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Abstract

Magnetic bearings allow to support a rotating object without contact. This makes
them more suitable than mechanical bearings for applications where removing the
wear and/or the lubrication is highly sought-after, for example. Nowadays, the mag-
netic bearings used in the industry are controlled actively. This requires the use of
sensors, controllers and power electronics. However, the complexity, cost and over-
all dimensions associated with this control system can become prohibitive, especially
for small rated power applications. A way to overcome these disadvantages could be
the use of magnetic bearings that do not require external control means, i.e. passive
bearings. Electrodynamics bearings (EDBs) belong to this category.

Electrodynamic bearings are based on the electromagnetic interaction forces be-
tween permanent magnets and currents flowing in a conductor. These currents are
induced by the relative speed between the magnets and the conductors. For effi-
ciency purposes, electrodynamic bearings are designed in such a way that there is no
net variation in the permanent magnet flux linked by the winding when the rotor
spins in a centered position. As a result, there are no induced currents, no forces,
and above all no losses in the bearing when the rotor spins in a centered position.
This characteristic is referred to as null-flux. It is found in all the designs of electro-
dynamic bearings that are studied nowadays. In contrast, when the rotor spins in an
off-centered position, currents are induced in the winding. This creates a force on
the rotor that tends to restore its centered position. In this case, the energy dissipated
in the windings comes from the drive torque on the rotor that keeps the spin speed
constant. On the one hand, this prevents the operation at zero spin speed. On the
other hand, it eliminates the need for an additional electrical power supply to feed the
bearing, as is the case for the existing active magnetic bearings. Finally, the absence
of control system induces gains in compactness, simplicity, costs and reliability. As
a result, electrodynamic bearings could be well suited for applications where these
aspects are critical.

Despite these advantages, electrodynamic bearings have not made their way out
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of the labs yet due to their low stiffness and stability issues. In this context, this thesis
aims at taking one further step toward the implementation of heteropolar electro-
dynamic bearings in practical applications. To this end, new design guidelines and
models are proposed, validated, and applied to different case studies.

Indeed, the design of a new electrodynamic bearing is usually based on the in-
tuition and experience of its inventor. This work proposes guidelines to ease this
design process. The guidelines are deduced by imposing the null-flux characteristic
to a bearing comprising magnets with radial magnetic field and a winding with an
arbitrary shape. This yields the identity q = p ± 1, where q and p are the number
of pole pairs of the winding and permanent magnets, respectively. Based on these
guidelines, new bearing topologies are also introduced.

Regarding the modeling, recent years have seen the emergence of a new kind of
model of electrodynamic bearings. As opposed to the previous ones, this model is
dynamic, i.e. obtained without making any assumption on the kinematics of the
rotor axis. This opened the possibility of performing stability analyses in a rigorous
way. Furthermore, the stability can be analyzed using conventional system analysis
tools, because the model takes the form of a linear state-space representation. This
thesis proposes a dynamic model with an enlarged scope, i.e. suitable for a wider
range of bearing geometries. Thanks to this model, the performance and stability of
various EDBs can be optimized and compared to find the most appropriate solution
for a given application.

Although various embodiments of heteropolar bearings have been proposed,
very few efforts have been dedicated to the evaluation and optimization of their per-
formance, and the actual potential of heteropolar EDBs still needs to be evaluated.
In this aim, a graphical method based on the analysis of the root locus of the system
is proposed. It is then applied to the comparison of bearings with different wind-
ing yoke permeabilities. Based on the dynamic model developed in this thesis, the
optimization of the stability and stiffness of a yokeless bearing is also carried out,
yielding a Pareto front of optimal bearings. These optimal bearings are finally com-
pared to existing homopolar and heteropolar embodiments in terms of stiffness to
magnet volume ratio, showing that similar ratios can be obtained.

Lastly, the bearing dynamic model is applied to the prediction of balancing radial
electrodynamic forces due to rotor eccentricities in permanent magnet machines.
The main assumptions of the model are validated to show its applicability in this
case, and the forces from the model are compared to finite element simulation results,
showing a good agreement between both predictions.
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1Introduction

Context and motivations

Magnetic bearings support the moving part of a rotating machine through electro-
magnetic forces. The absence of contact between the rotating and stationary parts
yields numerous advantages. For example, the elimination of mechanical wear in-
creases the bearing lifetime, thereby reducing the maintenance cost in remote appli-
cations such as sub sea compressors. Besides, the reduction in friction losses allows
for higher energy efficiencies, e.g. in high speed turbomachinery. Another advan-
tage is the absence of lubrication. It eliminates the need of lubrication seals and
prevents contamination. These assets are particularly sought after in rotating ma-
chinery aimed at transporting aggressive or very pure fluids, and in turbomolecular
vacuum pumps.

Nowadays, the vast majority of magnetic bearings is actively controlled. This
yields additional advantages as it opens the possibility for compensating unbalances
and damping vibration modes when running at higher speeds. As a result, active
magnetic bearings are now integrated in an increasing number of applications from
the oil and gas to the semiconductor and power generation industries (Schweitzer
and Maslen, 2009; SKF, 2016).

Despite their numerous advantages, the spread of active magnetic bearings is still
limited by some drawbacks that are associated with the control system, among others
(Looser and Kolar, 2014). This system involves sensors, actuators, power amplifiers,
and control electronics that increase the complexity, overall dimensions, and cost of
the suspension. Furthermore, the suspension relies on a power supply, making the
whole system more sensitive to power cuts. As a result, more attention is drawn to
bearings that do not require a control system i.e., passive magnetic bearings.

To design a passive suspension, the most intuitive solution consists in assembling
permanent magnets to guide the rotor in the axial and radial directions. However,
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stable levitation cannot be achieved by using only permanent magnets, as demon-
strated by Earnshaw (1842) and Braunbek (1939a,b). More specifically, this theorem
states that the sum of the stiffnesses associated with the interaction forces between
stationary magnets is zero. As a consequence, the stiffness is negative in at least one
direction, and the rotor cannot be supported stably. For example, the ratio of axial
to radial stiffness is −2 for permanent magnet configurations with rotational sym-
metry (Jungmayr et al., 2014). As a consequence, other passive suspension means
should be investigated to achieve stability. They could be used in combination with
a permanent magnet assembly or alone. A first alternative involves strong diamag-
netic materials, i.e. superconductors (Han et al., 2005). However, this requires a
cooling system that gathers the same drawbacks as those cited above for active bear-
ings. A second alternative lies in the gyroscopic stabilization which is implemented
in the Levitron toy (Genta et al., 1999). However, this device is stable in a narrow
spin speed range and remains very sensitive to external disturbances due to its weak
radial stiffness. A third option consists in a bearing based on magnetic fields that are
not static. Electrodynamic bearings (EDBs) belong to this category.

Electrodynamic bearings (EDBs) comprise permanent magnets and conductors
rotating relative to each other. Due to this rotation, the magnetic flux linked by the
conductors varies, thereby inducing electromotive forces and currents in the con-
ductors, as predicted by the laws of Faraday and Lenz. This in turn results in forces
tending to restore the nominal position of the rotor. During operation, the energy
dissipated in the conductors comes from the drive torque on the rotor to keep the
spin speed constant. On the one hand, this prevents the operation at zero spin speed.
On the other hand, it eliminates the need for an additional electrical power supply
to feed the bearing.

Preferably, EDBs are null-flux i.e., they are designed in such a way that the flux
linked by the conductors varies only when the rotor is off-centered (Danby, 1971).
This drastically reduces the unnecessary currents and losses when the rotor spins in
the nominal position, which increases the energy efficiency and avoids thermal is-
sues. As a result, most of the recent studies focus on null-flux EDBs. Finally, EDBs
can be categorized into different groups, depending on whether they provide axial
or radial support, and whether the magnetic field source is homopolar or heteropo-
lar. More specifically, the conductors of null-flux homopolar bearings can be bulk or
wound and experience a field created by a single magnetic pole, whereas the conduc-
tors of null-flux heteropolar bearings must be wound and experience a field created
by more than one pole, see Fig. 1.1.

Radial homopolar bearings have focused much interest in recent years, yielding
significant improvements in their modeling (Detoni, 2012; Kluyskens, 2011; Lem-
bke, 2005) and a successful levitation test (Filatov, 2002). In particular, the conduct-
ing part of homopolar bearings can be made out of bulk materials, which eases their
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(a) (b)

rotor winding
stator magnets

rotor bulk conductor stator magnets

Fig. 1.1: Electrodynamic bearings are categorized into different groups, depending
on whether the field experienced by the conductors are created by one of more mag-
netic poles. (a) Schematic view of a homopolar bearing. The parts are axisymmetric.
(b) Schematic view of a heteropolar bearing.

construction. Axial heteropolar bearings drew the attention of researchers too, also
resulting in improved models (Bachovchin et al., 2013; Impinna et al., 2013), and a
successful levitation test (Sandtner and Bleuler, 2004). For an extensive review of
electrodynamic bearings, the reader is referred to (Detoni, 2014).

This thesis is concerned with null-flux, radial heteropolar EDBs. Various em-
bodiments of heteropolar bearings have been proposed and/or patented so far. A
first patent was filed in the USA by Danby (1971). It was followed by many others
proposed by the teams of Basore, Pinkerton, Davey, and Post in the USA, and by
the team of Murakami in Japan. In the design of these bearings, a lot of attention
was paid to obtaining the null-flux characteristic. However, general guidelines to
be followed for designing null-flux heteropolar bearings do not appear to have been
derived yet.

Models of heteropolar EDBs have been proposed by the teams lead by Davey,
Post, Murakami, Eichenberg, and Takanashi. These works include some validations
based on numerical simulations and a few experimental results. However, the models
were derived for specific embodiments. Consequently, they cannot be used to com-
pare different bearing solutions on an objective basis. Furthermore, they neglect the
impact of the speed of the rotor center on the electrical variables, i.e. the rotor is
assumed to spin in a static eccentricity configuration. This kinematic assumption is
usually referred to as the quasi-static assumption, and constitutes a strong limitation
for a model that is aimed at studying the rotor dynamics. Recently, this drawback
was overcome as Detoni et al. (2012) proposed a model with no assumption on the
rotor kinematics, i.e. a dynamic model. Nevertheless, the scope of this model should
be enlarged to include a wider range of bearings and allow for comparisons.

Although a successful levitation test was reported by Murakami et al. (1996),



4 Chapter 1 Introduction

heteropolar EDBs are still under study in the laboratories because of their low stiff-
ness and stability issues. These drawbacks led to the conclusion that electrodynamic
bearings may not compete with active bearings. Besides, the research should instead
focus on the implementation of EDBs in other niche applications where their above-
mentioned advantages in terms of cost, compactness, and simplicity are highly val-
ued. Potential applications include the support of the flywheel of a stationary energy
storage system, or the support of a satellite reaction wheel.

This thesis further investigates the use of null-flux heteropolar EDBs for the ra-
dial suspension of rotors. In this aim, new bearing embodiments and models are
presented. These models are then applied to the comparison and the optimization
of EDBs, and to the prediction of radial electrodynamic forces in permanent magnet
(PM) machines.

Manuscript organization and content

This manuscript is organized as follows. First, the state of the art in the field of
heteropolar EDBs is presented. Then, new models of EDBs are proposed. Finally,
these models are applied to different study cases.

State of the art

Chapter 2 is a review of the literature about heteropolar EDBs. A first section
presents the operating principle of EDBs and gathers the existing designs. This sec-
tion discusses the qualities of these bearings, such as the null-flux characteristic. From
this, it appears that a wide variety of bearings have been proposed, but general guide-
lines for their design are lacking. At the end of this section, additional bearing topolo-
gies are finally proposed. These embodiments are based upon design guidelines that
are derived in the following chapters.

The second section of this chapter concerns the modeling. First, the different
kinds of models used to predict the behaviour of EDBs are exposed from a broad
perspective. Then, a review of the existing models of null-flux heteropolar bearings is
presented. In particular, the existence of practical implementations or experimental
validations is pointed out. As stated above, the use of the existing models is either
limited by the static eccentricity assumption or by their narrow scopes.

Modeling

Predicting the behavior of a rotor supported by EDBs requires an electromechanical
model of the complete system. Such model usually consists in a lumped-parameter
model whose parameters are identified through an electromagnetic field model. In
this work, the field models belong to the literature, whereas the focus is put on the
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lumped-parameter models. Two original models of this kind are derived. One is
quasi-static whereas the other is dynamic.

Chapter 3 presents a quasi-static model predicting the forces on the rotor of the
electrodynamic bearings introduced in chapter 2. From the analysis of this model,
general guidelines for the design of null-flux heteropolar bearings are proposed.
These results are validated through finite element analyses.

The static-eccentricity assumption precludes the use of this model to predict the
dynamics and analyze the stability of a rotor supported by EDBs. However, the
model considers the full harmonic content of the permanent magnet field. This al-
lows for studying the impact of higher order harmonics on the average and pulsating
components of the forces e.g..

Chapter 4 introduces a new dynamic, lumped-parameter model with an enlarged
scope that allows to consider a wider range of bearing topologies. It consists in a
linear state-space representation comprising six parameters that fully characterize
the dynamic behavior of a bearing. From these parameters, the performance of het-
eropolar EDBs can be evaluated and compared.

This dynamic model includes no assumption on the rotor kinematics and can
thus be used to study the dynamics and stability of rotors supported by EDBs. How-
ever, in order for the model to yield a linear governing equation, only the main har-
monic of the permanent magnet field is considered. The relevance of this assumption
can be checked using the quasi-static model developed in chapter 3, highlighting the
complementarity of both kinds of models.

Model applications

The tools developed in the previous chapters aim at evaluating the performance of
EDBs, e.g. their stiffness and stability. They can be applied to the comparison
and/or the optimization of bearings. They can also be applied to the prediction of
radial electrodynamic forces due to the presence of rotor eccentricities in permanent
magnet machines.

Chapter 5 first proposes two performance criteria for EDBs, considering their low
stiffness and the difficulty of introducing some damping to stabilize the rotor. These
criteria are the radial stiffness and the amount of damping required for stability.
Then, a graphical method for evaluating these criteria based on a root locus is ex-
posed. The roots are obtained by calculating the eigenvalues of a system obtained
following another approach than in chapter 3. This system is simpler as it is based
upon a quasi-static model. Although the quasi-static assumption is restricting, this
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allows for deriving analytical expressions of the roots, the analysis of which yields
the graphical performance evaluation method.

This method is then applied in the second section of this chapter to investigate
the impact of the yoke material on the performance of EDBs. In this aim, the stiff-
ness and stability of two bearing with the same geometry but different yoke perme-
abilities are compared. It is shown that in some cases, the magnetic permeability of
the yoke has a very low impact on the bearing performance. Finally, the graphical
method derived in the previous section is validated by comparing its predictions to
those of the dynamic model from chapter 4.

In a third section, the optimization of a yokeless electrodynamic bearing using
the dynamic model from chapter 4 is presented. This optimization is carried out
following two objectives. The bearing stiffness is maximized, whereas the required
amount of damping to reach the stability is minimized, yielding a Pareto front of
optimal solutions. This front provides an upper limit for the performance of the
yokeless bearing. The Pareto-optimal bearings are then compared to the state of the
art, showing that they can reach a reasonable stiffness to permanent magnet volume
ratio compared to the existing homopolar and heteropolar EDBs.

Chapter 6 studies the effect of the rotor off-centering in permanent magnet motors
using the model developed in chapter 4. In permanent magnet motors, the presence
of rotor eccentricities can alter the airgap field distribution. This results in parasitic
radial detent forces that can be reduced by connecting the stator phases in parallel.
As a consequence, currents are passively induced in the windings when the rotor
spins in an off-centered position, yielding balancing electrodynamic forces. In this
chapter, the main assumptions of the model are validated in the particular case of a
slotted permanent magnet motor, and its parameters are evaluated. Finally, the cen-
tering electrodynamic forces predicted by the model are compared to finite element
simulation results for validation.
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This section presents the state of the art in the field of heteropolar electrodynamic
bearings, with a focus on null-flux topologies. In a first section, the operating prin-
ciple of EDBs is presented. This is followed by a summary of the various designs
of heteropolar EDBs that have been proposed in the literature. Then, additional de-
signs are proposed. A second section gathers the models of EDBs from the literature,
as well as the results of the existing experimental tests.

2.1 Topologies

Various designs of heteropolar EDBs have been proposed in the literature. This sec-
tion presents their operating principle and topologies.

2.1.1 Operating principle

stator

rotor

ε F eε

Fig. 2.1: Rotor eccentricity and centering force.

The operation of passive heteropolar EDB relies on electrodynamic forces to cen-
ter the rotor. In presence of linear materials, this centering force is given by (Grenier
et al., 2009):
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F eε =

N∑
k=1

∂Φk
∂ε

Ik, (2.1)

where Φk is the PM flux linkage in the kth phase, Ik is the phase current, and N
is the number of phases. The eccentricity of the rotor with respect to the stator is
denoted ε, and the centering force is denoted F eε , see Fig. 2.1.

Another force component that is not aligned with the eccentricity exists, but it is
not considered at this point. From (2.1), it appears that the centering electrodynamic
force thus results from the combined presence of:

• a gradient of PM flux linkage in the winding. As the magnetic field source is
heteropolar, the PM flux linkage vary with time when the rotor spins. A flux
gradient means that the amplitude of this variation changes with the eccentric-
ity ε;

• a current in the winding. In passive bearings, the winding phases are short-
circuited. The current appears because of Faraday’s law of induction and op-
poses the PM flux variation, following Lenz’s law.

In the particular case of a null-flux bearing, the winding is such that the amplitude
of the flux linkage variation cancels when the rotor is centered. In this situation, no
currents are induced, which lowers the Joule losses. However, the gradient of the
flux linkage is non-zero to ensure the presence of a centering force. Therefore, the
flux linkage is non-zero when the rotor is off-centered and varies with time, thereby
inducing currents in the winding. As a consequence, when the rotor is off-centered,
both terms ∂Φk

∂ε and Ik are non-zero in (2.1), which results in a centering force on
the rotor.

It follows from the above analysis that, in the following bearing descriptions, the
emphasis is given to identifying the flux linkage gradient instead of describing the
operation of each bearing in more detail. The null-flux bearings are also pointed
out.

Finally, let us illustrate the operating principle of null-flux EDBs by considering
the heteropolar bearing shown in Fig. 2.2 (a). It has a stator comprising a single short-
circuited conducting phase with two pole pairs. The rotor comprises PMs creating
a magnetic field with one pole pair, represented by the blue field lines in Fig. 2.2
(b). The flux linked by the winding can be calculated by integrating the field lines
crossing the red areas denoted 1 and 2 in Fig. 2.2 (c), in the direction shown by
the red arrows. When the rotor is centered, four field lines cross each of these two
areas, but in opposite directions with respect to the red arrows. Therefore, the total
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flux linkage in the conducting loop is zero. This remains true as the rotor spins
and therefore the phase flux linkage does not vary and no reaction currents or force
appear. The bearing has the null-flux characteristic.

The off-centered rotor case is shown in Fig. 2.2 (d). As the number of field lines
crossing the areas 1 and 2 are not equal anymore, the phase flux linkage is not zero
anymore, and the rotation of the rotor implies a variation of the flux linkage in the
winding. This non-zero flux linkage gradient results in reaction or eddy currents
tending to oppose the flux variation in the winding. The interaction between the
current induced in the conductors and the PM field induces a force that tends to
restore the centered position of the rotor. The operation of EDBs is based upon this
centering force.

(a) (b)

(c) (d)

1 2 1 2

Fig. 2.2: Cross-sectional view of a heteropolar EDB with a one pole pair rotor and
a two pole pairs stator winding. (a) Centrifugal compressor supported by active
magnetic bearings.
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2.1.2 Post et al

(Post, 1999) is a patent covering a bearing with two possible kinds of windings as
shown in Fig. 2.3. The bearings comprise a Halbach array of PMs with an even
number of pole pairs on the rotor and windings on the stator. The stator can be
internal or external.

(a) (b)

Fig. 2.3: Schematic sectional views of the bearings from (Post, 1999), in the case of
PMs with 4 pole pairs and an external rotor. Only one phase is shown. (a) Lap
winding. (b) "Window frame" winding.

The lap winding configuration is shown in Fig. 2.3 (a). Each phase is made of
two identical parts located 180o azimuthally from each other. When the rotor is
centered, the upper and lower parts in Fig. 2.3 (a) link the same flux. Therefore,
they are cross-coupled connected so that the total magnetic flux linked by the phase
cancels, and the bearing has the null-flux characteristic. On the other hand, the flux
linkage in the upper and lower parts differ from each other when the rotor is off-
centered. Then, the total flux in the phase is non-zero, highlighting the presence of
a flux linkage gradient.

The "window frame" winding configuration with the axial wires lying trans-
versely across the stator is shown in Fig. 2.3 (b). As the number of PM pole pairs is
even, the null-flux characteristic is readily apparent, as well as the flux linkage gradi-
ent.

(Post, 1998) is a patent from the same author, covering the bearing shown in Fig.
2.4 (a). It comprises two arrays of PMs fixedly attached together and a winding with
short-circuited phases. The PMs can be on the rotor or vice-versa.

The two PMs arrays have identical pole pairs numbers and face each other so that
the radial component of the PM field cancels at a radius equal to the radius of the
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(a) (b)

Fig. 2.4: Sectional views of the bearings from patent (Post, 1998) (a) and (Post, 2006)
(b). Only one phase is shown in each case.

winding. Therefore, the flux linkage in the winding phases cancels when the rotor is
centered and the bearing has the null-flux characteristic. As shown in Fig. 2.4 (a), the
azimuthal spacing between the two legs of each phase is equal to one pole pitch of
the PM field. Therefore, the flux linkage is non-zero when the rotor is off-centered,
highlighting the flux linkage gradient.

(Post, 2006) is also a patent. The bearing in question is shown in Fig. 2.4 (b) in
the particular case of PMs with 6 pairs of poles. It comprises a single array of PMs
on the rotor and a winding with two short-circuited phases on the stator. The first
winding phase is disposed symmetrically about the vertical plane as shown in Fig.
2.4 (b). The second phase is disposed symmetrically about the horizontal plane and
is not represented here. These two phases may not be identical, but each of them is
composed of two identical subparts arranged symmetrically around the stator axis.
Within each subpart, the axial wires are azimuthally spaced apart from each other
by one pole pitch of the PM field. The subparts are connected in such a way as to
have the null-flux characteristic. More specifically, the subparts are cross-coupled
connected if the PM pole pairs number is odd; they are series connected if the PM
pole pairs number is even, which is the case in Fig. 2.4 (b). As a result, the flux
linkage equalizes in both subparts when the rotor is centered. This is not the case
when the rotor is off-centered, giving rise to a flux linkage gradient.

(Post, 1996) is a patent covering the bearing shown in Fig. 2.5. It is composed of a
PM assembly and a conducting part. The PMs can be on the rotor or on the stator,
and the rotor can be internal or external. The conducting part can either be made of a
bulk conducting surface as shown in Fig. 2.5 (a), or include a multiplicity of wound
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(a) (b)

Fig. 2.5: Schematic sectional views of the bearing from (Post, 1996) in the particular
case of a PM field source with 4 pole pairs. (a) Bulk conductor case and (b) wound
conductors case. Only one phase is shown.

phases as shown in Fig. 2.5 (b). These two configurations do not have the null-
flux characteristic, although the patent applicant suggests to load the short-circuited
phases with non-linear resistive or inductive elements to lower the Joule losses in
the wound configuration. The flux linkage gradient arises from the air gap width
variation as the rotor gets off-centered. The flux linkage increases in the phases near
the narrow air gap regions and decreases in the phases near the large air gap regions.

(a) (b)

Fig. 2.6: Sectional views of the bearings from (Post, 2012) (a) and (Post and Ruytov,
1998) (b) in the particular case of a PM field source with 4 pole pairs. Only one phase
is shown.
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(Post, 2012) covers the bearing shown in Fig. 2.6 (a). It includes a Halbach array
of PMs on an external rotor and wound conductors on an internal stator. The PM
pole pairs number is even. The winding phases are made of two subparts disposed
symmetrically around the stator axis and connected in opposing series to obtain the
null-flux characteristic. Each subpart spans an angular width of a half PM field wave-
length as shown in Fig. 2.6 (a). The flux linkage gradient arises from the difference
in PM flux linked by the two subparts when the rotor is off-centered. Finally, this
bearing is similar to the one from Fig. 2.4 (b), except that each subpart includes only
two conductors, and that the winding may include more than two phases.

(Post and Ruytov, 1998) covers the bearing shown in Fig. 2.6 (b). It includes a
Halbach array on the external rotor and wound conductors on the internal stator.
As can be seen in 2.6 (b), the bearing does not have the null-flux characteristic but the
flux linkage gradient is present. For example, the flux linked by the phase depicted
in the figure increases as the rotor with PMs is off-centered to the right-hand side.

2.1.3 Murakami et al

(Murakami, 1995) proposes a bearing with axial magnetic field. The stator in-
cludes a multiplicity of short-circuited phases lying between two rotating PM assem-
blies placed in attracting mode, as shown in Fig. 2.7 (a). Each assembly includes a
multiplicity of PM pairs having opposite polarities and lying in the same plane. The
two members of each pair lie at a same angular position but at different radii. An
example of assembly with 8 PM pairs and phases with hexagonal shapes is shown in
Fig. 2.7 (b).

(a) (b)

rotor axis

Fig. 2.7: Bearing proposed in (Murakami, 1995). (a) Sectional view of a bearing phase
and the two PM assemblies. (b) Top view of a PM arrangement. Only four winding
phases are represented.
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The null-flux characteristic is obtained by ensuring that the flux linkage from the
two members of a PM pair cancel each other when the rotor is centered. This is not
the case when the rotor is off-centered, which yields the flux linkage gradient.

(a) (b)

Fig. 2.8: (a) Bearing with improved stator winding from (Murakami et al., 1996), and
detailed view of a printed sheet. (b) Bearing from (Basore, 1980).

(Murakami et al., 1996) presents an improved version of the previous bearing.
The rotor remains identical but instead of short-circuited wires, the winding is made
of a stack of conducting sheets where many thin coils are printed, see Fig. 2.8 (a).

2.1.4 Basore et al

(Basore, 1980) proposes a bearing with a bulk conducting rotor as depicted in Fig.
2.8 (b). The null-flux characteristic is obtained by ensuring that the PM field direc-
tion is parallel to the speed of the conductor. In this aim, the magnets are arranged so
that the PM field is oriented in the azimuthal direction within the conductor when
it is centered. This cannot be satisfied entirely and therefore the bearing is only par-
tially null-flux. It also requires a thin conductor.

When the rotor is off-centered, the flux gradient arises as the conductor experi-
ences radial PM field lines and thus higher flux linkage variations.

2.1.5 Pinkerton et al

In this section, all the bearings have the null-flux characteristic, and the flux linkage
gradient is readily apparent.
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(a) (b)

Fig. 2.9: Bearings patented by Pinkerton (1994). (a) Each phase interacts with two
PM poles. (b) Each phase has an eight figure shape and interacts with a single PM
pole.

(Pinkerton, 1994) is a patent covering three bearings with axial magnetic field.
The first bearing is shown in Fig. 2.9 (a). It is similar to the one shown in Fig. 2.7,
except that it may include only one of the PM assemblies.

The second bearing is shown in Fig. 2.9 (b). It is similar to the first one, except
that the loops have the shape of an eight figure and interact with a single PM pole.

The third bearing is shown in Fig. 2.10 (a). Each phase includes conducting
loops that are symmetrically disposed around the winding center and interact with
a single PM pole. The two loops of a phase are connected in order to obtain the
null-flux characteristic.

In the three previous bearings, the PMs can either be on the rotor or on the
stator. Furthermore, either one or two PM assemblies may be used. In the case of
two assemblies, they are facing each other in attracting mode as in Fig. 2.7 (a).

(Clifton et al., 1995) covers the bearing shown in Fig. 2.10 (b). This is an improved
version of the bearing from Fig. 2.9 (a). The improvement consists in connecting the
loops that are symmetrically disposed around the winding center in order to have the
null-flux characteristic even when the rotor expands radially due to centrifugal effects
at high speeds.

(Andrews and Pinkerton, 1996) combines two of the bearings presented in (Clifton
et al., 1995). The bearings are spaced from each other along the axis, and angularly
shifted with respect to each other to smooth the pulsating restoring forces on the
rotor.
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(a) (b)

Fig. 2.10: (a) Bearing patented by Pinkerton (1994) in the case of a PM part including
four pole pairs and a winding part with two phases. (b) Improved bearing version
from (Clifton et al., 1995) with interconnected loops.

2.1.6 Danby

(Danby, 1971) covers a bearing comprising PMs that can either be on the rotor or
on the stator. They are always external and create a magnetic field with two or more
pole pairs. The winding is made of a pair of short-circuited phases that are angularly
spaced by a pole pitch of the PM field. The number of pole pairs of a phase is equal to
the number of pole pairs of the PMs minus one. Each phase links a non-zero PM flux
only when the rotor is off-centered. The case of a bearing comprising PMs creating
a magnetic field with two pole pairs and a single phase with one pole pair is shown
in Fig. 2.11 (a).

2.1.7 Davey et al

(Davey, 1996) covers a bearing with winding phases that guide a rotating shaft in
both the radial and axial directions. The operating principle of the radial guiding is
the same as that of Fig. 2.9 (b).

(Davey et al., 2005) includes the description of a bearing where the radial support
function is similar to that of Fig. 2.9 (a), except that the PMs on the rotor interact
with two identical stationary coils assemblies lying on both its sides as shown in Fig.
2.11 (b).
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rotor axis

(a) (b)

Fig. 2.11: (a) Bearing patented by Danby (1971). (b) Bearing proposed by Davey
et al. (2005), where each phase is made up of two identical null-flux coils lying on
both sides of the PMs. Only one phase is represented.

2.1.8 New topologies

This section introduces new topologies of null-flux, heteropolar EDBs that are
patented in (Dehez et al., 2015). These bearings have axial or radial magnetic field,
examples of which are shown in Fig. 2.12.

(a) (b)

Fig. 2.12: Null-flux heteropolar bearings. (a) Radial PM field version with p = 2 and
q = 3. (b) Axial PM field version with p = 3 and q = 4. Only one phase is shown.

These bearings are composed of PM and winding parts rotating with respect to
each other. Each part may comprise ferromagnetic material or not, and the PMs can
either be on the rotor or on the stator. The number of pole pairs of the PMs and
winding are p and q, respectively. They are linked through the identity q = p ± 1
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that is derived in chapter 3. Satisfying this identity ensures the the bearings have
the null-flux characteristic, and that there is a flux linkage gradient and a restoring
electrodynamic force on the rotor.

From the above general principles, different bearing topologies can be obtained,
both for the winding and the PM parts. Such topologies with radial magnetic field
are shown in Fig. 2.13. In the air-gap winding and slotted yoke topologies, the parts
comprising the PMs and the winding can move relative to each other. In the bell-
shaped topology, the yoke behind the winding and the part comprising the PMs
are attached together and can move with respect to the winding. These topology of
these bearings is similar to that of electromechanical converters, which would ease
construction aspects.

winding

magnets

ε

(a) (b)

(c)

ε

ε

Fig. 2.13: Bearing topologies with radial PM field. (a) Air gap winding. (b) Bell-
shaped. (c) Slotted yoke.

Besides, each of the bearing topologies from Fig. 2.13 can be implemented in
different ways. The PMs can be on the rotor or on the stator, and the rotor can be
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internal or external as shown in Fig. 2.14 in the case of the air gap winding topology.

ε

rotor

stator

ω

ε

stator

rotor

ω

(a) (b)

(c) (d)

ε

stator

rotor

ω

ε

rotor

stator

ω

Fig. 2.14: Possible configurations for the bearing with the air gap winding topology.
(a) Internal rotor with PMs. (b) External rotor with PMs. (c) External wound rotor.
(d) Internal wound rotor.

Finally, other bearings with axial magnetic field can be obtained through a similar
approach.

2.1.9 Conclusion

A wide variety of heteropolar EDBs have been proposed in the literature. Usually,
the bearing design process goes as follows. A new bearing embodiment is proposed,
and its proper operation is demonstrated by proposing a model predicting satisfac-
tory forces on the rotor. In section 2.1.1, a more straightforward way to show the
proper operation of a bearing is exposed. This consists in identifying the presence
of a flux linkage gradient.

In the next chapters of this thesis, a reversed design approach is followed. A
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model adapted to various magnetizations and winding geometries is first proposed.
Then, design guidelines are derived by imposing constraints on the model i.e., the
presence of the flux linkage gradient and of the null-flux characteristic. Then, new
bearing topologies are derived from these guidelines. These new topologies were
presented in section 2.1.8.
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2.2 Models

Various models have been proposed to predict the performance of heteropolar EDBs.
This section presents an overview of these models. Their derivation is briefly ex-
plained and the existing experimental validations are pointed out.

2.2.1 Modeling of EDBs

The performance of an EDB is usually predicted with a lumped-parameter elec-
tromechanical model whose parameters are calculated using an electromagnetic field
model, as shown in Fig. 2.15.

Maxwell’s equations

Faraday’s law

Lorentz force

Material properties

Constitutive equations

Maxwell stress tensor

Magnetic coenergy gradient

Geometrical parameters

Lumped parameters

Performance criteria:

Quasi-static model

rotor static-eccentricity assumption

Field model

Lumped-parameter model

Stiffness, instability margin

Bearing topology

yes

Dynamic model

no

in the current and force calculation

Rotor equation of motion

Fig. 2.15: Electromechanical models of EDBs. The parameters of the lumped-
parameter model are calculated through a field model. Most of the contributions
of this work to the modeling regard electromagnetic lumped-parameter models.



22 Chapter 2 State of the Art

The field model solves Maxwell’s equations and the constitutive equations of the
materials numerically or analytically. This yields the field distributions in the bear-
ing and the lumped parameters such as the winding resistance and inductances.

These parameters are the input of a lumped-parameter model that solves the
winding equivalent circuit for the currents through Faraday’s law. Then, the forces
are obtained using Lorentz’s formula, or by calculating the magnetic coenergy gradi-
ent. Finally, the rotor motion is predicted by coupling these forces with a mechanical
model of the rotor.

ε

rotor
stator

γ = ωt
φ

Fig. 2.16: Mechanical variables of a bearing with two degrees of freedom.

The lumped-parameter model is described as quasi-static or dynamic, depending
on whether the rotor is assumed to spin in a fixed position or not when calculat-
ing the currents and forces. This is referred to as the static-eccentricity assumption.
More specifically, the rotor position is described with three variables that are the
spin angle γ, the whirl angle φ, and the eccentricity ε, as shown in Fig. 2.16. The
static-eccentricity assumption means that when calculating the induced currents in
the winding phases, the contributions to the electromotive force that are associated
with the time variation of φ and ε are neglected compared to the contributions that
are associated with the time variation of γ. As a result, Faraday’s law applied to one
short-circuited phase yields1:

0 = RI + Lc
dI

dt
+
dΦ

dt
, (2.2)

where the electromotive force term is:

1R is the phase resistance, Lc is the winding cyclic inductance, I is the phase current, and Φ is the
permanent magnet flux linkage in the phase.
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dΦ

dt
=
∂Φi
∂γ

dγ

dt
+
∂Φi
∂φ

dφ

dt
+
∂Φi
∂ε

dε

dt

∼=
∂Φi
∂γ

ω.

(2.3)

The static-eccentricity assumption therefore limits the scope of the quasi-static
models as the accuracy of the current and force predictions depends on the rotor
motion. This is not the case for the dynamic models. In any case, the forces are
coupled to a rotor mechanical model that is not impacted by the static-eccentricity
assumption. Therefore, this assumption does not prevent the prediction of the rotor
dynamics.

2.2.2 �asi-static models

Most of the existing models assume the static eccentricity of the rotor and thus pre-
dict the forces on the rotor spinning in a fixed off-centered position. These models
can either be numerical or analytical. Numerical models compute the forces on the
rotor using the finite element method or the boundary element method, whereas
analytical models are derived following these steps:

1. the PM field distribution is calculated in the conductor region;

2. it is integrated on the surface area of the winding phases, yielding the flux
linkage as a function of the rotor position;

3. the induced electromotive force is obtained by deriving the flux linkage with
respect to time. The phase currents are then calculated by modeling each phase
as an R-L equivalent circuit;

4. the total force is finally obtained by integrating for the Lorentz force along the
conductors, or by calculating the magnetic coenergy gradient.

Davey (1997) proposes an analytical model to predict the interaction forces be-
tween PMs and null-flux coils arranged as in Fig. 2.9 (a) and (b). The rotor force
is calculated in the time and Fourier domains, in the aim of obtaining the optimal
relative size of the coils compared to the PMs. However, the model neglects the cur-
vature of the bearing geometry. The PMs and phases thus have straight shapes and
move following a rectilinear path, which is a poor approximation of the actual paths
of the bearing’s rotating elements. Lastly, the model predictions are not validated.

Davey (2003) proposes four models combining the analytical approach with the
boundary element method. They predict the interaction forces between PMs and
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Fig. 2.17: Experimental apparatus presented in (Davey, 2003).

null-flux coils arranged as in Figs. 2.9 (b). Again, the curvature of the bearing ge-
ometry is not taken into account as these models are primarily aimed at studying a
maglev system.

A prototype was built to validate the predictions of the three models. It includes
a rotor with 45 null-flux coils that spins between two PM assemblies on the stator, as
shown in Fig. 2.17. Each rotor coil is made of 208 wire turns. The stator assemblies
comprise 4 PMs each and are attached in attracting mode. In the experimental tests,
the force on the PM arrangement was measured for two different eccentricities.

(a) (b)

Fig. 2.18: Data from (Davey, 2003). (a) Experimental results vs two-dimensional
boundary element code predictions. (b) Experimental results vs the predictions of
the three-dimensional boundary element method, the transient analytical model, the
steady-state analytical model, and the transient model with increased phase resis-
tance.

The first model is two dimensional and based on the boundary element method.
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Its predictions exceed the experimental results as shown in Fig. 2.18 (a). The authors
attribute this difference to the fact that the end region fields are neglected.

The second model is three dimensional and also based on the boundary element
method. It is referred to as ’Boundary Element’ in Fig. 2.18 (b). It yields bad results
that are attributed to the poor geometrical approximation of the conductors that
link the two parts of each coil.

The third and fourth models are analytical, one steady-state and the other tran-
sient. As opposed to the transient model, the steady-state model neglects the field
entry effects i.e., the electrical transient associated with the entry of the rotor coils
in the volume between the two PM assemblies spanning over less than 360o, see Fig.
2.17. In these two models, the PM flux in the coils is computed through a three
dimensional static code. All the results are shown in Fig. 2.18 (b). Finally, a last
prediction was made after increasing the phase resistance from 2.2 to 2.8 ohms to
take the heating of the coil into account.

Fig. 2.19: Arrangement of the experimental parts for the tests in (Eichenberg et al.,
2006).

Eichenberg et al. (2006) proposes an analytical model for the bearing shown in
Fig. 2.6 (b). This model is validated through FE analysis and experimental tests,
considering a rotor and a single winding phase. The rotor comprising a Halbach ar-
ray of PMs spins at a fixed position in front of the winding phase (Fig. 2.19), while
the open-circuit voltage, the short-circuit currents and the force on the rotor are
measured. The experimental rotor and stator parts are shown in Fig. 2.20 (a) and
(b), respectively. Four different phases are tested, with different number of turns
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and conductor diameters. The experimental results agree well with the model pre-
dictions, except at high rotational speeds. In this case, the rise in temperature and
the skin effect affect the phase resistance that is assumed to be constant in the model.

(a) (b)

Fig. 2.20: Experimental parts of Eichenberg et al. (2006). (a) Halbach array rotor.
(b) Stator phase wound around a non-ferromagnetic core.

(Post and Ruytov, 1998) includes an analytical model for the bearings shown in
Figs. 2.3 (b) and 2.6 (b). Few details of the model derivation are provided, but the
final expressions of the bearing stiffness as a function of the spin speed are presented.
In the case of the bearing from Fig. 2.3 (b), an experimental validation is given in
(Bender and Post, 2000).
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Fig. 2.21: Experimental apparatus and measurements from Bender and Post (2000).
(a) Stator winding part. (b) Peak to peak open-circuit voltage at 600 rpm.

The experimental apparatus includes an external Halbach array rotor and an in-
ternal stator with diametrically wound loops of Litz wire which is shown in Fig.
2.21 (a). The open-circuit voltage was measured, yielding the results shown in Fig.
2.21 (b). As stated by the authors, the experimental results agree well with the model
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predictions from a qualitative point of view. No voltage is induced when the rotor
is centered, and the voltage increases linearly with the eccentricity. However, the in-
duced voltage exceeds the theoretical predictions by 40%. According to the authors,
this may come from an error in the measurement of the parameters of the Halbach
array. The current was also measured. The conclusion of the authors is that "The
voltage and current measurements which have been performed are consistent with a
radial stiffness of about 260 kN/m".

(Murakami, 1995; Murakami et al., 1996) include no model but experimental
results providing qualitative insights on the difficulty of modeling EDBs. The tests
are performed on the bearings shown in Figs. 2.7 and 2.8 (a).

In the first experimental apparatus, the coils have a hexagonal shape made out
of thin copper sheets as shown in Fig. 2.22 (a). They lie between the two rotor
parts comprising the PMs as shown in Fig. 2.22 (b). The air gap width is 11 mm
and the flux density is approximately 0.3 T. An assembly of 17 such coils are molded
using resin to form a part of the coil disc on which the measurements are made. The
resulting drag and restoring forces are shown in Fig. 2.23 (a).

(a) (b)

Back irons

Rotor disc

Rotor disc

Nd magnets

Coils

0.6mm

10.5mm

9.5mm

14mm

5mm

Fig. 2.22: Images from (Murakami et al., 1996). (a) Geometrical parameters of the
null-flux coil with hexagonal shape. (b) Experimental set-up for the coils with hexag-
onal shapes.

The other models predict that, for small rotor eccentricities, the PM flux linkage
and thus the induced voltage and current in the phase are proportional to the ec-
centricity. As a result, the Lorentz forces should be proportional to the eccentricity
too. In the present case, the restoring force increases linearly with the eccentricity.
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However, it does not reach (0, 0) on the graph, which highlights the difficulty of pre-
dicting the null-flux equilibrium position for this bearing. The drag force should also
be proportional to the eccentricity. However, the measurements are affected by the
large eddy current losses in the coils, which is reflected in the high bias value of the
drag force at zero eccentricity. This is confirmed by a second experiment with a ro-
tor including 200 hexagonal coils: the maximum speed achieved by the rotor driven
by an air turbine was about 1000 rpm, whereas the target speed of the authors was
3500 rpm.
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Fig. 2.23: Images from Murakami et al. (1996). (a) Restoring and drag forces as a
function of the eccentricity for the prototype with 17 hexagonal coils. (b) Second
stator with printed sheets of conductors.

The large eddy current losses motivated the construction of another stator with
much thinner coils arranged as in Fig. 2.23 (b). The stator consists of a stack of 120
sheets with 20 coils printed on both sides. Using this stator, a rotational speed of
6000 rpm was reached.

Then, a levitation test was performed with the complete assembly shown in Fig.
2.24 (a). The assembly includes eddy current dampers aimed at stabilizing the unsta-
ble modes of the rotor. Levitation was hard to achieve and the authors explained it as
follows: "Main difficulty was in low frequency translational mode. It appeared that
as all coils are connected in a circle through neighboring mutual inductance, there
might be some circular currents, which destabilize that mode. [...] two coils out
of 20 coils in Fig. 2.23 (b), which face each other, were cut off in order to cut the
circular current." The measured drag torques corresponding to the three stators are
gathered in Fig. 2.24 (b). The losses corresponding to the printed stator with 18 of
the 20 coils are much lower than the expected 18/20 of the losses of the stator with
20 coils.

Finally, stable levitation was achieved with the stator comprising the 18 coils.
For example, starting from the spin speeds of 5000 and 3000 rpm, the rotor levita-
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(a) (b)

Fig. 2.24: Images from Murakami et al. (1996). (a) Complete levitation test assembly.
(b) Drag torque measurements for the three stators.

tion lasted for 60 and 12 seconds, respectively. Up to now, this is the only successful
levitation test of a complete rotor supported by radial heteropolar EDBs that is re-
ported in the literature.

Takanashi et al. (2006) presents results obtained using a three-dimensional FE
model of the bearing shown in Fig. 2.5 (a). The forces are calculated after solving for
the eddy current in the conductor rotating in a static eccentricity configuration.

2.2.3 Dynamic models

Detoni et al. (2012) introduces a lumped-parameter dynamic model predicting
the force in homopolar and heteropolar EDBs. In the case of heteropolar EDBs, it
is adapted to the embodiment patented by Post (1999) that is shown in Fig. 2.25.

The rotor is internal and includes two phases with diametrically opposed con-
ductors, and no ferromagnetic parts. The stator is external and includes PMs with
an even number of pole pairs. Embodiments with two and four PM pole pairs are
shown in Fig. 2.25 (a) and (b), respectively.

The resulting model links the forces to the rotor displacements through a dif-
ferential equation with four parameters. This equation is finally combined with a
mechanical model of the rotor, yielding a linear state-space representation of the ro-
tor dynamics. Remarkably, the effect of the speed of the rotor center on the electrical
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(a) (b)

Fig. 2.25: Schematic view of the bearing patented by Post (1999). (a) PMs with two
pole pairs. (b) PMs with four pole pairs. Only one phase is shown.

state variables is not neglected and the model is linear. This allows to study the bear-
ing stability with conventional system analysis tools.

The model predicts the necessity of introducing additional damping in the sys-
tem to achieve stability, for example non-rotating damping between the rotor and
the stator. In this case, it also predicts that a stable rotor behaviour then occurs
above a threshold speed. To validate the model, the predicted threshold speed is
thus compared to that observed by Filatov and Maslen (2001) during experiments
on a homopolar EDB. The close agreement between the predicted and the measured
threshold speeds confirms the validity of the model.

2.2.4 Conclusion

Numerous quasi-static models have been proposed in the literature. In most cases,
their accuracy is satisfactory. However, they are derived for a specific geometry.
As a result, they cannot be used to compare various bearings. Furthermore, these
models assume a static-eccentricity position of the rotor, which limits their use in
the prediction of the dynamic behaviour and stability of the bearing.

Recently, a new dynamic model was derived that removes the static-eccentricity
assumption, opening up new possibilities in terms of dynamic behaviour and stabil-
ity predictions. Its scope includes many bearings. In the next section, this scope is
further enlarged, allowing for the performance evaluation and the comparison of a
wider range of bearings.
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This chapter presents a quasi-static analytical model of EDBs based on the topologies
introduced in section 2.1.8. Then, the model is analyzed and general guidelines for
the design of null-flux heteropolar bearings are brought out by ensuring that the
following conditions are met:

1. when the rotor is centered, no current is induced in the winding to lower the
Joule losses;

2. when the rotor is off-centered, a current is induced and a centering electrody-
namic force appears;

3. the centering force has a non-zero time average and a low pulsating component.

The content of this chapter is the subject of (Dumont et al., 2014b).

3.1 Parameters and variables

The design guidelines are obtained by considering a bearing consisting of:

• a rotor with surface mounted PMs producing a magnetic field with p pole pairs
and harmonics with spatial periodicities np, n being odd;

• a stator comprising an air gap winding with q pole pairs and harmonics with
periodicities mq, m being odd1.

Nevertheless, the resulting guidelines can be generalized to the other topologies and
configurations proposed in chapter 2.1.8.

1Considering n andm being odd implies that the magnetization and winding are symmetric, which
corresponds to the vast majority of existing magnetization patterns and windings.
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The radial dimensions of the bearing in the internal and external rotor cases are
given in Fig. 3.1, and the active length is denoted H .

ferromagnetic part

winding

magnetRwi
Rwi

Rwe

Rwe

Ro

Ro

air gap
air gap

Ri Ri

OW
OWOM

OM

Rm
Rm

(a) (b)

Fig. 3.1: Geometrical parameters in the internal (a) and external (b) rotor cases.

Figure 3.2 shows the coordinates and frames used in the next sections. A first
frame is attached to the stator winding center OW . A second frame is attached to
the rotor PM centerOM . The position of the rotor centerOM is (x = ε cos(φ), y =

ε sin(φ)) and the associated whirl speed is λ = dφ
dt . The orientation of the rotor is

given by the spin angle γ, and the associated spin speed is ω = dγ
dt .

φ

OW

ε

r

θ

P

γ = ωt

x

y

OM

rotor PMs

stator winding

ψ
ξ

Fig. 3.2: Rotor and stator frames, and associated coordinates.

In the next sections, vectors are denoted using bold fonts. The transpose and
time derivative of a given vector or matrix A are denoted AT and Ȧ, respectively.
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3.2 Assumptions

The model is derived under the following assumptions:

• only the two radial dimensions are considered;

• the materials have linear magnetic characteristics;

• the magnetic permeability of the ferromagnetic parts is infinite;

• the eddy currents are neglected except in the winding;

• the amplitude of the rotor eccentricity ε is small;

• when calculating the electromotive force, the effects of the rotor speed in the
radial direction dε

dt are neglected compared to those of the spin and whirl speeds
ω and λ, respectively;

• the speeds ω and λ are constant;

• the bearing phases are identical and evenly distributed in the air gap.

As a result of these assumptions, the impact of the rotor eccentricity on the wind-
ing inductances is neglected, as well as the axial end-effects, the magnetic hysteresis
and the saturation.

3.3 Modeling approach

The model presented in this chapter predicts the electromagnetic force on the rotor
of the EDB. This force can be separated into two contributions, namely the detent
and the electrodynamic forces.

To calculate these forces, a general expression of the vector potential A created by
the magnets attached to an off-centered rotor is first presented (section 3.4). Assum-
ing zero current, the Maxwell stress tensor is integrated in the air gap, yielding the
detent force between the rotor magnets and the stator ferromagnetic yoke (section
3.5). In section 3.6, the permanent magnet flux linked by the kth phase is evaluated
by integrating the vector potential along the conductor:

Φk =

∮
ATdlk. (3.1)
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Using (3.1), the electrodynamic force due to the kth phase can be calculated:

Fek = [∇Φk] Ik. (3.2)

At this point, the phase current Ik is considered as arbitrary. From the analysis
of (3.1) and (3.2), the conditions 1 and 2 stated at the beginning of this chapter are
then translated into a practical guideline by establishing a link between the number
of pole pairs of the permanent magnets and winding (section 3.8).

In section 3.9, this guideline is assumed to be met. The electromotive force and
the currents induced in the winding of a bearing that has the null-flux characteristic
can thus be calculated. The currents in the short-circuited phases are governed by:

0 = RkIk +

N∑
l=1

Lkl
dIl
dt

+
dΦk
dt

, (3.3)

where Rk is the phase resistance and Lkl is the mutual inductance between phases
k and l. Solving for the currents and substituting in (3.2), the total electrodynamic
force on the rotor is obtained. The current-emf phase shift leading to the maximum
mean force and the way to reduce pulsating forces are then discussed in order to
meet condition 3. This results in another guideline regarding the number of wind-
ing phases (section 3.10). Lastly, section 3.11 shows some FE simulation results to
validate the previous outcomes.

Finally, considering this approach and the equations (3.1)-(3.3), let us reformulate
the conditions stated in the introductory part of this chapter. The first condition
imposes a zero current when the rotor is centered. This current originates from the
induced emf term dΦk

dt in (3.3). As the PM field is heteropolar, imposing a zero emf is
equivalent to imposing a zero PM flux linked by the winding, hence the qualifier null-
flux. Similarly, the second condition imposes a non-zero current when the rotor is
centered, which translates into imposing a non-zero PM flux linked by the winding.
As a consequence, the PM flux amplitude changes with the eccentricity. Therefore,
∇Φk 6= 0 in (3.2) and the electrodynamic force is non-zero too. In summary, the
conditions stated at the beginning of this chapter become:

1. a zero PM flux when the rotor is centered;

2. a non-zero PM flux when the rotor is off-centered;

3. a non-zero time average and a low pulsating component of the centering elec-
trodynamic force.
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3.4 Permanent magnet field

The magnetic flux density created by an off-centered rotor was obtained by Rahideh
and Korakianitis (2011) for various magnetization patterns. It is expressed in the
rotor frame and was obtained assuming small rotor eccentricities. As the end effects
are neglected, the magnetic field distribution is two-dimensional and only the axial
component of the associated vector potential is non-zero. Using the vector potential
definition B = ∇×A:

Arotorz (ξ, ψ) =

∞∑
n,odd

{[
K1nξ

−np +K2nξ
np
]

sin (npψ)

+ε
[
K3nξ

np−1 +K4nξ
−np+1

]
sin ((np− 1)ψ − γ + φ)

+ε
[
K5nξ

np+1 +K6nξ
−np−1

]
sin ((np+ 1)ψ + γ − φ)

}
,

(3.4)

where p is the number of PM pole pairs, and K1n,...,K6n are constants depending
on the geometry and magnetic properties of the bearing. Their detailed expressions
are given in (Rahideh and Korakianitis, 2011). To ease the next calculation steps,
the vector potential is re-expressed in the winding frame Az through the following
change of variables:

ψ = θ − γ +

∞∑
n=1

1

n

( ε
r

)n
sin (n (θ − φ))

ξ =
√
r2 + ε2 − 2rε cos (θ − φ).

(3.5)

Keeping only the first order term in the Taylor series expansion of (3.5) at ε/r = 0

yields:

ψ = θ − γ +
ε

r
sin (θ − φ)

ξ = r − ε cos(θ − φ).
(3.6)
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Substituting (3.6) in (3.4), the Taylor series expansion of the vector potential in
the winding frame Az is obtained. In the vicinity of ε/r = 0, the first-order terms
of the series are:

Az(r, θ) =

∞∑
n,odd

{
Cn(r) sin (np(θ − γ))

+ εĈn(r) sin ((np+ 1) θ − npγ − φ)

+ εČn(r) sin ((np− 1) θ − npγ + φ)

} (3.7)

where:

Cn(r) = K1nr
−np +K2nr

np

Ĉn(r) = K1nr
−np−1np+K5nr

np+1 +K6nr
−np−1

Čn(r) = −K2nr
np−1np+K3nr

np−1 +K4nr
−np+1.

(3.8)

Let us analyze (3.7). The terms with Cn have npθ-spatial periodicities. They do
not depend on ε and correspond to the vector magnetic potential when the rotor is
centered. The terms with εĈn and εČn have (np± 1) θ-spatial periodicities, respec-
tively. They are proportional to the center shift amplitude ε and only appear when
the rotor is off-centered.

In the internal rotor case, the absence of ferromagnetic yoke on the armature re-
sults in Čn = 0. This means that for an internal rotor and no ferromagnetic armature
yoke, only the terms with (np+ 1)θ periodicities remain. Similarly, in the external
rotor case, the absence of ferromagnetic yoke results in Ĉn being zero. Then, only
the terms with (np− 1)θ periodicities remain.

φ

OW

ε

x

y
OM

Fφ

Fε

Fig. 3.3: The forces on the rotor are decomposed into two components that are par-
allel or perpendicular to the eccentricity.
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3.5 Detent force

As the PM magnetic field distribution is known, the detent force between the rotor
and the stator can be calculated by integrating the Maxwell stress tensor in the air
gap. In the present case, the radial and azimuthal components of the tensor are:

dF dr (r, θ) =
B2
r (r, θ)−B2

θ (r, θ)

2µ0
Hrdθ

dF dθ (r, θ) =
Br(r, θ)Bθ(r, θ)

µ0
Hrdθ,

(3.9)

where H is the active length of the bearing, and:

B = ∇×A⇒


Br(r, θ) =

1

r

∂Az(r, θ)

∂r

Bθ(r, θ) = −∂Az(r, θ)
∂θ

.

(3.10)

The detent force components are obtained through a transformation of variables:

[
dF dε

dF dφ

]
=

[
cos (θ − φ) − sin (θ − φ)

sin (θ − φ) cos (θ − φ)

][
dF dr

dF dθ

]
, (3.11)

where dF dε and dF dφ are the forces in the direction of the off-centering and in the
direction perpendicular to it, as shown in Fig. 3.3. Integrating (3.11) along a circle
surrounding the rotor yields:

F dε =

∫ 2π

0

(
B2
r (r, θ)−B2

θ (r, θ)

2µ0
cos (θ − φ)

− Br(r, θ)Bθ(r, θ)

µ0
sin (θ − φ)

)
Hrdθ

= ε
2πHp

µ0

∞∑
n,odd

{
(p+ 1)K1nK5n + (p− 1)K2nK4n

}

F dφ =

∫ 2π

0

(
B2
r (r, θ)−B2

θ (r, θ)

2µ0
sin (θ − φ)

+
Br(r, θ)Bθ(r, θ)

µ0
cos (θ − φ)

)
Hrdθ

= 0.

(3.12)

Under the assumption of small rotor eccentricities, it appears that the detent force
is proportional to ε and aligned with the eccentricity, whatever the magnetization
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pattern. This approximation is not so restrictive, although it requires a case-by-case
validation for slotted topologies. As a result, the detent force is associated with a
constant stiffness in the next chapters:

F dε = −Kdε, (3.13)

where:

Kd = −2πHp

µ0

∞∑
n,odd

{
(p+ 1)K1nK5n + (p− 1)K2nK4n

}
. (3.14)

Let us note that in (3.4), the constants K3n, K4n, K5n and K6n cancel if the fer-
romagnetic yoke is absent or attached to the same part as the PMs. As a consequence,
F dε = 0 and there is no detent force in these cases, which is intuitive since the PMs
do not stick to the yoke.

Finally, the detent force is well known in the field of electrical machines and com-
monly referred to as the unbalanced magnetic pull (Dorrell and Ionel, 2012; Rahideh
and Korakianitis, 2011).

3.6 PM flux linkage

In order to consider a wide range of winding shapes, the geometry of each phase
is described by a density of current stream lines vector Dk [m−2] defined as Jk =

DkIk, where Jk[A/m2] is the current density and Ik[A] is the current amplitude.
More details about the density of current stream lines can be found in appendix A.
Using this definition, the PM flux (3.1) can be expressed as an integral over a volume
comprising this phase:

Φk =

∫
V

ATDkdv =

∫
V

Az(r, θ)Dkz(r, θ, z)dv, (3.15)

where Dkz is the axial component of the density of current stream lines vector.
Defining the internal and external winding radii Rwi and Rwe, and considering the
volume r ∈ [Rwi, Rwe], θ ∈ [0, 2π] and z ∈ [0, H], (3.15) becomes:

Φk =

∫ Rwe

Rwi

∫ 2π

0

Az(r, θ)

∫ H

0

Dkz(r, θ, z)dz︸ ︷︷ ︸
=wk(r,θ)

rdθdr, (3.16)

where wk(r, θ) is a function that only depends on the geometry of the winding. It
can be expanded into a Fourier series:
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wk(r, θ) =

∞∑
m,odd

Wm(r) sin (mq (θ − δk)) , (3.17)

where δk is the angular position of the kth winding phase, q is the winding pole pairs
number and Wm(r) is the amplitude of the mth harmonic. As the winding phases
are identical, Wm(r) does not depend on k.

Let us illustrate this with examples. Fig. 3.4(a) and (b) show the developed views
of a rhombic and a helical winding, respectively, in which the arrows give the di-
rection of the vector D. These two windings have the same w function given in Fig.
3.4(c). Therefore, they link the same magnetic flux created by a given rotor and yield
the same force when carrying an identical current. Fig. 3.4(d) gives the coefficients
Wm associated with the function w. They are non-zero only for odd values ofm be-
cause of the winding symmetry. Similarly, the window frame windings in Fig. 3.5(a)
and (b) have the same w function, see Fig. 3.5(c). Again, the associated coefficients
Wm given in Fig. 3.5(d) are non-zero for odd values of m only1.

Finally, substituting (3.7) in (3.16) yields:

Φk =

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

∫ 2π

0

(
Cn(r) sin (np(θ − γ))

+ εĈn(r) sin ((np+ 1) θ − npγ − φ)

+ εČn(r) sin ((np− 1) θ − npγ + φ)

)
Wm(r) sin (mq (θ − δk)) dθrdr.

(3.18)

3.7 Electrodynamic force with arbitrary currents

The electrodynamic force on the rotor due to the presence of an arbitrary current in
a single winding phase is calculated using (3.2) and (3.18). The force in the direction
of the off-centering is:

1The function wk(r, θ) can be further understood by considering that the wire is a filament located
at a given radius Rw . Then, the function wk depends only on θ and is worth w(θ) = dz

Rw|dθ| , i.e. the
local derivative of the wire’s axial position or height zwith respect to the azimuthal distance. Considering
that a non-zero mth harmonic in the Fourier series of a function results in a non-zero mth harmonic in
the Fourier series of the derivative of this function, knowing z and analyzing the winding shape allows
to identify the PM field harmonics that are linked by the winding in a straightforward way.
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Fig. 3.4: Developed views of a rhombic winding (a) and a helical winding (b), with
the associated function w (c) and coefficients Wm (d).
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Fig. 3.5: Two window frame windings (a), (b) with different shapes but the same w
function (c) and coefficients Wm (d).

F ekε =
∂Φk
∂ε

Ik

= Ik

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

∫ 2π

0

(
Ĉn(r) sin ((np+ 1) θ − npγ − φ)

+ Čn(r) sin ((np− 1) θ − npγ + φ)

)
Wm(r) sin (mq (θ − δk)) dθrdr,

(3.19)
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whereas the force in the direction perpendicular to the off-centering is:

F ekφ =
∂Φk
ε∂φ

Ik

= Ik

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

∫ 2π

0

(
− Ĉn(r) cos ((np+ 1) θ − npγ − φ)

+ Čn(r) cos ((np− 1) θ − npγ + φ)

)
Wm(r) sin (mq (θ − δk)) dθrdr.

(3.20)

3.8 Guidelines regarding the pole pairs numbers

This section aims at imposing constraints on the winding shape so that a bearing
meets the conditions 1-2 for a suitable EDB i.e., no flux when the rotor is centered
and a non-zero flux when the rotor is off-centered, see section 3.3. More specifically,
this section focuses on finding the appropriate number of pole pairs q a winding
should have when combined with a rotor with arbitrary number of pole pairs p in
the aim of satisfying these conditions.

This section focuses on getting qualitative guidelines to choose an appropriate
value for q without studying or optimizing the exact shape of the winding. There-
fore, quantitative guidelines on how to choose the best winding shape through coef-
ficients Wm, and on how to choose the best magnetic and geometrical properties of
the bearing through Cn are not given here. For example, CnWm is never assumed
to be zero in this section to remain as general as possible.

3.8.1 Zero flux when centered

Let us apply the first condition for a null-flux bearing to (3.18). When centered, ε = 0

and (3.18) becomes:

Φk =

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

Cn(r)Wm(r)rdr

.

∫ 2π

0

sin (np(θ − γ)) sin (mq (θ − δk)) dθ.︸ ︷︷ ︸
= 0 mq 6= np

= π cos (mqγ −mqδk) mq = np

(3.21)

It follows that for a rotor and a winding with p and q pole-pairs, respectively,
mq 6= np must be true for every couple (m,n). In this case, (3.21) cancels and there
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is no flux in any phase when the bearing is centered. The electrodynamic bearing is
null-flux.

3.8.2 Non-zero flux when o�-centered

The second condition for a suitable electrodynamic bearing implies that one of the
terms proportional to ε induces an emf in the winding when ε 6= 0. Let us have a
look at the terms with (np+ 1)θ-periodicities in (3.18):

∞∑
n,odd

∞∑
m,odd

ε

∫ Rwe

Rwi

Ĉn(r)Wm(r)rdr

.

∫ 2π

0

sin ((np+ 1) θ − npγ − φ) sin (mq (θ − δk)) dθ.︸ ︷︷ ︸
= 0 mq 6= np+ 1

= π cos ((mq − 1)γ −mqδk + φ) mq = np+ 1

(3.22)

When the rotor is off-centered, there is a net magnetic flux in the winding if this
contribution does not cancel i.e. if mq = np + 1 for at least one couple (m,n).
Similarly, the term from (3.18) which is proportional to ε and periodic in (np− 1)θ

becomes:

∞∑
n,odd

∞∑
m,odd

ε

∫ Rwe

Rwi

Čn(r)Wm(r)rdr

.

∫ 2π

0

sin ((np− 1) θ − npγ + φ) sin (mq (θ − δk)) dθ.︸ ︷︷ ︸
= 0 mq 6= np− 1

= π cos ((mq + 1)γ −mqδk − φ) mq = np− 1

(3.23)

In this case, having a non-zero magnetic flux in the winding when the rotor is off-
centered translates into satisfying the identity mq = np − 1 for at least one couple
(m,n).

In conclusion, satisfying either the identity mq = np + 1 or mq = np − 1

ensures that a non-zero flux is linked by the winding when the rotor is off-centered.
Furthermore, the flux is proportional to the displacement ε.

3.8.3 Non-zero force when o�-centered

When a non-zero current flows in phase k, the presence of a restoring force F ekε
requires that ∂Φk

∂ε 6= 0. In this aim, let us analyze the contributions of the terms
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with (np± 1) θ-periodicities in (3.19):

Ik

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

Ĉn(r)Wm(r)rdr

.

∫ 2π

0

sin ((np+ 1) θ − npγ − φ) sin (mq (θ − δk)) dθ︸ ︷︷ ︸
= 0 mq 6= np+ 1.

= π cos ((mq − 1)γ + φ−mqδk) mq = np+ 1.

Ik

∞∑
n,odd

∞∑
m,odd

∫ Rwe

Rwi

Čn(r)Wm(r)rdr

.

∫ 2π

0

sin ((np− 1) θ − npγ + φ) sin (mq (θ − δk)) dθ︸ ︷︷ ︸
= 0 mq 6= np− 1.

= π cos ((mq + 1)γ − φ−mqδk) mq = np− 1.

(3.24)

It appears that the identities to satisfy for having a non-zero force F ekε are thus
identical to the ones ensuring that a non-zero flux is linked by the winding phase
when the rotor is off-centered. This was expected, considering the last comments
from section 3.3. Note that making the same developments for F ekφ yields the same
results.

Finally, the above constraints on the winding geometry to create a centering force
was derived without making any assumption on the current amplitude and phase.
Therefore, it can also be applied to active bearings based on electrodynamic forces,
which is consistent with Silber et al. (2012).

3.8.4 Summary

In order to have a non-zero PM flux (and thus an induced emf and an electrodynamic
force) when the rotor is off-centered, the number of pole pairs p and q must be such
that either mq = np+ 1 or mq = np− 1 is true for at least one couple (m,n). The
harmonics numbers m and n being odd integers only, one of these two identities
being verified implies that q and p necessarily have different parities. If one is odd,
the other is even and vice-versa. It is interesting to note that q and p having different
parities induces that the first identity for a null-flux bearingmq 6= np is true whatever
the odd values n and m may take. In other words, when restricted to windings and
magnetizations with odd harmonics n and m, which is usually the case, having an
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induced emf and a non-zero electrodynamic force always implies that the bearing is
null-flux.

In conclusion, the two first identities for a suitable bearing thus reduce to choos-
ing the pole pairs numbers q and p such that either:

mq = np+ 1 (3.25)

or:

mq = np− 1 (3.26)

is true for at least one couple (m,n). In this case,mq 6= np for all the couples (m,n)

and the bearing is null-flux, in addition to having an induced emf and force when
off-centered. As a result, the constraint for obtaining a null-flux EDB is simple to
meet even though the magnetization and winding may have many harmonics.

Two examples of electrodynamic bearings respecting the previous identities are
given in Fig. 3.6. In Fig. 3.6 (a), the electrodynamic bearing has an internal rotor
and the identity mq = np+ 1 is satisfied, at least for m = n = 1. In Fig. 3.6 (b), the
rotor is external and the identity mq = np− 1 is satisfied, at least for m = n = 1.

ÏŢÎÿÏL’Îż r Î¿
ḮL Rw

Îÿm

magnet
winding

ferromagnetic part
(a) (b)

F

F

F

F

F

F F

F

ω

ω

Fig. 3.6: Examples of null-flux electrodynamic bearings. (a) Internal rotor case with
p = 2, q = 3. (b) External rotor case with p = 2, q = 1.

3.9 Electrodynamic force with induced currents

In this section, the guidelines regarding the pole pairs numbers (3.25) or (3.26) are
assumed to be met. The bearing under study thus has the null-flux characteristic.
This allows to calculate the current induced in the short-circuited phases and the
associated electrodynamic force.
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First, let us calculate the emf in the winding phases. As a consequence of the
assumptions from section 3.2, the radial off-centering ε and the speeds ω and λ are
considered as constants1. Summing the contributions (3.22) and (3.23) to the PM
flux yields:

Φk =

∞∑
m,odd

{
εĤm cos ((mq − 1)γ −mqδk + φ)

+ εȞm cos ((mq + 1)γ −mqδk − φ)

} (3.27)

with:
Ĥm = 0 mq 6= np+ 1

= π

∫ Rwe

Rwi

Ĉn(r)Wm(r)rdr mq = np+ 1

Ȟm = 0 mq 6= np− 1

= π

∫ Rwe

Rwi

Čn(r)Wm(r)rdr mq = np− 1.

(3.28)

The emf in phase k can then be derived as follows:

emfk = −dΦk
dt

= −∂Φk
∂γ

ω − ∂Φk
∂φ

λ

=

∞∑
m,odd

{
εĤm ((mq − 1)ω + λ) sin ((mq − 1)γ −mqδk + φ)

+ εȞm ((mq + 1)ω − λ) sin ((mq + 1)γ −mqδk − φ)

}
.

(3.29)

From (3.29) and (3.3), the general expression of the current in the kth phase is ob-
tained:

Ik =

∞∑
m,odd

{
Îm sin ((mq − 1)γ −mqδk + φ− ϕ̂m)

+ Ǐm sin ((mq + 1)γ −mqδk − φ− ϕ̌m)

}
.

(3.30)

1This corresponds to neglecting the mechanical time constant associated with the rotor motion com-
pared with the electrical time constant of the winding
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The constants and the current phases with respect to the emf are:

Îm =
εĤm ((mq − 1)ω + λ)√

((mq − 1)ω + λ)
2
L2
c +R2

Ǐm =
εȞm ((mq + 1)ω − λ)√

((mq + 1)ω + λ)
2
L2
c +R2

ϕ̂m = arctan

(
((mq − 1)ω + λ)Lc

R

)
ϕ̌m = arctan

(
((mq + 1)ω − λ)Lc

R

)
,

(3.31)

where Lc is the cyclic inductance of the winding. Summing the contributions (3.24)
to the centering electrodynamic force yields:

F ekε = Ik

∞∑
l,odd

{
Ĥl cos ((lq − 1)γ + φ− lqδk)

+ Ȟl cos ((lq + 1)γ − φ− lqδk)

}
,

(3.32)

where the constants are given in (3.28). Considering that γ = ωt, φ = λt, and
substituting the current (3.30) in (3.32):

F ekε =

∞∑
m,odd

∞∑
l,odd

(
Îm sin

(
((mq − 1)ω + λ) t−mqδk − ϕ̂m

)

+ Ǐm sin (((mq + 1)ω − λ) t−mqδk − ϕ̌m)

)
(
Ĥl cos (((lq − 1)ω + λ) t− lqδk)

+ Ȟl cos (((lq + 1)ω − λ) t− lqδk)

)
.

(3.33)

3.10 Guidelines regarding the phase number

This section deals with the last condition from section 3.3 concerning the time av-
erage and pulsating component of the electrodynamic force. Considering (3.33), it
discusses the current-emf phase shift yielding the maximum time average force F̄kε,
and the impact of the number of phases on the pulsating forces. The results are then
compared to existing predictions in the literature.
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3.10.1 Time average of the force

Re-using (3.33), the mean force F̄kε over one time period T is:

F̄ ekε =

∫ T

0

∞∑
m,odd

∞∑
l,odd

(
Îm sin

(
((mq − 1)ω + λ) t−mqδk − ϕ̂m

)

+ Ǐm sin (((mq + 1)ω − λ) t−mqδk − ϕ̌m)

)
(
Ĥl cos (((lq − 1)ω + λ) t− lqδk)

+ Ȟl cos (((lq + 1)ω − λ) t− lqδk)

)
dt

T
.

(3.34)

As a reminder, the coefficients Îm, Ǐm are the amplitudes of the current har-
monics, while Ĥl, Ȟl are the amplitudes of the PM flux harmonics. Let us sep-
arate the terms of (3.34) into four groups with coefficients ÎmĤl; ǏmȞl; ÎmȞl;
and ǏmĤl. The terms in ÎmĤl cancel when integrated over a time period unless
(mq − 1)ω + λ = (lq − 1)ω + λ, i.e. m = l. The remaining terms with m 6= l are
zero on average, but additional pulsating forces can result from them. Consequently,
the total contribution of the terms in ÎmĤl to the average force is:

− 1

2

∞∑
m,odd

ÎmĤm sin (ϕ̂m) . (3.35)

This shows that the average force increases when the induced current is inductive,
reaching a maximum value as the current-emf phase shift ϕ̂m tends towards π2 . This
is consistent with (Filatov and Maslen, 2001; Kluyskens and Dehez, 2009; Post and
Ruytov, 1998). Although the guideline for a non-zero restoring force on the rotor
of the bearing were already obtained in section 3.8, (3.35) confirms that their time-
average is non-zero. Furthermore, the coefficients Ĥm and Îm decrease with m.
Therefore, choosing m = n = 1 yields the maximum force, as will be shown in
section 3.11.2. The previous analysis can be transposed easily to the terms in ǏmȞl.
Their mean value is:

− 1

2

∞∑
m,odd

ǏmȞm sin (ϕ̌m) . (3.36)

Again, the maximum average force is obtained when ϕ̌m = π
2 .

Let us now consider the terms in ÎmȞl. Their time average cancels, except if
(mq − 1)ω + λ = (lq + 1)ω − λ. However, the operation of a bearing shall not be
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based on these terms since this identity can only be satisfied for specific values of ω
and λ1. This is also the case for the terms in ǏmĤl.

Finally, let us have a look at the time average F̄kφ of Fkφ. The contributions of
the terms in ÎmĤl and in ǏmȞl to F̄kφ are, respectively:

−1

2

∞∑
m,odd

ÎmĤm cos (ϕ̂m)

1

2

∞∑
m,odd

ǏmȞm cos (ϕ̌m) .

(3.37)

The inductive behaviour of the winding is also positive in this case, because it
lowers the force F̄kφ that is known to badly affect the bearing stability (Filatov and
Maslen, 2001; Kluyskens and Dehez, 2009).

3.10.2 Pulsating electrodynamic forces

In electrodynamic bearings, the presence of pulsating electrodynamic forces can in-
duce vibrations reaching unacceptable levels, even if the time average of the centering
force is satisfactory. Looking at (3.33), it appears that the pulsating force created by
a single phase is significant as the current is a sine function of time and cancels every
period. However, increasing the number of phases smooths the instantaneous force
on the rotor.

To illustrate this, the electrodynamic force in presence of numerous phases is
calculated assuming a static eccentricity configuration i.e., ω and ε are constant and
λ = 0. The angular position of the kth phase is:

δk =
πk

qN
(3.38)

where k ∈ {0, N − 1}.

1An example of such specific kinematics yielding a non-zero average contribution to the force is the
pure static-eccentricity case (ω and ε are constant, λ = 0). Then, the identity for a non-zero average
force becomes (m − l)q = 2. Considering the properties of m, l, q, this translates into q = 1 and
m = l+2, thereby ruling out the casem = l = 1 that is associated with the coefficients ÎmȞl of higher
amplitudes. In this static-eccentricity case, this means that the contribution of these terms to the force are
less significant than the contributions of the terms in ÎmĤl. However, this highlights the importance of
considering more than only the most significant harmonics when studying a bearing.
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Let us have a look at the terms in ÎmĤl in (3.33):

Fε =

N−1∑
k=0

Fkε

=

∞∑
m,odd

∞∑
l,odd

ÎmĤl

[
N−1∑
k=0

sin ((mq − 1)ωt−mqδk − ϕ̂m)

cos ((lq − 1)ωt− lqδk)

]
.

(3.39)

Substituting (3.38) in (3.39), the term between brackets yields:

1

2

N−1∑
k=0

[
sin

(
(m− l) qωt− (m− l) πk

N
− ϕ̂m

)

+ sin

(
((m+ l) q − 2)ωt− (m+ l)

πk

N
− ϕ̂m

)]
.

(3.40)

In this equation, computing the sum gives a zero result for the first sine except
if (m − l) is a multiple of 2N and a zero result for the second sine except if (m +

l) is a multiple of 2N . In other words, if the number of phases N increases, the
terms inducing pulsating forces come from higher values of (m − l) and/or (m +

l), corresponding to higher order terms Îm or Ĥl. Since these coefficients usually
decrease with m or l, the amplitude of the pulsating force component will decrease,
reaching negligible values as the number of phases increases. The same reasoning
leads to the same conclusion when applied to the other terms in (3.33), and to Fφ.

This highlights the importance of considering the full harmonic content of the
magnetic field from the permanent magnets when studying the pulsating forces in
an electrodynamic bearing.

3.10.3 Summary

Let us summarize the content of the present section. Firstly, it was shown that the
time average of the centering electrodynamic force is non-zero when the guidelines
from section 3.8 are met. Also, the behaviour of the bearings improves as the emf-
current phase shift approaches π

2 , because the average centering force F̄ε reaches a
maximum whereas the destabilizing force F̄φ cancels. Consequently, making sure
that the bearing has an inductive behaviour while operating at the required speed is
critical.
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Secondly, another design guideline was obtained in subsection 3.10.2. It consists
in increasing the number of phases to reduce the amplitude of the pulsating forces.

3.11 Validations

Let us validate the results from section 3.8 regarding the pole pairs numbers. In
this aim, the predictions of the model for the vector potential and the flux linked
by a winding are compared with finite elements (FE) simulation results. The FE
simulations are done using COMSOL Multiphysics v.4.2a.

The bearing considered for this validation is shown in Fig. 3.7. It comprises an
internal rotor with p pole-pairs. The rotor has surface-mounted permanent magnets
with a radial magnetization, a remanent magnetic flux densityBrem, and a magnetic
permeability µr. The permeability of the rotor shaft and the stator yoke is infinite
in the analytical model, whereas they are set to µi = 4000 in the FE model. The
stator winding phases have q pole-pairs and a helical shape as shown in Fig. 3.4(b).
The wire is assumed to have no thickness and is located at radius Rw. The bearing
parameters are summarized in Table 3.1.

Table 3.1: Bearing parameters for the validation.

parameter value units

Ri 3 mm
Rm 6.5 mm
Rw 7.5 mm
Rwe 8 mm
Ro 10 mm
H 30 mm
Brem 1.32 T
µr 1.01 -
µi 4000 -

In this section, only the most significant harmonics of the previous analytical
expressions (3.7) and (3.17) are considered. For clarity purposes, the rotor eccentric-
ity is described by the variable e = ε/g, where the nominal airgap of the bearing
g = Rwe −Rm in the present case.

3.11.1 Magnetic vector potential

The expression of the vector potential in the rotor frame (3.4) was validated by
Rahideh and Korakianitis (2011). Let us now validate the expression of the vector
potential in the stator frame (3.7). In particular, the focus is placed on the actual har-
monic content and on the linear dependency between the harmonics amplitude and
the eccentricity.
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Fig. 3.7: Amplitude of Az for p = 2 and e = 0.5.

Assuming p = 2 and φ = γ = 0, the vector potential is first obtained with FE
methods, see Fig. 3.7. The evolution of Az with the eccentricity and the associated
harmonic content are shown in Fig. 3.8(a) and (b), respectively. The harmonic con-
tent of Az predicted by the analytical model is presented in Table 3.2. The first row
of the table gives the harmonics numbers n corresponding to the nominal magnetic
field, i.e. when e = 0. The other rows give the spatial periodicities of the vector
potential harmonics when e 6= 0.

Table 3.2: Analytical model predictions of the vector potential harmonics for p = 2.

harmonic # spatial periodicity

n np− 1 np np+ 1

1 1 2 3
3 5 6 7
5 9 10 11

Analytical predictions for the amplitude of the harmonics with npθ-, (np+ 1)θ-
and (np− 1)θ-spatial periodicities, namely Cn, εĈn and εČn in (3.7), are compared
with FE results in Fig. 3.9(a), (b) and (c), respectively. As shown in Fig. 3.9(a), the
values of Cn are non-zero when e = 0 and remain constant with e, which was well
predicted by the model. These values correspond to the amplitude of the harmonics
of the magnetic field in the airgap when the rotor is centered. Fig. 3.9(b) shows the
amplitude of the harmonics with (np + 1)θ-spatial periodicities, i.e. εĈn. Again,
their amplitudes are well predicted by the analytical model. They are zero when
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there is no eccentricity and only appear when the rotor is off-centered, increasing
linearly with e. Fig. 3.9(c) shows the amplitudes of the harmonics with (np − 1)θ-
spatial periodicities, i.e. εČn. The analytical prediction is appropriate for n = 1

i.e., for the θ-spatial periodicity harmonic but not in the other cases. This can be
interpreted in the following way: the amplitudes of the harmonics with (np − 1)θ-
periodicities are much lower than the amplitudes of the harmonics with (np + 1)θ-
periodicities. Therefore, higher order effects in ε are not negligible and εČ3, εČ5 do
not increase linearly with the eccentricity. As shown in Fig. 3.8(b), other harmonics
appear when the rotor is off-centered, namely harmonics 4 and 8. They are second
order effects which are neglected in the analytical model and therefore their predicted
amplitudes are zero.
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Fig. 3.8: FE results for the amplitude of the magnetic vector potential at radius Rw
(a), and corresponding harmonic content of Az (b).
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3.11.2 Permanent magnet flux

For this validation, the maximum amplitude of the magnetic flux linked by the
winding is calculated for all the combinations corresponding to p = 1, 2, 4 and
q = 1, 2, 3, 4 and for different values of e. The other parameters of the bearing
are kept identical.

Table 3.3 gives the predictions of the analytical model concerning the magnetic
flux for each winding and permanent magnets combination. In the white cells, the
flux amplitude is predicted to be independent of e because q and p have the same
parity, and therefore mq 6= np + 1 and mq 6= np − 1 for every couple (m,n). In
these cases, either mq = np is verified for the couples (m,n) indicated in the table
and the predicted flux is non-zero, or mq = np is not verified and the predicted flux
is zero. As a result, the bearing cannot work since the flux does not vary with the
off-centering, and sometimes the bearing is not even null-flux. In the green cells of
table 3.3, the flux is predicted to grow linearly with e because either mq = np + 1

or mq = np− 1 is verified for the couples (m,n) given in the table. Furthermore, q
and p having different parities in these cases,mq 6= np for all the couples (m,n) and
the flux is zero when the rotor is centered i.e., when e = 0. Only the couples (m,n)

giving rise to a non-zero flux and having the lowest orders m and n are given in the
table.

Table 3.3: Properties of the PM flux, and associated pair (m,n).

q = 1 q = 2 q = 3 q = 4

p = 1 constant linear constant linear
(1, 1) (3, 3) (1, 1) (1, 3) (1, 3) (3, 9) (1, 3) (1, 5)

(5, 5) (3, 5)

p = 2 linear constant linear null
(1, 1) (3, 1) (1, 1) (3, 3) (1, 3) (3, 5)
(5, 3) (7, 3) (5, 5)

p = 4 linear null linear constant
(3, 1) (5, 1) (1, 1) (1, 1) (3, 3)

(5, 5)

As shown in Fig. 3.10(a), the amplitude of the magnetic flux from the FE analysis
remains almost constant with e and is non-zero at e = 0 when (p, q) = (1, 1),
(1, 3), (2, 2) and (4, 4), which corresponds to analytical predictions. In this case, the
harmonics created by the PMs when the rotor is centered are linked by the winding
and the bearing is not null-flux. This will result in Joule losses when the rotor spins
in the equilibrium position. These losses are significant because the winding links
harmonics that are with significant amplitudes, see Fig. 3.8(b) and Fig. 3.10. When
(p, q) = (2, 4) and (4, 2), the model predicts a zero flux and only second order effects
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are present.

As shown in Fig. 3.10(a) and (b), the amplitude of the magnetic flux increases
linearly with e when (p, q) = (1, 2), (2, 3), (1, 4), (2, 1), (4, 1) and (4, 3). In these
cases, the data behave as predicted although some higher order effects in ε are visible
as e increases, or when the predicted value of the flux is very low.
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Fig. 3.10: FE results for the magnetic flux intercepted by the winding for different
couples (p, q) and evolution with e. Harmonics with higher amplitudes (a), and
lower amplitudes (b).

The validations were done in qualitative terms. Let us now give some quantitative
comments. In practice, by observing Fig. 3.10, meeting the guideline mq = np+ 1

for m = n = 1 yields higher flux amplitudes. Therefore, satisfying the identity
q = p + 1 should be preferred when building a bearing based on this internal PM
configuration.

Conversely, we observe that the identity q = p − 1 should be preferred in the
external rotor case.
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3.12 Conclusion

This chapter sets guidelines to build a centering, null flux electrodynamic bearing
based on the interaction between a rotor with permanent magnets and an armature
with short-circuited windings.

The design guidelines were obtained by developing an quasi-static, analytical
model predicting the forces on the rotor. It was shown that imposing the null-
flux characteristic and the presence of an electrodynamic force when the rotor is
off-centered can be achieved by choosing the rotor and winding pole pairs numbers
p and q in order to satisfy mq = np+ 1 or mq = np− 1 for at least a couple (m,n).

This conclusion was validated for some values of ε up to half of the airgap, which
can be considered as a realistic upper limit for the off-centering amplitude in an elec-
trodynamic bearing. The FE results were in good agreement with the expectations
from the analytical model, even though the presence of some second order effects in
ε was observed for harmonics with high spatial periodicities at large rotor eccentric-
ities.

In order to maximize the magnetic flux and the force, the FE simulations also
highlighted that the rotor and armature pole pairs numbers should be such that q =

p± 1. The identity q = p+ 1 should be preferred in the internal rotor case and the
identity q = p− 1 should be preferred in the external rotor case.

Finally, the model also showed that having a winding with an inductive be-
haviour has a positive effect on the time average centering force and on the stability
of the bearing. This result has not been validated but corresponds to existing pre-
dictions in the literature. In addition, increasing the number of winding phases was
shown to decrease the amplitude of the pulsating forces.
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Like most of the models from the literature, the quasi-static model presented in sec-
tion 2.2 yields the forces on the rotor under the static eccentricity assumption. How-
ever, such a kinematic assumption constitute a strong limitation for a model that is
used to study the rotor dynamics. Recent years saw the derivation of a linear state-
space representation of the dynamics of electrodynamic bearings with no assumption
on the kinematics of the rotor axis. However, the scope of this model is still limited
regarding the bearing topologies.

This chapter presents an analytical lumped-parameter model of heteropolar bear-
ings following the guideline q = p± 1. Compared with the literature (Detoni et al.,
2012), some restrictions on the bearing topology are removed, namely:

1. the number of pole pairs of the PMs p is even and the number of winding
pole pairs is q = 1, while a wider range of bearings could be considered by
following the design guidelines from chapter 3;

2. the number of winding phases is N = 2, while increasing N could have a
positive impact on the bearing stiffness (Dumont et al., 2016d) and reduce the
parasitic eddy currents in the conductors (Bender and Post, 2000);

3. the PMs are attached to the stator, while this is not necessary for heteropolar
EDBs;

4. no ferromagnetic yoke is attached to the windings. This restriction is also
removed.

As a result, the dynamics and stability of a wider range of heteropolar electrody-
namic bearings can now be studied with a linear model. Finally, this tool is applied
to an example of bearing as a case study.

The content of this chapter is the subject of (Dumont et al., 2016b).
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4.1 Parameters and variables

The bearing is composed of the PMs and winding parts with symmetry axesOM and
OW , respectively. The frames and coordinates used in this chapter are given in Fig.
4.1 (a) and (b), depending on whether the winding or the PMs are on the stator.
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stator winding
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rotor PMs
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γ = ωt

y

x

φ

OM

stator PMs
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P

r

θ

γ = ωt

OW

Fig. 4.1: Rotor and stator frames, and associated coordinates.

The position of the rotor axis in the stator frame is (x = ε cos(φ); y = ε sin(φ))

and the spin angle of the rotor is γ = ωt. Using these coordinates and frames, all
configurations from chapter 2.1.8 can be considered.
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4.2 Assumptions

The following assumptions are made when deriving the model:

1. the materials have linear magnetic characteristics and therefore magnetic hys-
teresis and saturation are neglected;

2. the impact of the rotor off-centering ε on the winding inductances is neglected;

3. there is no proximity or skin effect in the conductors;

4. the eddy currents are neglected except in the windings;

5. the impacts of the rotor off-centering and of the slotting effect on the detent
force are neglected;

6. only the main PM flux harmonic is considered in each phase;

7. the magnetic axes of the rotor and winding remain parallel;

8. the rotor spin speed ω is an input to the system and is constant;

9. theN ≥ 2 phases are identical and evenly distributed around the winding axis.

4.3 PM flux linkage

Knowing the PM flux linkage allows to calculate the winding currents and the elec-
trodynamic force on the rotor. Therefore, let us calculate the flux linked by the kth

winding phase by integrating the vector potential along the conductor:

Φk =

∮
Γk

A.dl. (4.1)

The expression of A is derived in chapter 3 in the case of a winding attached to the
stator:

Az(r, θ) = A(r) sin (p(θ − γ))

+ εAi(r) sin ((p+ 1) θ − pγ − φ)

+ εAe(r) sin ((p− 1) θ − pγ + φ) .

(4.2)

Similarly, in the case of a winding attached to the rotor, the expression of A is:

Az(r, θ) = A(r) sin (p(θ + γ))

+ εAi(r) sin ((p+ 1) θ + (p+ 1) γ − φ)

+ εAe(r) sin ((p− 1) θ + (p− 1) γ + φ) .

(4.3)
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As the end-effects are not considered, the magnetic vector potential is axial. In addi-
tion, only the components with the greatest amplitudes are considered. In (4.2) and
(4.3), the term withA(r) has p pole pairs and corresponds to the magnetic field when
the rotor is centered. The terms withAi andAe are non-zero only when the rotor is
off-centered. They are proportional to ε and have p±1 pole pairs. One of these two
harmonics is linked by the winding, depending on whether q = p+ 1 or q = p− 1

is satisfied. Lastly, (4.2) and (4.3) are always expressed in the winding frame to ease
the calculation of Φ. Since the vector potential is axial, (4.1) becomes:

Φk =

∮
Γk

Azdlz. (4.4)

In the case of a bearing with the PMs attached to the rotor and q = p+ 1, this yields:

Φk = εKΦ cos ((q − 1) γ + φ− qδk)

= KΦ

(
cos ((q − 1) γ − qδk) ε cos (φ)

− sin ((q − 1) γ − qδk) ε sin (φ)

)
= KΦ

(
cos ((q − 1) γ − qδk)x

− sin ((q − 1) γ − qδk) y

)
,

(4.5)

whereKΦ is a constant that depends only on the geometric and magnetic parameters
of the bearing, and δk is the angular position of the kth phase:

δk =
2π(k − 1)

qN
, (4.6)

with k ∈ {1, N}. Rewriting (4.5) in a matrix form yields:

Φ = KΦPQx, (4.7)

where Φ is the vector of the magnetic flux in the winding phases and:

P =


cos (qδ1) sin (qδ1)

...
...

cos (qδN ) sin (qδN )

 (4.8)

Q =

[
cos ((q − 1) γ) − sin ((q − 1) γ)

sin ((q − 1) γ) cos ((q − 1) γ)

]
. (4.9)
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This corresponds to a bearing with PMs attached to the rotor and q = p+ 1. In the
other configurations, the matrix Q in (4.7) changes, see appendix B.

In the next sections, the model is derived in the particular case of a bearing with
PMs attached to the rotor and q = p + 1, but the final results are provided for all
configurations and for q = p± 1.

4.4 Governing equations

This section presents the equations governing the electrical, mechanical and mag-
netic variables in the bearing.

4.4.1 Electrical equations

The current Ik in the short-circuited winding phase k is governed by Faraday’s law
applied to R-L circuits:

uk = 0 = RkIk +
dΨk

dt
= RkIk +

d
(∑N

l=1 LklIl

)
dt

+
dΦk
dt

, (4.10)

where Ψk is the total magnetic flux linkage in the winding phase, Φk is the flux
linkage from the PMs only, and Rk and Lkl are the phase resistance and mutual in-
ductances, respectively. Because of the assumptions from section 4.2, the inductance
matrix is constant and (4.10) yields:

0 = RkIk +

N∑
l=1

Lkl
dIl
dt

+
dΦk
dt

, (4.11)

which can be rewritten in matrix form as:

0 = RI + L
dI

dt
+
dΦ

dt
. (4.12)

As stated previously, the winding phases are identical, evenly distributed and
their properties are constant. Therefore, the inductance matrix L is symmetric and
circulant1:

Lkl = Llk

Lkl = Lk+i,l+i

L1l = L1,N+2−l,

(4.13)

where i, k, l ∈ {1, N}. The phase resistances are equal which yields:

R = R11, (4.14)

where R is the phase resistance and 11 is the identity matrix.
1Additional inductors of equal impedance could be connected in series with each winding phase if

necessary. This does not affect the properties (4.13) and could be used to modify the stiffness or the
stability properties of the bearing.
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4.4.2 Electromagnetic equations

As a reminder, the general expressions of the electromagnetic forces on the rotor are:

Fx =
∂W0

∂x
+

N∑
k=1

∂Φk
∂x

Ik +
1

2

N∑
k=1

N∑
l=1

∂Lkl
∂x

IkIl

Fy =
∂W0

∂y
+

N∑
k=1

∂Φk
∂y

Ik +
1

2

N∑
k=1

N∑
l=1

∂Lkl
∂y

IkIl,

(4.15)

where the terms ∂W0

∂x and ∂W0

∂y correspond to the gradient of the magnetic coenergy
in the system at zero current. It is a detent force due to the presence of PMs. Under
assumptions 1 and 5 from section 4.2, this detent force acts in the direction of the
off-centering and it can be associated with a constant negative stiffness, as shown in
section 3.5. In addition, the inductance matrix L is constant. Therefore (4.15) can
be rewritten as:

Fx = −Kdx+

N∑
k=1

∂Φk
∂x

Ik

Fy = −Kdy +

N∑
k=1

∂Φk
∂y

Ik,

(4.16)

where Kd ≤ 0 is the stiffness associated with the detent force. Defining:

F =

[
Fx
Fy

]

x =

[
x

y

]
,

(4.17)

the matrix form of (4.16) yields:

F = −Kdx +
[
∇ΦT

]
I. (4.18)

4.4.3 Mechanical equations

Let us consider a simple rotor model consisting of a point mass with two degrees
of freedom in presence of non-rotating damping (Genta, 2005)1. In this case, the
equation governing the rotor dynamics is:

M ẍ + Cẋ = F + Fe, (4.19)

whereM is the rotor mass, C is the amount of external non-rotating damping in the
system, and Fe are the external forces acting on the rotor.

1As a result, the rotor is assumed to be perfectly balanced, and gyroscopic effects are not considered.
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4.5 Variables transformation

Thanks to the presence of symmetries in the bearing geometry and phases distribu-
tion, the study of the present EDB has some similarities with the study of N-phased
rotating field machines. As for the rotating field machines, it is possible to reduce the
number of variables needed to describe the operation of EDBs through an appropri-
ate transformation. This is done in this section, following the approach described in
(White and Woodson, 1959).

4.5.1 Electrical equations

Let us define the variables transformation:

I = UIs;

Φ = UΦs,
(4.20)

with:

Ukl =
1√
N
e−j(k−1)(l−1) 2π

N , (4.21)

where j =
√
−1. Substituting (4.20) into (4.12) yields:

0 = RUIs + LU
dIs

dt
+ U

dΦs

dt
. (4.22)

The inverse of matrix U is given in (White and Woodson, 1959):

U−1
kl =

1√
N
ej(k−1)(l−1) 2π

N . (4.23)

Multiplying (4.22) by U−1 gives:

0 = RIs + U−1LU
dIs

dt
+
dΦs

dt
. (4.24)

Due to the properties of U and L, the product U−1LU = Ls is a diagonal matrix
and:

Lsii =

N∑
k=1

L1ke
−j(i−1)(k−1) 2π

N , (4.25)

with i ∈ {1, N}. As a result, (4.24) is a set of N decoupled equations:

0 = RIs + Ls dI
s

dt
+
dΦs

dt
. (4.26)
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Based on (4.7) and (4.20), Φs can be calculated, see appendix C:

Φs =
KΦ

√
N

2



0 0

1 j

0 0
...

...
0 0

1 −j


Qx. (4.27)

In this vector, only the components Φs2 et ΦsN are non-zero. As a result, only two
equations in (4.26) have an inhomogeneous term. As these equations are decoupled,
only the corresponding currents Is2 and IsN are non-zero. Defining:

Φr =

[
Φs2
ΦsN

]
=
KΦ

√
N

2

[
1 j

1 −j

]
Qx (4.28)

Ir =

[
Is2
IsN

]
, (4.29)

the number of governing equations for the current can be reduced to two and (4.26)
yields:

0 = RIr + Lr dI
r

dt
+
dΦr

dt
, (4.30)

where Lr = Lc11 and:

Lc = Ls22 = LsNN =

N∑
k=1

L1k cos

(
(k − 1)

2π

N

)
(4.31)

is the cyclic inductance of the winding. Finally, substituting Φr with its expression
into (4.30) yields:

0 = RIr + Lc
dIr

dt
+
KΦ

√
N

2

[
1 j

1 −j

] [
Q̇x + Qẋ

]
. (4.32)

4.5.2 Electromagnetic equations

Let us also apply the change of variables (4.20) to the expression of the force (4.18).
First, as the current is a real variable, (4.18) can be rewritten as:

F = −Kdx +
[
∇ΦT

]
I∗, (4.33)

where I∗ denotes the complex conjugate of I. Then, substituting (4.20) into (4.33)
yields:

F = −Kdx +

(
∇
[
UΦs

]T)
(UIs)

∗

= −Kdx +

(
∇
[
Φs
]T)

UTU∗Is∗.

(4.34)
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Since UT = U and U∗ = U−1, (4.34) becomes:

F = −Kdx +

(
∇
[
Φs
]T)

Is∗. (4.35)

Since only Φs2 and ΦsN are non-zero in Φs and only Is2 and IsN are non-zero in Is,
(4.35) can be rewritten as:

F = −Kdx +

(
∇
[
Φr
]T)

Ir∗. (4.36)

Finally, substituting (4.28) into (4.36) yields:

F = −Kdx +
KΦ

√
N

2
QT

[
1 1

j −j

]
Ir∗. (4.37)

As a result of the variable transformation (4.20), the number of variables in the cur-
rent and magnetic flux vectors are lowered from N to 2, as well as the number of
electrical equations in (4.32).

4.6 Dynamic model

The final equation linking the forces and the position of the rotor is obtained by
substituting the current variables in (4.32) and (4.37).

4.6.1 Current variables elimination

The number of variables of the system can be further reduced by eliminating the
currents in the electrical and electromechanical equations. Let us isolate Ir∗ in (4.37):

Ir∗ =
1

KΦ

√
N

[
1 −j
1 j

]
Q
[
F +Kdx

]
. (4.38)

Since F and x are real, obtaining Ir from (4.38) is straightforward:

Ir = Ir∗∗ =
1

KΦ

√
N

[
1 j

1 −j

]
Q
[
F +Kdx

]
. (4.39)

Then, substituting (4.39) into (4.32) yields:

0 =
R

KΦ

√
N

[
1 j

1 −j

]
Q
[
F +Kdx

]
+

Lc

KΦ

√
N

[
1 j

1 −j

] [
Q̇ [F +Kdx] + Q

[
Ḟ +Kdẋ

]]
+
KΦ

√
N

2

[
1 j

1 −j

] [
Q̇x + Qẋ

]
,

(4.40)
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which can be further simplified by multiplying to the left by KΦ

√
NQT

2

[
1 1

−j j

]
:

0 =R
[
F +Kdx

]
+ Lc

[
QTQ̇

[
F +Kdx

]
+
[
Ḟ +Kdẋ

]]
+
K2

ΦN

2

[
QTQ̇x + ẋ

]
.

(4.41)

Considering the definition of Q in (4.9):

QTQ̇ = ωe

[
0 −1

1 0

]
, (4.42)

where ωe = (q − 1)ω is the electrical pulsation of the currents in the static-
eccentricity position, (4.41) reduces to:

Ḟ =− R

Lc
F− ωe

[
0 −1

1 0

]
F−

(
Kd +

K2
ΦN

2Lc

)
ẋ

− RKd

Lc
x− ωe

(
Kd +

K2
ΦN

2Lc

)[
0 −1

1 0

]
x.

(4.43)

The currents are not involved anymore in the governing equation (4.43). How-
ever, they can be deduced from the forces and rotor motion using (4.38) and (4.20).
Finally, using the complex notation which is widespread in the field of rotordynam-
ics, (4.43) can be restated as follows:

Ḟ =− R

Lc
F − jωeF −Kdż −

K2
ΦN

2Lc
ż

− RKd

Lc
z − jωezKd −

K2
ΦNωe
2Lc

jz;

(4.44)

where:

F = Fx + jFy

z = x+ jy.
(4.45)

This identity relates the force and the radial position of the rotor through a linear
equation with constant coefficients. Replacing by the appropriate expression for ωe
given in Table 4.1, it applies for all bearing configurations.

4.6.2 Parameters identification

The model equation (4.44) comprises six parameters that depend on the magnetic
bearing only. The number of winding phases N and the electrical pulsation ωe (see
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Table 4.1) are set arbitrarily, whereas the four other parameters can be identified
using analytical or computational models, or experiments. Namely, R is the phase
resistance, Lc is the cyclic inductance given in (4.31), Kd is the detent stiffness, and
KΦ is the flux constant given in (4.5).

Table 4.1: Electrical pulsation ωe as a function of the spin speed ω.

null-flux characteristic rotor part ωe

q = p+ 1 magnets (q − 1)ω
winding −qω

q = p− 1 magnets −(q + 1)ω
winding qω

If a static-eccentricity model or experimental data are available, the bearing pa-
rameters can be identified in another, indirect way. In particular, Kd corresponds
to the bearing stiffness when the rotor does not spin and is in a static-eccentricity
position, i.e., when ż = 0 and ω = 0. Also, NK2

Φ/(2Lc) + Kd corresponds to the
bearing stiffness if the rotor is in a static-eccentricity position and the winding has a
purely inductive behaviour, i.e., when ż = 0 and R� |ωe|Lc.

4.6.3 State-space representation

A complete electromechanical model of the system results from the coupling of
(4.44) with a mechanical model of the rotor, e.g. (4.19). Using the complex for-
mulation, (4.19) becomes:

Mz̈ + Cż = F + Fe. (4.46)

Coupling (4.44) and (4.46) yields a state-space representation of the rotor dynam-
ics1:

Ḟz̈
ż

 = A

Fż
z

+ BFe, (4.47)

where the dynamic and input gain matrices are:

A =

− R
Lc
− jωe −Kd − K2

ΦN
2Lc

−RKdLc
− jωeKd − j ωeK

2
ΦN

2Lc
1
M − C

M 0

0 1 0


B =

1

M

[
0 1 0

]T
.

(4.48)

1The state-space representation using the real notation is given in the appendix D.
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The root locus of the state-space model is obtained by calculating the eigenvalues
of (4.48), yielding the stability of the system.

4.7 Case study

Rs

Rm
Rw

Ry

Re
rotor

stator

winding
magnets

Fig. 4.2: Bearing with an air gap winding on the stator and surface-mounted PMs
attached to an internal rotor.

Using the model derived in the previous sections, let us analyze the stability of
the bearing in Fig. 4.2. It comprises an internal rotor with PMs and a stator with an
air gap winding and a ferromagnetic yoke. The magnetization pattern of the perma-
nent magnets is parallel with one pole pair (p = 1), and the remanent magnetization
is 1.32 T. The winding has q = p + 1 = 2 pole pairs and three phases (N = 3).
Lastly, the dimensions of the bearing are given in Table 4.2.

Table 4.2: Bearing dimensions [mm].

parameter value

Rs 10
Rm 18
Rw 20
Ry 21
Re 25
L (active length) 70

The parameters of A corresponding to this bearing are summarized in Table 4.3.
Some of them are set arbitrarily, namely M and C. The electrical pulsation ωe = ω

because the magnets are attached to the rotor and q = p + 1, see Table 4.1. The
other parameters are calculated using the two-dimensional static-eccentricity model
presented in chapter 5, and applying the method described in section 4.6.2.
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Table 4.3: Model parameters.

parameter value units

M 1 kg
N 3 -
C {0, 100} Ns/m
R 4.35 Ω
Lc 3.2 mH
K2

Φ 600 NsΩ/m
Kd −139 kN/m
ωe ω rad/s

Then, the eigenvalues of A are computed for different spin speedsω ∈ [0, 2π4000]

rad/s to obtain the root locus of the system in Fig. 4.3(a).
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Fig. 4.3: Root loci of the EDB. (a) Rotating PMs. (b) Rotating winding.
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The thick and thin lines correspond to C = 0 or 100 Ns/m, respectively. In Fig.
4.3(b), the root locus of a bearing with the same geometrical dimensions but with a
different configuration is presented: the winding is on the rotor and the magnets are
on the stator, see Fig. 2.14(c). The parameters of the model remain the same as in
the PMs rotor configuration except that ωe = −2ω because the PMs are attached to
the stator and q = p+ 1, see Table 4.1.

In Fig. 4.3, the dashed and dotted branches correspond to roots with negative real
parts. The roots on the solid branches always have a positive real part when C = 0

and therefore the bearing is always unstable in the absence of external damping. This
is consistent with previous results (Filatov and Maslen, 2001; Kluyskens and Dehez,
2013; Tonoli et al., 2011). On the other hand, the bearing can be stabilized by adding
external damping. In Figs. 4.3(a) and (b), the unstable roots cross the imaginary axis
at 100 krpm and 50 krpm, respectively. In any case, a backup bearing is still required
at low speed for the rotating machine to operate.
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Fig. 4.4: Detailed view of the root loci showing the position of the unstable root for
six equally spaced values of damping C ∈ {0, 100}. (a) Rotating PMs. (b) Rotating
winding.

The effect of the damping on the unstable root is shown in Fig. 4.4. This was
obtained for a bearing with the same parameters as in Table 4.2, except thatRy = 22

mm. The additional damping C ∈ [0, 100] Ns/m and the spin speed is ω = 2000π

rad/s. At such speed, the winding has an inductive behavior and the horizontal dis-
placement of the unstable root is proportional to the amount of additional damping.
This is further investigated in chapter 5.
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4.8 Conclusion

In this chapter, an electromechanical model predicting the dynamics of a rotor sup-
ported by heteropolar EDBs was derived. It allows to evaluate the performance and
stability of the system, and to select the most suitable bearing for a given applica-
tion. This electromechanical model results from the combination of a mechanical
model of the rotor with two degrees of freedom and a lumped-parameter model of
the forces that does not assume a static eccentricity of the rotor.

The resulting state-space model is linear and requires no assumption on the kine-
matics of the rotor. The bearing is characterized by six parameters and a way to iden-
tify them was presented. Remarkably, this parameters identification process does not
require to solve for the currents and only involves static-eccentricity simulations.

Compared to the state of the art, the present model removes numerous limita-
tions on the bearing geometry, namely the presence of a ferromagnetic yoke attached
to the winding, the number of pole pairs and phases of the winding and PMs, and
the possibility to attach the PMs to the rotor or to the stator. The internal and ex-
ternal rotor cases are included. Furthermore, the developments included different
topologies, namely the air gap winding, slotted and bell topologies.

As a result, a wider range of bearings with potentially increased performance
is now in the scope of a dynamic model, thereby facilitating their comparison and
optimization.

Lastly, a case study showed that such a bearing is unstable in the absence of exter-
nal damping. However, this conclusion applies for any bearing topology and config-
uration. Since this external damping should be contactless to remain consistent with
the magnetic bearing approach, it should rely on electromagnetic forces. As intro-
ducing such damping between the rotor and the stator can be an issue, the present
model can be used to minimize the amount of damping required to achieve stability.

Finally, let us note that a state-space representation for other kinds of rotor mod-
els (Detoni et al., 2016) and damping (Tonoli et al., 2011) can be obtained following
the same approach as in this chapter.
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In this chapter, the modeling tools developed in the previous chapters are applied
to the comparison and optimization of bearings. A first section presents the perfor-
mance criteria of EDBs and introduces a graphical approach to evaluate them. In a
second section, this graphical tool is used to study the impact of the yoke material
on the performance of a bearing. A validation of this graphical tool is also presented.
Finally, a third section presents the optimization of a yokeless EDB using the model
developed in chapter 4.

The content of this chapter is the subject of (Dumont et al., 2014a, 2016c).

5.1 Performance criteria

As stated in the introduction of this manuscript, the implementation of EDBs in
practical applications is prevented by their low stiffness and stability issues. The
radial stiffness should thus be maximized and will be considered as a first bearing
performance criterion. The stability issue results from the need of external damp-
ing to stabilize the bearing, as shown in section 4.7. This can be solved providing
additional damping proportional to the lateral speed of the rotor, as proposed in (Fi-
latov and Maslen, 2001; Kluyskens and Dehez, 2013; Tonoli et al., 2011). However,
the difficulty of adding such damping consistently with the EDB approach, i.e. in
a passive and contactless way, is widely acknowledged. As a result, the amount of
damping required for the stabilization should thus be minimized and will be consid-
ered as a second performance criterion. In the next sections, the minimum amount
of damping required for stabilization is referred to as the instability margin. This
damping and the radial stiffness are denoted Cs and Kε, respectively.

5.1.1 Graphical method

Let us derive a graphical method to evaluate the performance of a bearing with two
degrees of freedom. This method is based on the analysis of root loci plots, where
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the position of the roots is linked to the bearing performance criteria. To establish
this link, a state-space representation of the bearing dynamics is proposed, whose
eigenvalues yield the system roots. This state-space representation is based on a quasi-
static model, as this allows for obtaining analytical expressions of the roots. These
expressions can then be analyzed to highlight the link between the root position and
the performance criteria.

As stated in section 2.2.1, the static-eccentricity assumption limits the scope of
the quasi-static models as the accuracy of the current and force predictions depends
on the rotor motion. However, the forces are coupled to a rotor mechanical model
that is not impacted by the static-eccentricity assumption. Therefore, this assump-
tion does not prevent the prediction of the rotor dynamics.

In this section, the quasi-static model is obtained by imposing the static-eccentricity
assumption on the dynamic model derived in chapter 4, see the schematic in Fig.
2.15. Under the quasi-static assumption, (4.44) yields:

F = −
(
Kd +

ω2
eK

2
ΦLcN

2 (R2 + (ωeLc)2)

)
z − j

(
ωeK

2
ΦRN

2 (R2 + (ωeLc)2)

)
z

= −Kεz − jKφz.

(5.1)

Let us define Fε = −Kε|z| and Fφ = −Kφ|z|, i.e. the amplitude of the force
components in the direction of the off-centering and in the direction perpendicular
to it, see Fig. 5.4. When Kε > 0, it has a positive effect since Fε acts on the rotor
towards the axis of the winding. On the contrary, Kφ has a negative effect on the
stability of the bearing whatever its sign. The associated tangential force induces
a whirling motion of the rotor, following an outwardly growing spiral trajectory
around the axis of the winding. This prevents the rotor from coming back towards
the center of the winding. As stated previously, electrodynamic bearings are thus
not stable unless a way to counterbalance the effect of Kφ is provided.

Coupling (5.1) with the mechanical model (4.46), the equation of motion of the
rotor is:

Mz̈ + Cż +Kεz + jKφz = 0, (5.2)

where C is the external damping added in the system. Let us relate the position of
the roots of the system governed by 5.2 to Cs and Kε. The state-space equations
associated with (5.2) are:

[
z̈

ż

]
= A

[
ż

z

]
+ B, (5.3)
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where:

A =

[
−C
M

−Kε−jKφ
M

1 0

]
. (5.4)

In (5.3), matrix B is the external input force matrix divided by the mass M and
A is the dynamic matrix. The two eigenvalues of A are:

ρ1,2 =
−C
2M
±

√(
C

2M

)2

− Kε + jKφ

M
. (5.5)

Table 5.1: Bearing geometrical dimensions, rotor mass, and remanent magnetiza-
tion.

parameter value unit

Ri 2 mm
Rm 18 mm
Rw 19 mm
Ra 21 mm
L 70 mm
M 2 kg
Brem 1.32 T

As an illustration, let us draw the root locus of a system in the absence of damping
(C = 0). The parameters of the bearing are given in Table 5.1. The permanent
magnet magnetization pattern is parallel with p = 1. The winding has two pole
pairs and three phases.

The root locus is shown in Fig. 5.1 for different speeds ω and yoke materials. It
highlights a central symmetry of the roots with respect to the origin, whatever the
material of the yoke. Therefore, one of the two roots of the system is always on the
right-hand side of the plane i.e., its real part is positive. This indicates that the bearing
is always unstable when no damping is added in the system, which corresponds to
expectations. As ω increases, the unstable root approaches the stability region on
the left-hand side of the plane and |<{ρ}| � |={ρ}|, see the region in the red square
in Fig. 5.1. Let us focus on the behaviour of the unstable root in this region. The
unstable root corresponds to the plus sign in (5.5):

ρ =
−C
2M

+

√(
C

2M

)2

− Kε + jKφ

M
. (5.6)
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80j
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ω
ω

Fig. 5.1: Root locus for ω ∈ [0, 2π5000] and C = 0. The arrows show the direction
of increasing ω.

Using the polar form for complex numbers:

Kε + jKφ

M
= Nejα, (5.7)

where:

tan(α) =
Kφ

Kε
(5.8)

N =

√
K2
ε +K2

φ

M
. (5.9)

The root locus is drawn for C = 0. Therefore, (5.6) and (5.7) yield1:

ρ|C=0 = −j
√
Nejα/2. (5.10)

This expression corresponds to theKφ > 0 case, hence the minus sign. TheKφ < 0

case yields a plus sign, and the corresponding developments are presented in ap-
pendix E. In the area of interest of the root locus:

∣∣∣∣<{ρ|C=0}
= {ρ|C=0}

∣∣∣∣ = tan
(∣∣∣α

2

∣∣∣)� 1. (5.11)

1In each of these cases, only the principal square root of ρ|C=0 is considered, following the conven-
tion that is used in matlab.
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As a result, |α/2| � 1 which can be approximated as |α| � 1. Considering this,
(5.8) and (5.9) yield:

α ∼=
Kφ

Kε
� 1⇒

∣∣∣∣Kφ

Kε

∣∣∣∣� 1 (5.12)

N ∼=
Kε

M
. (5.13)

A consequence of |α| � 1 is that sin(α/2) ∼= α/2 and cos(α/2) ∼= 1. Therefore,
(5.10) becomes:

ρ|C=0 = −j
√
N
(

cos
(α

2

)
+ j sin

(α
2

))
∼=
√
N
(α

2
− j
)
. (5.14)

Replacing (5.12) and (5.13) in (5.14) yields:

ρ|C=0
∼=
√
Kε

M

(
Kφ

2Kε
− j
)

=

√
Kε

M

Kφ

2Kε
− j
√
Kε

M
. (5.15)

Let us consider the effect of damping. Assuming a priori that the damping intro-
duced in the system satisfies:

(
C

2M

)2

� Kε

M
, (5.16)

(5.6) yields:

ρ ∼=
−C
2M

+

√
−Kε + jKφ

M
. (5.17)

Combining this with (5.15) gives:

ρ ∼=
−C
2M

+

√
Kε

M

Kφ

2Kε
− j
√
Kε

M
. (5.18)

In this formula, the imaginary part of ρ is −
√
Kε/M . It reflects the stiffness asso-

ciated with the centering force on the rotor of the bearing. Therefore, the vertical
position of ρ in the root locus is an image of the bearing stiffness. Besides, the damp-
ing C only impacts the real part of ρ. To achieve stabilization, the damping should
be increased to satisfy <{ρ} < 0.
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From this and (5.18), the minimum amount of damping to stabilize the bearing
is obtained:

Cs
2M

=

√
Kε

M

(
Kφ

2Kε

)
. (5.19)

This result is consistent with (Davey et al., 2005; Post, 2000), and shows that the hor-
izontal position of ρ|C=0 in the root locus is proportional to the level of instability
of the bearing. Furthermore, considering (5.12), (5.19) yields:

∣∣∣∣ Cs2M

∣∣∣∣�
√
Kε

M
, (5.20)

which confirms assumption (5.16). Finally, (5.19) shows that the amount of damping
to reach stability decreases with the natural frequency associated with the bearing
stiffness, and increases with the parasitic stiffness Kφ.

In summary, the radial stiffness and the instability margin are linked to the un-
stable root locus through:

<{ρ|C=0} =
Cs
2M

={ρ|C=0} = −
√
Kε

M
,

(5.21)

where:

Cs = Kφ

√
M

Kε
. (5.22)

5.1.2 Rotordynamics analogy

Let us reformulate the previous results using the notations commonly used in rotor-
dynamics. When studying a bearing with a quasi-static model, the rotor motion is
governed by (5.2), i.e.:

Mz̈ + Cż + (Kε + jKφ)z = 0, (5.23)

where C is the amount of external non-rotating damping. In the field of rotor dy-
namics, the equation governing the free motion of a perfectly balanced Jeffcott rotor
in presence of rotating and non-rotating damping is:
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Mz̈ + (Cr + Cn)ż + (Kjeff − jωCr)z = 0, (5.24)

where Kjeff is the stiffness, and Cr and Cn are the amounts of rotating and non-
rotating damping, respectively (Genta, 2005). The corresponding equivalent me-
chanical model is shown in Fig. 5.2.

ωt

z

Kjeff

Cr
Cnr

KjeffCnr

Cr

Fig. 5.2: Equivalent mechanical model of a perfectly balanced Jeffcott rotor in pres-
ence of rotational and non-rotational damping.

Looking at the coefficients of (5.23) and (5.24), it appears that the rotor governed
by (5.23) behaves in the same way as the Jeffcott rotor if:

Kjeff = Kε

Cr = −Kφ

ω

Cn = C +
Kφ

ω
.

(5.25)

Finally, the equivalent mechanical model of an EDB in the absence of external
non-rotating damping is shown in Fig. 5.3. The model parameters depend on the
rotor spin speed ω.

5.2 Bearing comparison

In section 5.1, a graphical method for evaluating the performance criteria of EDBs
was presented. This section applies this method to the study of the impact of the
yoke material on the performance of EDBs. In this aim, the performance of two
EDBs with the same topology, but different yoke permeabilities are compared.

This section is organized as follows. First, the bearing topology that is studied
in this section is presented. Then, a field model adapted to this topology is derived.
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ωt

z

Kε

Kφ
ω

KεKφ
ω

−Kφω−Kφω

Fig. 5.3: Parameters of the Jeffcott rotor model yielding the dynamics of the EDB
predicted with a quasi-static model.

This model is aimed at calculating the parameters of the lumped-parameter model
(5.3), i.e. Kε and Kφ. From this, the root locus of bearings with different yoke
materials is obtained, and their performance are compared.

5.2.1 Case study

A
BC

A’

B’

C’

A
B C

A’

B’

C’
ε Fε
Fφ

OW
OM yoke

windings

magnet

shaft

Fig. 5.4: Bearing topology with p = 1, q = 2, and three phases denoted A,B and C.

The presence of a ferromagnetic yoke in front of the permanent magnets has the
two following effects. On the one hand, it increases the magnetic flux density in the
airgap and the magnitude of the centering electrodynamic forces between the rotor
and the stator of the device. This is positive since the stiffness associated with the
centering force of the bearing increases too. On the other hand, it also induces a
negative stiffness due to the detent force between the yoke and the magnets.

Let us study the impact of the yoke permeability on the performance of the bear-
ing shown in Fig. 5.4. It comprises an internal rotor with a ferromagnetic shaft and
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permanent magnets creating a heteropolar radial magnetic field with p pole pairs in
the airgap. The stator is external and comprises a short-circuited axial airgap winding
with q = p+ 1 pole pairs and N phases, and a yoke that can be made of a ferromag-
netic material or not. Figure 5.4 shows a bearing with p = 1, q = 2, and N = 3. As
shown in chapter 3, verifying identity q = p+1 ensures that the winding is null-flux
and that it can interact with the permanent magnets to create a radial centering force.

5.2.2 Field model

Parameters and variables

Ra

Rw

Rm
Ri

Fig. 5.5: Dimensional parameters of the bearing. The airgap width is exaggerated.

The dimensional parameters of the bearing are given in Fig. 5.5, whereas the
rotor position variables are shown in Fig. 5.6. The rotor center is OM , the stator
center isOW , and the axes x− y are attached to the stator. The position of the rotor
and the position of a point P in the stator frame are given by coordinates (ε, φ) and
(r, θ), respectively. The rotor spins around its axis at speed ω.

φ

OW

ε

r

θ

P

γ = ωt

x

y

OM

rotor PMs

stator winding

Fig. 5.6: Coordinates systems of the model.
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Assumptions

In this section, the following assumptions are made:

1. the end effects are not considered and the problem is assumed to be two-
dimensional;

2. the permanent magnets work in the linear range of their magnetic characteris-
tic, the rotor shaft is made of a ferromagnetic material with infinite magnetic
permeability, and the winding and the permanent magnets have the same mag-
netic permeability as air. The magnetic permeability of the yoke is either infi-
nite (ferromagnetic yoke) or the same as air;

3. eddy current losses in the magnets and ferromagnetic parts are neglected;

4. the amplitude of the off-centering ε is small compared to the nominal airgap
of the bearing;

5. the spin speed ω is constant;

6. the model is quasi-static i.e., the assumption (2.3) is made;

7. the inductances of the winding are constant and do not change with the rotor
position;

8. the rotor mechanical model is that of a point mass with two radial degrees of
freedom.

Force calculation

As a recall, this model aims at calculating the stiffnesses Kε and Kφ. For this pur-
pose, the electromagnetic forces between the rotor and the stator of the bearing are
calculated using the Maxwell stress tensor. This requires the expression of the mag-
netic field created by the permanent magnets and by the phase currents. As stated in
chapter 3, the eddy current in each short-circuited phase is governed by:

RIk + Lc
dIk
dt

= −dΦk
dt

= emfk, (5.26)

where R and Lc are the phase resistance and cyclic inductance, respectively. They
are identical for all the phases. Φk is the flux from the permanent magnets linked by
phase k, and emfk is the induced electromotive force. From chapter 3, the flux Φk
is given by:

Φk = L

∫ Ra

Rw

∫ 2π

0

AMz(r, θ)Dk(r, θ)rdθdr, (5.27)
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where:

AMz(r, θ) =

∞∑
n,odd

{
Cn(r) sin (np(θ − γ))

+ εĈn(r) sin ((np+ 1) θ − npγ − φ)

+ εČn(r) sin ((np− 1) θ − npγ + φ)

}
,

(5.28)

is the vector potential created by the permanent magnets, L is the axial length of the
bearing, and Dk(r, θ) is the conductor density of phase k:

Dk(r, θ) =
2Nqb(−1)v

π|R2
a −R2

w|
if

r ∈ [Rw, Ra]

θ ∈
[
δk + π(N−1)

2Nq + πv
q , δk + π(N+1)

2Nq + πv
q

]

= 0 elsewhere.
(5.29)

In this expression, δk is the angular position of phase k, N is the number of phases,
b is the number of winding turns per phase, and:

v ∈ {0; 2q − 1}
k ∈ {0;N − 1}

δk =
πk

qN
.

(5.30)

When r ∈ [Rw, Ra], the Fourier development of this function is:

Dk(r, θ) =

∞∑
m,odd

8bNq

π2m|R2
a −R2

w|
sin
(mπ

2

)
sin
(mπ

2N

)
sin (mq (θ − δk)).

(5.31)

As an example, the functionDk(r, θ) of the phase A of the bearing from Fig. 5.4
is shown in Fig. 5.7.



84 Chapter 5 Bearing design
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I0

2bNq
π|R2
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0 π 2π
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6

θ

Fig. 5.7: Function Dk(r, θ) in the case of an axial winding with two pole pairs.

Because q = p+ 1, only the terms with coefficients Ĉn and Čn in (5.28) can give
a non-zero contribution to the flux Φk, as exposed in chapter 3. The amplitude of
Φk is thus proportional to ε, as well as the corresponding electromotive forces emfk.
Considering the sixth assumption from section 5.2.2, it is calculated as:

emfk = −dΦk
dt

= −∂Φk
∂γ

ω − ∂Φk
∂φ

dφ

dt
− ∂Φk

∂ε

dε

dt

∼= −
∂Φk
∂γ

ω

∼=
∞∑

m,odd

{
εÊm sin ((mq − 1)γ −mqδk + φ)

+ εĚm sin ((mq + 1)γ −mqδk − φ)

}
.

(5.32)

In this expression, Êm and Ěm are related to the constants in (5.28) as follows:

Êm =
8bNqL

πm|R2
a −R2

w|
sin
(mπ

2

)
sin
(mπ

2N

)
(mq − 1)ω

∫ Ra

Rw

Ĉn(r)rdr

Ěm =
8bNqL

πm|R2
a −R2

w|
sin
(mπ

2

)
sin
(mπ

2N

)
(mq + 1)ω

∫ Ra

Rw

Čn(r)rdr.

(5.33)

Knowing (5.32), the current Ik can be calculated by solving (5.26), which yields:
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Ik =

∞∑
m,odd

{
εÊm

sin ((mq − 1)γ −mqδk + φ− ϕ̂m)√
R2 + ((mq − 1)ωLc)2

+ εĚm
sin ((mq + 1)γ −mqδk − φ− ϕ̌m)√

R2 + ((mq + 1)ωLc)2

}
,

(5.34)

where the phase differences between emfk and Ik are:

ϕ̂m = atan

(
(mq − 1)ωLc

R

)
ϕ̌m = atan

(
(mq + 1)ωLc

R

)
.

(5.35)

The previous reasoning can be repeated for each winding phase. Once the cur-
rent in every phases is known, the magnetic field created by this current in the airgap
is found by solving Maxwell’s equations. This was done by Atallah et al. (1998) in
the case of a slotless motor with a ferromagnetic yoke. This solution is re-used in
the present model, and a similar approach was followed to derive the solution of
Maxwell’s equations in the non-ferromagnetic yoke case, see appendix F. For the ax-
ial winding shown in Fig. 5.4, the general expression of the magnetic vector potential
created by a single winding phase is:

AIz,k(r, θ) =

∞∑
m,odd

IkKI,m(r) sin (mq(θ − δk)) , (5.36)

where KI,m(r) depends on the magnetic properties and dimensional parameters of
the bearing (Atallah et al., 1998). The potential AIz created by the induced currents
is obtained by summing the contributions of all phases. The total magnetic vector
potential Btot in the airgap is the sum of the magnetic field from the windings and
from the rotor magnets:

Btot = BM + BI = ∇×AM +∇×AI . (5.37)

Finally, the force between the rotor and the winding is obtained by integrating
Maxwell’s stress tensor in the airgap. This yields the force components acting on the
rotor in the direction of the off-centering and in the direction perpendicular to it Fε
and Fφ, see Fig. 5.4:
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Fε =

∫ 2π

0

{
1

2µ0

(
B2
tot,r −B2

tot,θ

)
cos(θ − φ)

− Btot,rBtot,θ
µ0

sin(θ − φ)

}
Lrdθ

Fφ =

∫ 2π

0

{
1

2µ0

(
B2
tot,r −B2

tot,θ

)
sin(θ − φ)

+
Btot,rBtot,θ

µ0
cos(θ − φ)

}
Lrdθ,

(5.38)

where Btot,r and Btot,θ are the radial and azimuthal components of the airgap field,
respectively. Finally, Fε and Fφ are directly proportional to ε and can be associated
with stiffnesses through:

Fε = −Kεε

Fφ = −Kφε.
(5.39)

These forces may be pulsating and induce vibrations. However, this effect can be
made negligible by increasing the number of phases (chapter 3). In the next sections,
the pulsating component is neglected compared to the time average forces, and the
associated stiffnesses are constants.

5.2.3 Results and discussion

Using the method exposed in section 5.1, let us compare two bearings with and with-
out ferromagnetic yoke in terms of radial stiffness and instability margin. Both bear-
ings have the same dimensional and magnetic parameters as in the previous sections,
except that Ri and Ra can change, see Fig. 5.5.

The selection process for the best bearing is the following. The bearings have to
provide a minimum stiffness when operating above a given threshold speed. Then,
the best bearing is the one requiring the less damping to reach stability.

Fig. 5.8 shows a zoom on the area of interest of the root locus. The dotted lines
correspond to a fixed speed ω and an increasing radius Ra. They give the minimum
operating speed of the two bearings so that the area of interest with ω > 2π500 rad/s
is below these curves. The solid lines correspond to a fixed radius Ra = 24 mm and
an increasing speed ω. The evolution of the bearing properties with speed can thus
be observed by following these solid lines in the region above the threshold speed.
The performance of a bearing for a given set of parameters (Ra, ω) is obtained by
looking at the crossing points between the corresponding dotted and solid lines. For
example, two such points for (Ra = 24 mm, ω = 2π500 rad/s) are in the red circle
of Fig. 5.8. For this set of parameters, the bearing with a ferromagnetic yoke has
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−50j
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ω

Fig. 5.8: Unstable poles in the area of interest of the root locus for C = 0 Ns/m and
Ri = 2 mm. The dotted and solid lines correspond to a fixed speed ω = 500 rad/s
and to a fixed radius Ra = 24 mm, respectively.

a better stiffness since its root has a greater imaginary part (in absolute value), see
(5.21). This bearing also has a lower instability margin since its root has a lower real
part, see (5.21). Looking at Fig. 5.8, it is clear that the bearing performance improves
with speed, whatever the yoke material.

In order to see the evolution of the previous results with ω and Ra, more data
is needed, as shown in Fig. 5.9. This was obtained for different rotor shaft radii
Ri = 0 mm and 10 mm. From Fig. 5.9 (a), it appears that the yoke material does
not have a significant influence on the bearing stiffness and stability in the area of
interest when Ri = 0 mm. E.g. for Ra = 24 mm, a bearing without ferromagnetic
yoke has a better stiffness but is less stable than a bearing with a ferromagnetic yoke,
but the differences are not very significant. However, these differences increase with
Ri as shown in Fig. 5.9 (b). Comparing the corresponding points for each kind
of yoke, it appears that the bearing with a ferromagnetic yoke has a significantly
greater stiffness but is less stable, especially at low speed. Finally, the stiffness of the
two kinds of bearing decrease with Ri, which is consistent with intuition since the
amount of permanent magnet decreases with Ri.

Fig. 5.10 shows the same data than Fig. 5.9, except that the pole pairs number
of the rotor and of the winding are p = 2 and q = 3. The permanent magnets still
have a parallel magnetization pattern. Looking at Fig. 5.10 (a), it appears that the
stiffnesses of the bearings are improved but the differences between the bearings with
and without ferromagnetic yoke remain small and the situation is similar to Fig. 5.9
(a). Fig. 5.10 (b) shows that increasing the shaft radius Ri is less favourable for the
bearing without ferromagnetic yoke, but the difference between Fig. 5.10 (a) and
(b) is much smaller than the difference between Fig. 5.9 (a) and (b). Last but not
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Fig. 5.9: Root loci of the bearings without damping, with p = 1. (a)Ri = 0 mm. (b)
Ri = 10 mm.

least, the bearing with a ferromagnetic yoke has a lower stiffness than the bearing
without ferromagnetic yoke when Ra = 20 mm i.e., when the yoke is close to the
permanent magnets. This is due to the higher order harmonics in the permanent
magnet field. They contribute to the negative stiffness associated with the reluctant
force between the permanent magnets and the ferromagnetic yoke, but they do not
contribute to the centering electrodynamic force between the permanent magnets
and the winding. This effect cancels as Ra increases and is not observed with p = 1

because there is no higher order harmonics in the permanent magnet field in this
case.

5.2.4 �asi-static assumption

Finally, let us take a step back and analyze the validity of the quasi-static assump-
tion made in sections 5.1 and 5.2. Indeed, this assumption results in neglecting the
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Fig. 5.10: Root loci of the bearing without damping, p = 2 and (a) Ri = 0 mm or
(b) Ri = 10 mm.

contributions of the terms in dφ
dt and dε

dt when calculating the electromotive force,
see (5.32). To support this, let us consider the bearing whose root locus is shown in
Fig. 5.1. The yoke is ferromagnetic, and there is no external damping. The bearing
model parameters are given in Table 5.2.

Table 5.2: Parameters of the dynamic model of the bearing.

parameter value unit definition

R 2.23 Ω winding phase resistance
Lc 2.7 mH winding cyclic inductance
M 2 kg rotor mass
KΦ 26 (NsΩ/m)1/2 flux constant
C 0 Ns/m external non rotating damping
Kd −164 kN/m detent stiffness
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Fig. 5.11: Trajectory of the bearing rotor in the absence of external forces and with-
out damping.

Considering an initial off-centering of 10% of the nominal airgap and a spin speed
of ω = 2π1000 rad/s, the trajectory of the rotor moving freely during 0.04 s is
simulated, see Fig. 5.11. From this data, the values of dφdt and dε

dt are calculated and
the rms amplitude of the different contributions to the emf are obtained, see Fig.
5.12. It appears that the contribution of the term in ω is approximately two orders
of magnitude larger than the others which confirms the approximation in (5.32).

0.20

emf

0.3

dΦ
dθs
ω

dΦ
dt

dφ
dt × 102

dΦ
dε

dε
dt × 102

t[s]

[V ]

Fig. 5.12: Evolution of the amplitude of the different contributions to the electro-
motive force.

The previous results show that the static-eccentricity assumption is valid to pre-
dict the rotor motion in the absence of external forces. This is due to the low bear-
ing stiffness that results in a slow rotor motion. For other kinds of rotor motion,
showing the accuracy of the graphical approach presented in section 5.1 thus requires
additional validations. Indeed, the system roots are the eigenvalues of the dynamic
matrix (5.4), and therefore the information provided by a root locus (e.g. the system
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stability) depends neither on the external forces nor on the rotor motion.

Let us further validate the graphical approach of section 5.1. In this aim, the
roots, the radial stiffness, and the instability margin of the bearing considered above
in this section are calculated in three different ways and compared. The first way
involves the dynamic approach (4.47) from chapter 4, where the roots are calculated
as the eigenvalues of the system dynamic matrix:

A =

− R
Lc
− jωe −Kd − K2

ΦN
2Lc

−RKdLc
− jωeKd − j ωeK

2
ΦN

2Lc
1
M − C

M 0

0 1 0

 . (5.40)

In this case, the instability marginCs is the value of dampingC such that the unstable
root of the system crosses the imaginary axis, whereas the bearing radial stiffness is
(5.1):

Kε = Kd +
ω2
eK

2
ΦLcN

2 (R2 + (ωeLc)2)
. (5.41)

This last expression of the stiffness is identical in all three ways. The second way
involves the quasi-static approach without approximation (5.5) from section 5.1,
where:

ρ1,2 =
−C
2M
±

√(
C

2M

)2

− Kε + jKφ

M
. (5.42)

Again, the instability margin Cs is the value of damping C such that the unstable
root of the system ρ1 crosses the imaginary axis. Finally, the third way involves the
approximated quasi-static approach (5.18), where:

ρ1,2
∼=
−C
2M
±
√
Kε

M

Kφ

2Kε
∓ j
√
Kε

M
. (5.43)

In this case, the unstable root ρ1 has a negative real value when:

Cs = Kφ

√
M

Kε
. (5.44)

The resulting root loci are shown in Fig. 5.13. As shown in Fig. 5.13 (a), the
dynamic model yields three roots while the other models yield only two of them.
However, only one root is unstable in the three cases. Besides, some of the roots
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of the quasi-static, approximated model are scattered and clearly inaccurate. They
correspond to low values of ω, such that the assumption of this model:

∣∣∣∣<{ρ|C=0}
= {ρ|C=0}

∣∣∣∣� 1 (5.45)

does not hold anymore. Figure 5.13 (b) shows an enlarged view in the vicinity of
the unstable root of the root locus, at speeds that are consistent with the assumption
(5.45). As the assumption (5.45) is better satisfied, the roots of the quasi-static models
get closer to the reference roots obtained with the dynamic model, which is coherent.
This validates the use of the quasi-static models to calculate the system roots. Let us
validate the graphical approach itself i.e., the link between the position of the roots
<{ρ} and ={ρ} and the performance criteria Cs and Kε, see (5.21).

As shown in Fig. 5.14 (a) and (b), these sets of data agree well for all three models.
This improves as (5.45) is satisfied, and validates the graphical approach presented in
section 5.1. In practice, the dynamic model will be preferred to the quasi-static mod-
els when studying a bearing because it removes the static-eccentricity assumption.
Therefore, showing that the link between the root position and the performance
criteria of the bearing which was derived from a quasi-static model can be used to
interpret the root loci obtained with the dynamic model constitutes the main result
of the present validation. This is reflected in the close agreement between the two
sets of data corresponding to the dynamic model in Fig. 5.14 (a) and (b).

5.3 Bearing optimization

Let us use the tools developed in the previous sections to optimize a yokeless bearing,
i.e. a bearing without ferromagnetic yoke.

First, this section presents the bearing topology that is optimized. As opposed
to the previous section, the quasi-static assumption is removed, and an alternate way
to evaluate the bearing performance using the dynamic model from chapter 4 is ex-
posed. Finally, the optimization yields a Pareto front of optimal bearings that are
compared to existing EDBs in terms of stiffness to permanent magnet volume ratio.

5.3.1 Case study

The bearing to be optimized is shown in Fig. 5.15. The rotor magnets have one pole
pair and the shaft iron is ferromagnetic. The winding has three phases and two pole
pairs in order to have the null-flux characteristic, see Fig. 5.15 (b). The properties of
the bearing materials are given in Table 5.3.
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Fig. 5.13: Root loci at zero damping (C = 0) obtained in three different ways. (a)
Root loci for ω = 2π[0, 1000] rad/s. (b) Enlarged view in the vicinity of the unstable
root for ω = 2π[300, 1000] rad/s.

Let us optimize this bearing with regard to two objectives: the radial stiffness
and the instability margin.

5.3.2 Performance evaluation

Let us recall the electromechanical model from chapter 4. The position of the rotor
and the electrodynamic forces are:
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Fig. 5.14: Unstable roots for ω = 2π[300, 1000] rad/s. (a) Real part and predicted
instability margin Cs. (b) Imaginary part and predicted stiffness Kε.

z = x+ jy, (5.46)

F = Fx + jFy. (5.47)

They are linked with the external input force Fe through:
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Fig. 5.15: (a) Bearing topology and design parameters. (b) Rotor position, electrody-
namic forces and winding phases.

Table 5.3: Bearing material properties.

parameter value unit definition

Br 1.2 T remanent magnetization
ρm 7500 kg/m3 specific mass of the NdFeB magnets
ρs 7800 kg/m3 specific mass of the shaft iron
σcu 6e7 (Ω m)−1 copper conductivity
µs ∞ / relative magnetic permeability of the shaft iron
µr 1 / relative magnetic permeability of the conductors,

the magnets, and the stator yoke

Ḟz̈
ż

 = A

Fż
z

+BFe (5.48)

where the dynamic and input gain matrices are:

A =

− R
Lc
− jωe −Kd − K2

ΦN
2Lc

−RKdLc
− jωeKd − j ωeK

2
ΦN

2Lc
1
M − C

M 0

0 1 0

 (5.49)

B =
1

M

[
0 1 0

]T
. (5.50)

The parameters of (5.49)-(5.50) are given in Table 5.4. As the bearing is studied
in 2D, all the parameters and performance criteria are evaluated per unit of active
bearing length. The parameters R, Lc, and KΦ are identified using the field model
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presented in section 5.2.2. In particular, KΦ is the ratio of the peak permanent
magnet flux linkage in a winding phase to the amplitude of the rotor eccentricity
ε = (x2 + y2)1/2. The rotor is assumed to weigh three times the weight of its active
length. Therefore, its mass per unit length is:

M = 3
[
ρmπ(R2

m −R2
s) + ρsπR

2
s

]
, (5.51)

where ρm and ρs are given in Table 5.3. Lastly, the spin speed ω and the damping C
are set arbitrarily.

Table 5.4: Parameters of the dynamic model.

parameter unit definition

R Ω/m winding phase resistance
Lc H/m winding cyclic inductance
M kg/m rotor mass
KΦ (NsΩ/m3)1/2 flux constant
C Ns/m2 external non rotating damping
ω rad/s rotor spin speed

From these parameters, the two bearing performance criteria can be calculated.
The bearing radial stiffness in static-eccentricity configuration is given by (5.1). In
the present case, this yields:

Kε = <
{
F

z

}∣∣∣∣
ż=0,z̈=0,Ḟ=0

=
3ω2LcK

2
Φ

2 (R2 + (ωLc)2)
. (5.52)

Lastly, the damping required for stabilization Cs is obtained by increasing the
value of C until the three eigenvalues of (5.49) cross the imaginary axis.

5.3.3 Optimization problem formulation

The bearing was optimized using a genetic algorithm. From this, a Pareto front
defining the area of feasible choices is obtained. The two objective functionsKε and
Cs are optimized at a given spin speed ω. Defining the variables of the optimization
problem:

x1, x2 ∈ [0, 1], (5.53)

the constraints on the geometric parameters can be formulated as (in meters):
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Rm = x1Rm,max

Rs = 0.4Rm

Rw = Rm + 0.0015

Ry = Rw + x2(0.6Rm,max)

(5.54)

The maximum rotor radius Rm,max is obtained by considering the maximum
peripheral rotor speed vmax = 300 m/s. This is a realistic value for PM rotors with
a retaining sleeve (Schweitzer and Maslen, 2009). It yields an upper limit on the rotor
radius:

Rm,max = max (Rm) =
vmax
2πω

. (5.55)

Also, the air gap width was set at 1.5 mm, which includes the width of a potential
sleeve and allows for rotor eccentricities.

5.3.4 Results and discussion

500

Cs

50
0 Kε [N/mm] 5e3

Feasible choices

[Ns/m]

Fig. 5.16: Pareto front of the bearing performance at ω = 2π1000 rad/s.

Let us analyze the results for ω = 2π1000 rad/s. The Pareto front in Fig. 5.16
shows that the damping required for stabilization increases with the bearing stiffness.
The graph was limited to values ofCs < 500 Ns/m, which can be considered as very
large for damping added in a passive, contactless way. Damping values of an order of
magnitude of 10 Ns/m are reported in the literature (Filatov and Maslen, 2001).

Regarding thermal limitations, the winding current densities for each individual
on the Pareto front are given in Fig. 5.17. The losses are calculated assuming a static
eccentricity of the rotor with an off-centering amplitude ε = 0.5(Rw−Rm). In this
case, the current density always lies below the maximal value of 5 A/mm2. In Fig.
5.17, the individuals are arranged in the same order as in Fig. 5.16: the individuals
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Fig. 5.17: Joule losses associated with the individuals on the Pareto front. The green,
dashed line corresponds to the maximal amount of Joule losses.

with lower stiffnesses on the left-hand side and the individuals with higher stiffnesses
on the right hand side. This will be the case for all the figures in the following sec-
tions.
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Fig. 5.18: Geometrical parameters of the individuals on the Pareto front for ω =
2π1000 rad/s.

Figures 5.18 and 5.19 show that bearings with a thicker winding (Ry−Rw) require
less damping for stabilization. This is the case for the individuals 1-30 with winding
thicknesses nearing the maximum value. It corresponds to expectations as a lower
winding resistance yields a more inductive behavior of the bearing that is known to
have a positive effect on the stability [4,7]. On the contrary, the individuals 30-80
have a greater PM thickness and thinner windings. As a result, the magnetic field
strength and the bearing stiffness are higher. However, the winding is more resistive
as (Ry −Rw) decreases, which affects the stability.

The Pareto fronts corresponding to the spin speeds ω = 2π {50, 100, 500, 1000}
rad/s are given in Fig. 5.20. For a given value of Kε, more damping is required
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Fig. 5.19: Width of the shaft (Rs), permanent magnets (Rm−Rs), air gap (Rw−Rm)
and winding (Ry −Rw).
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Fig. 5.20: Pareto fronts for ω = 2π {50, 100, 500, 1000} rad/s.

to stabilize the bearings running at higher speeds. This is due to the mechanical
constraint on the peripheral speed. The value ofRm,max is lower for the individuals
running at higher speeds, which lowers the volume of PMs. An absence of constraint
on the peripheral speed should yield opposite results as a given winding will be more
inductive while running at higher speeds.

The graphs of the bearing geometrical parameters in the casesω = 2π {50, 100, 500}
rad/s have a shape similar to that of the ω = 2π1000 case. In each case, the crosses
in Figs. 5.20 and 5.21 indicate the individuals that have PMs and winding widths
close to their maximum values. For instance, it is the 30th individual in the case
of ω = 2π1000 rad/s (Fig. 5.19). For individuals lying further to the left on the
Pareto front, the winding thickness reaches its maximum value, whatever the spin
speed. In this area, the Pareto fronts for all the speeds are almost superimposed, as
shown in Fig. 5.21. Furthermore, the values of damping lie in the rangeCs ∈ [0, 50]
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Fig. 5.21: Zoom on the area of interest where Cs < 50 [Ns/m].

Ns/m in this figure, which is more realistic. As a result, a bearing optimized under
the constraints (5.54) and (5.55) requires a same amount of damping for a given stiff-
ness, whatever the spin speed. For ω = 2π {50, 100, 500} rad/s, the winding current
densities are not given as they are far lower than the limit of 5 A/mm2.

5.3.5 Comparison with existing EDBs

The performance of existing EDBs are summarized in (Detoni, 2014). The stiffness
to magnet volume ratio was calculated, yielding the black triangles in Fig. 5.22. The
blue, solid lines correspond to the data for the EDBs lying on the Pareto front in Fig.
5.20. The magnet volume was calculated assuming a bearing length worth twice the
PM radiusRm. Each of these lines has a vertical part corresponding to the individuals
with Rm ∼= Rm,max, which is why the PM volume remains constant.

The overall shape of the graph shows that bearings operating at higher spin speeds
can reach better stiffness to PM volume ratios. Compared with existing EDBs, the
present topology provides a reasonable ratio at high speed, although it was not opti-
mized considering this specific criterion.

5.4 Conclusion

This chapter concerned the comparison and optimization of the performance of
EDBs.

A first section introduces the performance criteria of EDBs, i.e. the radial stiff-
ness and the instability margin. Then, a graphical method for the evaluation of these
criteria is derived. In this aim, a lumped-parameter electromechanical model of EDBs
is obtained under the quasi-static assumption. Thanks to this assumption, this model
is simpler than the dynamic model of chapter 4, and an analytical expression of its
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Fig. 5.22: Stiffness to volume ratio of the existing EDBs (triangles) and of the indi-
viduals on the Pareto fronts of Fig. 5.20 (solid lines).

roots can be obtained. It appears that the stability and the stiffness of a bearing
can be evaluated separately by looking at the system root locus. For two bearings
with a same mass M and in the absence of damping (C = 0), looking at the real
and imaginary parts of the system roots allows to know which one has the greatest
stiffness and/or needs less damping to be stable. This is valid under the assump-
tion |<{ρ|C=0}| � |={ρ|C=0}|, which corresponds to high spin speeds ω and to
an inductive behaviour of the winding. This assumption is not very restrictive as it
corresponds to the operating region that is preferred when considering the difficulty
of adding external damping in the system.

A second section applies the previous graphical approach to the study of the im-
pact of the yoke permeability on the performance of an EDB. In this aim, two bear-
ings of identical topology, but with and without ferromagnetic yoke are compared.
The parameters of the lumped-parameter model developed in the previous section
are calculated using a field model adapted to this topology, whose derivation is sum-
marized. Finally, the system root locus is drawn.

From the analysis of the root locus, it appears that the negative impact of the
detent force associated with a ferromagnetic yoke is well counterbalanced by an in-
crease in the centering electrodynamic force. Furthermore, the presence of a ferro-
magnetic yoke improves the performance of the bearings in some cases. In partic-
ular, the yoke material does not have a significant influence on the performance of
the bearing for a small rotor shaft radius. As this radius increases, the stiffness of
the bearing decreases and this effect is less significant for a bearing with a ferromag-
netic yoke. On the other hand, increasing the pole pairs number of the bearing has
a positive effect on the bearing stiffness but is less advantageous for a bearing with a
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ferromagnetic yoke when the yoke is close to the permanent magnets.

At the end of the second section, a validation of the graphical analysis method
is presented. It shows that the quasi-static model is appropriate to predict the free
motion of the rotor. Furthermore, the roots predicted using the quasi-static and the
dynamic models are calculated and compared. The close agreement between these
results indicates that the graphical method derived using the quasi-static model can
be used to interpret the root loci obtained with the dynamic model that is preferred
when studying the system stability.

In a third section, the domain of achievable performance of a heteropolar EDB
was obtained by generating a Pareto front using an optimization algorithm. The
bearing is optimized with regard to the stiffness and the instability margin. These
performance criteria are evaluated using the dynamic model developed in chapter 4,
whose parameters are identified using the field model exposed in the second section
of this chapter. The domain of achievable performance is obtained for different spin
speeds, highlighting a clear trade-off between stiffness and stability.

Then, the bearings lying on the Pareto front are compared to existing EDBs in
terms of stiffness to volume ratio. It was shown that ratios similar to that of existing
EDBs can be achieved at high speeds with the present EDB topology. This ratio could
be further optimized as it was not an objective function of the present optimization.



6Unbalanced magnetic pull
prediction in PM machines

In this chapter, the lateral forces in an electrical motor are predicted using the model
derived in chapter 4. The main assumptions of the model are tested to establish its
applicability in the present case. Then, the force predictions are compared to finite
element analysis results for validation.

The content of this chapter is the subject of (Dumont et al., 2016a; Kluyskens
et al., 2017).

6.1 Introduction

Bearing wear and manufacturing tolerances can lead to rotor eccentricities in per-
manent magnet (PM) machines. This affects the symmetry of the field distribution
in the airgap, thereby creating a radial detent force known as unbalanced magnetic
pull (UMP) (Dorrell et al., 2009; Rahideh and Korakianitis, 2011). The UMP is a po-
tential source of excessive noise, vibrations, and additional wear of the mechanical
bearings (Kim and Lieu, 2005; Li et al., 2007). Therefore, passive and active strate-
gies have been studied to reduce these effects. Among them, the parallel connection
of the stator windings is well known (Burakov and Arkkio, 2007; Kasten and Re-
demann, 2014). It allows passively induced currents to flow in the stator windings
when the rotor spins in an off-centered position, thereby creating forces that balance
the UMP.

Different models predicting the balancing forces in PM motors have been pro-
posed (Burakov and Arkkio, 2006; Dorrell and Ionel, 2012). These models can be
adapted to a wide range of machines. However, they include assumptions on the
rotor motion so that only static and dynamic eccentricities are considered, and the
model parameters must be re-estimated if the operating point of the motor changes.
Referring to Fig. 6.1, the static eccentricity corresponds to a motion such that ε and
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φ are constants, while γ = ωt. The dynamic eccentricity corresponds to fixed values
of ε and γ, but φ = λt where λ is the whirl speed.

ε

rotor
stator

γ = ωt
φ

Fig. 6.1: Mechanical variables of a rotor with two degrees of freedom.

The operation of heteropolar EDBs is also based on passively induced centering
forces. In particular, the origin of these forces is the same as in PM motors with
parallel winding connections. When the rotor is off-centered, the PM field distribu-
tion changes in the air gap, thereby creating additional harmonics that increase with
the off-centering (Rahideh and Korakianitis, 2011). For example, if the main har-
monics in the initial PM field distribution has one pair of poles, the most significant
harmonic created by the off-centering has two pole pairs. On the one hand, these
harmonics have a negative effect since their interaction yields the UMP (Chiba et al.,
2005). On the other hand, the two pole pairs harmonic can be linked by a winding
that also has two pole pairs, thereby inducing balancing currents which tend to re-
store the centered position of the rotor. Similarly, in the case of a one pole pair PM
motor, the parallel connection of each motor phase may allow for the existence of
conducting paths with two pole pairs and thus for passive centering forces.

In this context, this chapter proposes a method for predicting the passive electro-
dynamic forces in brushless PM motors using the model derived in chapter 4. In this
aim, the model is applied in the practical case of a high-speed DC motor dedicated to
air compression that is currently being designed at the FEMTO-ST institute (Gilson
et al., 2015). For example, the rotor of the motor could be supported by air bearings
that allow small radial displacements, resulting in radial forces that can be evaluated
with the model.

The chapter is organized as follows. Firstly, the appearance of radial electrody-
namic forces in PM motors is explained through two examples. Secondly, the present
case study is introduced, and the motor topology and winding connections are pre-
sented. Then, the EDB model is recalled and applied to the motor case. The main
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assumptions of the model are validated and the parameters corresponding to the mo-
tor are computed. Finally, the model is exploited to predict the radial forces on the
off-centered rotor, and these predictions are compared with finite element simulation
results.

6.2 Radial electrodynamic forces in PM machines

Radial electrodynamic forces may appear in PM motors with rotor eccentricities.
These forces result from currents that are induced passively in the motor windings.
These currents may appear passively thanks to the presence of short-circuited cur-
rent paths in the motor phases, in addition to the current path corresponding to a
conventional operation of the motor. The currents flowing in these two paths are
referred to as the suspension and motor currents, respectively.

N S

180o

Ti To

I

I1I2

Fig. 6.2: Rotor magnet poles and a single winding phase of a motor with one pole
pair. The arrows indicate the motor current path.

Let us illustrate this with a first example. Figure 6.2 shows the PM poles and the
winding arrangement of a one pole pair motor. The depicted phase comprises two
coils that are fed through the terminals Ti and To. The two possible current paths are
illustrated in Fig. 6.3. The path shown in Fig. 6.3 (a) has one pole pair, and feeding
the motor through the terminals Ti and To thus creates a torque. The second, short-
circuited path is shown in Fig. 6.3 (b). It has two pole pairs, and the current flowing
in this path creates a force on the rotor in accordance with the guideline q = p + 1

derived in chapter 3.
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Fig. 6.3: Path of the current associated with the production of a torque (a) and a force
(b). The rotor permanent magnets have one pole pair.

The analysis of the induced electromotive forces in the winding phase shows that
the currents in the phase of Fig. 6.2 are governed by (Kluyskens et al., 2017):

UTi−To + E0 + Ed −RI1 − jωLcI1 = 0

UTi−To + E0 − Ed −RI2 − jωLcI2 = 0

I1 + I2 = I,

(6.1)

whereR andLc are the coil resistance and cyclic inductance,UTi−To is the feed source
voltage, E0 is the electromotive force associated with the PM flux linkage in a coil
when the rotor spins in a centered position, and Ed is the additional electromotive
force due to the rotor eccentricity that causes a change in the PM flux linked by the
coils. The electromotive force E0 is constant, whereas Ed is proportional to the
eccentricity. As a result, Ed = 0 when the rotor is centered and (6.1) yields:

I1 = I2 =
UTi−To + E0

R+ jωLc

I =
2(UTi−To + E0)

R+ jωLc
.

(6.2)

The currents in both coils are equal. As stated above, they only contribute to the
torque production since they flow in a path with one pole pair. On the other hand,
when the rotor is not centered, Ed 6= 0 and (6.1) yields:

I1 =
UTi−To + E0

R+ jωLc
+

Ed
R+ jωLc

I2 =
UTi−To + E0

R+ jωLc
− Ed
R+ jωLc

I =
2(UTi−To + E0)

R+ jωLc
.

(6.3)
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As stated above, the additional current components due to the rotor eccentricity
create a restoring force since they flow in a path with two pole pairs. The equivalent
circuit corresponding to (6.1) is shown in Fig. 6.4. The left and right branches of the
circuit correspond to the left and right coils in Fig. 6.2.

Lc

R

I1 I2

Ed E0 Ti

To

EdE0
Lc

R

I

Fig. 6.4: Equivalent electrical circuit of a winding phase.

Similarly, this centering effect can be found in motors with other winding ar-
rangements. For example, the case of a motor with two pole pairs is shown in Fig.
6.5.
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I2

Fig. 6.5: Rotor magnet poles and a single winding phase of a motor with two pole
pairs. The arrows indicate the motor current path.

Again, two conducting path can be considered. The path associated with the
torque production has two pole pairs as shown in Fig. 6.6 (a). The short-circuited
path associated with the radial forces has one pole pair, in accordance with the guide-
line q = p− 1 derived in chapter 3. It is shown in Fig. 6.6 (b).
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Fig. 6.6: Path of the current associated with the production of a torque (a), and a
force (b).

6.3 Case study

This section presents the calculation of the radial electrodynamic force in a motor
with one pole pair whose winding is connected as in Fig. 6.2.

6.3.1 Machine description

The motor topology is shown in Fig. 6.7 (a). This motor is designed for high-speed
applications such as air compression. Therefore, it has a large airgap and a retaining
sleeve around the PMs. The parameters of the motors are given in Tables 6.1 and 6.2.
The nominal airgap is denoted g = Rs −Rsl.

(a) (b)

Rso

Rsy
Rs

Rsl

Rr
Rm

θt

A1

B2C1

C2

B2

C2

B1

B1

A2

A2

A1

C1

Fig. 6.7: Motor topology and phases arrangement. (a) Geometrical parameters of the
motor. The internal rotor comprises surface-mounted PMs with one pole pair and
a retaining sleeve. (b) The winding has three phases composed of two concentrated
coils. For example, the coils A1 and A2 constitute phase A.
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Table 6.1: Motor geometrical parameters.

parameter value units

Rso 35 mm
Rsy 27.8 mm
Rs 12.7 mm
Rsl 9.9 mm
Rm 9.3 mm
Rr 5.7 mm
θt 32.4 o

L (axial length) 30 mm

Table 6.2: Other motor parameters.

parameter value units definition

Br 1.2 T remanent magnetization
σc 6e7 S/m copper conductivity
r 0.5 - slot fill factor
b 10 - number of wire turns around each slot
µ1 1 - relative permeability of the PMs,

retaining sleeve, and winding
µ2 ∞ - Relative permeability of the rotor shaft

and stator yoke

The stator yoke has six slots and three phases, each of them being composed of
two concentrated winding coils. As shown in Fig. 6.8, the coils can be connected in
series or in parallel. In this section, only the parallel connection is considered. As
exposed in section 6.2, this allows for passively induced currents to flow in short-
circuited paths that are shown by the arrows in Fig. 6.8 (a). These paths have two
pole pairs and are referred to as the suspension phases in the next sections. Let us
note that there can be a non zero motor phase current with a zero suspension phase
current and vice-versa.

6.3.2 Parameters identification

In this section, the dynamic model and its assumptions are recalled. Then, the
model parameters are evaluated, and some of its assumptions are validated using two-
dimensional magnetoquasistatic finite element (FE) simulations to show its applica-
bility in the present case. The magnetic permeability of the shaft and yoke is set to
µr = 1000 in the FE model.
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Fig. 6.8: Two different motor phase coils connections. (a) Phase coils connected
in parallel. The arrows show the short-circuited current paths for the suspension
currents. (b) Phase coils connected in series. There are no possible current paths in
the windings for the suspension currents.

EDB model

Initially, this motor was designed without considering a rotor off-centering. How-
ever, in case of rotor off-centering, passively induced currents flow in the motor
phases that are connected in parallel, resulting in balancing forces. These passive
electrodynamic forces can be predicted using the model initially developed for EDBs
(4.44). As a reminder, this model links the radial forces to the rotor position through
a linear equation with constant coefficients:

Ḟ = − R
Lc
F − jωF −Kdż −

3K2
Φ

2Lc
ż − RKd

Lc
z − jωzKd − jωz

3K2
Φ

2Lc
, (6.4)

where the forces and rotor displacements are expressed in the stator frame using the
complex notations F = Fx + jFy and z = x + jy = |z|ejφ, respectively. The
parameterR is the phase resistance of a suspension phase,Kd is the negative stiffness
associated with the detent force between the PMs and the stator yoke, andKΦ is the
PM flux constant defined in (6.5). The cyclic inductance is Lc = L −M , where L
and M are the self- and mutual inductances of the suspension phases, respectively.

The model was derived under the following assumptions:

1. the rotor spin speed ω is an input of the system and is constant;

2. only translational eccentricity is considered, i.e., the magnetic axis of the rotor
and winding remain parallel;
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3. the materials have linear magnetic characteristics and therefore magnetic hys-
teresis and saturation are neglected;

4. there is no proximity or skin effect in the conductors;

5. the eddy currents are neglected in the PMs, in the sleeve and in the stator yoke;

6. the impact of the rotor off-centering |z| on the winding inductances is ne-
glected;

7. the detent force Fd between the PMs and the yoke obeys: Fd = −Kdz, where
the detent stiffness Kd is real and negative;

8. the permanent magnet flux linkage in the suspension phases is proportional to
the off-centering. Only the main flux harmonic is considered;

9. the motor currents do not impact the radial forces on the rotor.

As a result of assumption 8, the PM flux linkage in the suspension phases obeys:

Φk = |z|KΦ cos

(
ωt+ φ+

2π(k − 1)

3

)
, (6.5)

where k ∈ {1, 2, 3} is the phase number. Lastly, the coefficients Kd, K2
Φ/Lc, and

R/Lc in (6.4) do not depend on the number of winding turns k. Therefore, k has no
impact on the forces and can be chosen considering only the constraints associated
with the motor function.

Suspension phase resistance

The suspension phase resistance is obtained without taking the end-windings into
account. Considering the motor parameters from Table 6.1 and 6.2, this yields:

R =
48Lb2

σcrπ
(
R2
sy −R2

s

) (
1− θt

60

) = 5.4 mΩ. (6.6)

Radial detent force

Let us study the radial forces in the absence of current in the suspension phases.
When the rotor is off-centered, the symmetry of the magnetic field in the airgap is
broken. This results in a parasitic attraction force between the rotor and the stator.
This force has two components acting in the direction of the off-centering z and in
the direction perpendicular to it.
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Assuming that they are proportional to the off-centering, they can be associated
with the stiffnesses:

Kdε = −<
{
F

z

}
Kdφ = −=

{
F

z

}
.

(6.7)

From the model assumptions in section 6.3.2, Kdφ is neglected and the value
of Kdε is constant and does not depend on the rotor position. Furthermore, it is
assumed that the forces on the rotor in the absence of suspension currents are detent
forces only i.e., the impact of the currents flowing in the motor phases is neglected.

Let us validate this by calculating Kdφ and Kdε for two different kinds of rotor
motion with the FE model. Figure 6.9 (a) corresponds to the static eccentricity con-
figuration, i.e. the rotor spins in a fixed position z = g/2. Figure 6.9 (b) corresponds
to the dynamic eccentricity configuration, i.e. the rotor center whirls around the
stator center so that |z| = g/2, while ω = 0. In the absence of motor currents, the
mean value of Kdε is Kd = −16.96 kN/m, whereas the amplitude of Kdφ does not
exceed 4% of Kd for both kinds of rotor motion.

The impact of the motor currents is obtained by setting IA = −2IB = −2IC ,
where IA is such that the current density on the copper cross-section of phase A
reaches the maximum value of 5 A/mm2. The results are also shown in Fig. 6.9. In
presence of motor currents, the value ofKdε does not differ by more than 7% of the
mean valueKd = −16.96 kN/m, whereas the amplitude ofKdφ does not exceed 4%

of Kd for both kinds of rotor motion.

In the next sections, the impact of the off-centering and motor currents on Kdφ

is neglected and Kdε is assumed to be constant: Kdε ≈ Kd = −16.96 kN/m, and
Kdφ ≈ 0 kN/m.

PM flux linkage

Let us validate (6.5), which states that only the main PM flux harmonic is considered
in the suspension phases, and that it is proportional to the off-centering |z|. In this
aim, the value ofKΦ = 0.486 Wb/m is identified by evaluating the amplitude of the
main PM flux harmonic in the suspension phase A when the rotor spins at z = g/4.
This corresponds to the ’fitting curve’ in Fig. 6.10 (a). Then, the PM flux in all
the suspension phases are predicted through (6.5) and compared to FE results for
different eccentricities and different kinds of motion. As shown in Fig. 6.10 (a) and
(b), the model is accurate and assumption 8 is thus valid in this case.
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Fig. 6.9: Amplitude of the equivalent stiffness between the rotor and the stator in the
absence of suspension currents. The motor currents are set to zero or to maximum
values so that IA = −2IB = −2IC , where IA is such that the current density on the
copper cross-section of phase A reaches 5 A/mm2. (a) Data obtained in a static ec-
centricity configuration. (b) Data obtained in a dynamic eccentricity configuration.
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Fig. 6.10: Comparison between FE and the model predictions of the PM flux in the
suspension phases. The rotor eccentricity is set to g/4 and g/2. Coefficient KΦ is
identified using the data of the ’fitting curve’, allowing to predict the flux linkage in
each winding phase when the rotor spins (a) or whirls (b), for example.
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Suspension phases inductances

Due to the presence of a ferromagnetic shaft, a rotor off-centering impacts the mu-
tual inductances of the suspension windings. The ratio of the mutual inductances
between the suspension phases to their respective average values is shown in Fig.
6.11. This is obtained assuming a whirling rotor motion such that |z| = g/2. The
impact of the off-centering on the mutual inductances does not exceed 0.5% of their
average value and is thus neglected.

1.005

LAj
mean(LAj)

AC

AA

1

AB
0.995

0 π 2π
Whirl angle [rad]

Fig. 6.11: Ratio of the mutual inductances between the suspension phases to their
respective average values.

In conclusion, assumption 6 regarding the inductances is confirmed. From the
FE results, the cyclic inductance of the suspension windings is obtained by combin-
ing the mutual inductances obtained when the rotor is centered. Assuming a single
winding turn, this yields:

Lc = LAA −
1

2
LAB −

1

2
LAC = 32.5µH. (6.8)

6.3.3 Forces prediction

The accuracy of the model force predictions are validated through a comparison with
FE simulation results. In this aim, a transient FE model of the motor is run using the
following approach. The motor is fed with three-phase balanced sinusoidal currents
so that the peak current density in each phase is 5 A/mm2. The radial forces are then
obtained in a static eccentricity configuration for different spin speeds and eccentric-
ities. Figure 6.12 (a) and (b) show the average values of Fε and Fφ calculated over one
full revolution of the rotor. They are denoted F̄ε and F̄φ, respectively. As the model
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is transient, it is run during more than 5τ = 5Lc/R seconds before recording the
data to ensure that the suspension currents have reached a steady state.

F̄FE,ε F̄FE,φ

F̄model,φ − F̄FE,φF̄model,ε − F̄FE,ε

z[mm]
ω[rad/s]

[N ]

z[mm]

z[mm]

z[mm]

ω[rad/s]

ω[rad/s]ω[rad/s]

[N ]
[N ]

[N ]

Fig. 6.12: Forces on the rotor spinning in a static eccentricity configuration. (a) and
(b) Average forces F̄ε and F̄φ from FE results. (c) and (d) Difference between the FE
results and the model predictions of the average forces F̄ε and F̄φ.

Let us analyze these results. At zero spin speed, there is no electrodynamic cen-
tering force. Only the detent force acts in the direction of the off-centering and its
amplitude is given by the curve ω = 0 rad/s in Fig. 6.12 (a). At higher values of
ω, the centering electrodynamic force increases and saturates above ω = 600 rad/s.
This effect is significant, resulting in a reduction of F̄ε to 40% of its value at zero
spin speed. Despite this reduction, the electrodynamic force is not sufficient to fully
counterbalance the detent force. On the other hand, F̄φ can also reach significant
values of up to −7.2 N at z = 1.4 mm and ω = 189 rad/s. This value decreases at
higher speeds.

Finally, the difference between the model predictions and the FE results is given
in Fig. 6.12 (c) and (d), showing the accuracy of the model.

The model predicts that the amplitude of the forces is constant in the static ec-
centricity configuration. Its predictions fit well to the average values of the forces
obtained from the FE simulations, as shown in Fig. 6.12 (c) and (d). However, the
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Fig. 6.13: Forces on the rotor spinning in a static eccentricity configuration. (a) and
(b) Maximum difference between FE predictions of Fε and Fφ and their respective
average values. (c) and (d) Difference between the average forces on the rotor, with
and without motor currents.

amplitude of the forces can vary with the angular position of the rotor, according
to the FE results. Let us now compare the maximum values of Fε and Fφ to their
respective average values. As shown in Fig. 6.13 (a) and (b), the absolute difference
between the maximum and average values of the forces is moderate. In relative terms
and for Fε, this difference does not exceed 3% of its average value within the domain
shown in Fig. 6.13 (a). For Fφ, the relative difference is also small except at low
speed and for large eccentricities, where the relative error peaks up because the force
amplitude approaches zero.

Lastly, the average forces F̄ε and F̄φ are calculated in the absence of motor cur-
rents. The difference between the average forces with and without the motor cur-
rents are negligible, as shown in Fig. 6.13 (c) and (d). This validates assumption 9

from section 6.3.2.
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6.4 Conclusion

This chapter aimed at applying the EDB model to the prediction of the radial electro-
dynamic forces in PM machines. First, the appearance of electrodynamic forces in
motors was illustrated through two examples of motors with parallel connections of
the stator windings. Then, a slotted PM motor that is being designed at the FEMTO-
ST institute was introduced as a case study. The most important assumptions of the
EDB model were validated to show its applicability in this case. In particular, it
was shown that the suspension function can be studied separately from the motor
function. Finally, the force predictions were compared with FE simulation results,
showing a good agreement between them. In particular, the model shows a good
accuracy at low eccentricities, which corresponds to the most likely operating con-
ditions of the motor.

Besides, this study showed that the electrodynamic force cannot fully compensate
the detent force in the present motor. However, the effect of the detent force can be
reduced by up to 60% of its value in the absence of electrodynamic forces.

From a theoretical point of view, further studies could include a more detailed
analysis of the coupling between the suspension and motor functions. Also, other
kinds of rotor eccentricities should also be simulated to better illustrate the potential
of the model when it comes to predicting the forces for various kinds of rotor mo-
tion. The EDB model could also be used to investigate potential self-bearing PM ma-
chines based on electrodynamic forces, such as those presented in (Kluyskens et al.,
2017). In addition, this model and the associated parameters identification process
could also be used during the thermal design of the machine for predicting the bal-
ancing currents and the associated increase in Joule losses due to a rotor eccentricity.
The possibility of further reducing the UMP through the use of non-ferromagnetic
materials for the slots could also be investigated.
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Content overview

This thesis first presented the state of the art of null-flux, heteropolar EDBs. Their
operating principle was explained concisely, based on the identity linking the cen-
tering force to the magnetic coenergy gradient. Then, the topologies proposed in
the literature were gathered and re-drawn in a single framework to ease the under-
standing of their operation and their comparison. It appeared that many bearing
topologies have been described, but no design guideline has been proposed yet.

The state of the art regarding the models was also browsed. The existing models
were found to be very diverse, and based on analytical and/or numerical methods.
Most of them were shown to be quasi-static and adapted to a particular bearing ge-
ometry, whereas only one dynamic model had been derived. The use of these models
was shown to be limited by kinematic assumptions and/or a limited scope regarding
the bearing topologies. The few existing experimental results were also pointed out,
including a conclusive levitation test.

In this context, two new models were proposed. The first one is derived in the
aim of obtaining general guidelines for the design of heteropolar bearings. It is quasi-
static and predicts the forces in a bearing with PMs creating a magnetic field with
p pole pairs and an airgap winding of arbitrary shape, but with q pole pairs. By
imposing constraints on the winding shape to ensure the presence of a centering
force and the null-flux characteristic, the design guideline q = p ± 1 was obtained.
This was validated through finite element simulations. From these guidelines, other
bearing topologies were brought to light.

The second model is dynamic. It takes the form of a linear state-space representa-
tion and is based on a lumped-parameter model comprising six parameters that fully
characterize the bearing. Thanks to the absence of static eccentricity assumption,
the stiffness and the required amount of damping for stabilization can be evaluated
in a rigorous way. Compared to the state of the art, this model can be applied to
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a wider range of bearing geometries and therefore constitutes an objective tool for
performance comparison. Furthermore, its parameters can be identified using mag-
netoquasistatic finite element simulations, which facilitates the application of the
model to more complex bearing geometries e.g.. Lastly, let us point out that a state-
space representation corresponding to other kinds of rotor models and damping can
be obtained by modifying the mechanical model of the rotor.

The tools developed in the previous sections for predicting the performance of
EDBs were then applied to three case studies.

First, two EDB performance criteria were proposed, namely the radial stiffness
and the instability margin. Based on a simple quasi-static model yielding an analyt-
ical formula of the system roots, a graphical method linking the stiffness and sta-
bility margin of a bearing based on the position of the root locus was presented.
This method was validated, showing its applicability for interpreting the root loci
obtained with the dynamic model too.

Using this method, a first case study investigated the impact of the yoke material
on the performance of EDBs. Two bearings with and without ferromagnetic yoke
were compared. It was shown that the negative impact of the detent force associated
with a ferromagnetic yoke is well counterbalanced by an increase in the centering
electrodynamic force. In some cases, the presence of a ferromagnetic yoke may im-
prove the performance of the bearings. However, the impact of the yoke material
on the bearing performance is negligible for small rotor shaft radii.

As a second case study, a bearing with no ferromagnetic yoke was optimized
using the new dynamic model presented in this thesis. The optimization consisted
in maximizing the bearing stiffness while minimizing the instability margin. This
yielded the domain of achievable performance of the bearing, which is bounded by a
Pareto frontiers of optimal bearings for different spin speeds. These optimal bearings
were then compared to the existing bearings in the literature, showing their potential
in terms of PM volume to stiffness ratio.

The third case study concerns the radial balancing force in a slotted PM motor.
These forces are electrodynamic and can thus be predicted with the dynamic model
developed for EDBs. The main assumptions of the model were validated, and the
predicted forces were compared to finite element simulation results, showing a good
agreement between them.
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Original contributions

In summary, the main original contributions of this work are:

• Modeling

The analysis of a new quasi-static model and the resulting guideline q = p± 1;
see chapter 3 and (Dumont et al., 2014b).

The derivation of a new dynamic model with an enlarged scope. More specif-
ically, the use of the magnetic coenergy approach to obtain the forces, and the
elimination of the current variables through an appropriate change of frame;
see chapter 4 and (Dumont et al., 2016b).

The derivation of a field model adapted to slotless bearing topologies, for the
evaluation of the parameters of the lumped-parameter model; see section 5.2.2
and (Dumont et al., 2014a).

• Design

The introduction of new topologies of heteropolar EDBs following the guide-
line q = p ± 1; see section 2.1.8 and (Dehez et al., 2017, 2015; Dumont et al.,
2016b).

• Model applications

The establishment of a design approach considering two criteria: the stiffness
and the instability margin of the bearing; see section 5.3 and (Dumont et al.,
2016c).

The establishment of a link between the position of the roots in a root locus
plot, and the stiffness and stability margin of a bearing with two degrees of
freedom; see section 5.1 and (Dumont et al., 2014a).

The evaluation of the impact of the yoke material on the performance of a
slotless EDB. In particular, it is shown to be negligible for small rotor shaft
radii; see section 5.2 and (Dumont et al., 2014a).

The calculation of an upper bound for the performance criteria of a yokeless
heteropolar bearing; see section 5.3 and (Dumont et al., 2016c).

The prediction of radial electrodynamic forces in a PM motor; see chapter 6
and (Dumont et al., 2016a; Kluyskens et al., 2017).

Outlook

The present work can be continued by building bearings and/or bearingless ma-
chines involving electrodynamic radial forces, using the models and performance
criteria proposed in this work as design tools.
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In addition, experimental tests could be carried out to validate the operation of
heteropolar EDBs and the models derived in this thesis. A first test could be made
in a static eccentricity configuration. This would allow to evaluate how easily the
null-flux characteristic is obtained by measuring the phase current/voltage for dif-
ferent rotor positions. The force measurements could be compared to the model
predictions, as well as the losses due to the induced currents.

A more sophisticated test could also be performed to validate the dynamic model
in particular, following the path initiated at Politecnico di Torino (Cui, 2016). For
example, the model predictions of the rotor kinematics and the amount of damping
required for stability could be compared to experimental results.

Finally, introducing a significant amount of damping to stabilize the bearing is
still the main barrier to the implementation of EDBs in practical applications. There-
fore, investigating other strategies to introduce damping in a passive, contactless way
is critical.

Broader considerations

The initial aim of this thesis was the advancement of the null-flux, heteropolar EDB
technology. In particular, it is believed to complete the research works performed
over the last decades from the modeling point of view, as the performance of all
existing embodiments of null-flux heteropolar EDBs can now be predicted with a
dynamic model.

However, experimental validations of this model are lacking, and subsequent
works should be carried out to fill this gap. In addition to validating the model, these
experimental tests shall also confirm the expected operation of heteropolar EDBs.

Besides these bearing modeling and validation aspects, the question of finding a
practical application where EDBs could be implemented shall be raised. This could
yield a technical framework that would allow to focus the future research efforts on
more specific issues.

Finally, from a broader perspective, the results presented in this work may also
find applications in fields other than bearings. For example, the effects of a possible
occurrence of rotor eccentricities due to the wear of mechanical bearings in PM ma-
chines may be considered during their design process. In this case, the resulting radial
electrodynamic forces and the associated increase in joule losses may be quantified
through a model developed for EDBs.



ADensity of current stream
lines

This section provides more details about the density of current streamlines function.
A common way of calculating the magnetic flux linked by a conducting path consists
in integrating the magnetic vector potential along the conductor:

Φ =

∮
ATdl, (A.1)

where dl is a vector line element that is aligned with the conductor. This formula
can be generalized to take the thickness of the wire into account. In this aim, let us
define the vector quantity D over the cross section of the wire S:

J = Di, (A.2)

where J is the distribution of the current density within the conductor when a cur-
rent i flows in it. The vector D thus yields the local direction of the current within
the conductor, and the local current density when a total current of 1 A flows in the
winding. As a consequence of (A.2):∫

S

DdS = 1. (A.3)

The function D is denoted ’density of current streamlines’ or ’density of current
paths’. Using this concept, the thickness of the conductor can be taken into account
in (A.1) by considering that instead of being linked by a single conducting path, the
magnetic flux is linked by an infinity of conducting path distributed over the cross
section of the wire, that are modeled as a density. This density is not uniformly dis-
tributed over the cross section, but follows the real current distribution as expressed
in (A.2). In addition, the magnetic flux is linked by a single winding turn, which
results in (A.3). To take the thickness of the wires into account, the differential dl is
thus replaced by:

DdSdl = Ddv. (A.4)
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As a result, (A.1) yields:

Φ =

∫
V

ATDdv, (A.5)

where the volumeV comprises the entire loop of wire. When considering multi-turn
windings, (A.2) remains, except that i is the current amplitude in a single winding
turn. Therefore, (A.3) yields: ∫

S

DdS = b, (A.6)

where b is the number of winding turns. As an example, let us consider a single
straight wire with a flat cross-section where the current density is constant, as shown
in Fig. A.1. In this case, the norm of D is:

D =
1

S
, (A.7)

and its direction is the same as that of dl. Therefore, the thickness of the wire is
taken into account by replacing the differential dl by:

DdSdl = dl(DdS) = (Ddl)dS =
dl

dl
dlDdS = DdldS = Ddv. (A.8)

dl

S

D

Fig. A.1: Constant density of current streamlines over the flat cross-section of the
wire. The vector dl is the line element of the wire when its thickness is not consid-
ered.

Lastly, another example of use of the density of current streamlines can be found
in (Bennecib et al., 2011).



BMatrices Q

This appendix gathers the matrices Q for all four bearing configurations:

PMs on the rotor and q = p+ 1:

Q =

[
cos ((q − 1) γ) − sin ((q − 1) γ)

sin ((q − 1) γ) cos ((q − 1) γ)

]
. (B.1)

PMs on the rotor and q = p− 1:

Q =

[
cos ((q + 1) γ) sin ((q + 1) γ)

sin ((q + 1) γ) − cos ((q + 1) γ)

]
. (B.2)

PMs on the stator and q = p+ 1:

Q =

[
− cos (−qγ) sin (−qγ)

− sin (−qγ) − cos (−qγ)

]
. (B.3)

PMs on the stator and q = p− 1:

Q =

[
− cos (−qγ) − sin (−qγ)

− sin (−qγ) cos (−qγ)

]
. (B.4)





CTransformed flux vector

The transformed flux vector Φs is defined in (4.20):

Φs = KΦU−1PQx. (C.1)

Let us calculate U−1P. Considering (4.8) and the identities:

cos(x) =
ejx + e−jx

2
;

sin(x) = −j
(
ejx − e−jx

)
2

,

(C.2)

the matrix P can be expressed as:

P = G + D. (C.3)

The components of G and D are:

Gk1 = jGk2 =
ej

2π
N (k−1)

2

Dk1 = −jDk2 =
e−j

2π
N (k−1)

2
.

(C.4)

with k ∈ {1, N}. Let us calculate the components of U−1G and U−1D separately:

[
U−1G

]
k1

=

N∑
i=1

U−1
ki Gi1

=
1

2
√
N

N∑
i=1

ej
2π
N (i−1)(k−1)ej

2π
N (i−1)

=
1

2
√
N

N∑
i=1

ej
2π
N (i−1)k

=

√
N

2
, if k = N

(C.5)
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and 0 otherwise. The derivation of the second column of U−1G is straightforward:[
U−1G

]
k2

= −j
[
U−1G

]
k1
. (C.6)

The term U−1D is derived in a similar way:

[
U−1D

]
k1

=

N∑
i=1

U−1
ki Di1

=
1

2
√
N

N∑
i=1

ej
2π
N (i−1)(k−1)e−j

2π
N (i−1)

=
1

2
√
N

N∑
i=1

ej
2π
N (i−1)(k−2)

=

√
N

2
, if k = 2

(C.7)

and 0 otherwise. The derivation of the second column of U−1D is also straightfor-
ward: [

U−1D
]
k2

= j
[
U−1D

]
k1
. (C.8)

Using (C.5), (C.6), (C.7) and (C.8), the matrix U−1P can be assembled:

U−1P =

√
N

2



0 0

1 j

0 0
...

...
0 0

1 −j


. (C.9)

Finally, combining (C.1) and (C.9) yields:

Φs = KΦ

√
N

2



0 0

1 j

0 0
...

...
0 0

1 −j


Qx. (C.10)



DState-space representation

Using the real notation, the equation of motion of the rotor (4.46) is:

M ẍ + Cẋ = F + Fe. (D.1)

Coupling (4.43) and (D.1) yields:Ḟ

ẍ

ẋ

 = A

F

ẋ

x

+ BFe, (D.2)

where:

A =



− R
Lc

ωe −Kd − K2
ΦN

2Lc
0 −RKdLc

ωeK
2
ΦN

2Lc
+ ωeKd

−ωe − R
Lc

0 −Kd − NK2
Φ

2Lc

−ωeK2
ΦN

2Lc
− ωeKd −RKdLc

1
M 0 − C

M 0 0 0

0 1
M 0 − C

M 0 0

0 0 1 0 0 0

0 0 0 1 0 0


(D.3)

B =
1

M

[
0 0 1 0 0 0

0 0 0 1 0 0

]T
. (D.4)





EGraphical approach
generalization

In section 5.1, a graphical analysis of the root locus of bearings with two degrees of
freedom and Kφ < 0 was introduced. This appendix presents similar developments
corresponding to Kφ > 0.

In this case, the unstable root still corresponds to the plus sign in (5.5):

ρ =
−C
2M

+

√(
C

2M

)2

− Kε + jKφ

M
. (E.1)

Using the polar form for complex numbers:

Kε + jKφ

M
= Nejα, (E.2)

where:

tan(α) =
Kφ

Kε
(E.3)

N =

√
K2
ε +K2

φ

M
. (E.4)

The root locus is drawn for C = 0. Therefore, (E.1) and (E.2) yield1:

ρ|C=0 = +j
√
Nejα/2. (E.5)

In the area of interest of the root locus:
1Only the principal square root of ρ|C=0 is considered.
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∣∣∣∣<{ρ|C=0}
= {ρ|C=0}

∣∣∣∣ = tan
(∣∣∣α

2

∣∣∣)� 1. (E.6)

As a result, |α/2| � 1 which can be approximated as |α| � 1. Considering this,
(E.3) and (E.4) yield:

α ∼=
Kφ

Kε
� 1⇒

∣∣∣∣Kφ

Kε

∣∣∣∣� 1 (E.7)

N ∼=
Kε

M
. (E.8)

A consequence of |α| � 1 is that sin(α/2) ∼= α/2 and cos(α/2) ∼= 1. Therefore,
(E.5) becomes:

ρ|C=0 = +j
√
N
(

cos
(α

2

)
+ j sin

(α
2

))
∼= −
√
N
(α

2
− j
)
. (E.9)

Replacing (E.7) and (E.8) in (E.9) yields:

ρ|C=0
∼= −

√
Kε

M

(
Kφ

2Kε
− j
)

= −
√
Kε

M

Kφ

2Kε
+ j

√
Kε

M
. (E.10)

Let us consider the effect of damping. Assuming a priori that the damping intro-
duced in the system satisfies:

(
C

2M

)2

� Kε

M
, (E.11)

(E.1) yields:

ρ ∼=
−C
2M

+

√
−Kε + jKφ

M
. (E.12)

Combining this with (E.10) gives:

ρ ∼=
−C
2M
−
√
Kε

M

Kφ

2Kε
+ j

√
Kε

M
. (E.13)

To achieve stabilization, the damping should be increased to satisfy<{ρ} < 0, which
yields:
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Cs
2M

= −
√
Kε

M

(
Kφ

2Kε

)
, (E.14)

where Cs is the minimum amount of damping to stabilize the bearing. This result
shows that the horizontal position of ρ|C=0 in the root locus is proportional to the
level of instability of the bearing. Furthermore, considering (E.7) and (E.14) yields:

∣∣∣∣ Cs2M

∣∣∣∣�
√
Kε

M
, (E.15)

which confirms assumption (E.11). In summary, the radial stiffness and the instabil-
ity margin are linked to the unstable root locus through:

<{ρ|C=0} =
Cs
2M

={ρ|C=0} =

√
Kε

M
,

(E.16)

where:

Cs = −Kφ

√
M

Kε
. (E.17)





FCurrent vector potential

Let us consider a bearing comprising an axial airgap winding with k phases, q pole
pairs,N turns per phase, and no ferromagnetic yoke. The rotor has surface-mounted
permanent magnets and a ferromagnetic shaft. The axial active length is denoted L,
and the radial geometrical parameters of the bearing are given in Fig. F.1. This
section presents an analytical solution of the magnetic vector potential created by
the phase currents, as well as the cyclic inductance of the winding. These expressions
were derived following the same approach as in (Atallah et al., 1998).

Ra

Rw

Rm
Ri

(a) (b)

Ri

Rm

Rw
Ra

Fig. F.1: Radial geometrical parameters of the bearing. (a) External winding case. (b)
Internal winding case. The airgap width is exaggerated.

External winding case

The airgap potential created by the current Ii in the phase i is:

AIz,i(r, θ) =

∞∑
m,odd

(
C2mr

mq + C3mr
−mq) Ii sin (mq(θ − δi)) , (F.1)
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where δi = πi
qk is the phase angular position. The winding cyclic inductance is:

Lc =

∞∑
m,odd

LπKIm

k−1∑
j=0

cos

(
πj

k

)
cos

(
mπj

k

)KLm (F.2)

where L is the active length of the bearing, and:

KLm = C1m

(
Rmq+2
a −Rmq+2

w

)
mq + 2

+ C4m ln

(
Ra
Rw

)
− µ0KIm

64

[
R4
a (4 ln(Ra)− 1)−R4

w (4 ln (Rw)− 1)
]

if mq = 2,

= C1m

(
Rmq+2
a −Rmq+2

w

)
mq + 2

+ C4m

(
R2−mq
a −R2−mq

w

)
2−mq

+ µ0KIm

(
R4
a −R4

w

)
4 ((mq)2 − 4)

otherwise.

(F.3)
In (F.1) and (F.2), the constants are given by:

KIm =
8Nqk

mπ2|R2
w −R2

a|
sin
(mπ

2

)
sin
(mπ

2k

)
, (F.4)

and:

C1m =
Kt(Ra)−Kr(Ra)

2Rmq−1
a

C2m = C1m −
Kt(Rw)−Kr(Rw)

2Rmq−1
w

C3m = C2mR
2mq
i

C4m = C3m −
Kr(Rw) +Kt(Rw)

2R−mq−1
w

,

(F.5)

where:

Kr(r) = −µ0KImr ln(r)

4
if mq = 2,

=
µ0KImr

(mq)2 − 4
otherwise.

Kt(r) =
µ0KImr(2 ln(r) + 1)

4mq
if mq = 2,

= − µ0KIm2r

mq((mq)2 − 4)
otherwise.

(F.6)
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Internal winding case

The airgap potential created by the current Ii in the phase i is:

AIz,i(r, θ) =

∞∑
m,odd

(
C3mr

mq + C2mr
−mq) Ii sin (mq(θ − δi)) , (F.7)

where δi = πi
qk is the phase angular position. The winding cyclic inductance is:

Lc =

∞∑
m,odd

LπKIm

k−1∑
j=0

cos

(
πj

k

)
cos

(
mπj

k

)KLm (F.8)

where L is the active length of the bearing, and:

KLm = C4m

(
Rmq+2
w −Rmq+2

a

)
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otherwise.

(F.9)
In (F.7) and (F.8), the constants are given by:

KIm =
8Nqk

mπ2|R2
w −R2

a|
sin
(mπ

2

)
sin
(mπ

2k

)
, (F.10)

and:

C1m = −Kr(Ra) +Kt(Ra)

2R−mq−1
a

C2m = C1m +
Kr(Rw) +Kt(Rw)

2R−mq−1
w

C3m = C2mR
−2mq
i

C4m = C3m +
Kt(Rw)−Kr(Rw)

2Rmq−1
w

,

(F.11)

where:

Kr(r) = −µ0KImr ln(r)

4
if mq = 2,

=
µ0KImr

(mq)2 − 4
otherwise.

Kt(r) =
µ0KImr(2 ln(r) + 1)

4mq
if mq = 2,

= − µ0KIm2r

mq((mq)2 − 4)
otherwise.

(F.12)
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Some of the previous results are validated in (Dumont et al., 2016d).
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