−

2,α − β−

1,α

 
β−

2,α − β−

3,α

 (8.5)

A3 =
β−

1,αβ
−

2,α

η2Aη
1
L

 
η2A + β−

3,α

 
η1L + β−

3,α


β−

3,α − β−

1,α

 
β−

3,α − β−

2,α

 . (8.6)

Proof. The Laplace transform is a function of X S
t :

EQ e−ατ
| Ft


:= u(X S

t )

and if the infinitesimal generator of X S
t under P is denoted by L,

Lu(x) = (µA − µL)
∂u
∂x

+
1
2


σA − σ 2

AL

2
+ σ 2

L

 ∂2u
∂x2

+ λA


+∞

−∞

u(x + y)− u(x)fYA(y)dy

+ λL


+∞

−∞

u(x − y)− u(x)fY L(y)dy,

then the function u(x) is the solution of the following system [A4]:
(L − α) u(x) = 0 if x > ln


hlt
at


u(x) = 1 if x ≤ ln


hlt
at


.

(8.7)

For any level b = ln


hlt
at


, we can test a solution of the form

u(x) =


A1e

(x−b)β−

1,α + A2e
(x−b)β−

2,α + A3e
(x−b)β−

3,α x > b
1 x ≤ b,

(8.8)

where A1, A2 and A3 must be such that

A1 + A2 + A3 = 1. (8.9)

Implicitly, 0 ≤ u(x) ≤ 1 for all x ∈ (−∞,+∞), given that β−

j,α
is negative. By substituting this form of u(.) and integrating in two
regions,


+∞

−∞
=
 b−x
−∞

+


+∞

b−x , for all values of x > b yields

(L − α) u(x) =


Aie

(x−b)β−

i,α

−α + ψ S(β−

i,α)


+ λAqAeη
2
A(b−x)


3

i=1

Ai
β−

i,α

η2A + β−

i,α


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Table 9.1
Parameters defining the dynamics of at , fitted by log-likelihood maximization to
the daily returns of a benchmark portfolio (comprising 65% of Eurostoxx 600 and
35% Bofa Merill Lynch Index 7–10 years EUR).

Parameters Standard errors

µA 0.0896 0.0012
σA 0.02029 0.0004
pA 0.35739 0.0037
η1A 663.92257 0.7231
η2A 572.09112 0.9463
λA 93.50947 0.5982

+ λLqLeη
1
L (b−x)


3

i=1

Ai
β−

i,α

η1L + β−

i,α


,

because −α +ψ S(β−

i,α) = 0, provided that the following relations
are satisfied:

3
i=1

Ai
β−

i,α

η2A + β−

i,α
= 0 (8.10)

3
i=1

Ai
β−

i,α

η1L + β−

i,α
= 0. (8.11)

It is clear that (L − α) u(x) = 0 for x > b. Solving the system
of Eqs. (8.9) (8.10) and (8.11) leads to expressions (8.4) (8.5) and
(8.6) for Ai. The function u(x) defined by Eq. (8.8) is not C1 around
the boundary x = b. However, as demonstrated by Kou and Wang
(2003), it is possible to build a sequence of smooth functions un(x)
that also converge towards u(x). �

Because the Laplace transform of the default time is known,
the Gaver–Stehfest algorithm is used to invert it numerically.
This approach was described by Davies (2002, Chapter 19) and
by Usabel (1999). Finally, we note that according to the Markov
inequality, the asymptotic probability of default is bounded by the
following limit:

Q (τ ≤ ∞ | Ft) ≤ lim
α→0

EQ e−ατ
| Ft


. (8.12)

This boundary can be used as a risk measure to compare the credit
risk of several companies.

9. Numerical application of the model

In this section, we illustrates how the proposed model can ex-
plainmovements in the share prices of two insurances companies:
Axa and Generali. Accounting figures from 31/8/2009 to 29/8/2014
indicate that both companies had a similar investment strategy
over the study period. On average, 65% of their portfolio was in-
vested in state or corporate bonds and the remaining 35% was in-
vested in stocks or assimilated risky assets. Thus, the income was
assumed to have the same dynamics as a benchmark index made
up of the Eurostoxx 600 (35%) and the Bofa Merrill Lynch Index
7–10 years EUR (65%). The Merrill Lynch index tracks the total
performance of corporate debts (investment grade, extending be-
tween 7 and 10 years).

The parameters used to define at were subsequently cali-
brated to reflect the daily return of this benchmark using log-
likelihood maximization. As the density function of at has no
closed form expression, it was computed numerically by in-
verting its Fourier transform. Details of this procedure were
provided by Hainaut and Deelstra (2014). Table 9.1 shows the
parameters obtained using this approach. Jumps introduce asym-
metry and leptokurticity in returns, which are observed often in
financial markets. Thus, the quality of the fit (measured by the
Table 9.2
Parameters of the liabilities, whichwere obtained byminimizing the squared errors
between the actual daily stock prices and the prices predicted by the model. The
discount rate was set to the 10-year risk-free rates in France (1.268%) and Italy
(2.545%), on 16/9/2014. The Esscher parameter for liabilities, kL , was null.

Generali Axa

µL −0.0443 µL −0.0122
σL 0.2181 σL 0.1736
σAL −0.3605 σAL −0.2108
pL 0.3309 pL 0.4099
η1L 448.8088 η1L 788.6129
η2L 808.5012 η2L 447.4008
λL 216.8481 λL 104.9724
h∗ 0.5923 h∗ 0.7185
δ 0.0252 δ 0.0124
kA −139.0857 kA −124.6903

log-likelihood = 6321.6) was better than that obtained using
Brownian motion (log-likelihood = 6121.6).

The next step was to determine the parameters driving the
companies’ liabilities. Detailed information about claims is not
usually disclosed, so liabilities cannot be calibrated directly by log-
likelihoodmaximization. Instead, we used an alternative approach
based on historical share prices and accounting information. In
this method, the parameters of lt were inferred by minimizing the
summed squared errors between the daily values of shares and
the share prices predicted by the model (Eq. (6.7)). The model
inputs comprised earnings and charges, which were retrieved
from standardized income statements, such as those reported by
Bloomberg (see Table A.1). To separate financial incomes from
liabilities, at was assumed to be equal to the total revenue (year
to date), which wasmarked down by the net earned premiums per
stock. The total charge per stock, lt , was the sum of claims (year to
date) and all related costs, whichwere decreased by the net earned
premiums. The cash flows at and lt were updated on a semi-annual
basis (see the Appendix). The discount rate was the 10-year risk-
free rate in France (1.268%) and Italy (2.545%) on 16/9/2014. The
Esscher parameter for liabilities, kL, was null and thus the liabilities
had the same dynamics under the real and risk neutral measures.
This assumption is common among actuaries when calculating the
net asset value in Solvency II. Table 9.2 shows the parameters
obtained using this method and Fig. 9.1 presents the quotes for
the stocks and prices predicted by themodel. The figures produced
by the model should be viewed as target prices, similar to those
reported by financial analysts based on a fundamental analysis of
companies. Over the 10-year study period, the model followed the
market prices reasonably well, if trading noise is not considered.
These results were obtained under an assumption that the default
trigger h maximized the stock value (see Eq. (6.9)).

The liabilities of both companies exhibited comparable volatil-
ity, which was negatively correlated with their income. The fre-
quency of jumps, λL, for Generali was twice that of Axa, but the
probabilities of upward jumps, pL, were similar. The parameter δ,
which was defined previously as the growth rate of average lia-
bilities, was positive and close to the risk-free rate chosen for the
evaluation of each company. The Esscher parameter kA was neg-
ative, so the return of assets under Q was lower than that under
P . Shareholders in Generali and AXA would have optimized their
investment if activities stopped at a point when income dropped
below 59% and 72% of the charges, respectively.

The probabilities of default are shown in the left panel of Fig. 9.1.
A comparison between the 10-year probabilities of default boot-
strapped by credit default swaps (CDS) on 16/9/2014 (around 21%
for Generali and 19% for Axa) suggests that a lower trigger rate of
15% (all of the other parameters were identical) should be used to
assess the bankruptcy risk. The discrepancy in these probabilities
can be explained by the difference between the risk neutral mea-
sures used by financial analysts for stock valuation and those used
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Fig. 9.1. Comparison of stock prices predicted by the model and the true market quotes for the period from 31/8/2009 to 29/8/2014.
Fig. 9.2. Left graph: Probabilities of default based on parameters obtained from the stock market and the probabilities of default with a lower trigger h = 15%. Right graph:
Stock value of Generali for different triggers, h, and different delays.
by credit analysts for CDS pricing. This intuition can be confirmed
by comparing the model results with the multiples of valuation,
M =

stock price
Operating income . Multiples are very popular among financial an-

alysts. Under the assumption that the operating income, (at − lt ), is
constant, the target stock price is estimated multiple times as the
product of the last operating income (e.g., see Vernimmen et al.,
2014, Chapter 35). Therefore, this multiple amounts to the sum
of the discount factors weighted by the probability of survival:
M ≈


∞

t=1 Q (τ ≥ t)e−rt . If our proposed model is reliable, then
the observed multiples should be comparable with this weighted
sum, which was the case. The multiples for Generali and Axa on
9/8/2014 were MGenerali

= 6.25 and MAxa
= 5.45, which are close

to
40

t=1 Q
Generali(τ ≥ t)e−rt

= 6.27 and
40

t=1 Q
Axa(τ ≥ t)e−rt

=

5.82. The sums calculated with survival probabilities bootstrapped
by CDS quotes on 16/9/2014 are three times higher. The Generali
stock values for different triggers and for three different average
periods between bankruptcy and closure (no delay, and 6 months
or 1 year) are shown in Fig. 9.2 (right-hand side). The stock prices as
a function of a given threshold, h, follow a concave curve. Extend-
ing the delay between the decision of bankruptcy and the closure
of the company reduced the stock price.

10. Conclusions

The current study extends the endogenous structural model
initially introduced by Leland (1994), wherewe include companies
financed by stochastic liabilities. This framework is applicable to
companies that face uncertainty in their investments and also in
their costs of funding. The types of companies that belong to this
category are typically insurance companies and commercial banks.
Based on Wiener–Hopf factorization, we established closed-form
expressions for the equity value, for the optimal default threshold
and the Laplace transform of the default time, where we applied
the Esscher risk neutral measure. We extended these results to the
case where the closure of the company occurs after the decision
of bankruptcy. The numerical application of themodel employed a
calibration procedure based on both the market and fundamental
analysis. The proposed method was applied to two examples
of companies, i.e., Generali and Axa, and it explained the main
movements of their stock prices. However, the probabilities of
company default obtainedwith these parameterswere higher than
those used for pricing CDSs. This suggests that financial analysts do
not use the same risk neutral measure as credit risk analysts.
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Table A.1
All of the figures are in millions of US dollars (except a(t) and b(t)).
Source: Biannual standardized income statements for Generali and Axa and Bloomberg database.

Semester Revenue-net earned
premium

Insurance claims, others and
underwriting costs-net earned
premium

Basic weighted avg
shares

a(t) l(t)

GENERALI

S2 2009 21754.50 18763.00 1414.07 16.16 13.94
S1 2010 22715.60 19235.80 1540.84 14.59 12.36
S2 2010 21345.60 17837.50 1540.85 13.71 11.46
S1 2011 18827.60 14946.20 1540.87 12.22 9.70
S2 2011 10743.30 7319.10 1540.88 6.97 4.75
S1 2012 12363.90 9090.40 1540.88 8.02 5.90
S2 2012 18209.00 15126.00 1540.80 11.82 9.82
S1 2013 18874.40 15515.90 1540.79 12.13 9.97
S2 2013 20887.00 17006.00 1547.20 13.42 10.93
S1 2014 22681.00 18692.00 1555.98 14.57 12.01

AXA

S2 2009 41086.00 34773.00 2193.20 18.66 15.79
S1 2010 44869.00 37104.00 2263.00 19.76 16.34
S2 2010 37390.00 29863.00 2293.53 16.30 13.02
S1 2011 41344.00 32181.00 2298.00 17.95 13.97
S2 2011 21387.00 17078.00 2301.00 9.28 7.41
S1 2012 22987.00 20203.00 2340.00 9.81 8.62
S2 2012 35763.00 29583.00 2343.00 15.22 12.59
S1 2013 34524.00 28417.00 2380.60 14.46 11.90
S2 2013 39375.00 32256.00 2388.00 16.43 13.46
S1 2014 41141.00 33365.00 2417.90 16.91 13.71
Appendix

See Table A.1.
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