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1 Introduction

Modern �nancial regulation frameworks are designed to take into account the actual risks
faced by �nancial institutions. This precision in evaluating the risks comes at a cost since
improving accuracy tends to be pro-cyclical. As a response to the potential increase of sys-
temic risk, stress tests have increasingly become a common tool for insurance and banking
supervision. In a nutshell, supervisors check the consequences of adverse shocks on the
solvency, liquidity and stability assessment of undertakings. Since Basel I, �nancial regu-
lation is based on the assessment of capital requirement and its coverage by undertakings.
In this respect, undertakings would typically undergo assets and own-fund downfall after
the simulation of the shock. Some companies pass the test and still hold enough capital
after the stress test while some others do not.

This type of �nancial stability tests are suited for supervision. On the one hand, it
helps monitor �nancial stability on the basis of a horizontal and cross-sectional analysis
of individual responses. On the other hand, it can include a forward looking perspective.
Moreover, some supervisors almost only rely on the outcome of such exercises. Even if the
use of such tests is more recent in the insurance sector than the banking sector, they come
more and more on top of the agenda, see for example NAIC and EIOPA's recommendations
arising after such exercises (e.g. European Insurance and Occupational Pensions Authority,
2014). Di�erent aspects of stress test exercises need to be clari�ed: why stress testing?
How should such exercises be organized to optimize supervision e�ciency? How should
the scenarios be selected and at which (quantile) level? How should the framework of the
exercises be designed, e.g. which simplifying assumptions should be made?

In this study we only focus on the latter aspect with a glimpse on the European in-
surance stress test since those exercises are part of the more general Solvency II regula-
tory framework which has become fully applicable since January 2016. Since the CEIOPS
quantitative impact studies performed in 2011, a consensus emerged in the European Union
insurance supervisory community: the absence of Solvency Capital Requirement (SCR) re-
assessment after a shock was regarded as a prudent hypothesis. Indeed, it is often believed
that the SCR is very likely to be smaller after the stress test is applied than initially, for
example after an adverse shock leading to a decrease in the market value of the portfolio.
Keeping the SCR constant would therefore correspond to a cautious strategy.

This rationale seems natural when looking at a shock on the �nancial markets: if stock
prices would fall by 40%, say, then a second 40% shock would only correspond to a 24%-
decrease with respect to the initial stock price. Besides, some countercyclical measures like
the equity dampener1 may reinforce this phenomenon.

However, as far as natural or man-made catastrophes in P&C risks (�Cat P&C risks�)

1For more explanations on how the equity dampener is set up, see the consultation paper CP-14-
058 on �the proposal for draft Implementing Technical Standards on the equity index for the symmet-
ric adjustment of the equity capital chargehttps://eiopa.europa.eu/Publications/Consultations/
EIOPA-CP-14-058_ITS_Equity_dampener.pdf
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are concerned, if some extreme scenario occurs, then it is likely that the tail distribution
of the corresponding risk has to be re-evaluated. A scenario with a return time of 150
years can, upon occurrence and after re-estimation in the light of the new data, become
a scenario with a 90 year return time, as observed empirically by Mornet et al. (2016) for
storm risk in France. This may of course lead to an increase in the SCR.

In addition, the loss absorbing capacities generated by deferred tax or technical pro-
visions have limitations. After a large adverse event, these capacities may be strongly
reduced, and this would lead to an increase in the SCR.

In this paper, we aim at explaining these opposite e�ects and quantify their combined
impacts on the SCR in a simpli�ed model and also with regulatory data. Our contribution
is threefold. First, we build the �rst stylized model for re-estimated solvency ratio in
insurance. Second, this leads us to solve a new theoretical problem in statistics: what is
the asymptotic impact of a record on the re-estimation of tail quantiles and tail probabilities
for classical extreme value estimators? Third, we quantify the impact of the re-estimation
of tail quantiles and of loss absorbing capacities on real-world solvency ratios thanks to
regulator data from ACPR featuring cases where re-computing leads to an increase in the
SCR. Another striking outcome of our study is the importance of loss-aborbing capacity
on solvency capital ratios.

Our paper is organized as follows. In Section 2, we explain how the Solvency Capital
Requirement (SCR) is computed in Solvency II. In particular, we describe regulatory stress
tests and loss absorbing capacity mechanisms. In Section 3, we present our simpli�ed model
for SCR re-estimation. Section 4 quanti�es the asymptotic underestimation when one
neglects a record with a theoretical extreme value analysis point of view. In Section 5, we
provide orders of magnitude of the di�erent e�ects using French stress test data (relevant
for the whole European Union). In the conclusion, we give some policy implications and
we introduce some future research questions.

2 Solvency capital, stress tests and loss absorbing ca-

pacity in Solvency II

2.1 Prudential balance sheet of European insurers

In the insurance sector, estimating liabilities can be very tricky since no actual market
value exists for in-force businesses. Generally, only model-based valuations are available:
producing the balance sheet of an insurer is already a di�cult task for life insurers, in-
volving simulations. Technical provisions in the Solvency II framework (EU Parliament
and Council, 2009) consist in an actualization of the projection of cash �ows made by the
undertaking. The calculation methodologies of the best estimate is de�ned in the Article
28 of the Delegated Regulation (Commission, 2015) and is completed in the EIOPA guide-
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lines on Technical Provisions (European Insurance and Occupational Pensions Authority,
2015). The overall shape of the balance sheet is given by Figure 1.

Figure 1: Insurer simpli�ed Balance Sheet (Solvency II) (source: UK actuaries)

The Solvency II directive de�nes the Solvency Capital Requirement (�SCR�) as the
aggregation of di�erent risk modules. In turn, these modules are de�ned by sub-modules
or even sub-sub-modules, see Figure 2.

For each sub-module (or sub-sub-module), a set of risk factors is considered and there
exist two methods. Either a formula is used, e.g. the premium risk of the non-life un-
derwriting risk sub-module or the result of a mono factor �stress test�, or an alternative
method via VaR determination is employed. This alternative method consists in stressing
a parameter (interest rates, stock indices, mortality tables, etc.), up to a 99.5% quantile
level, and then compute the net-asset value (�NAV�) to infer the value of the gross and
net sub-module depending on whether the di�erent diversi�cations e�ects (see �loss ab-
sorbing capacities� in Subsection 2.2) are taken into account. The ∆−NAV is actually the
di�erence of Basic Own Funds between the stressed and baseline situations, see Figure 3.

In 2014, EIOPA (�European Insurance and Occupational Pensions Authority�) led a
pan-European insurance stress test. This exercise was composed of a core exercise applied
to 167 insurance groups of the EU market2 which included the 30 largest companies in

2This represents 55% of all gross written premiums. NCAs were allowed to add solo undertakings when
unable to reach the 50% threshold with only the groups acting domestically.
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Figure 2: SCR: risk modules breakdown (Source: EIOPA)
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Figure 3: SCR risk sub-modules calculation (Source: ACPR)

Europe. Baseline �gures revealed that life technical provisions are predominant within
this scope. As a consequence, market risk is actually the most important module in the
aggregated SCR, see Figures 4 and 5. For this reason and to simplify the calculations, we
will assume henceforth that the insurance company only depends on a single risk factor.

2.2 Loss absorbing capacities

Before the launch of Solvency II, CEIOPS3 was responsible for determining which risk-
measure should be best suited to insurance industry4. Di�erent approaches were tested for
the liability valuation5 and already at this level the impact of the future bonuses seemed to
be material. The insurance industry is characterized by risk mitigation and so, Solvency II,
being risk based, had to take this feature into account unlike Solvency I, which was based
on �xed/all-inclusive calculations. In this regard, CEIOPS progressively introduced the
concept of �loss absorbing capacity�: at �rst in the QIS 2 speci�cations one could �nd the
�risk absorbing proportion of TPBene�ts� or the �risk absorption� property of the future pro�t
sharing only related to the discretionary nature of pro�t-sharing in almost all jurisdiction:

RPS = k × TPBene�ts,

3Committee of European Insurance and Occupational Pensions Supervisors, the predecessor of the
European authority for insurance supervision, �EIOPA�

4The results of this analysis, called �QIS� for Quantitative Impact Studies, can be seen on the EIOPA
website: https://eiopa.europa.eu/publications/qis

5Approaches tested included the best estimate, the 60th, 75th and 90th percentiles, and the company
view.
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Figure 4: Technical provisions breakdown (source: EIOPA Stress Test 2014)

Figure 5: SCR Decomposition (source: EIOPA Stress Test 2014)
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assuming a linear relation between the Reduction for Pro�t-Sharing (RPS) and the tech-
nical provisions (TP) which relates to the future discretionary pro�ts, and k was the risk-
absorbing proportion of those technical provisions. QIS 3 was only mentioning the �loss
absorbing capacity� for the purpose of the valuation of contingent capital but con�rmed
the key role played by future bonuses granting those mechanisms some �risk absorption�
abilities or properties. The QIS 2 linear relation was still mentioned but a more complex
mechanism, called �three-step approach� was introduced: for each risk sub-module two
calculations should be performed: a net SCR module, denoted by nSCRMod, and a gross
one, denoted by gSCRMod. The di�erence, KCMod, between those two quantities is the
�risk absorption ability� at the risk module level:

KCMod = gSCRMod− nSCRMod .

Then those KCs6 needed to be aggregated at the level of the �ve largest risk modules (Life
module, Non-Life, Market, Counterparty and Health) with the same correlation matrices of
the sub-risk-modules so as to produce KCLife, KCNL, KCMkt and so on. In a �nal step, those
coe�cients were eventually aggregated with the same correlation matrices as their risk-
module counterparts. With this approach, the loss absorbing capacities were not assumed
to be directly comparable to a speci�c balance-sheet element such as the with-pro�ts
technical provisions. As a consequence, this modular calculation made it unpredictable
to any movement in the balance-sheet, were it on the liability or asset side. The QIS 4
speci�cations only re�ned this approach by de�ning more precisely what �loss absorbing
capacities� (LAC) were, whether it be linked to an asset or a liability element, insisting
on the role played by deferred tax (LACDT) and absorbing capacities by the technical
provisions (LACTP). Finally, the Solvency II directive gave legal perspective to the concept
of loss absorbing capacity in its Articles 103 and 108; Article 111 let the implementing
measures give more details on how to compute those loss absorbing capacities.

As explained in the previous section, the core of the whole prudential balance sheet is
the best estimate. For any simulated sample path used for the projection of the liabilities
entering in the valuation of the best estimate, an undertaking might gain or lose some risk
absorbing ability. As an illustration, in the life business, depending both on the market
conditions (interest rates, stock prices, etc.) and on the level of the minimum guarantees
granted to the insured, the undertaking running the best-estimate simulation might gain
or lose some leeway with respect to the discretionary bonuses. In the end, any of the SCR
sub-module (netto) whose calculation depends on a best estimate calculation will strongly
be a�ected by these technical provisions' absorbing mechanisms. Finally, all those sub-
module loss absorbing capacities coming from technical provision or future discretionary
bene�ts are gathered at the level of the SCR to account for a global diversi�cation e�ect.

How does the mitigation actually work? In QIS 1 and 2, the risk-reduction mechanisms
were initially designed and conceived by all the supervisors and regulators as constant
elasticities to with-pro�t participations. In the �nal version of the regulatory texts, those

6KC stands for vector of risk mitigation correlations.
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mechanisms are not straightforward especially for the calculation of a modular risk module
(scenario-based calculations). At �rst, the insurance company needs to compute the SCR
net of all e�ects, which means that the amount of the risk-mitigation techniques are taken
into account in the di�erent best-estimate evaluations (baseline and module shock) and
can change on a sample path basis. Then on a second round one has to evaluate the
Gross SCR. For this purpose, all the computations need to be made while assuming only
the cash �ows coming from the guaranteed bene�ts are rediscounted when the relevant
scenario a�ects the interest rate term structure. In the gross calculation phase, the cash
�ows arising from the future discretionary bene�ts are supposed to be constant.

Considering market risk as an example, the lower the value of the assets, the lower the
risk. Besides, after a large �nancial shock one would expect net SCR sub-modules linked
to market risk to decrease when risk exposure decreases so that any SCR reevaluation after
a large shock would bene�t the undertaking thanks to a proportionality e�ect.

However, this one-to-one correspondence is not actually observed in the 2014 Stress
test data (European Insurance and Occupational Pensions Authority, 2014): although
very few undertakings reassessed their SCR post-stress � less than 30%, the reassessment
was optional � a signi�cant share (more than 40%) of the undertakings underwent an
increase of their global net SCR in at least one of the market scenarios.

Figure 6: Distribution of reassessed SCR (source: EIOPA Stress Test 2014)

Indeed, taking a closer look at Figure 6, we observe that diversi�cation e�ects can
present some non-linearities, maybe due to the �modular� nature of their estimation. A
very naive explanation to this counter-intuitive result could be that the post-stress reduc-
tion in the diversi�cation abilities would be more signi�cant than the reduction of risk
exposure. Another simple idea would be that the addition of an extreme point changed
the global shape of the underlying loss distribution. Interpretations based on both e�ects
are developed in the following sections.
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2.3 Stress tests and Solvency II

As explained in Subsections 2.1 and 2.2, most of the SCR risk sub-modules for life under-
taking are estimated by means of stress tests on speci�c risk factors. The stress applied is
supposed to represent a 1-in-200 year shock. For example, the Interest Rates sub-module
is one of the most important ones as part of the Market Risk module. EIOPA used limited
historical data, following four datasets to calibrate the di�erent regulatory shocks to apply:

� EUR government zero coupon term structures (1997 to 2009),

� GBP government zero coupon term structures (1979 to 2009),

� and both Euro and GBP LIBOR/swap rates (1997 to 2009).

With this regulatory framework in place, other risk dimensions or quantiles of di�erent
levels are not covered. For this reason, EIOPA can run dedicated exercises complementing
the regular Solvency assessment. These exercises allow data collection and analyses to test
and measure the resilience and vulnerabilities of the insurance market. In 2014, the EIOPA
stress tests ran two exercises: a core exercise, aiming at testing large groups, and a satellite
exercise, challenging solos with prolonged low rate environments. In this article we have a
closer look at the results of the market shocks of the �Core module�. These were two adverse
�nancial market scenarios designed in cooperation with the ESRB which implemented a
so-called �double hit�, meaning both an increase in the value of the liabilities, due to a
prolonged low yield environment, and a decrease in the asset values for equity but also for
sovereigns with a widening of the spreads7.

3 A simpli�ed model for post-stress SCR

In this simpli�ed model, we consider that the SCR is given by

SCR = [VaR99.5%(X)− E(X)− b]+ , (3.1)

where X is a random variable corresponding to the 1-year random loss the insurer may
face. Here, for simpli�cation purposes, we consider only one risk factor, which can be
�nancial or P&C cat. Of course, in the real world, there are many risk factors, aggregated
either with the standard formula or by means of an internal model. We shall discuss the
impact of diversi�cation on our results in the sequel. The parameter b plays an important
role: it corresponds to the loss absorbing capacity, and it is likely to be a�ected if a large
event occurs.

7For a more detailed view on the scenarios the description of the scenario can be downloaded
on the EIOPA website: https://eiopa.europa.eu/Publications/Surveys/Note_on_market_adverse_
scenarios_for_the_core_module_in_the_2014_EIOPA_stress_test.pdf
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After a shock, b is transformed into b′ and X is transformed into

X ′ = aX̃, (3.2)

where a is a factor accounting for the change in the exposure, and X̃ is the revised version
of X after taking the last shock into account.

If one considers mass lapse risk or pandemic risk, then the portfolio size is smaller
after the �rst shock, so that a < 1. Similarly, if stock prices go down by 40%, then it is
natural to consider a = 60% < 1, even in absence of countercyclical measures. For P&C
disasters, the situation is less clear: on the one hand, some buildings might be partly or
fully destroyed, which makes the exposure temporarily decrease (a < 1) as there is less to
be potentially destroyed by a second event. On the other hand, a �rst event might also
cause some frailty and make the consequences of a second event potentially more severe,
for example in the case of �oodings or earthquakes where some cumulative e�ect or some
replicas may be disastrous (a > 1).

If an event like a major, unpreceded earthquake, hurricane or terror attack occurs, then
the probability and potential severity of such an event will automatically be re-evaluated
by cat models like RMS, EQECAT or AIR or by internal models, following Bayesian
techniques. For most events, the impact on high-level Value-at-Risk is very likely to be
much more important than the impact on the average. Therefore, we model this as a
change from VaR99.5%(X) to VaR99.5%(X̃), but for the sake of simplicity we do not update
the average, considering that the impact on the average can be neglected: we assume that
E(X) = E(X̃).

Of course, this assumption might be inappropriate in some cases, particularly for regime
switching models like 3-state Hardy stock models or self-excited processes, in which the
best estimate and the volatility tend to move in adverse directions when things go bad, and
for mean-reverting models, where some mitigation is present when things go bad. For some
other risks like sovereign risk or foreign exchange risk, some shocks may occur as jumps
(CHF/EUR exchange rate in January 2016). The two types of risks that we consider in
this paper, market shocks and large P&C claims, are thus both relevant for our study.

The parameter b, accounting for the loss absorbing capacity, can be transformed into
b′ after a large event for several reasons. The loss absorbing capacity thanks to di�ered
tax and thanks to technical provisions is not in�nite, and it may happen that the new loss
absorbing capacity after a large event is much smaller than before, that is, b′ � b.

Besides, reinsurance might become too costly, reinstatements might be exhausted, or
protection from Insurance Linked Securities could be strongly imputed, which would again
lead to b′ < b for other reasons. Even if we focus here on loss absorbing capacity in the
Solvency II framework, the analysis that we develop could be adapted to loss absorbing
capacity through risk transfer in a more general Enterprise Risk Management approach.

In contrast, some countercyclical mechanisms like the equity dampener might have a
favorable impact by reducing the SCR if a downward shock occurs. This tends to increase
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the value of b′.

For the sake of simplicity, we have focused on a single risk factor. Nevertheless, due
to the complexity of risk aggregation and diversi�cation, a large event might a�ect the
diversi�cation bene�t if one risk becomes smaller or larger than other ones. The fact that
part of the diversi�cation bene�t disappears has of course a negative impact on the SCR.
On the other hand, one has already pro�ted from mitigation of the initial shock thanks to
diversi�cation.

Three e�ects are present: the ones of a in (3.2), of b in (3.1), as well as of the tail
quantile re-estimation. From a theoretical point of view, the impact of the �rst two ones
is quite straightforward. The tail re-estimation e�ect, however, has not yet been studied
in the literature and is a bit more technical. Therefore, in the next section, we quantify
the change from VaR99.5%(X) to VaR99.5%(X̃) after a record occurs in a P&C framework,
in absence of loss absorbing capacity and for a = 1. As this is currently not taken into
account, we formulate this as the underestimation of high quantiles when one ignores the
record that has just occurred.

4 Pre-record estimation bias of tail estimators

4.1 Notation and framework

We take a P&C view on the random loss X underlying the SCR calibration. Let X1, X2, . . .
be i.i.d. random variables corresponding to observations of X. For simplicity, assume
that their common distribution is continuous. Denote the ascending order statistics of
X1, . . . , Xn by Xn:1 < . . . < Xn:n.

Consider statistics of the type

Tn = tn(X1, . . . , Xn),

where tn : Rn → R is a permutation invariant function. Think of Tn as an estimator of
some tail-related quantity: a tail quantile, a return level, . . . . The statistic Tn depends on
the data only through the order statistics:

Tn = tn(Xn:1, . . . , Xn:n).

We want to understand the consequences of not reestimating the risk distribution in
a stress test associated to an extreme shock. We focus on the case where the shock is
unpreceded: the very recent loss corresponds to a record, like for example the Bar-le-Duc
claim in 1976 for motor third party liability or Lothar in 1999 for storm risk in France.
In practice, such events might be relevant for di�erent sub-risk-modules of Solvency II
(underwriting, cat, . . . ) and their impact might be diluted with attritional claims during
the year. To simplify, we assume here that X corresponds to the random variable whose
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quantile is used to derive the Solvency Capital Requirement. We assume that at a given
time instant, a record occurs: the new observation is larger than what has been observed
before. When should we compute the statistic: right before or right after the record?

First, assume that the record occurs at �time� n, that is, Xn > Xn−1:n−1, or, in other
words, the rank of Xn among X1, . . . , Xn is equal to n. At a given sample size, the vector
of order statistics is independent of the vector of ranks. We �nd that

[Tn | Xn > Xn−1:n−1]
d
= Tn. (4.1)

That is, computing the statistic right after a record does not lead to any distortion.

Second, assume that we compute the statistic right before a record occurs. Speci�cally,
suppose that Xn+1 is a record: Xn+1 > Xn:n. How does the occurrence of that event a�ect
the distribution of Tn?

If Xn+1 is a record in the stretch X1, . . . , Xn+1, then Xi < Xn+1 for all i = 1, . . . , n, and
the vector of order statistics (Xn:1, . . . , Xn:n) is equal to the vector (Xn+1:1, . . . , Xn+1:n). It
follows that

[(Xn:1, . . . , Xn:n) | Xn+1 > Xn:n]
d
= (Xn+1:1, . . . , Xn+1:n). (4.2)

Equation (4.2) implies that

[Tn | Xn+1 > Xn:n]
d
= tn(Xn+1:1, . . . , Xn+1:n). (4.3)

Computing the statistic right before the occurrence of a record has a clear impact on its
distribution: compare (4.1) and (4.3).

The size of the e�ect depends on the function tn. If Tn is a tail estimator, then the
impact of omitting the largest observation could be potentially quite large. We work out
two relevant cases for our initial problem in the following subsections.

4.2 Tail probability estimation error

We �rst investigate the question of tail probability re-estimation. After an extreme event,
the CEO of an insurance company could ask the cat-modeling team: �What is the return
period of yesterday's event?�. The cat-modelers could in fact reply: �Well, two days ago
I would have answered 200 years (tail probability 1/200), but today I'd rather say 120
years!�. One can imagine the CEO's reaction. . .

The following example quanti�es the change in the tail probability estimate.

Example 1 (Tail probability). Let u be a high level. Aim is to estimate the tail probability
p = 1− F (u). Note that the return level is equal to 1/p. The simplest possible estimator
is the empirical one,

Tn =
1

n

n∑
i=1

I(Xi > u).
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Clearly, the estimator is unbiased:
E[Tn] = p.

However, if we ignore the information that at time n+ 1, a new record occurred, then

E[Tn | Xn:n < Xn+1] = E

[
1

n

n∑
i=1

I(Xn+1:i > u)

]

= E

[
1

n

n+1∑
i=1

I(Xn+1:i > u)− 1

n
I(Xn+1:n+1 > u)

]
=
n+ 1

n
p− 1

n
{1− (1− p)n+1}.

The expected relative error is therefore

1

p
E[Tn | Xn:n < Xn+1]− 1 =

1

n
− 1− (1− p)n+1

np
.

If u = un →∞ in such a way that np = npn = n{1−F (un)} → τ ∈ (0,∞), i.e., if p ∼ τ/n,
then the expected relative error converges to a nonzero limit:

1

p
E[Tn | Xn:n < Xn+1]− 1→ −1− e−τ

τ
, n→∞. (4.4)

The asymptotic expected relative error is negative and depends on the limit of the expected
number of exceedances, τ , over the level u.

4.3 Tail-quantile error estimation

The fact that a 200-year event might become a 120-year event implies that the new 200-year
event is much more severe after the extreme event. Motivated by the SCR re-estimation
question, we now investigate the impact of a record on tail-quantile estimators.

Example 2 (Tail-quantile estimator). Let Q be the quantile function of F . The aim is to
estimate a tail quantile, Q(1 − p), where the tail probability, p ∈ (0, 1), is small. Assume
that F is in the domain of attraction of the Fréchet distribution with shape parameter
α ∈ (0,∞). We will only use classical tools of extreme value theory. The interested reader
may consult for example the book of Beirlant et al. (2006) for a presentation of the Fréchet
domain of attraction. Let γ = 1/α be the extreme-value index. Let k ∈ {1, . . . , n− 1} be
such that p < k/n. A common estimator is based on the approximation

Q(1− p) ≈ Q(1− k/n) {(k/n)/p}γ.

On a logarithmic scale, the estimator takes the form

log Q̂n,k(1− p) = logXn:n−k + γ̂n,k log{(k/n)/p}, (4.5)
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where γ̂n,k is an estimator of the extreme-value index γ, for instance the Hill estimator

γ̂n,k =
1

k

k∑
i=1

logXn:n−i+1 − logXn:n−k. (4.6)

(We implicitly assume that Xn:n−k > 0.)

Combining (4.5) and (4.6), we �nd that the tail quantile estimator is linear in the order
statistics Yn:n−k < . . . < Yn:n, where Yi = logXi. Identity (4.3) then permits in principle
to calculate its conditional distribution on the event that Xn:n < Xn+1:

[log Q̂n,k(1− p) | Xn:n < Xn+1]

d
= logXn+1:n−k +

(
1

k

k∑
i=1

logXn+1:n−i+1 − logXn+1:n−k

)
× log{(k/n)/p}.

To evaluate the impact of ignoring a known record, let us compute the expectation of
the estimator under the simplifying assumption that the random variables Xi are iid Pareto
with shape parameter α, that is, F (x) = 1 − x−α for x ≥ 1. Equivalently, the random
variables Yi are iid Exponential with expectation equal to γ. In that case, logQ(1 −
p) = γ log(1/p). A well-known representation of the order statistics from an exponential
distribution yields

E[Yn:n−j+1] = γ

(
1

n
+

1

n− 1
+ · · ·+ 1

j

)
, j ∈ {1, . . . , n}. (4.7)

Equation (4.7) yields the following expressions for the expectation of the estimator of the
log tail quantile. Unconditionally, we have

E[log Q̂n,k(1− p)] = logQ(1− p) + γ

(
1

n
+ · · ·+ 1

k
− log(n/k)

)
.

The second term on the right-hand side converges to zero relatively quickly. In contrast,
conditionally on the occurrence of a record on the next day, we have

E[log Q̂n,k(1− p) | Xn:n < Xn+1]

= (1− ak) logQ(1− p) + γ

(
1

n
+ · · ·+ 1

k
− (1− ak) log(n/k)

)
,

where

ak =
1

k

k∑
j=1

1

j + 1
.

The sequence ak tends to zero as k tends to in�nity: ak ∼ log(k)/k as k → ∞. Still,
since the relative error occurs on the logarithmic scale, there is potentially a severe under-
estimation of the tail quantile: indeed, we have (1−ak) logQ(1−p) = log[{Q(1−p)}1−ak ].
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The relative error is thus given by {Q(1 − p)}−ak = (1/p)akγ. The larger the tail index
γ and the smaller the tail probability p, the larger the relative error. The result remains
valid for the more general Pareto distribution F (x) = 1− (x/σ)−α for x ≥ σ, where σ > 0
is a scale parameter.

In the next section, we investigate the concrete impact of this phenomenon and of two
other ones, risk exposure reduction and decrease in diversi�cation elements, on real-world
insurance regulatory capitals.

5 Illustration with real-world situations

In this section, we calibrate the three e�ects following two approaches: the �rst approach
is related to actual risk levels used in �nancial regulations and the second one using the
2014 EIOPA stress test data of the French insurance regulator. We �rst provide orders
of magnitude of the re-estimation e�ect on SCR in the insurance industry, in absence of
loss absorbing capacity e�ect and for a = 1 in (3.2). Then, motivated by the design of the
market risk SCR, we investigate the case where a = 0.6 and calibrate b in (3.1) and b′ from
real data. Finally, we study the case where a > 1 and we identify regions where one e�ect
dominates the other one. On top of these empirical illustrations, we highlight the problem
of the risk margin valuation, which strengthens our main conclusions on the SCR with a
view on the whole prudential balance sheet.

5.1 Tail re-estimation e�ect

Parameter τ � Tail probability estimation error. In the case of a natural catas-
trophe, the expected number of high-threshold exceedances, τ = np, belongs to a broad
range of values. In the case of a stress test, τ is close to 0. It is quite common to consider
τ = 1× 1

200
which is a typical target used in the Solvency II framework (n = 1, p = 1

200
).

The formula (4.4) for the expected relative error of the estimated exceedance proba-
bility due to the omission of the most recent record value as a function of τ is illustrated
in Figure 7. We see that τ = 10 exceedances already give a 10% misvaluation of the
tail probability. If the expected number of exceedances decreases to τ = 1, the relative
estimation error goes up to 63%.

These numbers highlight the impact of the pre-record estimation bias. The e�ect is
striking but cannot account for the error on the SCR, which is expressed on the quantile
scale. We now consider the quantile error.

Parameter γ � Quantile estimation error. As a �rst-order approximation we can
use the formula illustrated in Subsection 4.3 for the expected negative relative error of the
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Figure 7: Relative probability error vs number of exceedances estimated with (4.4)
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quantile estimate:
δp,k,γ = (1/p)ak·γ (5.1)

with ak ≈ k−1 log(k).

In the context of the Solvency II, p should be equal to 0.005. For k, di�erent values
are plausible; the natural framework in Solvency II should be k = 200, since the current
norm sets records up to 200 years of magnitude. In a Stress Test context, values of k in
the range of 5 to 50 are also admissible.

As illustrated by the graphs in Figure 8, the di�erence between the actual quantile and
its value just after the addition of a shock with magnitude γ times the expectation of the
standard shocks can be very signi�cant. For example, even with 200 records, the addition
of an event 10 times larger than expected would lead to a quantile more than twice the
initial value! Note that we implicitly assimilated the change in the estimated 99.5% VaR
to the change in the SCR. This is not true in general as the SCR might be de�ned in
a more complex way. Besides, the Best Estimate of Liabilities would also be impacted.
Nevertheless, for reasonable values of n and k, the change in the estimated average of
X is small in comparison to the change in the 99.5%-Value-at-Risk level. Therefore, for
simplicity, we assume here that the Best Estimate of Liabilities can be neglected in this
�rst study, and we leave it for further research to quantify the change in the best estimate.

In Figure 9, we focus on operational risk for banks, for which banking regulation imposes
to compute the 99.9%-quantile of the one-year loss. Ne²lehová et al. (2006) show that for
banking operational risk, one cannot exclude that γ > 1, corresponding to in�nite mean
models. We therefore consider the impact of quantile re-estimation after a record: for �nite
mean models with γ close to 1, Figure 9 shows that the new result might be as large as 2.8
times the result without re-estimation. This shows that the phenomenon presented here
deserves further research regarding banking supervision.

However, this �rst e�ect actually accounts only for changes in something equivalent to
the gross BSCR (the �quantile error�) before diversi�cation (not considered here). Let us
now investigate the concrete e�ect of Loss Absorbing Capacity on the net SCR.

5.2 The case a < 1

The naive model introduced in Section 3 can be calibrated with the 2014 stress test
data. An identi�cation of the di�erent terms on the right-hand side of (3.1) implies that
VaR99.5%(X) − E(X) is equal to the gross BSCR (adding Operational risk, denoted by
gBSCR) and b is the sum of the di�erent diversi�cation and loss absorbing mechanisms, in
particular the Loss-Absorbing Capacity with Technical Provisions and with Deferred Tax.

In absence of quantile re-estimation, after the shock, X becomes X ′ = aX and the SCR
becomes: SCR(X ′) = a× gBSCR− b′. With this simpli�ed setup, it appears very clearly
why the risk could not depend on the scaling factor a and only on the potential increase of
volatility of the pro�t and loss distribution. At this point, we emphasize that the desired
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Figure 8: Relative quantile estimation error vs relative expected magnitude as a function
of parameter γ for di�erent values of p and k using equation (5.1)
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Figure 9: Relative quantile estimation error vs relative expected magnitude as a function
of parameter γ (for p = 0.001 and k = 20) using equation (5.1)

Liabilities 100 Me
gBSCR 7.5 Me
b 5.25Me

Net SCR 2.23Me

Table 1: Toy company, pre-stress situation (source: ST 2014 �gures)

quantile is not directly based on the exposure so that there might only exist a tenuous link
between the risk exposure and the loss distribution.

The gross SCR is multiplied by a when X ′ = aX. Note that this property is very
general and remains valid when the Solvency Capital is de�ned via a Tail-Value-at-Risk
as in the Swiss Solvency Test, or when one uses any distortion risk measure for economic
capital in Enterprise Risk Management. This positive homogeneity property is also valid
in the practical approach adopted during the genesis of Solvency II: practitioners often
approximate VaR99.5%(X) with E(X) + cσX , where σX is the standard deviation of X and
2.5 ≤ c ≤ 5 is a multiplier close to 3 in the lognormal case and closer to 4 or 5 for loss
distributions with heavier tails.

To illustrate this setup, we create a company with 100Me total balance sheet repre-
sentative of the ST2014 data8.

First remark: the diversi�cation and loss absorbing mechanism represents more than
twice the net SCR, which demonstrates its importance in the Solvency II framework.

8The di�erent prudential quantities in the table are computed from the companies which reassessed
their SCR post-stress and had a positive increase in at least one of the �nancial stress scenarios.
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in Me ST (a ≈ 0.93) a = 0.9 a = 0.8

Liabilities' 97.5 96.8 86
BSCR' 7.17 6.7 6
b′ 4.45 4.02 3.27

Net SCR' 2.71 2.71 2.71

Table 2: Toy company, post-stress situation (source: ST 2014 �gures, authors'
calculations)

Another important consequence is that the variance of the pro�t & loss distribution plays
a far greater role than the market risk exposure. Indeed, the a factor does not show up
in the �nal estimation of the SCR. If we make another assumption and assume a perfect
correlation between market exposure and the P&L, we would get:

SCR(X ′) = a× gBSCR− b′,

with9 a = 0.6. In this simple model, the pre-stress net and gross SCR shown in Table 1
evolve10 after the stress as presented in Table 2.

In fact, a = 0.6 corresponds to the pure shock for stocks and their spillovers. But given
other risk modules and diversi�cation and loss absorbing mechanisms it might be more
consistent to choose11 a = 0.8 or a = 0.9. We also provide numbers for a = 0.8 and for
a = 0.9.

For the completeness of the analysis, the value of b′ is deduced with the following
equation (for a = 0.9, in Me):

b′ = gBSCR′−Net SCR′ = 7.17− 2.71 = 4.45 = 0.77× b.

As discussed in Subsection 2.2, we observe in this simple example that the di�erent diversi-
�cation and loss absorbing mechanisms had to decrease much faster than the risk exposure.
As a matter of fact, a reassessment of the SCR and at least the di�erent LAC component
should be mandatory in any forward looking exercise (ORSA, Stress test, etc.) when it
is relevant. More generally, credibility of the di�erent diversi�cation modules should be
checked thoroughly and be part of the annual risk review of any insurance supervisor. It is
interesting to note that in the case of the French groups participating to the EIOPA Stress
Test 2014 which reassessed their FDB post-stress, we have

b̂′ = 0.26× b,
9This corresponds to a 40% decrease of the value of stock, comparable to the shock of the �rst scenario

of the 2014 Stress test.
10The value of the LAC post-stress and BSCR' were not requested in the Stress Test exercise but could

be reconstituted.
11As an illustration, the value was a = 0.93 for the French companies in the ST2014 sample used here.
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Figure 10: b′ value with a positive increase of the net SCR

which empirically validates that this e�ect is quite substantial and our that our model is
not too conservative.

5.3 The case a > 1

The case a > 1 corresponds to the situation where the risk exposure increases after the
shock: for example after a �rst earthquake or some �oodings, the next event might have
more severe consequences if it occurs soon, because some buildings have become more
fragile or because the soil is already saturated with water. Another such situation, in
the life insurance business, may occur in the case of mass non-lapse phenomenon, where
remaining policyholders are more numerous than expected, for example if they bene�t from
a high guaranteed minimum interest rate in a low or negative interest rate context.

To illustrate this point, we choose for b a market average and a = 1.2. So far, this �gure
has been provided as a percentage of the aggregate basic solvency capital requirement both
for the participants of the 2014 EIOPA ST (European Insurance and Occupational Pensions
Authority, 2014) and their French counterparts (Borel-Mathurin and Gandolphe, 2015).
The absorption capacity is b = 38% × gBSCR (resp. b = 61% × gBSCR) for the whole
setup of European groups participants (resp. the French groups), where we averaged over
the corresponding samples. For values of gross BSCR ranging from 50% to 150% of the
market average gross SCR, we plot in Figure 10 the sub-regions of the half-plane (b′, gross
BSCR) where the re-evaluated SCR is larger than the initial one.
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5.4 A potential scissors e�ect on SCR Coverage ratio

The surge in the post-stress SCR can also have unexpected consequences for solvency
capital coverage ratios. A by-product of this SCR increase is the coincident e�ect on the
Risk Margin (RM). Indeed, right after the stress, the SCR(0+) or SCR′(0) is the new basis
for the calculation (assuming the cost of capital, CoC, generally set to 6%)12:

RM′ = CoC
∑
t≥0

SCR′(t).

To determine SCR(t), one may either project at each timestep t and make a complete Best
Estimate (BE) determination in future time, or use one of the simpli�ed methodologies,
for example the proportional approach based on the Best Estimate13. We can then infer
the future value of the SCR:

SCR(t) = SCR(0)× BE(t)

BE(0)
and RM = CoC× SCR(0)

∑
t≥0

BE(t)

BE(0)
.

Assume that the proportions stay constant after stress, so that

∀t ≥ 0,
BE′(t)

BE′(0)
=

BE(t)

BE(0)
.

Then

RM′ = CoC× SCR′(0)
∑
t≥0

BE′(t)

BE′(0)
=

SCR′(0)

SCR(0)
RM .

Therefore, the technical provisions would actually increase with even a quasi-constant
BE(0+). In this context, the SCR coverage ratio would deteriorate even more since the
SCR would increase and the available own funds would actually decrease as risk margin
increases.

6 Conclusions and policy implications

The Solvency II framework is characterized by the estimation of loss quantiles based on
historical data. This framework allows for diversi�cation and loss absorbing mechanisms
and absorption capacities, that is, the ability to transfer future risk to the policyholders. In
this paper, we studied the implications of the records of large losses on the one hand and,
on the other hand, the magnitude of diversi�cation elements of the prudential balance
sheet such as loss absorbing capacities using deferred taxes or the technical provisions.

12Here, a simpli�ed version is presented.
13There exist four di�erent methods classi�ed by level of simpli�cation de�ned in Guidelines 61 and 62

in [EIOPA-BoS-14/166]. Here the fourth method is used for illustration.
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We computed the bias of estimators of tail probabilities and high quantiles of the loss
distribution if the estimation is done immediately prior to the occurrence of a new record
loss. We also proposed a stylized model to reassess the solvency capital requirement after a
large record. The calibration using the data of the French participants to the 2014 EIOPA
Stress test con�rms our theoretical arguments and showed the very prominent role of the
loss absorbing capacities in the Solvency II framework. Based on our data and as far as
our estimations are concerned, the decrease in the reassessment of the solvence capital
requirement is in the range of 23% to 74%. One of the regular criticism addressed to the
Solvency II framework is the one-year horizon used for the quantile calculations, as it could
produce a lack of stability in the determination of the solvency capital requirement. In
this regard, our work stresses the volatility-inducing potential of the absorption capacities.
This feature emphasizes the importance of the future management actions and other means
of diversi�cation and risk mitigation while calculating the Best Estimate of the liabilities.

Implications of our paper could have four facets: research, Enterprise Risk Manage-
ment, supervision and regulation. As far as research is concerned, one might want to look
ahead to a more advanced framework with a multi-dimensional setup. Insurance companies
potentially undergo shocks from di�erent risk factors simultaneaously, the aggregation of
which would introduce other e�ects to model. Another direction could be the use of these
ideas in the banking sector, e.g. the calculation of the capital charge with VaRs such as
Market risk in the Basel III framework.

Insurers, reinsurers and captives should take into account the impact of large events
on their future ability to continue business. This study shows that re-evaluating the SCR
after a shock should be part of a sound Enterprise Risk Management approach of risk
measurement, risk controls and risk appetite determination.

The supervision duties should be modi�ed in comparison to what was done in the
Solvency I framework. Even in the standard formula, many levers exist and can be used
while producing the prudential balance sheet. In this context, supervisory work should
integrate the credibility checking of the projection hypotheses. Regarding prospective
exercises, be it by the �rm (e.g. ORSA) or the regulator (e.g. Stress Tests), we strongly
recommend to always check the evolution of the solvency capital requirements after the
occurence of a shock, since letting these requirements remain constant cannot always be
seen as a conservative assumption. Indeed, we showed in this paper that the risk exposure
reduction does not necessarily decrease the value of the solvency capital requirement. In
this regard we would strongly recommend that future exercises do not only specify the
asset side but also the liability side and give guidance on the level of risk transfer to be
operated with the technical provision.

Regarding banking supervision, our theoretical analysis and Figure 9 show that the re-
estimation of the quantile of the operational loss is a very important question and deserves
further research.

Finally, the regulatory bodies might have a closer look at the question of the accu-
rate level of the chosen quantile and how to account for post-stress re-evaluation in the
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Solvency II framework. Such a study may motivate better ways to assess the prudential
balance sheet �gures estimations (SCR, MCR, etc.). A plausible response could consist
of regulatory prescriptions such as �oors or caps on the levels of the di�erent diversi�ca-
tion and loss absorbing mechanisms (LAC DT/TP, reinsurance or derivatives, and others).
Moreover, the dynamic nature of capital requirements argues for simple multi-period stress
tests instead of instantaneous ones.
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