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Bertrand Cornélusse, Université de Liège
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Carlos Ruiz, Universidad Carlos III de Madrid

Louvain-la-Neuve
Mars 2017
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Abstract

Large amounts of electricity are traded in so-called day-ahead (spot) markets where mar-
ket participants can sell or buy electrical energy for each hour of the following day. Sell or
buy orders describing operational and economic constraints render the underlying microe-
conomic optimization problem ”non-convex”, departing from more classical assumptions
in microeconomic theory. Because of these non-convexities, most of the time, no market
equilibrium supported by uniform prices exists, where uniform pricing means that in the
market outcome, every market participant of a same market segment (location and hour
of the day) will pay or receive the same electricity price and no other transfers or payments
are considered.

In Europe, the orders are submitted to power exchanges, most of which are integrated at a
European level under the Price Coupling of Region project. Uniform prices are computed,
at the expense of having some bids ”paradoxically rejected” in the market outcome, as
for the computed market prices, some bids propose a price which is ”good enough” but
are yet rejected. It is also at the expense of welfare optimality, as most of the time, no
welfare optimal solution can be supported by uniform prices such that no financial losses
are incurred.

The present thesis proposes mixed integer programming models and algorithms for such
non-convex uniform price auctions. In particular, a new bidding product is proposed which
generalizes both block orders used in the Central Western Europe Region (France, Ger-
many, Belgium, the Netherlands, etc) or Nord Pool (coupling Northern countries), and,
mutatis mutandis, complex orders with a minimum income condition as used in Spain
and Portugal. It allows participants describing e.g. their start up costs - which must be
recovered if the corresponding bid is accepted - and indivisibilities in production or con-
sumption, yielding mixed integer programming models seemingly more appropriate than
current practice both from an economic modelling and a computational viewpoint.

The thesis is structured as follows.

Part I is a preliminary part devoted to presenting the general context in which the work
takes place. It ends with an outline of the three articles presented in Part II which form the
core of the thesis, emphasizing the continuity between each of these contributions.

Part II is the core of the text and consists in the collection of the three articles contain-
ing the main contributions. Two of them have already been published in international
peer-reviewed journals, the third one has been submitted, and the texts reproduced here
correspond to the accepted manuscript versions of the published papers, and of an updated
version of the submitted manuscript of the third one.

Finally, two appendices are also provided, describing in more details - with a few historical
notes - Dorn’s duality for convex quadratic programs and the notion of spatial price equi-
librium presented using an abstract linear transmission model, as both notions are used in
the contributions presented in Part II, making the present text more self-contained.
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Part I

Context and contributions
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Chapter 1

General Introduction

This first chapter introduces the general context in which the three contributions presented
in Part II take place, and is structured as follows.

Section 1.1 aims at briefly positioning the work in its historical and economic contexts
and in particular synthetically reviews aspects of the transition from vertically integrated
monopoly utilities to liberalized markets, the place of day-ahead markets in the whole
electricity supply chain, and the recent institutional evolutions in Europe. The interested
reader will find much more information on these aspects in the references provided, as
they are beyond the scope of the present dissertation.

Section 1.2 aims at positioning the general European approach in the galaxy of pricing
rules in non-convex day-ahead electricity markets. It is widely known and illustrated
below that market equilibrium with uniform prices in the presence of non-convexities is a
mathematical impossibility [99]. Several toy examples complementing those presented in
the main contributions are presented, first for positioning the underlying problem, then
to provide insights on the main different approaches previously proposed to deal with
these non-convexities. It may be argued from some of these toy examples that current
European market rules - and IP pricing as historically proposed by O’Neill et al. [71]) -
are not the most appropriate way to deal with such non-convexities, though the approach
has proved to be a working and intuitive solution for many years now, be it in France,
Germany, the Netherlands, Belgium, Nordic countries or Spain and Portugal, without
being exhaustive, and obvisouly presents some interesting features.

Finally, Section 1.3 outlines the content of the three contributions presented in Part II
which form the main part of the present thesis. Interesting research questions which
deserve further attention are occasionally pointed out.

3



1.1 Restructured Electricity Industries

and Day-ahead Markets

1.1.1 From vertically integrated monopolies to liberalized mar-
kets

Details on the history of the economic structure of the electricity industry (economic
agents and their relations) are given e.g. in [45] and in classical textbooks on power
systems economics such as [92] (in particular Chapter 1 on deregulation and Chapter 3
on market architecture), which both inspired the present discussion.

The supply chain in the electricity industry can be decomposed into three main links
corresponding to the following distinct activities: generation, transport and distribution.
Generation refers to the transformation of any other source of energy into electrical energy,
transportation refers to the transmission of electricity over long distances using high-
voltage cables, while distribution aims at serving the end user and generally uses low-
voltage cables. Transmission is operated by so-called Transmission System Operators
(TSO), while distribution is operated by Distribution System Operators (DSO). The
restructuring of the industry has also added a fourth link with retail competition: retailers
buy large amounts of electrical energy to generation companies and sell them to the final
consumers. In Belgium for example, bills from retailers clearly specify how much they
charge for the commodity, and how much goes to the Distribution System Operator (DSO)
per KWh.

Transmission and distribution are seen as natural monopolies where a very high level
of coordination is required to maintain the reliability of the system in real time, and
where substantial economies of scale are present, which raises complex regulatory issues
[1, 47, 48]. This doesn’t prevent the existence of market mechanisms for the allocation
of transmission resources, and a substantial public debate about the relative merits of
Physical Transmission Rights (PTR), Financial Transmission Rights (FTR), or so-called
Contracts For Difference (CFD) which are pure financial contracts remunerating the owner
according to price differences between bidding/price zones, hence providing hedging in-
struments to market participants. Regarding Financial Transmission Rights and related
issues, the reader may refer to [82].

Regarding some elements of the economic structure of the industry, the following main
historical waves are distinguished in [45, p.25], see also [92, Chapter 1]. Until 1920,
ownership was private with a very low level of coordination among agents. Substantial
public investments were made after 1920 as the necessity of electricity was recognized,
but still with many private agents and a ”fragmented industry” until World War II.

In the aftermath of World War II, nationalisation occurred in many countries such as
France, while others applied stricter economic regulations. For example, nationalisation
in France gave birth to Electricité de France (EDF) in 1946, today one of the giant actors
of the sector, headed from 1967 to 1987 by Marcel Boiteux to whom is due the so-called
Ramsey-Boiteux pricing rule for public monopolies with balanced budget constraints [11,
77]. Further integration of generation and transmission seeking economies of scale was
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operated in the seventies which also saw the shift to nuclear power production partly due
to well-known oil price shocks.

Aferwards, the evolution of available technologies and their costs certainly have had a
substantial impact on the economic structure of the industry in particular during the
eighties and nineties, as supported in [45, p.23] which further describes other key factors
to the wave of liberalization that occured at the time. For example, besides political
factors, the liberalization process started in the eighties may have been fostered to a given
extent by the availability of CCGT units able to generate power at much smaller scales
than nuclear plants say, while still at competitive prices, diminishing the importance of
economies of scale favouring monopoly utilities. A detailed discussion of these arguments
and many others regarding regulation and deregulation can be found in [92, Chapter
1]. The views of Marcel Boiteux regarding the European liberalization process, as the
former CEO of a public monopoly utility (EDF), are described (among other comments)
in [12] where he states that ”là où les monopoles étaient mal gérés (faible productivité)
ou mal régulés (enrichissement abusif), la libéralisation est un moindre mal, si ce n’est
un bienfait. Mais tous les monopoles d’électricité n’étaient pas malades.” Also, Newbery
discusses in [66] conditions for a successful liberalization taking into account the then
recent Californian Crisis of 2001, while [8] proposes a history of the liberalization process
in California from the early 1990s until 2001.

The liberalization of the electricity industry is directly related to the notion of unbundling,
which refers to the separation of generation, transmission, distribution, and end user
supply. Unbundling can be functional, legal, managerial or of ownership. The four kinds
of unbundling may have different economic effects [46].

Unbundling and the general trends and facts described above implies the need for orga-
nized wholesale markets, among which (spot) day-ahead markets which are to some extent
and as discussed below related to classical scheduling problems in power systems, with
the additional key issue of determining market prices providing adequate price signals
to market participants. Day-ahead markets are nowadays coupled at the European level
under the Price Coupling of Region project. Though some uncertainty remains regarding
the precise timing, a Pan-European intraday market should go live in 2017 based on a
system called XBid.

A brief overview of the liberalization stages in Europe - and the role of power exchanges
- is given in [96] while more lenghty and detailed accounts and analyses, in particular
of the earliest days, are provided in [10, 81]. Regarding market coupling in Europe,
the determination of bidding zones representing local markets is an important subject
currently debated across Europe, see e.g. the study commissioned by CREG [4] and also
[14, 76, 24]. For the years to come, the main European legislation concerning day-ahead
and intraday markets is contained in the Capacity Allocation and Congestion Management
(CACM) Guidelines published in 2015 [16], and an updated account of related European
directives and of Market Coupling from a legal and regulatory perspective can be found
among other matters in [58].
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1.1.2 Day-ahead markets and unit commitment problems

Wholesale electricity markets where large producers and large consumers or retailers ex-
change energy vary according to the time horizon and include long-term bilateral con-
tracts, forwards/futures where trading occurs by definition years or months ahead the
actual delivery of electricity, and (spot) day-ahead markets (see e.g. a synthetic account
in [2]). In the European market structure, intraday markets are used to balance unbal-
anced positions due e.g. to outages or short-term variability of consumption or production,
while balancing/spinning reserves markets managed by Transmission System Operators
are used to maintain real-time reliability of the system. Due to the growing importance
of renewable energy, substantial debates on capacity remuneration mechanisms and how
to take into account the costs of reserve and balancing operations are of main current
interest in Europe [41].

On the other hand, the so-called Unit Commitment and Economic dispatch problems
are classical optimization problems dating back to the period of centralized monopolistic
utility companies and still of the same kind as those considered today by large producers
to schedule their production for different time horizons, though they now include forecast
spot market prices as part of the models.

Given a set of generation units at hand, Economic dipsatch (ED) refers to the choice of
generation levels (power outputs) of these units that minimize the total operating costs
while serving demand. Optimal Power Flow problems (OPF) seek the same goal taking
into account transmission constraints of the network, which leads to substantially more
challenging optimization problems when AC networks are considered, due to the highly
non-linear nature of the power flow equations involved in the constraints. A historical
account of OPF models is given in [15] where a typology is also presented highlighting key
characteristics of the variants (AC and DC OPF, security-constrained OPF, etc).

Unit commitment problems (UC) seek to determine which units to turn on or off - and
when - as well as how much units should generate, depending on characteristics such as
start-up costs, minimum up and down times, ramping constraints, on top of the marginal
costs and operating constraints such as minimum and maximum power outputs, with
again the goal of minimizing the total operating costs of serving demand over a given
time horizon. Again, it corresponds to a field of research in itself with sophisticated
variants to handle stochasticity both in demand and generation, e.g. due to the massive
integration of renewable energy sources, see e.g. [73, 74, 75] and the recent review [94].
The acronym UCED (standing for Unit Commitment and Economic Dispatch) is also
generally used in the literature, as in [40], emphasizing that the models considered involve
both commitment decisions and power output or consumption decisions paired with these
commitments.

European day-ahead markets where both demand and offer bids are present (i.e. the
demand is elastic), can be seen to some extent as a mean to solve a Unit Commitment and
Economic Dispatch problem where characteristics are given to Market Operators (coupled
power exchanges) in charge of computing the solution, and determining the corresponding
market prices. Regarding demand, let us note that examples of indivisibilities on the
demand side providing a rationale for demand block orders in the PCR market are given in
[71, p.278]: ”Demand as well as supply can have significant nonconvexities. For example,
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the electricity consumption of an aluminum smelter or a cyclotron may be an all-or-
nothing choice.”

Regarding prices, they should be compatible with the computed schedule, avoiding incur-
ring losses or opportunity costs. However, as discussed in the next Section, most of the
time no market equilibrium exists which is supported by uniform prices. Price signals are
also important information that agents take into account e.g. for investment or hedging
decisions.

1.2 Pricing rules in non-convex day-ahead electricity

markets

Once the format in which market participants can describe their technical constraints
and costs or utility structure to the Market Operator has been specified, the remaining
question is to determine rules specifying the set of admissible exchanges of quantities
(bid selections) and the corresponding payments between market participants and the
Market Operator where applicable. Regarding these payments, it is generally argued
that the law of one price should hold where possible, which in the present context is
called uniform pricing: all payments depend on a single electricity price per location and
time period. However, as recalled in Section 1.2.1 with toy examples, uniform prices
supporting a market equilibrium often do not exist in the presence of non-convexities
such as indivisibilities of production or start up costs in the bids of market participants.
(The term ”non-convexities” is due to the fact that in both cases, binary variables must
be introduced in the underlying microeconomic optimization problems, rendering the
corresponding feasible sets non-convex.)

Several pricing rules have been proposed the last two decades, trying to deal in the best
way with these non-convexities. We review here the most important propositions using
unified and simplified notation (at the expense of a negligible loss of generality in some
cases, as for example the proposition in [71] goes beyond the sole scope of electricity
auctions and related models).

Exposition here doesn’t aim at being exhaustive. It rather seeks to position European
market rules - which are the main topic of the present work - among the key pricing rules
historically proposed to which most of the other more recent propositions in the academic
literature refer, namely IP pricing [71] and Convex Hull pricing [40]. In particular, though
this seems not highlighted enough in the literature, European market rules could generally
be described as IP pricing plus some additional constraints saying that one only considers
market outcomes where no make-whole payments compensating losses are needed.

Let us note that a review of most of the existing pricing rules in the particular case of
two producers with different start up costs but no indivisibilities and fixed non-elastic
demand is provided in a very recent article [50]. However some important features only
appear when elastic demand and larger instances are considered, and the topic deserves
further investigation in a near future, especially in the setting of power exchanges facing
large-scale instances where demand bids representing elastic demand are present. It is of
practical and current interest both in Europe and in the US.
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1.2.1 Non-convexities and market equilibrium

Two main kinds of non-convexities can be distinguished. First, technical constraints
such as minimum power output or consumption levels, which render the production and
consumption sets non-convex. Second, non-convexities can arise from the cost structure
such as in the presence of start-up costs of power plants, besides their marginal costs, or
utility reduced by a constant term on the demand side. Both types require the introduc-
tion of binary variables for modelling purposes, contributing to rendering the underlying
optimization problems non-convex.

The ”primal” optimization problem usually seeks to optimize welfare (defined as the total
utility of consumption minus the total costs of production), and its constraints describe the
physical/technical constraints related to production, consumption and transmission.

Welfare is usually expressed as a concave function of the decision variables, though other
more general objective functions could be considered. Maximizing welfare is motivated
both because of the underlying economic interpretation - maximizing the economic sur-
pluses of market participants - and also because in a classical convex setting, welfare
maximization is equivalent to the determination of a market equilibrium, see Appendix
B.

The following two toy examples are taken from [52]. They show for each of the two types
of non-convexities mentioned above that no market equilibrium supported by uniform
prices exists in their presence. The conference paper [52] also briefly discusses - using
recent real data from the Belgian day-ahead market - the potential interest of non-uniform
pricing rules compared to the current European practice detailed below, with a focus on
IP pricing as the alternative, though other non-uniform pricing rules should deserve more
attention.

Example 1.1. Toy examples, with associated to C, respectively a minimum acceptance
ratio as described in Table 1.1, or a start up cost as described in Table 1.2. We will refer
to them later on as Examples 1.1.1 and 1.1.2 respectively. Both types of non-convexities
can obviously be combined.

Figure 1.1: Instance with a ’non-convex bid’ C - start up cost or min. power output

In the first case of a minimum acceptance ratio, the pure welfare maximizing solution is
to accept C at its minimum acceptance level of (11/12), that is accept 11 MW from C,
to fully accept A, and to accept the fraction of B needed to match the accepted fraction
of C. For a market equilibrium to exist, the market price should be 10 EUR/MW, set by
B which is fractionally accepted: otherwise, there would be either some leftover demand
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Bids Quantity (MW) Limit price (EUR/MW) Min. Acceptance Ratio
A - Buy bid 10 300 -
B - Buy bid 14 10 -

C - Sell bid 1 12 40
11

12
D - Sell bid 2 13 100 -

Table 1.1: Instance with a minimum acceptance ratio (minimum power output level)

Bids Quantity (MW) Limit price (EUR/MW) Start-up costs
A - Buy bid (step 1) 10 300 -
B - Buy bid (step 2) 14 10 -

C - Sell bid 1 12 40 200
D - Sell bid 2 13 100 -

Table 1.2: Instance with start-up costs

from B if the price is below, or B would prefer to be fully rejected if the price is above.
However, at this market price, C is loosing 11(40 − 10) = 330 EUR and would therefore
prefer not to be dispatched. Hence, there is no market equilibrium with uniform prices
in the present case.

In the second case of the presence of start up costs, it can be easily checked that the pure
welfare maximizing solution is to fully accept A, fully reject B, and accept the fraction of
C needed to match A. Any level of acceptance of B would inevitably degrade welfare as the
bid price of B is lower than the bid price of any other offer bid, and also, it can be readily
checked that discarding C in order to avoid the associated start-up cost would also lead
to less welfare (see the discussion of European rules below). The optimal welfare is hence
”utiliy of A minus costs of the production by C”, that is 10(300)–[10(40) + 200] = 2400.
Here again, if there is any market equilibrium supported by uniform prices, the price is
set by fractionally accepted bids, here by C at 40 EUR/MW. However, at such a market
price, C doesn’t recover its start up costs and would prefer to be rejected: there is no
market equilibrium with uniform prices.

For the discussion of pricing rules in the next subsections, we use a stylized welfare
maximizing program (SWP) very similar to the ”stylized economic unit commitment and
dispatch problem” in [78] - Model (1), except that we make the simplifying assumption
that all the functions involved are linear and we consider only one location and one time
period, as it is enough for the main observations we seek to present using any of the toy
examples at hand. We also add the possibility of non-convexities on the demand side
(indivisibilities of consumption or utility reduced by a constant term), which simplifies
notation as well.

(SWP ) max
x,u

∑

c

∑

ic∈Ic

QicPicxic −
∑

c

Fcuc

s.t.
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∑

c

∑

ic∈Ic

Qicxic = 0 [π] (1.1)

xic ≤ uc ∀ic ∈ Ic ⊆ I, c ∈ C (1.2)

xic ≥ ricuc ∀ic ∈ Ic ⊆ I, c ∈ C (1.3)

uc ≤ 1 (1.4)

xic, uc ≥ 0 (1.5)

uc ∈ {0, 1} ∀c ∈ C (1.6)

Here, Ic denotes the set of ”continuous bids” ic controlled by the binary decision variable
uc. The level of acceptance of the quantity Qic is determined by xic which is constrained
to lie in a given interval included in [0, 1] if uc = 1, see (1.2)-(1.3). We use the convention
according to which Qic < 0 for a sell order, and Qic > 0 for a buy order. Hence, (1.1)
is a balance constraint stating that the ”market clears”, while the objective function
represents the welfare in which the Pic are the limit prices representing marginal cost or
marginal utility per (sub-)bid ic, and Fc the start up cost or the reduction of utility by a
constant term associated to the whole offer or demand bid c which is incurred if the bid
is at least partially accepted.

For example, the two toy examples presented above can readily be described as an instance
of SWP (the right column corresponds to the instance of Table 1.2). Here, we drop the
index i as all the sets Ic involved are singletons.

Example 1.1.1:

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd

10xa + 14xb − 12xc − 13xd = 0 (1.7)

xa ≤ ua (1.8)

xb ≤ ub (1.9)

xc ≤ uc (1.10)

xc ≥ (11/12)uc (1.11)

xd ≤ ud (1.12)

u ≤ 1 (1.13)

x, u ≥ 0 (1.14)

u ∈ {0, 1}4 (1.15)

Example 1.1.2:

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd − 200uc

10xa + 14xb − 12xc − 13xd = 0 (1.16)

xa ≤ ua (1.17)

xb ≤ ub (1.18)

xc ≤ uc (1.19)

xd ≤ ud (1.20)

u ≤ 1 (1.21)

x, u ≥ 0 (1.22)

u ∈ {0, 1}4 (1.23)

Obviously, the binary variables ua, ub and ud can readily be set to 1 and removed from
the formulation: they are associated to the simple ”convex bids” A, B and D and actually
not required as it is always optimal to set them to 1.
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1.2.2 IP Pricing

The proposition in [71] is to determine prices by using the convex part of the welfare
maximization problem: roughly speaking ”marginal units in the chosen unit commitment
and dispatch are setting the price”. More precisely, the approach proposed is to (a)
maximize welfare, (b) fix all binary variables to the optimal values found, (c) derive
commodity (electricity) prices as optimal dual variables of the balance constraints - as
usual to determine locational marginal prices, see Appendix B - and start up prices (or
commitment prices) as optimal dual variables to the constraints fixing the binary variables
to their optimal value. The key contribution is to show that the derived price system
supports a market equilibrium if the market rules specify that payments appropriately
depend on both kinds of prices (Theorem 2 of the original paper).

Because of the ”Samuelson principle” (as called in [71] and reviewed in Appendix B),
establishing the equivalence between welfare maximization and market equilibrium in
well-behaved convex contexts, the fact that the commodity prices are derived as optimal
dual variables of the balance constraints in the restricted welfare maximizing problem
where integer decisions are fixed implies that these prices are equilibrium prices supporting
the values of the continuous primal decision variables, and in particular, that ”marginal
units” (here whose production or consumption level is partial with regard to their technical
capabilities) are setting the price.

For example, with Example 1.1.1 above and considering its optimal solution, the market
price is set by the marginal unit B to 10 EUR/MW, and the commitment price associated
to the constraint fixing the commitment binary variable uc = 1 is - 330EUR, corresponding
here to the incurred loss to unit C at the given commodity market price. With the instance
1.1.2, the market price would be 40 EUR/MW and the commitment price set to (- 200)
EUR, again corresponding to the incurred loss. These prices for the commodity and the
commitments can readily be derived as the optimal dual variables π and δ (in square
brackets) in:

Example 1.1 (continued)

Example 1.1.1 (IP Pricing case):

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd

10xa + 14xb − 12xc − 13xd = 0 [π∗ = 10]

xa ≤ 1

xb ≤ 1

xc ≤ uc

xc ≥ (11/12)uc

xd ≤ 1

uc = 1 [δ∗ = −330]

x ≥ 0

Example 1.1.2 (IP Pricing case):

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd − 200uc

10xa + 14xb − 12xc − 13xd = 0 [π∗ = 40]

xa ≤ 1

xb ≤ 1

xc ≤ uc

xd ≤ 1

uc = 1 [δ∗ = −200]

x ≥ 0

11



Given these prices (π, δ) = (10,−330) or (40,−200) respectively, participant C receives as
a payment π(Qcxc)− δuc, here respectively 10(11)− (−330)1 = 440 or 40(10) - (-200)1 =
600. In each case, it is exactly corresponding to the production costs of C, and the primal
decisions (uc, xc) are optimal for the market participant C, that is they respectively solve
the following profit-maximizing programs:

max
uc,xc

12(π − 40)xc − δuc (1.24)

xc ≤ uc (1.25)

xc ≥ (11/12)uc (1.26)

uc ∈ {0, 1} (1.27)

[π := 10, δ := −330]

max
uc,xc

[12πxc − δuc]− [12(40)xc + 200uc]

(1.28)

xc ≤ uc (1.29)

xc ≥ 0 (1.30)

uc ∈ {0, 1} (1.31)

[π := 40, δ := −200]

Let us note that in general, with several non-convex bids and when both indivisibilities
and start up costs are considered at the same time, the parameter δ in (1.28)-(1.31)
corresponding to the commitment price may differ from the start up cost of the market
participant present in the input data: the fact that δ = (−200) is exactly offsetting the
start up cost here, yielding 0 as the coefficient of uc (after rearrangement), is peculiar to
the present toy example or related similar situations.

It may obviously happen that the committed units (i.e. such that uc = 1) are profitable at
the market price(s) π, in which case the optimal dual variable δ∗ to the fixing constraint is
positive. (Such observations, as others which follow, can be derived by writing down the
dual and complementarity conditions of the welfare maximization programs with the fixing
constraints and discussing them in a way similar to what is done in Chapter 4 below.) In
such a case, if strictly applied, IP pricing would require a payment πQcxc − δuc, where
−δuc is negative and corresponds to a situation where the market participant gives its
marginal rent back to the Market Operator and makes zero profits, similarly to a pay-
as-bid scheme. However, as described in the original contribution [71, p.282] about the
practice of the New-York Independant System Operator NYISO and Pennsylvania–New
Jersey– Maryland Interconnection (PJM), and also in [90], market rules could specify that
such profits can be kept by market participants. In such a setting, IP pricing could be
described, quite roughly speaking, as ”marginal pricing plus make-whole payments” as
only losses are compensated, while market participants can keep rents if any at the given
market prices. Note that this approach seems also close to the current practice in Ireland
[20, pp.40-43].

Let us emphasize that according to the payment scheme proposed whereby seller market
participants are paid πx − δu with π the market price and δ the discretionary start up
price, no payment is made to non-committed units since then u=0 and x=0. However, it
may happen that rejected bids are profitable at the commodity market prices, in which
case δ is positive. In that situation, the term −δu in the settlement rule makes the
market participant indifferent to being committed or not: if u was switched to one to
allow a profitable generation of electricity, a corresponding payment from the market
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participant to the MO would occur offsetting these potential profits. This is another -
maybe surprising - aspect of the underlying idea of Theorem 2 in [71], and the fact that
for the obtained price system, optimal primal variables of the welfare program are also
solving the market participant’s profit-maximizing programs like (1.24) or (1.28).

In the original article [71], the question is asked to know if there are multiple equilibria
of this kind, i.e. supported by prices both for the commodity, and for the commitment
decisions. See [71, p.283]: ”Finally, our results say nothing about the uniqueness of
equilibrium prices. In fact, as can be seen in Scarf’s example in Section 4, there can
be multiple equilibria. (In simple examples, degeneracy of the augmented LP can be a
problem leading to multiple dual solutions. However, in larger more complex problems,
it is not entirely clear how big a problem a multiplicity of solutions will be)”. The
question is raised for ”efficient equilibria” in the sense of an equilibrium corresponding to
a welfare maximizing market outcome, the only outcomes considered in [71]. Otherwise,
it can be shown that any arbitrary choice of commitment decisions, i.e. of values for the
corresponding binary variables, will lead to an equilibrium as defined in [71]. For example,
outcomes under European market rules discussed below are examples of other equilibria of
such a kind where all commitment prices are positive or null. Again, for non-convex bids
”paradoxically rejected” according to the commodity market prices only which are ”good
enough”, the positive or null commitment prices δ would generate a payment −δ if uc was
switched from 0 to 1, which would correspond to a transfer from the market participant
to the market operator, and these commitment prices δ are determined to offset the
corresponding opportunity costs with regard to the commodity market prices, making
the market participant indifferent to being committed or not under the payment scheme
described above. Most of the time, these ”European-like equilibria” are not efficient as
they do not correspond to a pure welfare maximizing outcome.

Pursuing in the same direction and considering the bidding products proposed in Europe
(so-called block orders), the reference [70] shows that with IP pricing, provided the welfare
is positive, a welfare maximizing solution is always such that there is enough welfare to
finance compensations paid to bids losing money, so-called ”paradoxically accepted block
orders”, if they are allowed.

One recurring grief made to the IP pricing approach is that it exhibits important com-
modity price volatility [78, 84], the reason intuitively being that the units which are
marginal and hence setting this price, which can have substantially different greater or
lower marginal costs, can quickly change with an increase of load. We argue here that it
also leads to counter-intuitive market prices, as the following example shows:

Example 1.2. This example is described in Table 1.3

Bids Quantity (MW) Limit price (EUR/MW) Min. Acc. Ratio
A - Sell bid 50 30 -
B - Buy bid 50 130 -
C - Sell bid 40 40 -
D - Sell block bid 200 60 1
E - Buy block bid 200 90 1

Table 1.3: Instance with non-intuitive ’IP pricing’ outcome
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It could be shown (e.g. by solving the corresponding MILP problem) that the welfare
maximizing solution is here given by fully accepting A, B, D, E and rejecting C. As C is
fully rejected, the commodity market price must be less than or equal to 40 EUR/MW
(the marginal cost of C), and as A is fully accepted, the market price must be greater than
or equal to 30 EUR/MW. For such a price, D is ”paradoxically accepted” with respect
to the commodity price and would benefit from a ”start up price” corresponding to a
make-whole payment as shown above. However, intuitively, one may rather prefer to set
the price e.g. at 75 EUR/MW, in between the ”marginal costs” of D and E, in which
case no make-whole payment is needed. If the bid C is removed from the instance, such
an outcome would correspond to a market equilibrium based on the commodity price
only.

Indeed, the anomaly here (if judged so) is related to an arbitrary distinction between bids
including non-convexities and those which don’t, and the fact that convex bids can not be
paradoxically rejected, while non-convex bids can be. As a consequence, rejected convex
bids if any impose conditions on market prices, while rejected non-convex bids do not. It
is also more generally related to the possibility for rejected bids, convex or not, to impact
market prices, a property related to Property 4 in [86], namely the possibility for offline
generators to set the market price, see Section D therein.

Finally, still concerning Example 1.2, let us recall that fully indivisible bids (so-called
block bids in EU markets) could correspond to real technical conditions of power plants
as reported in [78], p.9 concerning ”combustion turbine units for which the minimum and
maximum outputs are the same”.

1.2.3 Convex hull pricing

Convex Hull Pricing (CHP) has first been proposed in [40]. Ring has proposed in [78] to
minimize so-called uplifts - a formal definition is provided below - made to market par-
ticipants to compensate them from the actual losses or opportunity costs they face at the
computed market prices. The key contribution in [40] has been to show how to compute
market prices minimizing the corresponding required uplifts using Lagrangian duality (see
[38] on classical Lagrangian duality results). Prices obtained are sometimes also called
Extended Locational Marginal Prices (ELMP), see [100]. The approach is of main cur-
rent interest in the US where several Independent System Operators are considering its
implementation, though it is acknowledged that more research on the topic is still needed,
see for example the contribution [86] by researchers at the ISO New England.

Let us consider here a program slightly more general than (SWP). (We come back below
to the two instances of (SWP) previously used as toy examples.)

max
∑

c

Bc(uc, xc) (1.32)
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∑

c

∑

ic

Qicxic = 0 [π] (1.33)

(uc, xc) ∈ Xc ∀c ∈ C (1.34)

where Xc is the set describing the technical constraints proper to participant c ∈ C, while
B(.) represents the costs of production (with B < 0), or the utility of consumption (with
B > 0) corresponding to production levels Qx < 0 or consumption levels Qx > 0. Here,
xc ∈ R

I is a vector whose components xic correspond to the respective acceptance levels
of several bids ic, or several steps of a step-wise bid curve, all controlled by the binary
variable uc.

Given an optimal solution (u∗, x∗) and a market price π, the uplift of participant c ∈ C
is defined as:

(
max

(uc,xc)∈Xc

[
Bc(uc, xc)− π

∑

ic∈Ic

Qicxic

])
−

(
Bc(u

∗
c , x

∗
c)− π

∑

ic∈Ic

Qicx
∗
ic

)
(1.35)

The interpretation is straightforward: the uplift is the gap between the maximum surplus
participant c could extract facing the market price π by choosing the best option regarding
only its own technical constraints, and the surplus obtained with this same market price
and the welfare maximizing solution. This gap is trivially always non-negative.

The contribution [40] has shown that market price(s) such that the sum of all these uplifts
is minimal can be obtained by solving the Lagrangian dual of the welfare maximizing
program (1.32)-(1.34) where only the balance constraint(s) (1.33) have been dualized.
Indeed, [40] considers a context where costs of production to serve a given load y should
be minimized, but can straighforwardly be adapted to our context of two-sided auctions
with both offers and demands. We review here this result, specializing the presentation
in [40] to the present context and notation.

Let us consider the following Lagrangian dual where the balance constraint(s) have been
dualized:

min
π

[
max

(uc,xc)∈Xc,c∈C

[
∑

c

Bc(uc, xc)− π
∑

c

∑

ic∈Ic

Qicxic

]]
(1.36)

As the lower level program is separable in c ∈ C, the dual can equivalently be written
as:

z∗ = min
π

[
∑

c

max
(uc,xc)∈Xc,c∈C

[
Bc(uc, xc)− π

∑

ic∈Ic

Qicxic

]]
(1.37)
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Let us observe that under constraint(s) (1.33), we have:

∑

c

Bc(uc, xc) =
∑

c

B(uc, xc)− π
∑

c

∑

ic

Qicxic (1.38)

Hence (1.32)-(1.34) can equivalently be written with an arbitrary π as:

w∗(π) = w∗ = max

[
∑

c

[
Bc(uc, xc)− π

∑

ic∈Ic

Qicxic

]]
(1.39)

∑

c

∑

ic

Qicxic = 0 (1.40)

(uc, xc) ∈ Xc ∀c ∈ C (1.41)

By weak duality, w∗ ≤ z∗. Moreover, as now detailed, the duality gap DG = z∗ − w∗

exactly corresponds to the sum of the uplifts, and solving the Lagrangian dual hence
aims at minimizing these. Again, let (u∗, x∗) be a welfare optimal solution, i.e. solving
(1.39)-(1.41), then DG = z∗ − w∗ can be written as:

min
π

[
∑

c

max
(uc,xc)∈Xc,c∈C

[
Bc(uc, xc)− π

∑

ic∈Ic

Qicxic

]
−
∑

c

[
Bc(u

∗
c , x

∗
c)− π

∑

ic∈Ic

Qicx
∗
ic

]]

(1.42)

or equivalently as:

min
π

[
∑

c

(
max

(uc,xc)∈Xc,c∈C

[
Bc(uc, xc)− π

∑

ic∈Ic

Qicxic

]
−

(
Bc(u

∗
c , x

∗
c)− π

∑

ic∈Ic

Qicx
∗
ic

))]

(1.43)

This shows that solving the Lagrangian dual with the balance constraints dualized pro-
vides prices minimizing the sum of the uplifts.

As first observed in [99] and more recently in [86], [44], solving the Lagrangian dual can
in certain situations be reduced to solving the continuous relaxation of the primal (1.32)-
(1.34). This holds when this continuous relaxation is itself equivalent to the following
”equivalent” formulation (under rather mild assumptions requiring the Xc to be compact
mixed integer linear sets, see [44]) of the Lagrangian dual to consider:

max
∑

c

B∗∗c,Xc
(uc, xc) (1.44)
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∑

c

∑

ic

Qicxic = 0 [π] (1.45)

(uc, xc) ∈ conv(Xc) ∀c ∈ C (1.46)

where conv(Xc) denotes the convex hull of the feasible set Xc, and B∗∗c,Xc
the convex

envelope of Bc taken over Xc, i.e. the lowest concave over-estimator of Bc on conv(Xc),
see [44, Theorem 1] in a slightly different setting where costs are minimized instead of
welfare maximized. See also the underlying results in [29] used therein, or also [38] for
equivalent results in a mixer integer linear setting. In such a case, the optimal dual
variables π∗ related to the constraint(s) (1.33) of the continuous relaxation, which can
often be obtained as a by product when solving this continuous relaxation, provide an
optimal solution to the Lagrangian dual (1.36).

Still following [44], assuming that the Bc are linear functions (the marginal costs/utilities
are constant), Bc and B∗∗c,Xc

have the same ”functional forms” and it is only required to
describe appropriately conv(Xc), hence the interest polyhedral studies of the sets Xc could
have, a review of which is given in [44] which also considers quadratic cost functions and
their convex envelopes over the Xc.

Regarding this, a key contribution in [99] improving on the more recent literature (e.g.
polyhedral studies discussed in [44]) is to provide a tight extended formulation of Xc

when all of the following aspects are simultaneously considered: start-ups and shut-downs
with minimum shut-down periods, minimum/maximum power output levels and ramping
constraints. This is done with the purpose of computing efficiently the uplift minimizing
market prices.

Let us also note that formulations in [84] of the mixed integer linear feasible set of each
market participant are good with regard to the present discussion in the sense that its
convex hull is exactly given by the continuous relaxation. Moreover, the welfare objective
function is linear. Hence, according to the discussion above, minimizing the duality gap
between the primal and the dual of the continuous relaxation aims at minimizing the
uplifts. This is done in [84] under the additional constraints of revenue adequacy for
producers, in the sense that all the costs of producers must be recovered, i.e. both the
start up costs and the marginal costs.

Let us now observe the outcome Convex Hull Pricing (CHP) gives on the Examples
described above. In the context of Examples 1.1.1 and 1.1.2, the sets Xc are described
by rcuc ≤ xc ≤ uc, uc ∈ {0, 1}, where rc is respectively (11/12) and 0. It is trivial to
verify that in these cases, conv(Xc) is described by its continuous relaxation, i.e. by
rcuc ≤ xc ≤ uc, 0 ≤ uc ≤ 1.
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Example 1.1 (continued)

Example 1.1.1 (CHP case):

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd

10xa + 14xb − 12xc − 13xd = 0 [π∗ = 40]

xa ≤ 1

xb ≤ 1

xc ≤ uc

xc ≥ (11/12)uc

xd ≤ 1

x ≥ 0

0 ≤ uc ≤ 1

Example 1.1.2 (CHP case):

max
x,u

(10)(300)xa + (14)(10)xb −

(12)(40)xc − (13)(100)xd − 200uc

10xa + 14xb − 12xc − 13xd = 0 [π∗ = 56.6...]

xa ≤ 1

xb ≤ 1

xc ≤ uc

xd ≤ 1

x ≥ 0

0 ≤ uc ≤ 1

Hence, the outcomes are:

Example 1.1.1 (CHP case):

1. Welfare maximizing solution: fully ac-
cept A, accept (11/12) of C, accept
(1/14) of B, fully reject D.

2. Market price: π = 40

3. Uplifts: no uplift for A, C, D, while B
requires an uplift of 30 EUR.

Example 1.1.2 (CHP case):

1. Welfare maximizing solution: fully ac-
cept A, accept (10/12) of C, fully re-
ject B, D.

2. Market price: π = 56.6...

3. Uplifts: no uplift for A, B, D, while C
requires an uplift of

[(12)56.6..− ((12)40 + 200)]
− [(10)56.6..− ((10)40 + 200)]
= 0− (−33.333..) = 33.333..

One can readily check by solving the corresponding LP that the sum of the uplifts, re-
spectively of 30 EUR and 33.333 EUR, correspond to the duality gaps.

Finally, let us go back to Example 1.2 used to identify a non-intuitive outcome when IP
Pricing is used. Solving the continuous relaxation, i.e. leaving aside that D and E can
only be fully accepted or fully rejected, the optimal dual variable value of the balance
constraint gives an uplift minimizing price of 60 EUR/MW. Only C requires an uplift, as
at that price the participant would prefer to have the bid fully accepted, with a surplus
of 40(60− 40) = 800 instead of 0, the uplift hence being of 800 EUR. Again, though the
outcome may be more intuitive than when IP pricing is used, the price is still influenced
by bids rejected in the welfare maximizing solution, as the uplifts could correspond either
to ”opportunity costs” or to ”actual losses” incurred.

18



1.2.4 European rules

European market rules are intimately related to IP pricing proposed in [71]. They can
be generally described as IP Pricing plus the constraints that all start up prices (or
commitment prices) of committed plants - or more generally accepted non-convex bids -
must be positive, meaning that a non-convex bid cannot be paradoxically accepted, while
marginal bids are setting the price. Hence no make-whole payments are needed. Also, non-
convex bids can be paradoxically rejected and are not compensated for the corresponding
opportunity costs, which corresponds to a situation where the optimal dual variable δc
associated to the constraint of the form uc = 0 rejecting the bid is positive. Let us
recall that according to the IP Pricing rule, rejected bids are not compensated, as the
payment of the form πQxc − δcuc is null if uc = 0, as observed in Section 1.2.2: the term
−δcuc in the objective just makes the participant indifferent to being committed or not at
electricity market prices π: there is no real opportunity costs according to the definition
of the payment rule.

To a given extent, this view or precision on European market rules may be one contribution
of the present work. More precisely, our third contribution presented in Chapter 4 has
shown how to model the fact that no losses could be incurred when start up costs are
considered in a way which - as we argue for in the contribution - improves on current
practice and previous models proposed for these so-called ”minimum profit conditions” in
uniform price auctions. This new market model essentially relies on the view of ”European
rules” in a broad sense as IP Pricing plus the additional conditions just described. It seems
more natural, more precisely as it relies on one simple principle: roughly speaking, the
condition ”no losses incurred” corresponds to stating that there is no ”shadow cost” at
forcing a non-convex bid to be accepted.

With these rules, in each Example 1.1.1 and 1.1.2, the bid C must be rejected. Once
rejected, the market price is increased to 100 EUR/MW, and the bid C is paradoxically
rejected in both cases.

Figure 1.2: A welfare sub-optimal solution satisfying European-like market rules

Let us note that in practice, there are hundreds of non-convex bids and only a limited
fraction are paradoxically rejected. However, due to the increase of so-called block or-
ders submitted past years, the number of these paradoxically rejected block orders has
substantially increased and is a source of concerns for all stakeholders, see [52].

Let us now consider Example 1.2. The optimal solution under current European market
rules is to fully accept A and B, and to reject C, D, E. The market price must then lie in
the interval [30; 40] as A is fully accepted while C is a convex bid which is fully rejected
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and must hence be out-of-the money or at-the-money (i.e. the bid price must be ”not
good enough”).

This can straightforwardly be shown using the following heuristic arguments. First, note
that due to the bid quantities at hand, D is accepted if and only if E is accepted as
well. However, if both are accepted, as no losses could be incurred, the market price
must lie in the interval [60; 90]. In this case, A, B and C are all strictly in-the-money and
should be fully accepted, which leads to a contradiction as the balance constraint would
be violated. So D and E must be both rejected which sets no particular condition on the
outcome (as they are block orders which can be paradoxically rejected), and it is then
direct to check that given the bids A, B and C only, the market outcome is the one just
described above.

These market rules lead to particularly interesting modelling and algorithmic issues related
to peculiar MPEC models, and are the main topic of the present work.

1.3 Outline of the contributions

Part II of the present work presents three standalone articles, i.e. which can be read
independently from each other. Each article provides distinct key new results. However,
they all rest on a common technique that we now briefly discuss before moving to the
summary of the contributions themselves.

As mentioned above, the European rule according to which the convex part of the problem
must be at equilibrium (or roughly ”marginal units are setting the price”), and which
is common to IP Pricing and the European market rules, can be modelled by requiring
optimality of the continuous decision variables for the welfare maximization problem where
the binary commitment decisions have been arbitrarily fixed. This leads to a simple
bilevel programming view on both IP Pricing and the European rules. In the European
market rules however, not all arbitrary commitment decisions lead to prices such that no
compensations are needed to cover the financial losses of some plants or consumers with
indivisibilities or fixed costs. Hence, one must determine commitment decisions (upper
level binary decision variable values) such that no losses are incurred at the prices obtained
as optimal dual variables of a lower level convex welfare maximizing program with these
upper level decision variable values given.

The class of bilevel programs where the lower level program parametrized by binary upper
decision variables is convex and for which strong duality holds is not of the most difficult
kind to handle, yet several modelling variants can be proposed. The modelling trick used
in the articles and now exposed in a slightly more general setting turns out to be of
interest both from an optimization and economic interpretation point of view, and seems
to improve on previous bilevel programming models proposed to address related pricing
problems in day-ahead electricity markets (see references reviewed below).

Let us consider the following bilevel program of the kind just described:

max
x,u

cT1 x + dT1 u (1.47)
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s.t.

A1x + B1u ≤ b1 (1.48)

x ∈ arg max
x
{cT2 x + dT2 u|A2x + B2u = b2, x ≥ 0} (1.49)

x ≥ 0, (1.50)

x ∈ R
I , u ∈ {0, 1}K (1.51)

A classical approach would be to use strong duality to write optimality conditions of the
lower level program considering u as a parameter in the constraints A2x = b2−B2u. If π
denotes the corresponding dual variables, this would first lead to conditions where non-
convex quadratic terms appear, corresponding to products of the form πl,tuc, where πl,t is
to interpret in our context as the market price at location l in period t. These products
can be linearized exactly using a well-known ”McCormick convexification technique”,
requiring the introduction of many auxiliary continuous variables and constraints with
”big M’s” (one variable and four constraints per product πl,tuc), and other ad hoc linear
constraints can then ensure that the upper level decisions u are consistent with the market
prices π in the sense that no financial losses are incurred in case of acceptance, i.e. when
uc = 1. This is the general approach in [104, 32, 30, 31].

Instead, let us consider a partition Kr ∪ Ka = K (r stands for ”rejected” and a for
”accepted”) of the indices of u. In the lower level program (LLP), u acts as a parameter.
However, we keep it as a vector of variables and add constraints fixing these variables to
some arbitrary values according to the partition, providing the following Restricted LLP
(RLLP):

RLLP

obj = max cT2 x + dT2 u (1.52)

s.t.

A2x + B2u = b2 [π] (1.53)

ukr ≤ 0 ∀kr ∈ Kr[δ
r
kr

] (1.54)

−uka ≤ −1 ∀ka ∈ Ka[δ
a
ka

] (1.55)

u ≤ 1 (1.56)

x, u ≥ 0 (1.57)

The dual of RLLP is well-defined:

RLLP-DUAL

dualobj = min
π,δa,δr

bT2 π −
∑

ka

δaka (1.58)
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s.t.

AT
2 π ≥ c2 (1.59)

(Bkr
2 )Tπ + δrkr ≥ dkr2 ∀kr ∈ Kr[ykr ] (1.60)

(Bka
2 )Tπ − δaka ≥ dka2 ∀ka ∈ Ka[uka ] (1.61)

δa, δr ≥ 0 (1.62)

Optimality conditions for RLLP are conditions (1.53)-(1.57), (1.59)-(1.62) as well as the
condition obj ≥ dualobj.

The key point is that we obviously do not know the values u in advance, as they should be
determined with respect to the upper level objective value and other ad hoc constraints
relating u to the prices π where applicable. Yet it is possible to overcome this issue and to
reuse optimality conditions for RLLP, with the following simple ”modelling trick”.

Let us underline here the similarity of the present approach to the idea in [71] of fixing
the binary commitment variables to their optimal value to derive optimal dual variable
values used to form contracts. Here, the approach is very similar, but the ”modelling
trick” which follows allows considering arbitrary binary variable values determined by
an arbitrary ”upper level program objective” and the corresponding optimal dual vari-
ables to the restricted welfare maximization problem where these binary variables are
fixed to their value (this restricted welfare maximization program being the ”lower level
program”).

The ”modelling trick” is as follows. Let us assume that we know bounds Mk on the
possible values of δak , δ

r
k valid for every partition Ka ∪ Kr, and consider the following

conditions:

BLPFS (Bilevel program feasible set conditions)

A1x + B1u ≤ b1 (1.63)

A2x + B2u = b2 [π] (1.64)

AT
2 π ≥ c2 [x] (1.65)

(Bk
2 )Tπ + δrk − δak ≥ dk2 ∀k ∈ K[uk] (1.66)

δrk ≤Mk(1− uk) (1.67)

δak ≤Mkuk (1.68)

cT2 x + dT2 u ≥ bT2 π −
∑

k

δak (1.69)

x, u, δa, δr ≥ 0 (1.70)

x ∈ R
I , π ∈ R

N , u ∈ {0, 1}K , δa, δr ∈ R
K , (1.71)

It is then not too hard to check that every feasible point in BLPFS will provide a point
(u, x) feasible for (1.48)-(1.51) and that any point feasible for (1.48)-(1.51) will provide a
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point feasible for BLPFS. The general idea is that a point is feasible for BLPFS if and
only if it provides a partition Ka ∪Kr determined by the values of the uc (more precisely,
Ka := {c|uc = 1}, Kr := {c|uc = 0}), such that the optimality conditions for the lower
level program in (1.49) hold for this partition, which are given by (1.53)-(1.57), (1.59)-
(1.62) and obj ≥ dualobj as described above. Values of uc are determined according
to some objective function to choose, e.g. the objective (1.47) if the goal is to solve
(1.47)-(1.51).

The reason is essentially that conditions (1.66)-(1.68) are enforcing (1.60)-(1.61) according
to this determined partition, and conversely that they are easily shown to hold given a
partition and conditions (1.60)-(1.61). Given these dual conditions, the condition (1.69),
enforcing equality of the primal and dual objective values, is equivalent to requiring
optimality for the lower level program in (1.49).

Theorem 3.1 in Chapter 3 or Theorem 4.2 in Chapter 4 are particular cases of this ap-
proach, on which also relies the proof of Theorem 2.2 in Chapter 2 (Theorem 2.3 of the
same Chapter uses in the same way strong duality for convex quadratic programs, as
described in Appendix A).

More precisely, taking the context previously described of pricing rules in day-ahead mar-
kets where marginal pricing is used, optimal dual variable values to the fixing constraints,
the values of the variables δa, which we call the shadow cost of acceptance, and δr, the
shadow cost of rejection, are shown in the following chapters to respectively correspond
to upper bounds on losses of accepted non-convex bids, and to upper bounds on the
opportunity costs of rejected non-convex bids. European-like market rules can hence be
specified by simply removing the variables δa from the formulations, i.e. setting them to
zero, instead of adding ad hoc conditions besides additional auxiliary variables and corre-
sponding constraints used for some linearization where applicable. A simple cleaning-up
of the models also allows removing the variables δr, providing models for European-like
day-ahead market auctions avoiding the use of any auxiliary variables or constraints. We
now move to the discussion of the content of each Chapter forming the core of the present
work.

1.3.1 Chapter 2

The key contributions of the article presented in Chapter 2 is to use the technique just
described to prove that MIP formulations avoiding complementarity conditions and any
auxiliary variables can be proposed to describe European market rules when so-called
block orders are considered, which are the only kind of non-convex bids proposed in the
Central Western Europe (CWE) region and by Nord Pool. The MILP formulation in the
case stepwise linear bid curves are considered is tractable ”as is” when given to a high
quality MILP solver, and has to some extent attracted the interest of practitioners e.g.
modelling markets in power generation companies (private communications). However,
the MIQCP formulation arising when piecewise linear bid curves are considered is not
tractable ”as is” by top solvers today available, and still requires further algorithmic
work.

In this respect, another contribution is to show that decomposition techniques known
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to be efficient [60, 27] can be obtained as a Benders decomposition applied to the new
formulations, and that the proofs first developed in a MILP setting where only stepwise bid
curves are considered can readily be adapted to the more general setting where piecewise
linear bid curves are considered (a MIQCP setting), providing an efficient technique to
solve instances in that second setting.

Models and algorithms have been implemented in the algebraic modelling language and
software AIMMS and tested using real data kindly provided by EPEX Spot. AIMMS had
been chosen because it was, with GAMS, among the only existing algebraic modelling
languages allowing to use solver’s advanced features such as callbacks to specify so-called
lazy constraints or user cuts customizing the branch-and-cut algorithm. Let us observe
that the technical computing language Julia together with the modelling layer JuMP,
both of which are open source, also allow to use such solver’s features, and seem to be
the only open source optimization tools allowing this, but were not available at the time
of the numerical experiments presented in the article.

1.3.2 Chapter 3

The second contribution emphasizes the bilevel programming view with the approach
mentioned above, showing that an exact linearization of the so-called (”ad hoc”) minimum
income conditions (MIC) used in Spain and Portugal can be given in that frame, leading
to a MILP model again avoiding the use of any auxiliary variables to describe equilibrium
for the convex part of the problem and the additional no financial losses conditions stating
in particular that start-up costs of dispatched plants must be recovered at the computed
market prices (together with a variable cost independent from the marginal cost curves
submitted with a given ”MIC bid”, the relevance of which is questionable). Let us note
that a similar exact linearization has been given independently in [32] and in [30, 31]
though these contributions introduce many auxiliary variables in the models, cf. the
discussion above regarding modelling issues for bilevel programs of the kind considered
here. The exact linearization presented in Chapter 3 also leads to a direct and simple
economic interpretation regarding the linearization of the ”income” used to recover all
the costs (start up and variable).

The current approach of the Spanish power exchange OMIE (and hence in the Pan-
European market clearing algorithm EUPHEMIA [27]) is to handle the ad hoc non-
convex start up costs recovery conditions by relying on a heuristic approach for solving
the corresponding problem, first making the condition hold for all committed units by
removing those for which the condition is not satisfied (or even for which the probability
of satisfaction is too low), then iteratively trying to re-introduce rejected units which are
potentially paradoxically rejected, looking at that second stage if welfare is increased with
the reintroduction, see [27]. The exact linearization has hence also attracted the interest
of practitioners, as the model obtained when only these MIC orders are considered is
particularly simple to implement, and shows interesting performances when used ”as is”
in combination with a few additional considerations. However, the model involving both
block orders and MIC orders at the same time remains quite challenging.

This Chapter also examines in the same framework the issue of opportunity costs of so-
called paradoxically rejected block orders (PRB). This issue has been first considered

24



empirically in [63] which has studied the number of such PRBs present in the market
solutions under various conditions on the size and number of block bids in the input, and
has derived from this a likelihood measure of being paradoxically rejected, in relation to
these characteristics of the instances.

Regarding this issue and to the best of our knowledge, our contribution in Chapter 3 is
the first to provide MIP formulations allowing to compute exactly the minimum total op-
portunity costs of such PRBs. The formulation is tractable for small to medium instances
but becomes much less tractable for large-scale instances of the size encoutered in the
whole Central Western Europe (CWE) region (Belgium, France, Germany, Netherlands),
though we successfully considered a few of these instances with results presented in [53].
Minimizing the opportunity costs, or also maximizing the traded volume, is compared
to the objective of maximizing welfare, and numerical tests are provided using realistic
instances corresponding to the Belgian market.

1.3.3 Chapter 4

This Chapter reconsiders the problem of market models with ”minimum profit condi-
tions” in uniform price electricity auctions first considered in Chapter 3 when addressing
modelling issues of such conditions according to the OMIE-PCR approach in Spain and
Portugal (modelling of the so-called ”complex orders with minimum income conditions”
described above).

Besides the market model used in OMIE-PCR (and hence in EUPHEMIA [27]), several
other models have been proposed in the literature, with or without including the start up
costs in the welfare objective function.

Our main contribution in that Chapter is to show that appropriately generalizing so-
called block orders used in the CWE Region, by adding start up costs in the objective
function and using the same modelling and algorithmic ingredients, leads to a market
model considering these start up costs recovery conditions in what seems to be a much
more relevant way, both from an economic and computational point of view, than current
practice in OMIE-PCR or models in the existing literature. The new approach proposed
essentially relies on the above mentioned view of the general European pricing approach
(roughly equilibrium for market participants and TSOs safe that non-convex bids can be
paradoxically rejected) as a variant of IP Pricing where commitment prices are enforced
to be positive or null, meaning that one only considers market outcomes where no make-
whole payments are needed. Let us emphasize that the European pricing approach viewed
in this way is not the current approach in OMIE-PCR/EUPHEMIA which instead relies
on ad hoc non-convex start up costs recovery conditions, which seems artificial in view
of our contribution, as described in more details in the Chapter. Again, by make-whole
payments, we mean ”uplifts” or ”transfer payments” for compensating actual losses at the
market prices. This last contribution certainly clarifies the link between IP Pricing and
the general European approach, and shows that this last European IP Pricing variant can
in a general setting be handled in a highly efficient way, both via a (primal-dual) com-
putationally efficient MIP formulation or via a Benders decomposition with strengthened
cuts derived from this same formulation.
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Let us mention here another very interesting related result. The revised version of [65]
appearing as Chapter 2 in [64] and relying on [54] proposes an analogue of Theorem 4.7
in Chapter 4 in a context which considers general ”mixed integer bids”, a careful analysis
of which shows they encompass the MP bids there proposed (though there is no mention
of applications such as the modelling of start up costs and the minimum profit conditions
or ramping constraints, etc). As the author indicates, he generalizes the applicability of
the cuts of Theorem 6 in [54], similar to those of Theorem 4.7, to these general mixed
integer bids (and general convex bids besides) using a completely different technique than
the Benders decomposition of Chapter 4.

Again, the contributions in this Chapter have attracted the interest of practitioners,
and as highlighted therein, seems to be ”the way to go” in terms of bidding product
harmonization across Europe, as far as the general European approach relying on uniform
prices is considered.

The models and algorithms proposed therein have been implemented in Julia with the
package JuMP. Both the source code and the datasets used for the study are freely avail-
able online, see [56]. Let us note that Julia and JuMP are both open source tools and the
implementation just mentioned has also been the occasion to contribute to JuMP and the
CPLEX bindings, by implementing a feature allowing the use of the ”local” variant of the
”user cut” and ”lazy constraint” control callbacks used to customize the branch-and-cut
algorithm of the underlying solver. As of now, CPLEX provides the feature but not yet
Gurobi. The local variant specifies that the added user cut or lazy constraint only applies
at the node where they are added, and the subtree originating from that node.

Finally, let us note that this last Chapter 4, besides its proper contributions, to a great
extent subsumes as special cases results presented in the previous Chapters, namely
the primal-dual formulations and the Benders decompositions in Chapter 2 (safe the
”quadratic cases”), and the exact linearization of the OMIE-PCR minimum income con-
ditions of Chapter 3 which is there reviewed to be further compared to the new approach
for modelling minimum profit conditions.
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Part II

Three contributions on non-convex
uniform price day-ahead electricity

auctions
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Chapter 2

MIP formulation and algorithms for
Central Western Europe market
rules

Accepted manuscript version of: Mehdi Madani and Mathieu Van Vyve, Computation-
ally efficient MIP formulation and algorithms for European day-ahead electricity market
auctions. European Journal of Operational Research, 242(2):580-593, 2015.

Abstract

We consider the optimization problem implementing current market rules for European
day-ahead electricity markets. We propose improved algorithmic approaches for that
problem. First, a new MIP formulation is presented which avoids the use of complemen-
tarity constraints to express market equilibrium conditions, and also avoids the introduc-
tion of auxiliary continuous or binary variables. Instead, we rely on strong duality theory
for linear or convex quadratic optimization problems to recover equilibrium constraints.
When so-called stepwise bid curves are considered to describe continuous bids, the new
formulation allows to take full advantage of state-of-the-art MILP solvers, and in most
cases, an optimal solution including market prices can be computed for large-scale in-
stances without any further algorithmic work. Second, the new formulation suggests a
Benders-like decomposition procedure. This helps in the case of piecewise linear bid curves
that yield quadratic primal and dual objective functions leading to a dense quadratic con-
straint in the formulation. This procedure essentially strengthens classical Benders cuts
locally. Computational experiments using 2011 historical instances for the Central West-
ern Europe region show excellent results. In the linear case, both approaches are very
efficient, while for quadratic instances, only the decomposition procedure is appropriate.
Finally, when most orders are block orders, and instances are combinatorially very hard,
the direct MILP approach is substantially more efficient.
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2.1 Introduction

The liberalization of electricity markets in developed countries has led to market design
and algorithmic issues addressed now for many years, that still provide with interesting
research questions. In Europe, efforts are currently made toward greater integration
of electricity markets, with for example the Price Coupling of Region (PCR) project
supported by the Europex consortium [28]. In the particular case of day-ahead markets
and related power exchanges, this integration relies on a common market model whose
underlying algorithmic problem is the main subject of this article. This market model
has been studied previously, and from different points of view [60, 63, 99, 104]. It is more
generally an interesting model for such combinatorial auctions. Our contribution here
is the presentation of new algorithmic results relying on a new MIP formulation. Well-
known issues in non-convex electricity markets are recalled in Section 2.1.1, European
market rules in Section 2.1.2, while Section 2.1.3 details the contribution and structure
of the rest of the article.

2.1.1 Day-ahead electricity markets with non-convexities

Day-ahead electricity markets are designed as two-sided auctions in which participants
submit orders to buy or sell electric power during some hours of the following day, in some
given areas. A market operator collecting these orders is in charge of defining an optimal
matching, as well as market prices. Participants agree on a set of rules driving the clearing
process, such as rules for bid acceptance and price determination [92]. Order matching and
market prices depend in particular on network constraints, and computed prices should
ideally support a market equilibrium (for price-taker participants, the market clears for
these prices and no excess demand/supply remains, see e.g. [61]). The literature about
’equilibrium among spatially separated markets’, thought in a different setting, has been
studied in [25, 85, 95]. Samuelson has proposed the term Cournot-Enke equilibrium [85]
for such kinds of equilibria.

The most complicating feature in day-ahead electricity markets, from both the market
design and algorithmic perspectives, is the fact that some orders may be non-convex,
in the sense that they yield, in the mathematical formulation of the market clearing
problem, objects that don’t have the convexity property (e.g. non-convex feasible sets).
For example, a participant can submit a block order for which a ”fill-or-kill condition”
must hold: the order can only be fully accepted or fully rejected. These block orders allow
participants to reflect more accurately their production constraints and cost structures.
This is mainly due to (i) non-convex production sets (e.g. minimum output levels at
which a plant can operate) and (ii) fixed (start-up) costs [63].

A primal program optimizing welfare and defining the optimal selection of bids ensures
that the allocation is dispatchable, i.e. respects network security constraints. When there
are no non-convexities (e.g. no block orders), it is well-known that optimal dual variables
(shadow prices) of this primal program provide with equilibrium prices, as expressed
by complementarity constraints relating primal and dual optimal variables. In a mixed
integer context, classical strong duality fails, and it is also well-known that a market
equilibrium with uniform prices is most of the time mathematically impossible [34, 71,
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84, 99, 104]. Uniform prices mean that payments depend only and proportionally on
exchanged quantities, via the unique commodity price per time slot and market area,
or the price per transmission resource. In particular, this prevents the use of transfer
payments for executed bids that would otherwise incur a loss to the bidder. These elements
are formally recalled below.

Several interesting approaches have been proposed to clear electricity markets with non-
convexities. O’Neill et. al. [71] proposes to solve a primal problem, then to fix integer
variables to their optimal value to obtain a convex program whose optimal dual variables
are used to form contracts yielding an equilibrium situation. The reference [40] proposes
a ’convex hull’ approach where transfer payments (uplifts) ensuring a market equilibrium
are minimized, while [84] proposes to use uniform prices in such a way that producers
recover their costs, and minimizing the duality gap caused by integer constraints. Other
propositions are given in [3, 7, 97, 99]. Except [84], all these propositions implement
non-uniform pricing schemes.

2.1.2 The current European market model

In Europe, the choice has been made to use uniform prices to avoid discriminating par-
ticipants. The chosen counterpart is that some block orders providing with a gain to the
bidder for the computed market prices may be paradoxically rejected, and are not finan-
cially compensated. This is for example the solution adopted in coupled markets such as
CWE (Central Western Europe market, pooling Belgium, France, Germany, Luxembourg
and the Netherlands), which has just been extended to the North Western Europe market
(NWE), including Nordic-Baltic countries and Great-Britain. The market clearing opti-
mization problem of these markets is the main topic of this article, see [21] for a full list
of requirements. The only requirements of CWE not included in the model we consider
below are linked and exclusive block orders, but adding them is straightforward and would
only make notations less clear.

The classical way to formulate common European market requirements in a mathematical
model is via the addition of dual and complementarity constraints to the primal program
defining feasible dispatches. These complementarity constraints form a subset of those
that would be a consequence of duality theory holding in a well-behaved convex situa-
tion (without block orders), see [60, 99]. To handle these formulations, special purpose
algorithms have been designed. The two best algorithms so far have been developed in-
dependently [21, 60], COSMOS [21] being used in practice in the CWE region since 2009,
and on which the algorithm EUPHEMIA [26] used in the NWE region is based. Both
are decomposition-based branch-and-bound algorithms solving a main optimization prob-
lem and adding cuts to exclude incumbents for which no uniform prices fulfilling auction
requirements exist.

On the other hand, so far, all mixed integer linear programming formulations proposed
are using auxiliary variables. For example, [63] uses a formulation with auxiliary binary
variables equal to twice the number of hourly (continuous) orders, and is intractable as
such when dealing with real large-scale instances. This is similar to the formulation that
could be obtained by linearising complementarity constraints, also introducing at least
two binary variables per hourly order. A last recent proposition [104] needs a number of
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auxiliary variables proportional to the number of block orders and submarkets (a given
location and time slot), and is also not suitable for large-scale instances, according to
numerical results presented.

2.1.3 Contribution and structure of this article

In this article, we provide with a non-trivial reformulation of the European Market Model
(EMM) that has several advantages. Precisely, we show how EMM can be modelled
as a mixed integer linear program without the introduction of auxiliary variables, when
stepwise bid curves (see definitions below) are considered, beside block orders and network
constraints. When piecewise linear bid curves are considered, EMM can be formulated as
a mixed integer quadratically constrained program (MIQCP) with one non-linear convex
quadratic constraint (with integer variables). In the linear case, the new formulation
allows to take full advantage of the power of well-known state-of-the-art MILP solvers,
and we are able to solve real large-scale instances without further algorithmic work. In
both cases, the new formulation allows the use of a classical Benders decomposition. In
particular, we derive in Section 2.4 a Benders-like decomposition procedure with cuts that
are stronger than those proposed in [60]. The new cuts are obtained by strengthening
classical Benders cuts derived from the new formulation locally (i.e. in branch-and-bound
subtrees, using information provided by node solutions). This decomposition algorithm is
needed when piecewise linear bid curves are considered, since today solvers are not able
to deal with large-scale MIQCP problems of the kind presented below.

The organization of the paper is the following. Section 2.2.1 recalls with the notation
of the article well-known results about market equilibrium with uniform prices in the
presence of indivisible orders. Section 2.2.2 presents known MPCC formulations [60, 99]
of EMM with stepwise bid curves and with general piecewise linear bid curves respectively.
Adaptations presented in Section 2.2.2 use the classical Dorn’s quadratic programming
duality results. In Section 2.3, we present the new MIP formulations in both the linear and
the quadratic case. In Section 2.4, we show how to derive a decomposition procedure by
the use of a Benders-like argument, again both in the linear and quadratic cases. Finally,
Section 2.5 is devoted to computational experiments.

2.2 Non-convex Day-ahead Electricity Markets and

the European Market Model

We first fix the notations, describe the market coupling problem [21, 34, 60, 62, 99], and
recall why a market equilibrium with uniform prices (see definition below) most of the
time doesn’t exist in the presence of indivisible orders.

2.2.1 Market equilibrium with uniform prices and non-convexities

Notation and description of the model.
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Sets: I is the set of (continuous) hourly orders, J is the set of block orders, and K is the
set of network elements (e.g. high voltage power lines or nodes, depending on the network
model). The set of bidding locations and time slots are L and T respectively, while N is
a set indexing network constraints.

Decision variables: The variables xi ∈ [0, 1], i ∈ I and yj ∈ {0, 1}, j ∈ J are decision
variables which define the level of execution of a given order. The other variables nk are
used to describe feasible dispatches, according to the network model (see below).

Objective function: The market coupling problem is modelled as a welfare maximisa-
tion program. This amounts to maximize the total seller and buyer surplus.

Bid curves and hourly orders

For each time slot t ∈ T and each location l ∈ L, participants submit a piecewise linear
bid curve specified by a finite set of breakpoints {(Qs, Ps)}s∈S. These bid curves give the
limit (buy or sell) prices, in relation to bid quantities (see Fig. 2.1). Aggregated supply
and demand bid curves are then computed, containing all the information needed for the
clearing process. Each two consecutive points (Qs, Ps) and (Qs+1, Ps+1) correspond to a
hourly order i of quantity Qi = (Qs+1 − Qs). The decision variable xi determines which
fraction of this quantity is executed.
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Figure 2.1: stepwise and piecewise linear bid curves

For offer bid curves, Ps ≤ Ps+1 (the curve is non-decreasing), while for demand bid curves,
Ps ≥ Ps+1 (the curve is non-increasing). Stepwise bid curves are such that Ps = Ps+1

if Qs 6= Qs+1 while for piecewise linear bid curves in general, one can have Ps 6= Ps+1

and Qs 6= Qs+1. A hourly order i ∈ I always comes from a bid curve corresponding to a
given area and a given time slot. However, we will be slightly more general, allowing an
order to bid quantities in several areas and time slots. This eases the formal description
of the market clearing problem. The parameters associated to a hourly order i are:
P i, Qi

l,t, for step orders, and P i
0, P

i
1, Q

i
l,t for interpolated orders which come from general

piecewise linear bid curves. For example, according to the left diagram of Fig.1, a decision
variable x1 is associated to an order with bid quantity Q1 := (Q2 − Q1) and a bid price
P 1 := P1 = P2. We deal with piecewise linear bid curves and interpolated orders in
Section 2.2.2. Instead of partitioning all orders into the sets of buy orders and sell orders,
quantities for buy orders are counted positively, and negatively for sell orders. This is
convenient to derive economic interpretations, to state network balance constraints, or
the welfare maximizing objective.
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Block Orders In practice, a block order j ∈ J is related to a given area l ∈ L and
specified by a price P j and quantities Qj

t for several periods t ∈ T . However, we will
again be slightly more general, allowing to consider quantities over multiple areas. The
parameters for a block j are P j and Qj

l,t. The binary decision variable yj determines if the
order is entirely accepted or entirely rejected. Again, quantities are counted positively for
buy orders, and negatively for sell orders.

Linear Network Models

The DC linear network model in [84], or the network models currently used in European
day-ahead markets such as the ”Available-to-Transfer Capacity” model (ATC) [21, 26, 60]
or flow-based models (FB) relying on so-called PTDF matrices [21, 26, 34], are all lin-
ear network representations. We therefore consider an abstract and very general linear
network model to emphasize the fact that the new algorithmic approaches we propose
here work with all these usual models. In this setting, the set K contains network ele-
ments (inter-connectors or network nodes), variables nk denote quantities related to each
element, and coefficients ekl,t in (2.4) describe, for a given submarket (l, t), how these
elements are related to the net export position of this market. Then, constraints (2.5)
describe the most general kind of linear constraints on these network elements. For exam-
ple, in the case of ATC models, the set K denotes the set of cross-border lines, variables
nk correspond to flows through these lines, and constraints (2.5) would then be capacity
constraints on these flows. For flow-based models, they correspond to ’critical network
elements’ [21].

DA-PRIMAL

max
xi,yj ,nk

∑

i

(
∑

l,t

Qi
l,tP

i)xi +
∑

j

(
∑

l,t

Qj
l,tP

j)yj (2.1)

subject to:

xi ≤ 1 ∀i ∈ I [si] (2.2)

yj ≤ 1 ∀j ∈ J [sj] (2.3)
∑

i

Qi
l,txi +

∑

j

Qj
l,tyj =

∑

k

ekl,tnk, ∀(l, t) ∈ L× T [pl,t] (2.4)

∑

k

am,knk ≤ wm ∀m ∈ N [um] (2.5)

xi, yj ≥ 0, ∀i ∈ I, j ∈ J (2.6)

yj ∈ Z ∀j ∈ J (2.7)

Let us consider the continuous relaxation of DA-PRIMAL, denoted by DA-CR. Its dual
is:

DA-CR-DUAL
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min
si,sj ,pl,t,um

∑

i

si +
∑

j

sj +
∑

m

wmum (2.8)

subject to:

si +
∑

l,t

Qi
l,tpl,t ≥

∑

l,t

Qi
l,tP

i ∀i ∈ I [xi] (2.9)

sj +
∑

l,t

Qj
l,tpl,t ≥

∑

l,t

Qj
l,tP

j ∀j ∈ J [yj] (2.10)

∑

m

am,kum −
∑

l,t

ekl,tpl,t = 0 ∀k ∈ K [nk] (2.11)

si, sj, um ≥ 0 ∀i ∈ I, j ∈ J,m ∈ N (2.12)

And the related complementarity conditions are:

DA-CC

si(1− xi) = 0 ∀i ∈ I (2.13)

sj(1− yj) = 0 ∀j ∈ J (2.14)

xi(si +
∑

l,t

Qi
l,tpl,t −

∑

l,t

Qi
l,tP

i) = 0 ∀i ∈ I (2.15)

yj(sj +
∑

l,t

Qj
l,tpl,t −

∑

l,t

Qj
l,tP

j) = 0 ∀j ∈ J (2.16)

um(
∑

k

am,knk − wm) = 0 ∀m ∈ N (2.17)

Market equilibrium with uniform prices: definitions and classical results

Solving the market coupling problem implies to find prices supporting, ideally, a mar-
ket equilibrium. In a convex situation where all orders are continuous orders, classical
shadow prices (pl,t, um here) are uniform equilibrium prices (see definitions below) for the
optimal bid allocation. We review here this equilibrium property implied by dual and
complementarity constraints.

Definition 2.1 (Uniform prices). A price system for the auction process will be called a
system of uniform prices if all money transfers between market participants depend only
and proportionally on a single commodity price pl,t per location l ∈ L and time slot t ∈ T .
Definition 2.2 (Bid surplus). Let pl,t be uniform prices. A hourly or block order i ∈ I∪J
is said to be:

(i) in-the-money (ITM) if
∑

l,t

Qi
l,t(P

i − pl,t) > 0. This essentially means that for the

given market prices, the bidder (producer or consumer) has an economic surplus.
For hourly orders, since an order has a precise location and time slot, the sum has
only one term Qi

l0,t0
(P i − pl0,t0). So if Qi

l0,t0
< 0 (sell order), then P i < pl0,t0 and if

Qi
l0,t0

> 0 (buy order), then P i > pl0,t0.
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(ii) at-the-money if
∑

l,t

Qi
l,t(P

i − pl,t) = 0. For hourly orders, this means Qi
l0,t0

(P i −

pl0,t0) = 0, and (assuming Qi
l0,t0

6= 0), P i = pl0,t0: both bid and market prices are
equal.

(iii) out-of-the-money if it is not ITM nor ATM (i.e. its execution would incur a loss):
∑

l,t

Qi
l,t(P

i − pl,t) < 0.

Definition 2.3 (Network equilibrium and optimality conditions for the TSO problem).
For a given primal solution (x, y, n) and prices p, there is a network equilibrium if there
exist network resource prices um ≥ 0,m ∈ N such that (2.11) and (2.17) hold. When
the abstract network model is specialized to usual linear network models (e.g. ATC or
Flow-based [21]), these conditions mean that transmission of electricity has a value only if
transmission capacities are scarce. The network resource prices are given by the variables
um ≥ 0,m ∈ N . In that situation, for the given market prices, the TSO cannot be more
profitable by transporting more or less electricity than in the current situation.

Let us note that for an ATC network model [21], a price difference pl,t < pk,t can only
occur when the line from the market with lower price to the market with higher price is
congested. In that case the price difference equals the congestion price.

Definition 2.4 (Market equilibrium with uniform prices). Let (x∗, y∗, n∗) be a feasi-
ble point for DA-PRIMAL, i.e. satisfying (2.2)-(2.7), and p∗ uniform prices. Then
(x∗, y∗, n∗) and p∗ form a market equilibrium with uniform prices if and only if:

I. (a) Fully executed orders are ITM or ATM, (b) fractionally executed orders are ATM,
(c) rejected orders are ATM or OTM.

II. Network equilibrium conditions, given at Definition 2.3, are satisfied.

The definition essentially means that for the given prices p∗l,t, no excess demand or excess
supply remains, and no other level of execution could be more profitable to the bidders

or the TSO. For example, for a given order i: ∀xi ∈ [0, 1],
∑

l,t

Qi
l,t(P

i
l,t − p∗l,t)xi ≤

∑

l,t

Qi
l,t(P

i
l,t − p∗l,t)x

∗
i .

The two following results are then classical. Proofs are given in appendix.
Theorem 2.1. Let (x∗, y∗, n∗) be a feasible point for DA-PRIMAL, i.e. satisfying (2.2)−
(2.7).

(I) A market equilibrium with uniform prices exists if and only if there are dual variables
s∗i , s

∗
j , p

∗
l,t, u

∗
m such that dual and complementarity constraints (2.9)− (2.17) are satisfied.

(II) This is the case if and only if (x∗, y∗, n∗) is optimal for the continuous relaxation
DA-CR, s∗i , s

∗
j , p

∗
l,t, u

∗
m is optimal for the dual DA-CR-DUAL, and both objective values

are equal.

Corollary 2.1. Consider DA-PRIMAL (i.e. the primal program, including integer con-
straints). There exists a solution (x, y, n) and uniform prices p∗l,t forming a market
equilibrium if and only if the continuous relaxation DA-CR admits an optimal solution
(x∗i , y

∗
j , n

∗
k) with y∗j ∈ Z, ∀j ∈ J .
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Theorem 2.1 and Corollary 2.1 show that a market equilibrium with uniform prices exists
if and only if there is no duality gap caused by integer constraints, which is not the case
for most instances.

2.2.2 The European Market Model: classical MPCC formula-
tion

We describe here the model used everyday in Europe to clear day-ahead markets [21] and
recall its classical MPCC formulation [60, 99]. Since a market equilibrium with uniform
prices often doesn’t exist, the solution adopted in Europe is to compute uniform prices
such that hourly orders and the network are both ’at equilibrium’, and only paradoxically
rejected block orders (PRB) are tolerated as deviations from a perfect market equilibrium.
These PRB, if executed with the given market prices, would provide with a gain to the
bidder, but are rejected by the market operator.

Market clearing price range condition: The following condition is a technical con-
dition (used in Theorems 2.2 and 2.3), ruling out arbitrarily large market clearing prices,
while allowing them to be sufficiently large not to exclude any relevant market clearing so-
lution (e.g. using Lemma 2.1 in [72] and bounds on all input data assumed to be rational
numbers of a priori limited precision):

pl,t ∈ [−P̄ , P̄ ] ∀(l, t) ∈ L× T (2.18)

However, let us note that in practice, bid prices are constrained to lie in a range [−P̄bid, P̄bid],
and P̄ is set to P̄bid, which is usually fine, though in some rare cases renders the problem
infeasible. See also [69] on related issues about ranges for bid prices and market clearing
prices.
Definition 2.5 (European prices). The main requirements of EMM are: (i) uniform
prices, (ii) OTM orders must be rejected (block and hourly orders as well), (iii) ITM
hourly orders must be accepted, (iv) network equilibrium constraints must be satisfied and
(v) computed market prices must lie in a specified interval [−P̄ , P̄ ].

EMM with stepwise linear bid curves

The classical way to state a maximisation problem formulating European market rules is
to write primal, dual and all complementarity constraints excepted those of type (2.14)
(see e.g. [99]). According to the interpretation given above, this corresponds to drop for
block orders the requirement that they should be accepted if they are ITM. This yields a
mathematical program with complementarity conditions (MPCC).

EMM-MPCC:

max
x,y,n,p,u

∑

i

(
∑

l,t

Qi
l,tP

i)xi +
∑

j

(
∑

l,t

Qj
l,tP

j)yj (2.19)
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subject to constraints: Primal and dual constraints: (2.2)− (2.7), (2.9)− (2.12), the
price range condition (2.18) and the subset of complementarity constraints: (2.13), (2.15)−
(2.17), but not subject to complementarity constraints of type (2.14).

This formulation involves non-linear constraints, and instances, which are very large in
practice, would be hard or even impossible to solve as it is with current MINLP solvers.
For this reason, special purpose algorithms have been designed (see above).

EMM with piecewise linear bid curves and quadratic programming dual-
ity

The adaptation needed to consider piecewise linear bid curves rely on duality results for
convex quadratic programs. We first recall the market equilibrium conditions expressed
by dual and complementarity constraints in this different setting. Let us consider the right
diagram of Fig.1. A segment of a piecewise linear bid curve now corresponds to a hourly
order with a price P0 at which the order starts to be accepted, a price P1 at which it is fully
accepted, and bid prices for intermediate quantities are obtained by linear interpolation
(see e.g. the hourly order associated with the first segment and variable x1 in the right
diagram of Fig.1). For a sell order i, P i

1 ≥ P i
0 (because the bid curve is non-decreasing),

while for a buy order i, P i
1 ≤ P i

0 (because the bid curve is non-increasing). The objective
function giving the welfare now depends quadratically on the levels of executions xi (cf.
the area below a bid curve segment limited by an execution level xi).

DA-PRIMAL-QUAD

max
xi,yj ,nk

∑

i

(
∑

l,t

Qi
l,tP

i
0xi +

∑

l,t

Qi
l,t(P

i
1 − P i

0)
x2
i

2
) +

∑

j

(
∑

l,t

Qj
l,tP

j
l,t)yj (2.20)

subject to (primal constraints remain unchanged): (2.2)− (2.7)

The objective function is trivially concave as factors Qi
l,t(P

i
1 − P i

0) are non-positive, and
the continuous relaxation of DA-PRIMAL-QUAD, noted DA-QUAD-CR, is a convex
quadratic program. Strong duality still holds in this setting (see e.g. [22, 39, 98]).
Compared to the dual DA-CR-DUAL above, the dual objective function has additional
quadratic terms:

DA-QUAD-CR-DUAL

min
si,sj ,pl,t,um,vi

∑

i

si +
∑

j

sj +
∑

m

wmum −
∑

i

(
∑

l,t

Qi
l,t(P

i
1 − P i

0))
v2i
2

(2.21)

and feasibility inequalities of type (2.9) in DA-CR-DUAL have an additional linear term:

si +
∑

l,t

Qi
l,tpl,t ≥

∑

l,t

Qi
l,tP

i
0 +

∑

l,t

Qi
l,t(P

i
1 − P i

0)vi ∀i ∈ I [xi], (2.22)
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while other constraints (2.10)− (2.12) remain unchanged.

Lemma 2.1. If (x, y, n) is an optimal solution of the continuous relaxation DA-QUAD-
CR, there exists a dual optimal solution (si, sj, pl,t, um, vi) such that vi = xi ∀i ∈ I.

Proof. It is a direct application of Dorn’s quadratic duality theorem (see e.g. [22], [39] or
[98]).

When stating primal, dual and complementarity constraints, or primal and dual con-
straints with equality of objective functions, we will thus be allowed to replace vi with xi,
since such a solution of the dual program exists. This is indeed needed for the economic
interpretations.

Complementarity Constraints

Compared to the previous case with stepwise bid curves and complementarity constraints
(2.13)−(2.17), one has just to replace complementarity constraints of type (2.15) by:

xi(si +
∑

l,t

Qi
l,tpl,t −

∑

l,t

Qi
l,tP

i
0 −

∑

l,t

Qi
l,t(P

i
1 − P i

0)xi) = 0 (2.23)

Lemma 2.1 has been used to replace vi by xi. Using this, the definition of ITM, ATM or
OTM can be adapted for these interpolated hourly orders, as well as Theorem 2.1 and
Corollary 2.1:

Definition 2.6 (Bid surplus for hourly orders, quadratic setting). Let pl,t be a set of
uniform prices and xi the execution level of the hourly order i. The order is said to be:

(i) in-the-money (ITM) if
∑

l,t

Qi
l,t(P

i
1 − pl,t) > 0. Recalling that there is in practice only

one term in the sum and the sign convention for quantities, this means that pl,t > P i
1 for

sell orders and pl,t < P i
1 for buy orders.

(ii) at-the-money (ATM) if
∑

l,t

Qi
l,tP

i
0 +

∑

l,t

Qi
l,t(P

i
1 − P i

0)xi =
∑

l,t

Qi
l,tpl,t, with xi the

execution level. In this case, again considering orders for one market segment (l0, t0):
pl0,t0 is equal to P i

0 + (P i
1 − P i

0)xi, i.e. the market price equals the interpolated bid price
given by the piecewise linear bid curve for this level of execution.

(iii) out-of-the-money (OTM) if
∑

l,t

Qi
l,tP

i
0 <

∑

l,t

Qi
l,tpl,t. This means that pl,t < P i

0 for

sell orders and pl,t > P i
0 for buy orders.

The definition 2.4 of a market equilibrium with uniform prices given above is still valid
when considering interpolated hourly orders and Definition 2.6. The adaptations of The-
orem 2.1 and Corollary 2.1 are straightforward and only concern constraints related to
hourly orders: just replace dual and complementarity constraints (2.9) by (2.22) and
(2.15) by (2.23), respectively. Lemma A3 in appendix details what needs to be adapted
in Lemmas A1 and A2 to prove the analogue of Theorem 2.1 for markets with piecewise
linear bid curves.
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EMM-QUAD-MPCC:

As in the previous case, a MPCC formulation here denoted EMM-QUAD-MPCC can be
given, by just replacing in the formulation EMM-MPCC the welfare objective function
by the quadratic one (2.20), as well as dual constraints (2.9) by (2.22) (using Lemma 2.1
to replace vi by xi as above), and complementarity constraints (2.15) by (2.23).

2.3 New MIP Formulations

When stepwise bid curves are considered beside block orders, the new formulation consists
in an exact linearisation of EMM-MPCC, avoiding the use of any auxiliary variable. When
more generally piecewise linear bid curves are considered as well, EMM-QUAD-MPCC
can be reformulated as a MIQCP with one convex quadratic constraint (with integer
variables). The advantage of these new formulations is twofold. First, in the MILP
case, it allows to solve real large-scale instances without any special purpose algorithm,
using state-of-the-art MILP solvers. Second, one can derive in both cases a Benders-like
decomposition algorithm, particularly useful to deal with piecewise bid curves where a
MIQCP must be solved. The strengthened Benders cuts obtained improve on the exact
cuts provided in [60], also using Benders decomposition to solve a formulation similar to
the formulation EMM-QUAD-MPCC. These cuts are derived in Section 2.4.

2.3.1 EMM with stepwise bid curves as a MILP

The new formulation involves all primal and dual constraints as well as an equality of
objective functions condition (instead of a subset of complementarity constraints). To
ensure the existence of a solution and to reflect the choice of allowing some ITM block
orders to be rejected, dual constraints of type (2.10) are modified, yielding constraints
of type (2.31) below, where the Mj are large enough to deactivate the constraint when
yj = 0, and chosen in such a way that constraints (2.31) don’t reduce the range of prices
given by the market rule (2.18). Using the price range conditions above, it is direct to see

that Mj :=
∑

l,t

2P̄ |Qj
l,t| is a sufficient choice.

EMM-MILP:

max
x,y,n,p,u,s

∑

i

(
∑

l,t

Qi
l,tP

i)xi +
∑

j

(
∑

l,t

Qj
l,tP

j)yj (2.24)

subject to:

pl,t ∈ [−P̄ , P̄ ] ∀(l, t) ∈ L× T (2.18)
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∑

i

(
∑

l,t

Qi
l,tP

i)xi +
∑

j

(
∑

l,t

Qj
l,tP

j)yj ≥

∑

i

si +
∑

j

sj +
∑

m

wmum

(2.25)

xi ≤ 1 ∀i ∈ I (2.26)

yj ≤ 1 ∀j ∈ J (2.27)
∑

i

Qi
l,txi +

∑

j

Qj
l,tyj =

∑

k

ekl,tnk, ∀(l, t) ∈ L× T (2.28)

∑

k

am,knk ≤ wm ∀m ∈ N (2.29)

si +
∑

l,t

Qi
l,tpl,t ≥

∑

l,t

Qi
l,tP

i ∀i ∈ I (2.30)

sj +
∑

l,t

Qj
l,tpl,t ≥

∑

l,t

Qj
l,tP

j −Mj(1− yj) ∀j ∈ J (2.31)

∑

m

am,kum −
∑

l,t

ekl,tpl,t = 0 ∀k ∈ K (2.32)

xi, yj, si, sj, um ≥ 0, yj ∈ Z ∀i ∈ I, ∀j ∈ J, ∀m ∈ N (2.33)

Theorem 2.2. The formulation EMM-MPCC and the new MILP formulation EMM-
MILP are equivalent in the following sense: (i) for each feasible point (x, y, n, p, u, s) of
EMM-MPCC, there exists s̃ such that (x, y, n, p, u, s̃) is feasible for EMM-MILP.

(ii) Conversely, for each feasible point of EMM-MILP (x, y, n, p, u, s), there exists s̃ such
that (x, y, n, p, u, s̃) is feasible for EMM-MPCC.

Proof. See appendix.

2.3.2 EMM with piecewise linear bid curves: new MIQCP for-
mulation

We give here the new formulation analogue to the one presented above, where (2.25) and
(2.30) are replaced by their quadratic analogues (2.35) and (2.40) respectively. For the
sake of clarity, we rewrite here all constraints in extenso, as they will be used in Section
2.4.

EMM-QUAD-MIQCP:

max
∑

i

(
∑

l,t

Qi
l,tP

i
0xi +

∑

l,t

Qi
l,t(P

i
1 − P i

0)
x2
i

2
) +

∑

j

(
∑

l,t

Qj
l,tP

j
l,t)yj (2.34)

subject to:
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pl,t ∈ [−P̄ , P̄ ] ∀(l, t) ∈ L× T (2.18)

∑

i

(
∑

l,t

Qi
l,tP

i
0xi +

∑

l,t

Qi
l,t(P

i
1 − P i

0)
x2
i

2
) +

∑

j

(
∑

l,t

Qj
l,tP

j
l,t)yj ≥

∑

i

si +
∑

j

sj +
∑

m

wmum −
∑

l,t

Qi
l,t(P

i
1 − P i

0)
x2
i

2
) (2.35)

xi ≤ 1 ∀i ∈ I (2.36)

yj ≤ 1 ∀j ∈ J (2.37)
∑

i

Qi
l,txi +

∑

j

Qj
l,tyj =

∑

k

ekl,tnk, ∀(l, t) ∈ A× T (2.38)

∑

k

am,knk ≤ wm ∀m ∈ N (2.39)

si +
∑

l,t

Qi
l,tpl,t ≥

∑

l,t

Qi
l,tP

i +
∑

l,t

Qi
l,t(P

i
1 − P i

0)xi ∀i ∈ I (2.40)

sj +
∑

l,t

Qj
l,tpl,t ≥

∑

l,t

Qj
l,tP

j −Mj(1− yj) ∀j ∈ J (2.41)

∑

m

am,kum −
∑

l,t

ekl,tpl,t = 0 ∀k ∈ K (2.42)

xi, yj, si, sj, um ≥ 0 yj ∈ Z ∀i ∈ I, ∀j ∈ J, ∀m ∈ N (2.43)

Theorem 2.3. Both EMM-QUAD-MPCC and EMM-QUAD-MIQCP formulations are
equivalent in the following sense: (i) for each feasible point (x, y, n, p, u, s) of EMM-
QUAD-MPCC, there exists s̃ such that (x, y, n, p, u, s̃) is feasible for EMM-QUAD-MIQCP.

(ii) Conversely, for each feasible point of EMM-QUAD-MIQCP (x, y, n, p, u, s), there ex-
ists s̃ such that (x, y, n, p, u, s̃) is feasible for EMM-QUAD-MPCC.

Proof. See appendix.

2.4 A Decomposition Method

Here, we derive from our new formulation a Benders-like decomposition algorithm, where
cuts are added within the branch and bound tree used to solve the primal program
DA-PRIMAL or DA-QUAD-PRIMAL, when no European prices exist for a given node
solution incumbent. By a node solution incumbent, we mean a new best primal feasible
solution obtained as the optimal solution to the LP relaxation at a given node of the branch
and bound tree. It is in this sense similar to the two best algorithms [21, 60] mentioned

42



earlier (the algorithm briefly described in [21] is the proprietary algorithm in charge of
solving CWE market instances on which further technical developments for European
market integration relies). The cuts we propose are stronger than the cuts proposed in
[60]. Quadratic instances of the new formulation cannot be solved with today solvers,
and such an algorithm is needed to solve efficiently real life instances. The derivation is
in a first stage very close to [5], and in particular relies on the Farkas lemma and the
finiteness of the number of vertices of the polytope defining the feasible set of a so-called
slave program.

To simplify notations, in all this section, only one area and one time slot are considered,
but all of what follows can be carried out with several areas, time slots, and a network
model. We are sometimes referring to corresponding previous constraints involving the
network structure, but the adaptations needed are minor and direct. In all this section, we
neglect the price range condition (2.18), assuming as explained above that P̄ is sufficiently
large not to exclude any relevant solution. Hence, the decomposition as presented here
actually solves EMM-MILP minus (2.18). Exposition is made first in the linear case. It
is shown hereafter how to handle the quadratic case in a similar way.

2.4.1 The linear case

Consider the primal problem DA-PRIMAL of Section 2.2:

max obj :=
∑

i

QiP ixi +
∑

j

QjP jyj,

subject to (2.2) − (2.7), with only one market (no network and only one period), i.e.

with N empty and
∑

k

ekl,tnk := 0, to simplify notations.

Consider now a branch-and-bound procedure and let (x∗, y∗) be a node solution incum-
bent. According to constraints (2.25), (2.29)− (2.33) of the new formulation EMM-MILP,
a supporting European price exists if and only if there exist si, sj, pm (pm denoting the
market price) such that:

− si −Qipm ≤ −Q
iP i ∀i ∈ I [ui] (2.44)

− sj −Qjpm ≤ −Q
jP j + Mj(1− y∗j ) ∀j ∈ J [uj] (2.45)

∑

i

si +
∑

j

sj ≤ obj∗ [uσ] (2.46)

si, sj ≥ 0 (2.47)

where obj∗ denotes the corresponding optimal value
∑

i

QiP ix∗i +
∑

j

QjP jy∗j of the ob-

jective function for this node solution.

According to the Farkas lemma [87], a solution to a linear system Ax ≤ b, x ≥ 0 exists if
and only if ∀y ≥ 0, yA ≥ 0 ⇒ yb ≥ 0. The existence of a European price is so equivalent
to:
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∑

i

−QiP iui +
∑

j

−QjP juj +
∑

j

Mj(1− y∗j )uj + obj∗uσ ≥ 0

∀(ui, uj, uσ) such that:

− ui + uσ ≥ 0 (2.48)

− uj + uσ ≥ 0 (2.49)

−
∑

i

Qiui −
∑

j

Qjuj = 0 [pm] (2.50)

ui, uj, uσ ≥ 0, (2.51)

The condition being trivially satisfied if uσ = 0, we can assume uσ := 1 (normaliza-
tion).

Rearranging terms, a European price exists if and only if :

∑

i

QiP iui +
∑

j

QjP juj −
∑

j

Mj(1− y∗j )uj ≤
∑

i

QiP ix∗i +
∑

j

QjP jy∗j

∀(ui, uj) ∈ P with P defined by the constraints:

ui ≤ 1 (2.52)

uj ≤ 1 (2.53)
∑

i

Qiui +
∑

j

Qjuj = 0 (2.54)

ui, uj ≥ 0 (2.55)

This yields:
Lemma 2.2. For a given node solution (x∗i , y

∗
j ) , a European price exists if and only if:

max
(ui,uj)∈P

∑

i

QiP iui +
∑

j

QjP juj −
∑

j

Mj(1− y∗j )uj ≤ obj∗. (2.56)

Lemma 2.3. Let (u∗i , u
∗
j) denotes an optimal solution to the optimization problem in the

left-hand side of (2.56), stated in Lemma 2.2. Then y∗j = 0 ⇒ u∗j = 0.

Proof. Because the numbers Mj are very (arbitrarily) large fixed numbers, if y∗j = 0,
the objective could not be optimal for any vertex of P with uj 6= 0. Accordingly, this
could also be shown by noting that constraints of the dual of the left-hand side program
are constraints (2.30) − (2.33) with yj = y∗j fixed, and that uj are the shadow prices of
constraints (2.31). If y∗j = 0, the corresponding constraint (2.31) is not binding because
of the choice of the Mj (sj ≥ 0 is binding instead), and uj = 0.

Note that the numbers Mj are used here only in proofs, and will be avoided in the final
procedure described below. The criterion of Lemma 2.2 admits a nice interpretation.
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Let us consider the continuous relaxation DA-CR with the additional constraints that all
blocks at 0 in the node solution are held at 0 in this relaxation. From the two previous
lemmas, it follows that the optimal objective value for this modified relaxation cannot be
greater than the current node solution value:

Theorem 2.4. For a node solution (x∗, y∗), consider the polytope
P F ∗

:= P ∩ {(ui, uj)| uj = 0 if y∗j = 0}. Then a European price exists if and only if

max
(ui,uj)∈PF

∑

i

QiP iui +
∑

j

QjP juj ≤ obj∗, (2.57)

where obj∗ denotes the optimal value associated with the node solution, in which case
equality holds as well.

Proof. It is a direct corollary of Lemma 2.2 and Lemma 2.3. Also, since (x∗, y∗) is feasible
for the left-hand side, if the inequality holds, equality holds as well.

When no European price exists, Lemma 2.2 provides with a classical Benders cut, where
(u∗i , u

∗
j) is optimal for the the left-hand side of (2.56):

Classical Benders cut, linear case

∑

i

QiP iu∗i +
∑

j

QjP ju∗j −
∑

j

Mj(1− yj)u
∗
j ≤

∑

i

QiP ixi +
∑

j

QjP jyj. (2.58)

Let us note that these cuts are globally valid. Moreover, suppose that (2.58) is violated

by (x∗, y∗). As in EMM-MILP (or EMM-MPCC), the welfare
∑

i

QiP ixi +
∑

j

QjP jyj

is univocally determined by the selection of accepted and rejected block orders (see DA-
FixedBlocks and proof of Theorem 2.2 in appendix or also Corollary 6.1 in [60]), any
other solution (x, y) with y = y∗ would also violate (2.58), since the right-hand and left-
hand sides would be the same. This allows to recover the ”no-good” cuts proposed in

[60]:
∑

j|y∗j=1

(1 − yj) +
∑

j|y∗j=0

yj ≥ 1. At this stage, we can already note that there is a

finite number of inequalities (2.58) to add, which is bounded by the number of vertices
of the bounded polyhedron P . These cuts are not strong as such because of the Mj (a
small change in the variables allows to satisfy the new constraint when LP relaxations are
considered), but it is possible to strengthen them and the ”no-good” cuts locally:

Theorem 2.5 (Strengthened Benders cuts). For each node solution in the branch-and-

bound for which no European price exists, the inequality
∑

j|y∗j=1

(1− yj) ≥ 1 is valid in the

subtree.
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Proof. Consider any other feasible solution (x, y) in the subtree originating from the cur-
rent node solution (x∗i , y

∗
j ) for which no European price exists, that is for which, according

to Lemma 2.2:

obj∗ <
∑

i

QiP iu∗i +
∑

j

QjP ju∗j −
∑

j

Mj(1− y∗j )u∗j ,

where (u∗i , u
∗
j) is optimal for the left-hand side of (2.56). According to Lemma 2.3, this

inequality reduces to:

obj∗ <
∑

i

QiP iu∗i +
∑

j

QjP ju∗j

If
∑

j|y∗j=1

(1−yj) = 0 for the new feasible solution (x, y), using Lemma 2.3,
∑

j

Mj(1−yj)u
∗
j

= 0 and the Benders cut (2.58) valid for (x, y) reduces to:

∑

i

QiP iu∗i +
∑

j

QjP ju∗j ≤
∑

i

QiP ixi +
∑

j

QjP jyj. (2.59)

Using the fact that this other solution (x, y) is in the subtree originating from (x∗, y∗),

∑

i

QiP ixi +
∑

j

QjP jyj = obj ≤ obj∗ <
∑

i

QiP iu∗i +
∑

j

QjP ju∗j ,

which violates (2.59), and no such new solution can admit a European price.

2.4.2 The quadratic case

Again, for a node solution (x∗, y∗) in a branch-and-bound solving the primal problem, we
apply the Farkas lemma to constraints (2.35) and (2.39)− (2.43) of the new formulation
to test the existence of European prices. This yields the equivalent condition (again
considering only one area and one time slot to ease the notation):

∀(ui, uj) ∈ P,
∑

i

QiP i
0ui +

∑

i

Qi(P i
1 − P i

0)x
∗
iui +

∑

j

QjP juj −
∑

j

Mj(1− y∗j )uj

≤
∑

i

QiP i
0x
∗
i +

∑

i

Qi(P i
1 − P i

0)(x
∗
i )

2 +
∑

j

QjP jy∗j

(2.60)

where P is the polytope defined by (2.52)− (2.55) above in the linear case.

Note that we can only apply the Farkas lemma to the new formulation because it in-
corporates ’dual variables’ for which vi = xi ∀i ∈ I: if we consider inequality (2.35)
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with unknown vi instead of vi = x∗i ∀i ∈ I fixed to the given values in the right-hand
side (corresponding to the objective function of DUAL-QUAD-CR-DUAL), the inequal-
ity is not linear any more in the unknown ’dual variables’ and the Farkas lemma doesn’t
apply.

Mainly two things should be noted concerning this condition. First, it is a linear condition
which relates two ’quadratic quantities’ (with fixed values x∗), which are close to the
original quadratic objective function of DA-QUAD. Second, contrary to the condition
(2.56) in the linear case, both right and left-hand sides do not correspond exactly to
the original objective function of the primal program (here DA-QUAD) or its continuous
relaxation with additional terms involving Mj. This last point was used in the preceding
arguments to derive the new locally valid strengthened Benders cuts.

Nonetheless, though it is not direct, it is possible to recover the analogue result:

Lemma 2.4. For a given node solution (x∗i , y
∗
j ) , a European price exists if and only if:

max
(ui,uj)∈P

∑

i

QiP iui +
∑

i

Qi(P i
1−P i

0)
u2
i

2
+
∑

j

QjP juj−
∑

j

Mj(1− y∗j )uj ≤ obj∗, (2.61)

where obj∗ denotes the optimal value of the quadratic objective function associated with
the current node solution.

Proof. See appendix.

Observe however that condition (2.60) asks to solve a linear program and is more efficient
as a tester for the existence of European prices than condition (2.61).

We can now adapt to the quadratic case the decomposition algorithm with exactly the
same cuts:

Theorem 2.6. In the quadratic case also, for each node solution in the branch-and-bound

for which no European price exists, cuts of the form
∑

j|y∗j=1

(1 − yj) ≥ 1 are valid in the

subtree.

Proof. The proof is exactly the same as in Theorem 2.5. Just replace condition (2.58) by
its counterpart derived from (2.61) (i.e. with quadratic terms).

Note also that like in the previous linear case, a consequence of Lemma 2.4 is:

Theorem 2.7. For a node solution (x∗, y∗), consider the polytope
P F ∗

:= P ∩ {(ui, uj)| uj = 0 if y∗j = 0}. Then a European price exists if and only if

max
(ui,uj)∈PF∗

∑

i

QiP i
0ui +

∑

i

Qi(P i
1 − P i

0)
u2
i

2
+
∑

j

QjP juj ≤ obj∗, (2.62)

where obj∗ denotes the optimal value of the quadratic objective function associated with
the node solution, in which case equality holds as well.
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2.5 Computational Results

In this section, we mainly address four questions related to the new formulation. First,
how state-of-the-art solvers behave on real instances, when the whole model EMM-MILP
is provided ? Second, how the Benders-like algorithm behaves in comparison to the
first approach ? Third, how efficient is Benders-like algorithm for quadratic instances
involving piecewise linear bid curves ? Fourth, how both approaches behave on very
combinatorial linear instances ? APX and EPEX kindly provided us with real data from
2011. Statistics computed over the whole year 2011 (i.e. 365 instances) are presented.
All instances include full ATC network models as used in actual day-ahead markets and
in [60]. In appendix, we present in more details results for 20 representative instances.
Computational experiments have been carried out with AIMMS [6] with the solver CPLEX
12.5, on a computer running Windows 7 64 bits, with a four cores CPU i5 @ 3.10 Ghz, and
4 GB of RAM. Even with such a modest platform, results turn out to be very positive.
The decomposition procedure has been implemented using lazy constraint callbacks with
locally valid lazy cuts. Concerning practical requirements for an algorithm, main European
power exchanges ask for a time limit of ten minutes, and we have adopted this stopping
criterion for all tests below.

For both approaches (the new formulation and the decomposition procedure), we have
computed the number of instances solved up to optimality, the (geometric) average time
needed to find these optimal solutions, and the (geometric) average of the final absolute
MIP gap when only a suboptimal solution is available in time. We also provide with the
number of visited nodes for the new MILP approach, and the number of cuts generated
in the decomposition approach. Finally all heuristics proposed by CPLEX have been
deactivated. This is necessary to obtain an exact algorithm using the decomposition
approach, and it turned out to be inefficient when directly using the new formulation.
The CPLEX parameter indicating to branch first to the down branch (”branchdir=-1”)
have also had a substantial impact on performances of both approaches, the intuition
being given by the new locally valid cuts. When a block order is fractionally executed
in the continuous relaxation of a given node, the branch where it is fully rejected will be
explored first. With this parameter, very good initial feasible solutions are found in a few
visited nodes.

2.5.1 Historical instances with stepwise bid curves

Piecewise linear bid curves have been transformed into stepwise bid curves to get MILP
instances. To do this, for each two consecutive points of a bid curve such that Qi 6= Qi+1

and Pi 6= Pi+1, a point (Q∗, P ∗) has been inserted in between, with P ∗ = Pi and Q∗ =
Qi+1.

A particular attention has been devoted to numerical issues. One drawback of the new
formulation is the so-called big-M constants involved in the constraints. As it is well-
known, this may result in numerically ill-conditioned instances. It appeared that very tight
tolerance parameters must be set to obtain correct solutions (e.g. an integer feasibility
tolerance of 10−9).
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Instances contain orders for 4 areas (Belgium, France, Germany and the Netherlands),
and span the whole day (24 hours, excepted twice per year, 23 and 25 hours respectively).
There are approximatively 50 000 hourly orders (bid curve segments) and 600 block orders
per instance.

Solved instances Running time Final abs. gap Nodes Cuts
(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

New MILP formulation 84% 104.42 418.16 43 - 33584 /
Decomposition Procedure 72.78% 6.47 402.05 16 - 1430 8 - 3492

Table 2.1: Historical instances with stepwise bid curves

EMM-MILP allows to solve most of the instances without any algorithmic work and to
obtain very good suboptimal solutions when the instance cannot be solved up to optimal-
ity. The decomposition procedure is much faster on most instances but most of the time
doesn’t help to solve hard instances that the MILP approach cannot solve. The fact that
the new MILP formulation approach takes in average more time for solved instances is
mainly due to the time needed to solve the root node relaxation.

Comparing runs with and without solver’s cut generation procedures, it turned out that
they were not useful and were indeed slowing down the process in both the decomposition
procedure and the full model approaches. In fact, for the full model approach, this may
be explained by the presence of big-M’s and the fact that most of the cuts generated may
be very weak in practice. Concerning the decomposition procedure, in most cases, many
good solutions to the primal program are easily found and cuts are not of main interest,
the main part of the procedure (from a running time point of view) consisting in rejecting
incumbents when no European prices exist. Note also that all CPLEX heuristics have
been deactivated.

2.5.2 Historical instances with piecewise linear bid curves

When piecewise linear bid curves are considered, the new formulation EMM-QUAD-
MIQCP cannot be solved with today’s solvers (e.g. CPLEX or GUROBI), and only the
decomposition procedure can be relevantly assessed.

To check for the existence of prices for a given new best node solution, the linear condition
(2.60) is used, and the locally valid local cut of Theorem 2.6 is added when no European
prices exist.

Solved instances Running time Final abs. gap Nodes Cuts
(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

Decomposition Procedure 70.41% 16.70 370.91 11 - 619 7 - 1382

Table 2.2: Historical instances with piecewise linear bid curves

As it can be seen, most of instances are solved up to optimality, and a very small gap
remains when only a suboptimal solution is found within ten minutes.
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2.5.3 Instances with (almost) only block orders

We have built 50 instances where orders are almost all block orders in the following way.
Starting from historical instances, all block orders have been relocated to one area only
and are spanning only one hour of the day. Two small continuous orders (one buy order
and one sell order) have been added for the sole purpose to have an instance with at
least one feasible solution (a matching of orders is possible). The difference between both
approaches in this case is remarkable:

Solved instances Running time Final abs. gap Nodes Cuts
(solved instances, sec) (unsolved instances) (solved - unsolved) instances (solved - unsolved) instances

New MILP formulation 100% 4.17 / 40797 - / -
Decomposition Procedure 78% 13.82 9303.16 64564 / 937172 1662 / 82497

Table 2.3: Instances with almost only block orders

In this case, the new MILP formulation approach is much more powerful. One possible
explanation is the high number of block order selections for which no European prices
exist, which are enumerated by the decomposition. On another hand, with the full model
approach, the solver may be able to branch more efficiently. The difference of performances
between the two approaches was more impressive on a less powerful platform. This
difference would therefore certainly be more important for instances with more block
orders.

2.6 Conclusions

We have proposed a new formulation for European day-ahead electricity markets that
turns out to be (a) tractable and (b) very competitive as long as stepwise preference
curves describing hourly orders are considered. More than 80 % of the historical instances
of 2011 can be solved up to optimality, and for the other ones, the final gap is very
small. We have also compared this approach with a decomposition procedure derived
directly from the new formulation, which appeared to solve most instances faster but was
not helpful on hard instances that the new formulation approach was not able to solve.
Unfortunately, the simple use of the analogue new formulation is no longer successful when
piecewise linear preference curves are considered. Today’s state-of-the-art MIQCP solvers
are not able to deal with large-scale programs with this structure. On the other hand, the
Benders-like decomposition approach derived from the new formulation allows managing
these cases in an efficient way. Finally, the new MILP formulation performs much better
than the decomposition approach on small very combinatorial linear instances, and this
could be exploited in auctions with more block orders. Another interesting point is that
an approach similar to the new formulation allows considering other objective functions
over the set of constraints defining European market rules. In particular, with a similar
modelling technique, it would be possible to consider, for example, an objective function
minimizing the total opportunity costs of paradoxically rejected block orders. In a article
in preparation, we study how this modelling technique can be used from a market design
analysis point of view.
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2.A Ommited proofs

2.A.1 Proof of Theorem 2.1 and Lemma A3

Lemma A1. Take a feasible point (x, y, n) of DA-PRIMAL, and consider a feasible point
of DA-CR-DUAL (si, sj, pl,t, um) such that complementarity constraints (2.13) − (2.17)
are satisfied as well. For these prices pl,t, um: (i) fully accepted orders are ITM or ATM,
(ii) fractionally accepted orders are ATM and (iii) rejected orders are ATM or OTM. In
particular, ITM orders are fully accepted and OTM orders are fully rejected. (iv) Network
equilibrium conditions are satisfied.

Proof. Let us consider an order i ∈ I or j ∈ J (hourly or block order, respectively):

(i) if xi = 1 (the order is fully accepted), complementarity constraints of type (2.15) imply

si =
∑

l,t

Qi
l,t(P

i − pl,t) and since si ≥ 0, the order is in-the-money or at-the-money.

The same for a block order j with yj = 1, using constraints (2.16) instead of (2.15).

(ii) if 0 < xi < 1 (the order is partially accepted, only possible for hourly orders i ∈ I),
complementarity constraints of type (2.13) imply si = 0 and those of type (2.15) then

imply
∑

l,t

Qi
l,tP

i =
∑

l,t

Qi
l,tpl,t, i.e. the order is ATM.

(iii) if xi = 0, complementarity constraints (2.13) imply si = 0 and then dual constraints

(2.9) imply
∑

l,t

Qi
l,tP

i ≤
∑

l,t

Qi
l,tpl,t, i.e. the order is ATM or OTM.

The same for a block order j with yj = 0, using (2.14) instead of (2.13) and (2.10) instead
of (2.9).

(iv) By Definition 2.3, network equilibrium conditions are satisfied.

Lemma A2. Let (x, y, n) be a feasible point of DA-PRIMAL. If pl,t, um is a price system
such that (i)− (iv) of Lemma A1 hold, then one can define auxiliary variables si, sj such
that (2.9)− (2.17) hold as well.

Proof. Assume pl,t, um are prices satisfying (i) − (iv) of Lemma A1 and define si, sj ≥ 0
as follows:
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(a) si =
∑

l,t

Qi
l,t(P

i − pl,t) ≥ 0 if xi = 1 and likewise for sj if yj = 1,

(b) si =
∑

l,t

Qi
l,t(P

i − pl,t) = 0 if 0 < xi < 1,

(c) si = 0 ≥
∑

l,t

Qi
l,t(P

i − pl,t) if xi = 0 and likewise for sj if yj = 0.

Conditions (i)− (iii) of Lemma A1 ensure that in cases (a) and (b), si =
∑

l,t

Qi
l,t(P

i−pl,t)

is non negative (i.e. feasible for dual constraint (2.12)), and that in case (c), si = 0 is

greater or equal to
∑

l,t

Qi
l,t(P

i−pl,t) (conditions (2.9) or (2.10)). Taking into account that

(iv) of Lemma A1 ensures by definition that constraints (2.11), (2.17) are satisfied, it is
then direct to check that constraints (2.9)− (2.17) are all satisfied.

Proof of Theorem 2.1.

Proof. (I) Is a direct consequence of Lemma A1 and its converse Lemma A2.

(II) Assume (xi, yj, nk) and (si, sj, pl,t, um) are feasible for DA-PRIMAL and DA-CR-
DUAL respectively. Then, (xi, yj, nk) is also feasible for the continuous relaxation DA-
CR. By duality theory, they satisfy complementarity conditions (2.13)−(2.17) if and only
if equality of objective functions (2.1) = (2.8) holds, in which case both are optimal for
their respective problem DA-CR and DA-CR-DUAL.

Proof of Corollary 2.1.

Proof. Theorem 2.1 shows that for a feasible solution (x, y, n) of DA-PRIMAL , a mar-
ket equilibrium with uniform prices exist if and only if this solution is optimal for the
relaxation DA-CR.

Lemma A3 (Equilibrium for hourly orders in the quadratic case). Consider a primal
feasible point (x, y, n) of DA-PRIMAL-QUAD and let si, pl,t satisfy dual and complemen-
tarity constraints (2.22), (2.12) and (2.13), (2.23). Then (I) (i) Fully executed orders are
ITM or ATM, (ii) fractionally executed orders are ATM and (iii) fully rejected orders are
OTM or ATM. (II) Conversely, if (i)-(iii) hold, then there exist auxiliary surplus variables
si such that conditions (2.22), (2.12), (2.13), (2.23) hold as well.

Proof. (I)

(i) If xi = 1 (the order is fully accepted), equations of type (2.23) imply

si =
∑

l,t

Qi
l,tP

i
0 +

∑

l,t

Qi
l,t(P

i
1 − P i

0)1 −
∑

l,t

Qi
l,tpl,t ≥ 0, that is

∑

l,t

Qi
l,t(P

i
1 − pl,t) ≥ 0 and

the order is ITM or ATM.
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(ii) If 0 < xi < 1 (the order is partially accepted), equations of type (2.13) imply si = 0

and equations of type (2.23) then imply
∑

l,t

Qi
l,tP

i
0 +
∑

l,t

Qi
l,t(P

i
1 −P i

0)xi =
∑

l,t

Qi
l,tpl,t and

the order is ATM.

(iii) If xi = 0, equations (2.13) imply si = 0 and inequalities (2.22) (with vi = xi = 0)

imply
∑

l,t

Qi
l,tP

i
0 ≤

∑

l,t

Qi
l,tpl,t, and the order is ATM or OTM.

(II) The converse is shown as in Lemma A2 by defining si in an appropriate way:

si =
∑

l,t

Qi
l,tP

i
0 +

∑

l,t

Qi
l,t(P

i
1 − P i

0)xi −
∑

l,t

Qi
l,tpl,t if 0 < xi ≤ 1, and si = 0 if xi = 0.

2.A.2 Proof of Theorem 2 & 3

The proofs rely on strong duality results and we first need to consider a program DA-
FixedBlocks, corresponding to DA-PRIMAL with additional constraints (2.66)−(2.67) to
fix block order variables yj to some arbitrary values, corresponding to a partition of J into
two subsets J0 (rejected block orders) and J1 (accepted block orders). DA-FixedBlocks
is an LP and its dual DA-FixedBlocks-DUAL below is well-defined. We also write down
related complementarity constraints.

DA-FixedBlocks (primal LP when considering a block bid selection)

max
xi,yj ,nk

∑

i

(
∑

l,t

Qi
l,tP

i)xi +
∑

j

(
∑

l,t

Qj
l,tP

j)yj (2.63)

subject to:

xi ≤ 1 ∀i ∈ I [si] (2.64)

yj ≤ 1 ∀j ∈ J [sj] (2.65)

yj0 ≤ 0 ∀j0 ∈ J0 [dj0 ] (2.66)

− yj1 ≤ −1 ∀j1 ∈ J1 [dj1 ] (2.67)
∑

i

Qi
l,txi +

∑

j

Qj
l,tyj =

∑

k

ekl,tnk, ∀(l, t) ∈ A× T [pl,t] (2.68)

∑

k

am,knk ≤ wm ∀m ∈ N [um] (2.69)

xi, yj ≥ 0 (2.70)

DA-FixedBlocks-DUAL

min
∑

i

si +
∑

j

sj −
∑

j1

dj1 +
∑

m

wmum (2.71)
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subject to:

si +
∑

l,t

Qi
l,tpl,t ≥

∑

l,t

Qi
l,tP

i ∀i ∈ I [xi] (2.72)

sj0 + dj0 +
∑

l,t

Qj0
l,tpl,t ≥

∑

l,t

Qj0
l,tP

j0 ∀j0 ∈ J0 [yj0 ] (2.73)

sj1 − dj1 +
∑

l,t

Qj1
l,tpl,t ≥

∑

l,t

Qj1
l,tP

j1 ∀j1 ∈ J1 [yj1 ] (2.74)

∑

m

am,kum −
∑

l,t

ekl,tpl,t = 0 ∀k ∈ K [nk] (2.75)

si, sj, dj0 , dj1 , um ≥ 0 (2.76)

and complementarity constraints DA-FixedBlocks-CC

si(1− xi) = 0 ∀i ∈ I (2.77)

sj0(1− yj0) = 0 ∀j0 ∈ J0 (2.78)

sj1(1− yj1) = 0 ∀j1 ∈ J1 (2.79)

yj0dj0 = 0 ∀j0 ∈ J0 (2.80)

(1− yj1)dj1 = 0 ∀j1 ∈ J1 (2.81)

um(
∑

k

am,knk − wm) = 0 ∀m ∈ N (2.82)

xi(si +
∑

l,t

Qi
l,tpl,t −

∑

l,t

Qi
l,tP

i) = 0 ∀i ∈ I (2.83)

yj0(sj0 + dj0 +
∑

l,t

Qj0
l,tpl,t −

∑

l,t

Qj0
l,tP

j0) = 0 ∀j0 ∈ J0 (2.84)

yj1(sj1 − dj1 +
∑

l,t

Qj1
l,tpl,t −

∑

l,t

Qj1
l,tP

j1) = 0 ∀j1 ∈ J1 (2.85)

Proof of Theorem 2.2.

Proof. (i) Let (xi, yj, nk, pl,t, um, si, sj) be a feasible point of the MPCC formulation.

Let us define J0 := {j|yj = 0}, J1 := {j|yj = 1}, dj1 := 0 ∀j1 ∈ J1 and dj0 := Mj0

∀j0 ∈ J0.

For j0 ∈ J0, since dj0 := Mj0 :=
∑

l,t

2P̄ |Qj0
l,t|, we can define new s̃j0 = 0 such that dual con-

straints of type (2.73) and complementarity constraints of type (2.78) above are satisfied.
The new point (xi, yj, nk, pl,t, um, si, s̃j, dj0 , dj1) satisfies constraints (2.64)−(2.70), (2.72)−
(2.85), that is all primal, dual and complementarity constraints corresponding to the pri-
mal and dual optimization problems where block order variables are fixed to the values
given by the initial point considered. Therefore, by strong duality for LP, for this selection
J0, J1, (x, y, n) is optimal for DA-FixedBlocks and (pl,t, um, si, s̃j, dj0 , dj1) is optimal for
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DA-FixedBlocks-DUAL. Moreover, (2.63) = (2.71) and since dj1 = 0 ∀j1 ∈ J1 in the ob-
jective (2.71), it follows that (2.25) holds. Due to constraints (2.73)−(2.74) and the given
values of dj0 , dj1 , it is direct to check that the projection (xi, yj, nk, pl,t, um, si, s̃j) satis-
fies constraints (2.31). This shows that the projection (xi, yj, nk, pl,t, um, si, s̃j) satisfies
(2.25)− (2.33), so is a feasible point of EMM-MILP.

(ii) Now let (xi, yj, nk, pl,t, um, si, sj) be a feasible point of EMM-MILP.

Let us define J0, J1, dj0 , dj1 as above at (i). The point (xi, yj, nk, pl,t, um, si, sj, dj0 , dj1)
satisfies all primal and dual conditions (2.64)− (2.70), (2.72)− (2.76) of the optimization
problems DA-FixedBlocks and DA-FixedBlocks-DUAL above, as well as the condition
of equality of objective functions (2.63) = (2.71). By duality theory (implying related
complementarity constraints), it satisfies constraints (2.77) − (2.85). We can now define
new s̃j0 := sj0 + dj0 to satisfy constraints (2.10) for j0 ∈ J0 ⊆ J . Constraints (2.78) (the
same as (2.14)) may not be satisfied any more but the projection of the new point thus
obtained, (xi, yj, nk, pl,t, um, si, s̃j) is a feasible point of the EMM-MPCC formulation, as
it satisfies primal conditions (2.2)− (2.7), dual conditions (2.9)− (2.12) and the required
complementarity constraints (2.13), (2.15)− (2.17).

Proof of Theorem 2.3

Proof. The proof is almost identical to the proof of Theorem 2.2. It is just needed to
adapt primal and dual problems DA-B-FixedBlocks and DA-FixedBlocks-DUAL to the
quadratic setting, i.e. considering respective objective functions (2.20), (2.21), and the
adapted dual and complementarity constraints (2.22), (2.23). Replace then in the proof
constraint (2.25) by (2.35), dual constraints of type (2.9) and the same (2.72) by (2.22),
and complementarity constraints of type (2.15) and the same (2.83) by (2.23), taking
into account Lemma 2.1 according to which we can consider optimal dual variables vi =
xi ∀i ∈ I.

2.A.3 Proof of Lemma 2.4

Proof. (i) If (European) equilibrium prices exist, condition (2.60) holds, and necessarily:

∀(ui, uj) ∈ P ,
∑

i

QiP i
0ui +

∑

j

QjP juj −
∑

j

Mj(1− y∗j )uj

≤
∑

i

QiP i
0x
∗
i +

∑

i

Qi(P i
1 − P i

0)[(x
∗
i )

2 − x∗iui] +
∑

j

QjP jy∗j

≤
∑

i

QiP i
0x
∗
i +

∑

i

Qi(P i
1 − P i

0)[
(x∗i )

2

2
−

u2
i

2
] +
∑

j

QjP jy∗j ,

where the first inequality is condition (2.60) rearranged, and where for the last inequality,
we use the fact that if cij are coefficients of a negative semi-definite matrix, then:
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∑

ij

cijxi(xj − uj) ≤
1

2
(
∑

ij

cijxixj −
∑

ij

cijuiuj).

Rearranging, we now get the necessary condition (2.61):

max
(ui,uj)∈P

∑

i

QiP i
0ui +

∑

i

Qi(P i
1 − P i

0)
(ui)

2

2
+
∑

j

QjP juj −
∑

j

Mj(1− y∗j )uj ≤ obj∗,

where obj∗ is the value of the quadratic objective function of the model for the current
node solution.

(ii) Let us prove that this condition is also sufficient and let obj∗ correspond to the optimal
value associated to a node solution (x∗i , y

∗
j ). Using the EMM-QUAD-MIQCP formulation,

we show that if (2.61) holds, the left-hand side QP provides with European equilibrium
prices for the current node solution. This QP in (2.61) is the continuous relaxation DA-

QUAD-CR with an additional term −
∑

j

M(1 − y∗j )uj in the objective function (taking

into account the minor adaptations to consider a network representation if needed).

The node solution (x∗i , y
∗
j ) ∈ P , so is feasible for this QP in (2.61) and is therefore optimal

for it (terms with the Mj cancel if uj = y∗j , so the expression is exactly the same on both
sides).

By Lemma 2.1, for this QP in (2.61), there exist dual optimal variable values (s∗i , s
∗
j , p

∗
l,t, v

∗
i )

such that v∗i = x∗i . Mutatis mutandis to take a network model into account, constraints
of the dual of this left-hand side QP are exactly constraints (2.40) − (2.43) with (x, y)
fixed to (x∗, y∗), which are therefore satisfied by these optimal dual variable values. Using
strong duality for quadratic programs [22], we now show that constraint (2.35) (equality
of objective functions) is satisfied as well:

∑

i

s∗i +
∑

j

s∗j −
∑

i

Qi(P i
1 − P i

0)
(x∗i )

2

2

=
∑

i

QiP i
0x
∗
i +

∑

i

Qi(P i
1 − P i

0)
(x∗i )

2

2
+
∑

j

QjP jy∗j −
∑

j

Mj(1− y∗j )y∗j

≤ obj∗ =
∑

i

QiP i
0x
∗
i +

∑

i

Qi(P i
1 − P i

0)
(x∗i )

2

2
+
∑

j

QjP jy∗j .

Rearranging this inequality shows that constraint (2.35) is satisfied. Hence, for our node
solution (x∗i , y

∗
j ), we can define (s∗i , s

∗
j , p

∗
l,t) such that all constraints (2.35) − (2.43) are

satisfied, and a European equilibrium price exists for the solution (x∗i , y
∗
j ) (or European

prices when several areas or time slots are considered). One just needs to consider the
optimal dual solution of the QP in (2.61) for which vi = x∗i .
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2.B Tables

New MILP formulation Decomposition approach
Instance # Hourly orders # Block orders Run. Time Final Gap Nodes Run. Time Final Gap Nodes Cuts

1 51231 766 600.37 495.89 27478 600.276 1463.35 842 3442
2 46700 477 64.912 2.106 0
3 50148 731 277.042 18331 600.401 106.75 2204 3594
4 49999 566 64.819 12 2.527 17 2
5 52073 683 57.097 2.168 0
6 49304 513 47.283 84 6.537 46 27
7 47924 658 79.577 473 99.7 458 706
8 48645 604 51.028 3 2.371 0
9 45141 571 36.348 2 1.685 2 0
10 46472 655 136.891 5292 600.651 179.12 993 3625
11 47199 686 54.335 77 6.708 85 29
12 52369 692 69.156 2 2.73 2 0
13 54147 640 93.773 9 3.369 21 3
14 55361 618 85.692 7 3.635 6 5
15 55774 550 92.368 57 6.567 75 16
16 53789 591 59.857 9 3.885 7 7
17 59384 685 117.781 91 3.37 15 4
18 60169 699 600.339 252.83 27679 600.588 268.65 1408 3042
19 57992 578 71.32 10 122.27 133 570
20 51687 703 600.308 235.22 39225 600.604 517.47 1046 3173

Table 2.4: Linear Instances

Instance # Hourly orders # Block orders Run. Time Final Gap Nodes Cuts
1 51231 766 600.21 1160.50 565 1343
2 46700 477 5.27 0
3 50148 731 600.51 145.21 961 1382
4 49999 566 8.47 13 2
5 52073 683 8.30 1 0
6 49304 513 10.95 32 7
7 47924 658 13.01 59 16
8 48645 604 5.82 0
9 45141 571 4.31 1 0
10 46472 655 601.10 256.69 357 1478
11 47199 686 14.12 63 15
12 52369 692 7.66 0
13 54147 640 20.03 34 21
14 55361 618 600.48 202.48 388 1291
15 55774 550 180.29 247 366
16 53789 591 42.67 40 58
17 59384 685 44.43 82 66
18 60169 699 600.56 204.42 753 1138
19 57992 578 15.23 7 7
20 51687 703 600.42 1740.25 457 1280

Table 2.5: Quadratic Instances (decomposition approach only)

New MILP Formulation Decomposition approach
Instance # Hourly orders # Block orders Run. Time Final Gap Nodes Run. Time Final Gap Nodes Cuts

1 2 526 7.18 75561 600.14 28497.24 493464 132118
2 2 508 12.18 168467 540.00 1777391 121336
3 2 612 1.34 15348 2.32 8784 367
4 2 594 9.95 114400 15.41 81721 2756
5 2 671 4.74 53026 4.88 18312 847
6 2 766 8.80 90938 129.04 1156506 17312
7 2 714 1.82 17111 10.25 70038 1517
8 2 497 1.16 16210 459.08 1090631 106874
9 2 460 0.53 6216 0.56 4219 84
10 2 579 0.31 2474 1.01 2437 199
11 2 668 0.16 725 0.19 473 15
12 2 684 0.70 6733 2.45 29995 310
13 2 650 1.84 19433 7.58 71328 988
14 2 682 1.48 13224 2.43 10835 374
15 2 487 14.68 192265 600.01 6099.59 794340 142957
16 2 477 1.09 15481 302.75 699328 69114
17 2 597 0.16 792 0.47 5716 20
18 2 740 3.12 28904 28.44 105697 4312
19 2 794 5.91 57537 113.37 366836 14008
20 2 823 1.01 9677 600.03 209922.61 155204 63899

Table 2.6: Instances with (almost) only block orders
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Chapter 3

A MIP framework for non-convex
uniform price day-ahead electricity
auctions

Accepted manuscript version of: Mehdi Madani and Mathieu Van Vyve. A MIP frame-
work for non-convex uniform price day-ahead electricity auctions. EURO Journal on
Computational Optimization, pages 1-22, 2016 (in press).

Abstract

It is well-known that a market equilibrium with uniform prices often does not exist in non-
convex day-ahead electricity auctions. We consider the case of the non-convex, uniform-
price Pan-European day-ahead electricity market ”PCR” (Price Coupling of Regions),
with non-convexities arising from so-called complex and block orders. Extending pre-
vious results, we propose a new primal-dual framework for these auctions, which has
applications in both economic analysis and algorithm design. The contribution here is
threefold. First, from the algorithmic point of view, we give a non-trivial exact (i.e. not
approximate) linearization of a non-convex ’minimum income condition’ that must hold
for complex orders arising from the Spanish market, avoiding the introduction of any
auxiliary variables, and allowing us to solve market clearing instances involving most of
the bidding products proposed in PCR using off-the-shelf MIP solvers. Second, from the
economic analysis point of view, we give the first MILP formulations of optimization prob-
lems such as the maximization of the traded volume, or the minimization of opportunity
costs of paradoxically rejected block bids. We first show on a toy example that these two
objectives are distinct from maximizing welfare. Third, we provide numerical experiments
on realistic large-scale instances. They illustrate the efficiency of the approach, as well as
the economic trade-offs that may occur in practice.
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3.1 Introduction

3.1.1 Equilibrium in non-convex day-ahead electricity auctions

An extensive literature now exists on non-convex day-ahead electricity markets or elec-
tricity pools, dealing in particular with market equilibrium issues in the presence of in-
divisibilities, see e.g. [40, 53, 54, 71, 70, 84, 99, 104] and references therein. Research
on the topic has been fostered by the ongoing liberalization and integration of electric-
ity markets around the world during the past two decades. Due to the peculiar nature
of electric power systems, non-convexities of production sets cannot be neglected, and
bids introducing non-convexities in the mathematical formulation of the market clear-
ing problem have been proposed for many years by power exchanges or electricity pools,
allowing participants to reflect more accurately their operational constraints and cost
structure.

It is now well known that due to these non-convexities, a market equilibrium with uniform
prices may fail to exist (a single price per market area and time slot, no transfer payments,
no losses incurred, and no excess demand nor excess supply for the given uniform market
prices). To deal with this issue, almost all ideas proposed revolve around getting back, or
getting close, to a convex situation where strong duality holds and shadow prices exist.
For example, a now classic proposition in [71] is to fix integer variables to optimal values
for a welfare maximizing primal program whose constraints describe physically feasible
dispatches of electricity, and compute multi-part equilibrium prices using dual variables
of these fixing constraints. The same authors, in an unpublished working paper, have
later adapted this proposition to the context of European power auctions, proposing to
allow and compensate so-called paradoxically accepted block bids, thus deviating from
a pure uniform price system. We briefly review their proposition at the end of Section
3.3. A recent proposition for electricity pools in [84] is to use a ’primal-dual’ formulation
(i.e. involving both executed quantities as primal variables, and market clearing prices as
dual variables), where ’getting close’ is materialized by minimising the duality gap intro-
duced by integer constraints, and where additional constraints are added to ensure that
producers are recovering their costs. The goal is to use uniform prices, while minimizing
the inevitable deviation from market equilibrium, and providing adequate incentives to
producers.

These last conditions, which have been used in Spain for many years, are usually called
’minimum income conditions’ (MIC). The natural way to model them is through imposing
a lower bound on the revenue expressed as the product between executed quantities and
market prices, yielding non-convex quadratic constraints. However, [83] propose an exact
linearization of the revenue related to a set of bids of a strategic bidder participating in
a convex market, relying on KKT conditions explicitly added to model the lower-level
market clearing problem of a bilevel program, and linearized by introducting auxiliary
binary variables.

Regarding the proposition in [84], a market equilibrium exists only if the optimal duality
gap is null, which is rarely the case with real instances, and the proposition chooses
not to enforce network equilibrium conditions (corresponding to optimality conditions of
transmission system operators), nor that demand bids are not loosing money. The same
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remarks apply to [37], where the only non-convexities arise from the minimum income
conditions for producers (indivisibilities such as minimum power output or ’fill-or-kill
conditions’ are not considered).

Several other auction designs have been previously considered, which often propose im-
plementing a non-uniform pricing scheme, see e.g. [84] for a review.

The fact that equilibrium is not enforced for the convex part of the market clearing
problem (i.e. for convex bids and the network model), is a key auction design difference
compared with the choices made by power exchanges in Europe. In this article, we deal
mainly with this last market model, which is further described in the next section, and
illustrated in the toy example given in Section 3.2.1.

3.1.2 The PCR market

We consider the Pan-European day-head electricity market being developed under the
Price Coupling of Regions project (PCR), as publicly described in [27]. Essentially, it is
a near-equilibrium auction mechanism using uniform prices, and where the sole deviation
from a perfect market equilibrium is the allowance of so-called ”paradoxically rejected
non-convex bids”, generating opportunity costs, because these bids, which are ’in-the-
money’, would be profitable for the computed clearing prices (see e.g. [27] for more
information on these market rules). On the other side, all convex bids as well as TSOs
must be ’at equilibrium’ for the computed market clearing prices. This integrated market
is coupling the CWE region (France, Belgium, Germany, the Netherlands, Luxembourg)
with NordPool (Norway, Sweden, Denmark, Finland, Baltic countries), as well as Italy
and OMIE (Spain, Portugal).

From the algorithmic point of view, when considering specifically the CWE region, we
have previously shown that the market clearing problem can be restated as a MILP, with-
out introducing any auxiliary variables to linearise the needed complementarity conditions
modelling the near-equilibrium, see [54]. We also proposed a Benders-like decomposition
procedure with locally strenghtened Benders cuts. Leaving aside a peculiar kind of bids
from the Italian market (so-called PUN bids), introducing complex bids with a MIC con-
dition yields a non-convex MINLP. The production-quality algorithm in use, EUPHEMIA
([27]), an extension of COSMOS previously used to clear the CWE market, is a sophis-
ticated branch-and-cut algorithm handling all market requirements. However, due to the
introduction of MIC bids, the algorithm is a heuristic, though COSMOS on which it relies
is an exact branch-and-cut.

3.1.3 Contribution and structure of this article

We provide here a new primal-dual framework for PCR-like auctions, which is mainly
a continuation of ideas presented in [53, 54]. The objective is to present a unified ap-
proach to algorithmic and economic modelling issues concerning these European auctions,
with useful computational applications. The approach essentially consists in using strong
duality adequately to enforce complementarity conditions modelling equilibrium for the
convex part of the market clearing problem, as required by European power exchanges.
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This approach is similar to the bilevel approach suggested in [104], though we do not
need to introduce any auxiliary variables to linearize quadratic terms when considering
the equality of objective functions modelling optimality of a second level problem mod-
elling equilibrium for the convex part (see below, in particular Sections 3.2.4 and 3.3.3).
Moreover, we could choose to consider some additional continuous variables with clear
economic interpretations as bounds on opportunity costs or losses of (non-convex) block
bids. This approach is used in [54] to derive a powerful Benders decomposition, where it
is also shown how to consider the case of piecewise linear bid curves yielding a QP setting,
using strong duality for convex quadratic programs. The MIP framework proposed here
is presented in Section 3.2. It includes the following extensions.

First, so-called complex bids used in Spain and Portugal are added to the model, and we
give an exact (i.e. not approximate) linearisation of a non-linear non-convex ’minimum
income condition’ (MIC) that must hold for these bids ([27]), which model revenue ade-
quacy for producers. These conditions are provided for many years by the Spanish power
exchange OMIE ([59]), and are also considered (in a different auction design setting) in
[37, 84]. This enables us to give a MILP formulation of the PCR market clearing problem
which avoids complementarity constraints and the use of any auxiliary variables, while
taking into account these MIC conditions. This is developed in Section 3.3.

Second, we show in Section 3.2 how to consider in the main MILP model, together with
main decision variables such as prices and bid execution levels, additional variables which
correspond to upper bounds on opportunity costs of block bids, and upper bounds on
losses. Let us emphasize that current European market rules forbid paradoxically ac-
cepted block bids (executed bids incurring losses), and stating these particular conditions
amount to requiring that some of the added variables must be null. This is used in Sec-
tion 3.3.4 to develop economic analysis applications. For example, the framework can
be used in particular to provide the first (and reasonably tractable) MILP formulations
of optimization problems such as the minimization of incurred opportunity costs, or the
maximization of the traded volume. Let us note that in a convex context, no opportunity
costs are incurred and any market clearing solution is welfare maximizing, so maximizing
the traded volume only amounts to choosing peculiar tie-breaking rules in case of inde-
terminacy. Yet it is shown on the toy example in the introductory Section 3.2.1 that in a
non-convex context, these two objectives are both distinct from maximizing welfare. To
our knowledge, if opportunity costs of rejected block bids have been considered empiri-
cally in the past (e.g in [62, 63]), this point is new and could provide useful information to
day-ahead auctions stakeholders. (We have presented partial results about opportunity
costs in a simplified setting at the EEM 14 conference, see [53].)

Finally, numerical experiments using realistic large-scale instances are presented in Sec-
tion 3.4. They show that our proposition allows solving up to optimality market clearing
instances with MIC bids, which correspond to the Spanish market design. This is the
first time that real-life instances of this type of problems are solved to optimality. This
straightforward approach does not behave as well for instances including both MIC and
block bids. However, a simple heuristic approach already yields provably high-quality
solutions. Regarding the economic analysis applications, results presented illustrate the
trade-offs that may occur for realistic large-scale instances, for example between optimiz-
ing welfare and optimizing the traded volume. Again this is the first time that optimal
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solutions for such problems can be computed apart from toy examples of small sizes.

3.2 A new primal-dual framework

Below, Section 3.2.1 describes the context and issues for day-ahead markets with indi-
visibilities such as in the CWE region (with block bids). Then, Section 3.2.2 introduces
the welfare maximization problem without equilibrium restrictions, i.e. neglecting ade-
quate market clearing price existence issues. Section 3.2.3 derives a related dual program
parametrized by the integer decisions, and several important economic interpretations
relating dual variables, uniform prices and deviations from a perfect market equilibrium
(losses and opportunity costs of executed/rejected non-convex bids). Finally, Section 3.2.4
presents the basis of the new primal-dual framework proposed.

3.2.1 Uniform prices and price-based decisions in the CWE re-
gion: a toy example

We use here a toy example [53] illustrating two key points. First, a market equilibrium may
not exist in the presence of indivisible orders. Second, under European market rules where
paradoxically rejected non-convex bids are allowed, a welfare maximizing solution is not
necessarily a traded volume maximizing solution nor it is necessarily an opportunity costs
minimizing solution. The toy example consists in a market clearing instance involving
two demand continuous bids (e.g. two steps of a stepwise demand bid curve), and two
sell block bids. Parameters are summarized in Table 3.1 :

Bids Power (MW) Limit price (EUR/MW)
A: Buy bid 1 11 50
B: Buy bid 2 14 10

C: Sell block bid 1 10 5
D: Sell block bid 2 20 10

Table 3.1: Toy market clearing instance

First, obviously, it is not possible to execute both sell block bids, as they offer a total
amount of power of 30 MW, while the total demand is at most 25 MW. As they are
indivisible, if there is a trade, either (i) bid C is fully executed or (ii) bid D is fully
executed. Second, at equilibrium, by definition, for the given market prices, no bidder
should prefer another level of execution of its bid. In particular, in-the-money (ITM)
bids must be fully executed, out-of-the-money (OTM) bids must be fully rejected, and
fractionally executed bids must be right at-the-money (ATM).

So in the first case (i), A is partially accepted and sets the market clearing price to 50
EUR/MW, if any equilibrium with uniform prices exists. But in that case, block bid D is
rejected while ITM: an opportunity cost of 20(50− 10) = 800 is incurred. This situation
is accepted under the near-equilibrium European market rules described above. A direct
computation shows that the welfare is then equal to 10(50-50) + 10(50-5) = 450, while
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the traded volume is 10. Similar computations in the case (ii) yield the market outcome
summarized in Table 3.2.

Price Traded Volume Welfare Opportunity costs
Matching C 50 10 450 800
Matching D 10 20 440 50

Table 3.2: Market outcome

In this toy example, case (i) maximizes welfare but generates (much) more opportunity
costs and half the traded volume.

3.2.2 Unrestricted welfare optimization

We formulate here the classical welfare optimization problem with an abstract and very
general power transmission network representation that is still linear. It covers e.g. DC
network flow models or the so-called ATC and Flow-based models used in PCR (see [27]).
The usual network equilibrium conditions involving locational market prices apply, see
[54].

Hourly bids originate from continuous bid curves, and can be fractionally accepted. They
are hence modelled below with continuous variables xi, xhc ∈ [0, 1] for each step of a given
step-wise bid curve, describing which fraction of the corresponding bid quantity Pi (resp.
Phc) is accepted.

In order to better represent their operational constraints or cost structure, participants
are also allowed to submit indivisible bids, called ’block bids’ in the PCR vocabulary,
which usually span multiple time periods. They are used for example to model minimum
power output. They are modelled below with binary variables yj.

Binary variables uc are introduced to model the conditional acceptance of a set of hourly
bids hc ∈ Hc, controlled via constraints (3.4). The conditional acceptance relative to a
minimum income condition is dealt with in Section 3.3. These bids are used to allow
participants to express e.g. their start-up costs which should be covered if they are
dispatched. However, the conditional acceptance only depends on the adequacy of the
revenue, and in this respect they are distinct from block bids.

Constraint (3.6) is the balance equation at location l at time t, the right-hand side corre-
sponding to the net export position expressed as a linear combination of abstract network
elements nk. Constraint (3.7) is the capacity constraint of network resource m, constrain-
ing the use of the elements nk.

Finally, let us note that we model binary requirements as integrality, see conditions (3.9),
plus bound constraints (3.3),(3.5),(3.8). Indeed, dual variables of bound constraints (3.2)-
(3.3) and (3.5) have a nice economic interpretation as ’surplus variables’, and some techni-
cal developments presented below, such as Lemma 3.3, rely on these dual variables.
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Notation

Notation used throughout the text is provided here for quick reference. The interpretation
of any other symbol is given within the text itself.

Sets and indices:

i Index for hourly bids, in set I
j Index for block bids, in set J
c Index for MIC bids, in set C
hc Index for hourly bids associated to the MIC bid c, in set Hc

l Index for locations, l(i) (resp. l(hc)) denotes the location
of bid i (resp. hc)

t Index for time slots, t(i) (resp. t(hc)) denotes the time slot
of bid i, (resp. hc)

Ilt ⊆ I Subset of hourly bids associated to location l and time slot t
HClt ⊆ HC Subset of MIC hourly suborders, associated to location l and time slot t
Jl ⊆ J Subset of block bids associated to location l

Parameters:

Pi, Phc Power amount of hourly bid i (resp. hc),
P < 0 for sell bids, and P > 0 for demand bids

P t
j Power amount of block bid j at time t, same sign convention

λi, λhc Limit bid price of hourly bid i, hc
λj Limit bid price of block bid j
am,k Abstract linear network representation parameters
ekl,t Parameters used to describe net export positions using variables nk

wm Capacity of the abstract network resource m

Primal decision variables:

xi ∈ [0, 1] fraction of power Pi which is executed
xhc ∈ [0, 1] fraction of power Phc (related to the MIC bid c) which is executed
yj ∈ {0, 1} binary variable which determines if the quantities P t

j are fully
accepted or rejected

uc ∈ {0, 1} binary variable controling the execution or rejection of the MIC bid c
(i.e. of the values of xhc)

nk variables used for the abstract linear network representation,
related to net export positions

Dual decision variables:
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πlt uniform price (locational marginal price) for power in location l and time slot t
vm ≥ 0 dual variable pricing the network constraint m,
si ≥ 0 dual variable interpretable as the surplus associated to the execution

of bid i ∈ I
sj ≥ 0 dual variable interpretable as the surplus associated to the execution

of bid j ∈ J
shc ≥ 0 dual variable interpretable as the (potential) surplus associated

to the execution of bid hc
sc ≥ 0 dual variable interpretable as the surplus associated to the execution

of the MIC bid c

max
x,y,u,n

∑

i

(λiPi)xi +
∑

c,h∈Hc

(λhcPhc)xhc +
∑

j,t

(λjP t
j )yj (3.1)

subject to:

xi ≤ 1 ∀i ∈ I [si] (3.2)

yj ≤ 1 ∀j ∈ J [sj] (3.3)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [shc] (3.4)

uc ≤ 1 ∀c ∈ C[sc] (3.5)
∑

i∈Ilt

Pixi +
∑

j∈Jl

P t
j yj +

∑

hc∈HClt

Phcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (3.6)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (3.7)

x, y, u ≥ 0, (3.8)

y, u ∈ Z (3.9)

3.2.3 Duality, uniform prices and opportunity costs

Let us now consider partitions J = Jr ∪ Ja, C = Cr ∪ Ca, and the following constraints,
fixing all integer variables to some arbitrarily given values:

− yja ≤ −1 ∀ja ∈ Ja ⊆ J [daja ] (3.10)

yjr ≤ 0 ∀jr ∈ Jr ⊆ J [drjr ] (3.11)

− uca ≤ −1 ∀ca ∈ Ca ⊆ C [dua
ca

] (3.12)

ucr ≤ 0 ∀cr ∈ Cr ⊆ C [dur
cr

] (3.13)

Dropping integer constraints (3.9) not needed any more, this yields an LP whose dual
is:
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min
∑

i

si +
∑

j

sj +
∑

c

sc +
∑

m

wmvm −
∑

ja∈Ja

daja −
∑

ca∈Ca

dua
ca

(3.14)

subject to:

si + Piπl(i),t(i) ≥ Piλ
i, ∀i [xi] (3.15)

shc + Phcπl(hc),t(hc) ≥ Phcλ
hc, ∀h ∈ Hc, c [xhc] (3.16)

sjr + drjr +
∑

t

P t
jr
πl(jr),t ≥

∑

t

P t
jr
λjr , ∀jr ∈ Jr[yjr ] (3.17)

sja − daja +
∑

t

P t
ja
πl(ja),t ≥

∑

t

P t
ja
λja , ∀ja ∈ Ja [yja ] (3.18)

scr + dur
cr
≥
∑

h∈Hcr

shcr , ∀cr ∈ Cr [ucr ] (3.19)

sca − dua
ca
≥
∑

h∈Hca

shca , ∀ca ∈ Ca [uca ] (3.20)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K [nk] (3.21)

si, sj, sc, shc, d
r
jr
, daja , du

r
cr
, dua

ca
, vm ≥ 0 (3.22)

We now write down the complementarity constraints corresponding to these primal and
dual programs parametrized by the integer decisions. Economic interpretations are stated
afterwards:
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si(1− xi) = 0 ∀i ∈ I (3.23)

sj(1− yj) = 0 ∀j ∈ J (3.24)

shc(uc − xhc) = 0 ∀h, c (3.25)

sc(1− uc) = 0 ∀c ∈ C (3.26)

vm(
∑

k

am,knk − wm) = 0 ∀m ∈ N (3.27)

(1− yja)daja = 0 ∀ja ∈ Ja (3.28)

yjrd
r
jr

= 0 ∀jr ∈ Jr (3.29)

(1− uca)dua
ca

= 0 ∀ca ∈ Ca (3.30)

ucrdu
r
cr

= 0 ∀cr ∈ Cr (3.31)

xi(si + Piπl(i),t(i) − Piλ
i) = 0 ∀i ∈ I (3.32)

xhc(shc + Phcπl(hc),t(hc) − Phcλ
hc) = 0 ∀h, c (3.33)

yjr(sjr + drjr +
∑

t

P t
jr

(πl(jr),t − λjr)) = 0 ∀jr ∈ Jr (3.34)

yja(sja − daja +
∑

t

P t
ja

(πl(ja),t − λja)) = 0 ∀ja ∈ Ja (3.35)

ucr(scr + dur
cr
−
∑

h∈Hcr

shcr) = 0 ∀cr ∈ Cr (3.36)

uca(sca − dua
ca
−
∑

h∈Hca

shca) = 0 ∀ca ∈ Ca (3.37)

Lemma 3.1 (Economic interpretation of da, dr [53]). Take a pair of points (x, y, u, n)
and (s, πl,t, d

a, dr, dua, dur) respectively satisfying primal conditions (3.2)-(3.13) and dual
conditions (3.15)-(3.22), such that complementarity constraints (3.23)-(3.37) are satis-
fied. For the uniform prices πl,t: (i) daja is an upper bound on the actual loss (if any)

−min[0,
∑

t

P t
ja

(λja −πl(ja),t)] of the executed block order ja, (ii) d
r
jr
is an upper bound on

the opportunity cost max[0,
∑

t

P t
jr

(λjr − πl(jr),t)] of the rejected order jr.

Proof. (i) Conditions (3.35) show that for an accepted block yja = 1, we have sja − daja =∑

t

P t
ja

(λja − πl(ja),t), the right-hand side corresponding to the gain (if positive) or loss (if

negative) of the bid. As sja ≥ 0, the loss (i.e. the negative part [
∑

t

P t
ja

(λja−πl(ja),t)]
− ≥ 0

) is bounded by daja .

(ii) For a rejected block bid, yjr = 0, and conditions (3.24) imply sjr = 0, which used in
dual conditions (3.17) directly yields the result, as drjr ≥ 0.

The following lemma proposes analogous interpretations for the case of MIC orders. Intu-
itively, neglecting for now the so-called MIC condition, the shadow cost of forcing a MIC
order to be rejected (given by dur) is at least equal to the sum of all maximum missed
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surpluses generated by its hourly suborders at the given market prices, while there is no
’shadow cost’ at forcing it to be accepted (its suborders are then cleared using standard
rules for hourly bids):
Lemma 3.2 (Interpretation of dua, dur). (i) dur

cr
is an upper bound on the sum of max-

imum missed individual hourly surpluses
∑

h∈Hcr

(max[0, Phcr
(λhcr − πl(hcr),t(hcr))]) of the re-

jected MIC order cr. (ii) We can always assume dua
ca

= 0, ∀ca ∈ Ca.

Proof. (i) Conditions of type (3.26) show that scr = 0, while (3.16) and (3.22) give
shcr ≥ max[0, Phcr

(λhcr −πl(hcr),t(hcr))]. Using these two facts in (3.19) provides the result.

(ii) As ∀h ∈ Hc, shc ≥ 0, using (3.20), it follows that ∀ca ∈ Ca, sca − dua
ca
≥ 0. Then, we

can pose ˜dua
ca

:= 0 and make a change of variable s̃ca := sca−dua
ca

in (3.2)-(3.37) (systems
of conditions equivalent in the usual sense).

3.2.4 The new primal-dual framework

This new ’primal-dual approach’ makes use of an equality of objective functions (3.39) to
enforce all the economically meaningful complementarity conditions (3.23)-(3.37), where
the additional variables daja , d

r
jr
, dua

ca
, dur

cr
represent deviations from a perfect market equi-

librium affecting non-convex bids, cf. Lemma 3.1 and Lemma 3.2 above. Leaving aside for
the time being the question of MIC bid selections, which is dealt with in Section 3.3, the
problem is that we do not know a priori, for a given criterion, what is the best block bid
selection J = Jr∪Ja. However, the feasible set UMFS described below allows determining
the optimal block bid selection, whatever the desired objective function is, and the pair
of optimal points for the corresponding primal and dual programs stated above, where
welfare is maximized with fixed combinatorial decisions, enforcing equilibrium for the
convex part of the market clearing problem, and in particular spatial equilibrium. As the
selection Ja, Jr (resp. Ca, Cr) is not known in advance, the feasible set is described using
’deviation variables’ daj , d

r
j , du

a
c , du

r
c for all j ∈ J, c ∈ C, and constraints (3.52),(3.54) for

example ensure that dajr = 0 for a given rejected block jr, and conversely that drja = 0 for
an accepted block ja. Therefore, constraints (3.50) below enforce constraints (3.17)-(3.18)
in all cases. This is formalised in Theorem 3.1 and helps considering many interesting
issues (welfare or traded volume maximization, minimization of opportunity costs, etc),
in a computationally efficient way. This is also a key step towards the main extension
presented in the next section, proposing an exact linearisation to deal with MIC bids
using a MILP formulation.

In theory, admissible market clearing prices may lie outside the price range allowed for
bids, see [69]. For modelling purposes, we need to include the following technical constraint
limiting the market price range

πl,t ∈ [−π̄, π̄] ∀l ∈ L, t ∈ T. (3.38)

π̄ can be choosen large enough to avoid excluding any relevant market clearing solution
(see [54]). Note that in practice, power exchanges actually do impose that the computed
prices πl,t stay within a given range in order to limit market power and price volatil-
ity.
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Uniform Market Clearing Feasible Set (UMFS):

∑

i

(λiPi)xi +
∑

c,h∈Hc

(λhcPhc)xhc +
∑

j,t

(λjP t
j )yj

≥
∑

i

si +
∑

j

sj +
∑

c

sc −
∑

j∈J

daj +
∑

m

wmvm (3.39)

xi ≤ 1 ∀i ∈ I[si] (3.40)

yj ≤ 1 ∀j ∈ J [sj] (3.41)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [shc] (3.42)

uc ≤ 1 ∀c ∈ C[sc] (3.43)
∑

i∈Ilt

Pixi +
∑

j∈Jl

P t
j yj +

∑

hc∈HClt

Phcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (3.44)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (3.45)

x, y, u ≥ 0, (3.46)

y, u ∈ Z (3.47)

si + Piπl(i),t(i) ≥ Piλ
i, ∀i [xi] (3.48)

shc + Phcπl(hc),t(hc) ≥ Phcλ
hc, ∀h ∈ Hc, c [xhc] (3.49)

sj + drj − daj +
∑

t

P t
jπl(j),t ≥

∑

t

P t
jλ

j, ∀j ∈ J [yj] (3.50)

(sc + dur
c) ≥

∑

h∈Hc

shc ∀c ∈ C[uc] (3.51)

drj ≤Mj(1− yj) ∀j ∈ J (3.52)

dur
c ≤Mc(1− uc) ∀c ∈ C (3.53)

daj ≤Mj yj ∀j ∈ J (3.54)

dua
c = 0 ∀c ∈ C (3.55)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K[nk] (3.56)

si, sj, sc, shc, d
a, dr, dua, dur, vm ≥ 0 (3.57)

Constants Mj are choosen large enough in Constraints (3.52), (3.54) so that Constraints
(3.50) are not restraining the range [−π̄, π̄] of possible values for πl,t (or the possibility
to paradoxically reject and accept block bids). They must indeed correspond to the
maximum opportunity cost in conditions (3.52), or loss in conditions (3.54), that could
be incurred to a block bid, for clearing prices in the allowed range. For this purpose,
assuming that both the bid and market clearing prices satisfy (3.38), it is sufficient to
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set Mj := K
∑

t

|P t
j | with K = 2π̄. This value of K could be improved. For example, in

constraints (3.52), one could set K := (π̄− λj) for a sell block bid, and K := (λj − (−π̄))
for a buy block bid. Values of the Mc are determined similarly with respect to (3.53) and
condition (3.51): they must be such that the value of sc can be null whatever the values
of the shc are. Economically speaking, the surplus sc of a rejected MIC bid will be null
even if the potential surpluses shc of its suborders are not.

Also, we have made use of Lemma 3.2 to set, without loss of generality, all the variables
dua

c := 0 in UMFS. This is clarified in the proof of Theorem 3.1.
Theorem 3.1. (I) Let (x, y, u, n, π, v, s, da, dr, dua, dur) be any feasible point of UMFS
satisfying the price range condition (3.38), and let us define Jr = {j|yj = 0}, Ja = {j|yj =
1}, Cr = {c|uc = 0}, Ca = {c|uc = 1}.

Then the projection (x, y, u, n, π, v, s, daja∈Ja , d
r
jr∈Jr , du

a
ca∈Ca

, dur
cr∈Cr

) satisfies all conditions
in (3.2)-(3.37).

(II) Conversely, any point

MCS = (x, y, u, n, π, v, s, daja∈Ja , d
r
jr∈Jr , du

a
ca∈Ca

, dur
cr∈Cr

) feasible for constraints (3.2)-
(3.37) related to a given arbitrary block order selection J = Jr ∪ Ja and MIC selection
C = Cr ∪ Ca which respects the price range condition (3.38) can be ‘lifted’ to obtain a
feasible point ˜MCS = (x, y, u, n, π, v, s̃, d̃a, d̃r, ˜dua, ˜dur) of UMFS.

Proof. See appendix.

3.3 Including MIC bids

3.3.1 Complex orders with a minimum income condition

A MIC order is basically a set of hourly orders with the classical clearing rules but
with the additional condition that a given ’minimum income condition’ must be satisfied.
Otherwise, all hourly bids associated to the given MIC bid are rejected, even if some of
them are ITM. The minimum income condition of the MIC order c ensures that some
fixed cost Fc together with a variable cost Vc × Pc are recovered, where Pc is the total
executed quantity related to the order c, and Vc a given variable cost.

With the notation described in Section 3.2.2, the minimum income condition for a MIC
bid c has the form:

(uc = 1) =⇒
∑

h∈Hc

(−Phcxhc)πl(hc),t(hc) ≥ Fc +
∑

h∈Hc

(−Phcxhc)Vc, (3.58)

where Hc denotes the set of hourly orders associated with the MIC order c. The left-
hand side represents the total income related to order c, given the market prices πl,t and

executed amount of power
∑

h∈Hc

−Phcxhc, while the right-hand side corresponds to the
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fixed and variable costs of production. At first sight, this condition is non-linear and
non-convex, because of the terms xhcπl(hc),t(hc) in the left-hand side.

In previous works, MIC constraints are either approximated, see [37, 84], or the full model
is decomposed and solved heuristically, as in the approach described in EUPHEMIA ([27]).
More specifically only the primal part (3.1)–(3.9) is considered in a master problem, and
prices are computed only when integer solutions are found. Let us however recall that
[37, 84] on the one hand and [27] on the other hand are considering distinct market models.
We show in the next section how MIC conditions can be linearized without approximation
in the common European market model considered by [27]. To the best of our knowledge,
this is the first exact linearisation proposed for this type of conditions.

3.3.2 Exact linearization of the MIC conditions

The following lemma is the key reason for which it is possible to express the a priori
non-linear non-convex MIC condition (3.58) as a linear constraint. As we have in UMFS
both the surplus variables sc and the contributions to welfare (Phcxhc)λ

hc, we can use
them to express the income in a linear way:

Lemma 3.3. Consider any feasible point of UMFS. Then, the following holds:

∀c ∈ C,
∑

h∈Hc

(Phcxhc)πl(hc),t(hc) =
∑

h∈Hc

(Phcλ
hc)xhc − sc (3.59)

Proof. We first define Cr and Ca as in Theorem 3.1. For cr ∈ Cr, the identity is trivially
satisfied, because if a MIC bid is rejected, all related hourly bids are rejected: ∀h ∈
Hcr , xhcr = 0, and on the other side, scr = 0 because of complementarity constraints
(3.26).

Let us now consider an accepted MIC bid ca ∈ Ca. We first show that the following
identity holds:

(Phcaxhca)πl(hca),t(hca) = (Phcaλ
hca)xhca − shca (3.60)

Consider for xhca the following two possibilities, noting that uca = 1:

(a) if xhca = 0, the identity (3.60) is trivially satisfied, as shca = 0 according to comple-
mentarity constraints (3.25).

(b) if 0 < xhca , (3.33) gives shca = Phcaλ
hca −Phcaπl(hca),t(hca), so multiplying the equation

by xhca and using (3.25) guaranteeing shcaxhca = shcauca = shca , we get identity (3.60).

Summing up (3.60) over h ∈ Hca yields:

∑

h∈Hca

(Phcaxhca)πl(hca),t(hca) =
∑

h∈Hca

(Phcaλ
hca)xhca −

∑

hca

shca

Finally, using complementarity constraints (3.37), we get:
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∑

h∈Hca

(Phcaxhca)πl(hca),t(hca) =
∑

h∈Hca

(Phcaλ
hca)xhca − (sca − dua

ca
),

where dua
ca

:= 0 by Lemma 3.2 in the definition of UMFS, providing the required identity
(3.59).

Using Lemma 3.3, the MIC condition (3.58) can be stated in a linear way as follows:

sc −
∑

h∈Hc

(Phcλ
hc)xhc ≥ Fc +

∑

h∈Hc

(−Phcxhc)Vc −Mc(1− uc) (3.61)

where Mc is a fixed number large enough to deactivate the constraint when uc = 0. As
uc = 0 implies sc = 0 and xhc = 0, we set Mc := Fc.

3.3.3 Welfare maximization with MIC bids, without any auxil-
iary variables

We propose here a formulation of the welfare maximization problem including MIC bids,
avoiding any auxiliary variables, by eliminating the variables da, dr, dur from the formu-
lation UMFS.

Let us consider UMFS with the additional MIC conditions (3.61) for c ∈ C. We can
make a first simplification of the model by replacing both kinds of conditions (3.51),
(3.53) by the conditions (3.74) below. Also, under PCR market rules, as no bid can be
paradoxically executed, according to Lemma 3.1, we must set daj = 0, ∀j ∈ J . With these
last conditions added, in the same way, we can clean up the mathematical formulation
by replacing (3.50) and (3.52) by conditions (3.73) below, as well as removing constraints
(3.54)-(3.55) (constraints (3.55) are not needed any more as we removed all occurrences of
dua

c in consequence). This yields an equivalent MILP formulation without any auxiliary
variables, and in particular no more binary variables than the number of block and MIC
bids:
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PCR-FS
∑

i

(λiPi)xi +
∑

c,h∈Hc

(λhcPhc)xhc +
∑

j,t

(λjP t
j )yj

≥
∑

i

si +
∑

j

sj +
∑

c

sc +
∑

m

wmvm (3.62)

xi ≤ 1 ∀i ∈ I [si] (3.63)

yj ≤ 1 ∀j ∈ J [sj] (3.64)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [shc] (3.65)

uc ≤ 1 ∀c ∈ C[sc] (3.66)
∑

i∈Ilt

Pixi +
∑

j∈Jl

P t
j yj +

∑

hc∈HClt

Phcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (3.67)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (3.68)

x, y, u ≥ 0, (3.69)

y, u ∈ Z (3.70)

si + Piπl(i),t(i) ≥ Piλ
i, ∀i [xi] (3.71)

shc + Phcπl(hc),t(hc) ≥ Phcλ
hc, ∀h ∈ Hc, c [xhc] (3.72)

sj + Mj(1− yj) +
∑

t

P t
jπl(j),t ≥

∑

t

P t
jλ

j, ∀j ∈ J [yj] (3.73)

sc + Mc(1− uc) ≥
∑

h∈Hc

shc ∀c ∈ C[uc] (3.74)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K[nk] (3.75)

sc −
∑

h∈Hc

(Phcλ
hc)xhc ≥

Fc +
∑

h∈Hc

(−Phcxhc)Vc −Mc(1− uc) ∀c ∈ C (3.76)

si, sj, sc, shc, d
r, dur, vm ≥ 0 (3.77)

The welfare optimization problem is then stated as follows:

max
PCR−FS

∑

i

(λiPi)xi +
∑

c,h∈Hc

(λhcPhc)xhc +
∑

j,t

(λjP t
j )yj (3.78)

Let us note that a solution will always exist, provided that bid curves can be matched
and network constraints be satisfied. This follows from the fact that in the worst case, all
non-convex bids could be rejected, since the paradoxical rejection of a non-convex bid is
allowed in the market model. In particular, minimum income conditions (3.58) or (3.76)
are trivially satisfied for rejected MIC bids, i.e. when uc = 0.
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3.3.4 Considering other objective functions for economic anal-
ysis purposes

Maximizing the traded volume

The following program aims at maximizing the traded volume under the same market
rules:

max
PCR−FS

∑

i|Pi>0

Pixi +
∑

c,h∈Hc|Phc>0

Phcxhc +
∑

(j,t)|P t
j>0

P t
j yj (3.79)

An alternative formulation of the objective function is the following:

max
PCR−FS

1

2
(
∑

i

|Pi|xi +
∑

c,h∈Hc

|Phc|xhc +
∑

(j,t)

|P t
j |yj) (3.80)

Minimizing opportunity costs of PRB

It suffices to consider the following objective function over UMFS and the additional
constraints daj = 0, ∀j ∈ J :

min
∑

j

drj (3.81)

Let us note that constraints like (3.52) also allow to control which block bids could be
paradoxically rejected on an individual basis, or could be used to forbid the paradoxical
rejection of bids which are too deeply in-the-money, by specifying a threshold via the
values of Mj.

Finally, let us note that a result previously proposed in [70] about an alternative market
model could be recovered almost directly using the framework proposed here. This result
basically states that (a) there is always enough welfare to allow and compensate para-
doxically accepted block bids (PAB), (b) allowing PAB generates globally more welfare.
The fact that this approach generates more welfare is because allowing PAB corresponds
to discarding constraints daj = 0, providing a relaxation of the European market rules.
Moreover, the condition of equality of objective functions (3.39) directly shows that wel-
fare, which is positive under very mild assumptions, can be decomposed as the sum of
individual bid surpluses minus the compensations daj that should be paid to block bids
losing money to make them whole. However, this corresponds to a non-uniform pricing
scheme that we don’t consider further in the present article.
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3.4 Numerical Experiments

We provide here a proof-of-concept of the approach, presenting numerical experiments, us-
ing realistic large-scale instances, on: (a) welfare maximization with MIC bids, (b) traded
volume maximisation under CWE rules (i.e. without MIC bids), and (c) opportunity costs
minimization also under CWE market rules. The models have been implemented in C++
using IBM ILOG Concert Technology interfaced with R for input-output management
as well as post-processing analysis, and solved using CPLEX 12.5.1 using 4 threads on a
platform with 2x Xeon X5650 (6 cores @ 2.66 GHz), 16 GB of RAM, running Fedora Linux
20. One potential advantage of the new primal-dual approach is the possibility to benefit
directly from parallel computing routines of state-of-the-art solvers like CPLEX.

3.4.1 Welfare maximization with MIC bids

We first consider solving market instances with MIC bids only. The instances involve
hourly bids from four areas, one of these areas also containing MIC bids. Solving instances
up to optimality is tractable, see Table 3.3, though some instances are challenging from
a numerical stability point of view, due to the introduction of so-called big M numbers
in the formulations. A particular attention should be paid to the tolerance parameters
of the solver, for example the integer feasibility tolerance parameter. The branching
direction has been set to -1 (priority to the ’down branch’), to guarantee finding a good
feasible solution quickly. The intuition is that minimum income conditions do not apply
to rejected orders. Moreover, eliminating MIC bids tend to increase the prices and make
the minimum income conditions of other MIC orders satisfied. Heuristics have therefore
been deactivated. Cuts have also been deactivated, as we observed they were not helpful
and slowed down the algorithm.

Let us emphasize that this new formulation provides dual LP bounds, and can be solved
exactly by state-of-the-art MIP solvers. To our knowledge, this is the first tractable exact
approach proposed. (Another, apparently non-tractable approach would be to proceed by
decomposing the problem and adding e.g. no-good cuts rejecting the current MIC bids
selection when no admissible prices exist, with a very slow convergence rate.)

#inst Run. Time (s.) Nodes Abs. Gap Rel. Gap #Hourly bids # MIC bids
1 70 58 47107 70
2 274 896 49299 74
3 432 1111 48119 71
4 144 104 52434 72
5 37 19 41623 74
6 901 3238 1299754.97 0.04% 45371 69
7 22 23 36819 73
8 624 1055 53516 69
9 255 504 62770 76
10 216 418 45731 74

Table 3.3: Welfare optimization with MIC bids
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Adding block bids makes the problem much more difficult to solve. The solver parameter
values used are the same as above. It turns out that many block bids are fractionally
accepted in continuous relaxations of the branch-and-cut tree. As a consequence, the first
feasible solutions found are of poor quality, with a few block and MIC bids accepted.
Instead, as an easy-to-implement heuristic approach, we first solve an instance with all
block bids fixed to zero, and determine an admissible MIC bids selection (ideally optimal
for this subproblem). Second, we fix this MIC bids selection, and introduce block bids, to
determine a potentially very good solution to the initial problem. It should be noted that
a solution for this second stage always exists, as in the worst case, all block bids could be
rejected. Third, the obtained solution is used as a MIP start for the initial model with
both block and MIC bids. With this approach, the number of block bids accepted is of the
same order as when no MIC bid is present besides these block bids, and the relative gap
is improved, compared to the basic approach of providing the solver with the formulation
’as is’. However, the absolute MIP gap remains substantial. Results are presented in
Table 3.4, with a running time limit of 900 seconds for each of the first two stages, and
1200 seconds for the last stage.

#inst Nodes Abs. Gap Rel. Gap #Hourly bids # MIC bids # Blocks bids
1 13214 1015887.92 0.04% 47107 70 502
2 7913 4129620.69 0.14% 49299 74 589
3 11375 2748987.16 0.12% 48119 71 516
4 2873 3009748.14 0.10% 52434 72 591
5 12213 1425671.83 0.05% 41623 74 588
6 6443 5999741.05 0.19% 45371 69 567
7 22250 337651.70 0.01% 36819 73 550
8 6925 4747440.57 0.19% 53516 69 691
9 3658 2937928.67 0.08% 62770 76 604
10 3194 3100317.15 0.12% 45731 74 537

Table 3.4: Welfare optimization with MIC and block bids

3.4.2 Traded volume maximization

To optimize the traded volume, welfare maximization itself turns out to be a useful
heuristic. At a first stage, we solve this welfare maximization problem, and for the
given optimal block bid selection, maximize the traded volume (dealing with a possible
indeterminacy of the traded volume for that welfare maximizing solution). At a second
stage, we use this solution as a MIP start to solve the initial problem. This helps in
practice, at least providing a useful upper bound, even in some cases proving optimality
of the welfare maximizing solution for the traded volume maximization problem. We also
observed that provided the reasonably good solution obtained from maximizing welfare,
well-known heuristics such as ’solution polishing’ in CPLEX could quickly provide better
solutions in terms of traded volume. Therefore, this heuristic is first applied when starting
the second stage solving the initial traded volume maximization problem itself, provided
the solution obtained at the first stage by maximizing the welfare. Let us note however
that maximizing the traded volume, or minimizing opportunity costs, is more difficult than
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maximizing welfare, though we are able to solve instances of reasonable size, and not toy
examples only. For illustration purposes, instances corresponding to the Belgian market
have been used. Table 3.5 summarizes the trade-off between both kinds of objectives for
ten such instances.

Welf. max sol. Maximizing traded volume ∆ Vol. ∆ Welf. # #
# Max Trad. Vol. Max Trad. Vol. Best bound Hourly Blocks

bids bids
1 24589.84 24589.84 24589.84 0.00 0.00 1939 54
2 25794.53 25928.19 26654.32 133.66 5672.35 1711 67
3 23633.48 23696.99 23696.99 63.51 171.40 1706 54
4 35137.32 35285.32 35285.32 148.00 4292.13 1893 56
5 21296.94 21433.08 21433.08 136.15 2460.55 1713 39
6 23361.72 23871.27 23871.27 509.55 56518.94 1700 46
7 23542.38 23679.64 23679.64 137.26 1877.94 1749 35
8 35974.15 36270.11 36270.11 295.96 21403.03 1533 58
9 24988.63 24988.63 24988.63 0.00 0.00 1787 33
10 35307.91 35507.32 37434.39 199.41 16082.15 1418 62

Table 3.5: Comparison of the maximum traded volume in both cases

For example, instances # 2 or # 3 show concrete examples where it is possible to obtain
more traded volume than when just optimizing welfare (as in the toy example presented
above), the better solution for # 3 even being proven optimal. Instance # 1 shows an
example where the welfare maximizing solution is proven optimal for the traded volume
maximization problem. Sometimes the traded volume can be significantly larger (2% or
more), as in instance #6.

3.4.3 Minimizing opportunity costs

We proceed as above, (a) first solving the welfare maximizing solution, (b) looking for
the minimum opportunity costs possible for this solution, and (c) use this solution as a
start solution for the proper opportunity costs minimization problem. Let us note that
prices and opportunity costs obtained from stage (b) can substantially differ from the
prices computed in practice, as these prices are determined in a different way from what
is specified by tie breaking rules in case of price/volume indeterminacy. Let us recall that
welfare is uniquely determined by the block bid selections and hence not affected by stage
(b), see [54]. We also refer to [53] for a table showing results for a few real CWE instances
from 2011.

Results are given in Table 3.6. Optimal solutions are found in the majority of the instances
(9 out of 10). Again, for example, instances # 1 or # 2 show that solutions to both
problems do not coincide in general (as in the toy example of Section 3.2.1). Opportunity
cost can sometimes be reduced by 75% or more, for example for instance #3. In the
case of instances # 5 and # 9, the welfare maximizing solution is proven optimal for the
opportunity costs minimization problem.

78



W-MAXSOL Minimizing Opp. Costs ∆ OC. ∆ Welf. # Hourly # Blocks
# Min OC Min OC Best bound
1 13096.96 5624.37 5624.37 7472.58 2501.76 1939 54
2 6559.97 2124.96 2124.96 4435.01 963.19 1711 67
3 3913.16 978.61 978.61 2934.55 171.40 1706 54
4 483.71 348.00 348.00 135.71 138.65 1893 56
5 1715.30 1715.30 1715.30 0.00 0.00 1713 39
6 49366.33 46405.44 46405.44 2960.90 1577.61 1700 46
7 8771.51 8771.51 8771.51 0.00 0.00 1749 35
8 17249.96 7399.43 7399.43 9850.53 236.38 1533 58
9 256.81 256.81 256.81 0.00 0.00 1787 33
10 64777.46 61579.08 3198.25 3198.37 1591.57 1418 62

Table 3.6: Comparison of opportunity costs in both cases

3.5 Conclusions

The new primal-dual approach proposed here allows deriving powerful algorithmic tools,
and dealing with economic issues of interest for day-ahead auction participants or orga-
nizers. We have been able to give a MILP formulation of the market clearing problem in
the presence of MIC bids, avoiding the introduction of any auxiliary variables, relying on
an exact linearisation of the minimum income condition. To the best of our knowledge, it
is the first tractable exact approach proposed to deal with such kind of bids, and numer-
ical experiments show good results, though the approach is still challenging when both
block and MIC bids are considered together. From the economic analysis point of view,
the approach allowed us to examine the trade-off occurring in practice between different
objectives such as welfare maximization, traded volume maximization, and minimization
of opportunity costs of paradoxically rejected block bids. It also seems these are the
first tractable formulations proposed to examine these economic issues. The trade-offs
for the examined instances were rather small, though they could be more important in
absolute terms if the number and size of non-convex bids are allowed to increase. We
also plan to release a Julia package implementing the models and algorithms, to foster
exchanges and provide adaptable tools to the academic community working on related
research topics.
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3.A Omitted proofs in main text

Let us first consider the equality of primal and dual objective functions of Section 3.2.2:
Observation 3.1. By strong duality for linear programs, for a pair of primal and dual
feasible points corresponding to a block bid selection and a MIC bid selection, i.e. satisfying
respectively (3.2)-(3.13) and (3.15)-(3.22), the complementarity constraints (3.23)-(3.37)
hold if and only if we have the equality (3.1) = (3.14).

3.A.1 Proof of Theorem 3.1

Proof. We emphasize again, and use below, the fact that according to Lemma 3.2, we can
assume without loss of generality dua

ca
= 0, ∀ca ∈ Ca in (3.14)-(3.22).

(I) Let MCS = (x, y, n, u, π, v, s, da, dr, dua, dur) be a feasible point of UMFS and let us
define Jr := {j ∈ J |yj = 0}, Ja := {j ∈ J |yj = 1} and likewise for Cr, Ca with respect to
the values of the variables uc. Consider the projection

˜MCS = (x, y, n, u, π, v, s, daja∈Ja , d
r
jr∈Jr , du

a
ca∈Ca

, dur
cr∈Cr

). Constraints (3.50)-(3.55) ensure

that ˜MCS satisfies constraints (3.17)-(3.20): constraints (3.52)-(3.55) are ’dispatching’
constraints (3.50)-(3.51) to constraints (3.17)-(3.20). Therefore ˜MCS satisfies primal
conditions (3.2)-(3.13) and dual conditions (3.15)-(3.22). Condition (3.54) ensures that
daj = 0 for j ∈ Jr, and with (3.55), it shows that condition (3.39) implies the equality
(3.1) = (3.14). By Observation 3.1, we can then replace this equality by the needed
complementarity conditions (3.23)-(3.37).

(II) Conversely let ˜MCS = (x, y, n, u, π, v, s, daja∈Ja , d
r
jr∈Jr , du

a
ca∈Ca

, dur
cr∈Cr

) be a point sat-
isfying primal conditions (3.2)-(3.13), dual conditions (3.15)-(3.22), and complementarity
conditions (3.23)-(3.37), associated to a given block and MIC bid selection J = Ja∪Jr, C =
Ca ∪Cr. Observation 3.1 ensures that this point also satisfies the equality (3.1) = (3.14).
Let us set additional values drj = 0, for j ∈ Ja, also daj = 0 for j ∈ Jr, and similarly dua

c = 0
for c ∈ Cr, du

r
c = 0 for c ∈ Ca, giving a point MCS = (x, y, n, u, π, v, s, da, dr, dua, dur).

The new point satisfies condition (3.39), since only terms daj = 0, j ∈ Jr, du
a
c = 0 are

added to the equality (3.1) = (3.14). It remains to verify that all the remaining con-
straints defining UMFS are satisfied as well. All these additional values trivially satisfy
constraints (3.52)-(3.55). Therefore, it is needed to show that conditions (3.50)-(3.55) are
also satisfied for all j ∈ J, c ∈ C. Due to (3.24), in condition (3.17), sjr = 0 and we can
set drjr := Pjrλ

jr−Pjrπ without altering the satisfaction of any condition. Due to the price
range condition and the choice of the parameters Mj, these drj , j ∈ Jr satisfy conditions
(3.52) which therefore hold for all j ∈ J . In condition (3.18), sja , d

a
ja

can be redefined
without modifying the values of (sja − daja) and hence without altering satisfaction of any
other constraint. Due to the large values of the parameters Mj, this again can be done
so as to satisfy conditions (3.54) for j ∈ Ja, hence for all j ∈ J . Then, (3.17)-(3.18), and
the ’dispatcher conditions’ (3.52)-(3.54) imply (3.50). Finally, concerning the analogue
constraints related to the MIC bids, and first using Lemma 3.1 to set dua

ca
= 0 for all

ca ∈ Ca, it is straightforward to show in a similar way that (3.19)-(3.20) together with
the Mc and the additional null values for part of the dur (resp. dua) given above allow
satisfying (3.51), (3.53).
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Chapter 4

Revisiting minimum profit
conditions in uniform price
day-ahead electricity auctions

CORE Discussion Paper 2016/43 updated version of: Mehdi Madani and Mathieu Van
Vyve, Revisiting minimum profit conditions in uniform price day-ahead electricity auc-
tions (submitted).

[Core Discussion papers 2016: http://www.uclouvain.be/en-633757.html]

Abstract

We examine the problem of clearing day-ahead electricity market auctions where each
bidder, whether a producer or consumer, can specify a minimum profit or maximum pay-
ment condition constraining the acceptance of a set of bid curves spanning multiple time
periods in locations connected through a transmission network with linear constraints.
Such types of conditions are for example considered in the Spanish and Portuguese day-
ahead markets. This helps describing the recovery of start-up costs of a power plant,
or analogously for a large consumer, utility reduced by a constant term. A new market
model is proposed with a corresponding MILP formulation for uniform locational price
day-ahead auctions, handling bids with a minimum profit or maximum payment condition
in a uniform and computationally-efficient way. An exact decomposition procedure with
sparse strengthened Benders cuts derived from the MILP formulation is also proposed.
The MILP formulation and the decomposition procedure are similar to computationally-
efficient approaches previously proposed to handle so-called block bids according to Eu-
ropean market rules, though the clearing conditions could appear different at first sight.
Both solving approaches are also valid to deal with both kinds of bids simultaneously,
as block bids with a minimum acceptance ratio, generalizing fully indivisible block bids,
are but a special case of the MP bids introduced here. We argue in favour of the MP
bids by comparing them to previous models for minimum profit conditions proposed in
the academic literature, and to the model for minimum income conditions used by the
Spanish power exchange OMIE.
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4.1 Introduction

4.1.1 Minimum profit conditions and Near-Equilibrium in non-
convex day-ahead electricity auctions

Day-ahead electricity markets are organized markets where electricity is traded for the
24 hours of the next day. They can take the form of single or two sided auctions (pool
with mandatory participation to match forecast demand or auctions confronting elastic
offer and demand). The prices set in day-ahead markets are used as reference prices
for many electricity derivatives, and such markets are taking more importance with the
ongoing liberalization and coupling of electricity markets around the world in general,
and in Europe in particular.

Clearing these auctions amounts to finding - ideally- a partial equilibrium using submitted
bids describing demand and offer profiles, depending on the utility, production costs
and operational constraints of market participants. A market operator, typically power
exchanges in Europe, is in charge of computing a market clearing solution.

It is well-known that for a well-behaved convex welfare optimization problem where strong
duality holds, duality theory provides equilibrium prices. However, to describe their
operational constraints or cost structure, participants can specify for example a minimum
output level of production (indivisibilities), or that the revenue generated by the traded
power at the market clearing prices should cover some start-up costs if the plant is started.
Similar bids could be specified for the demand side. This leads to the study of partial
market equilibrium with uniform prices where indivisibilities and fixed costs must be
taken into account, deviating from a well-behaved convex configuration studied in classical
microeconomic textbooks, e.g. in [61]. The need for bidding products introducing non-
convexities is due in particular to the peculiar nature of electricity and the non-convexities
of production sets of the power plants.

When considering a market clearing problem with non-convexities such as indivisibilities
(so-called block bids in the Pan-European PCR market [27]), or start-up cost recovery
conditions (so-called complex bids with a minimum income condition also called MIC
bids in PCR), most of the time no market equilibrium exists, see e.g. the toy example
in Section 4.2.1 for an instance involving MIC bids, and in [55] for an instance involving
block bids.

Let us also mention that in coupled day-ahead electricity markets, representation of the
network is a particularly important matter. Besides the potential issues due to the simpli-
fications or approximations made to represent a whole network, it is of main importance
for participants to understand clearly the reason for price differences occurring between
different locations. Economically speaking, locational prices should ideally form a spatial
equilibrium, as historically studied in [25, 85], which could equivalently be interpreted
as requiring optimality conditions for TSOs, relating locational price differences to the
scarcity and marginal prices of transmission resources.

Near-equilibrium under minimum profit conditions in uniform price day-ahead electricity
auctions is the main topic of the present contribution, and is also considered in references
[27, 37, 36, 35, 84], which are discussed in Section 4.3.1 below.
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4.1.2 Contribution and structure of this article

The main contribution of the present paper is to show how to handle minimum profit (or
maximum payment) conditions in a new way which turns out to generalize both block or-
ders with a minimum acceptance ratio used in France, Germany or Belgium, and, mutatis
mutandis, complex orders with a minimum income condition used in Spain and Portugal.
The new approach consists in new bids, which we call MP bids (for minimum profit or
maximum payment), and the corresponding mathematical programming formulation is a
MILP modelling all the corresponding market clearing conditions without any auxiliary
variables, similar to an efficient MIP formulation previously proposed for block orders
[54]. An efficient Benders decomposition with sparse strenghtened cuts similar to the
one proposed in [54] is also derived. These MP bids hence seem an appropriate tool
to foster market design and bidding products convergence among the different regions
which form the coupled European day-ahead electricity markets of the Pan-European
PCR project.

We start by providing in Section 4.2.1 a toy example illustrating the key points dealt
with in the reminder of the article. It illustrates the issues arising when considering
minimum profit conditions, and alternatives to take them into account in the computation
of market clearing solutions. We describe in Section 4.2.2 the notation used and a basic
’unrestricted’ welfare maximization problem where such minimum profit conditions are
first not enforced, also recalling the nice equilibrium properties which would hold in a
convex market clearing setting.

Section 4.3 is devoted to modelling minimum profit conditions or more generally MP con-
ditions, as with the approach proposed, the statement of a maximum payment condition
for demand-side orders is formally identical. After reviewing previous contributions con-
sidering minimum profit conditions, we derive economic interpretations for optimal dual
variables of a welfare maximization program where an arbitrary MP bids combination has
been specified. We then develop the core result, showing how to consider MP bids in a
computationally-efficient way, relying on previous results to provide a MILP formulation
without complementarity constraints nor any auxiliary variable to model these MP con-
ditions. Section 4.4 shows how to adapt all results when ramping constraints of power
plants are considered.

Section 4.5 derives from the MILP formulation provided in Section 4.3 a Benders de-
composition procedure with locally strengthened Benders cuts. These cuts are valid in
subtrees of a branch-and-bound solving a primal welfare maximization program, rooted
at nodes where an incumbent should be rejected because no uniform prices exist such
that MP conditions are all satisfied. They complement the classical Benders cuts which
we show to correspond indeed to ’no-good cuts’ basically rejecting the current MP bids
combination, and which are globally valid.

Numerical experiments are presented in Section 4.6. Implementations have been made
in Julia/JuMP [51] and are provided together with sample datasets in an online Git
repository [56]. They show the efficiency and merit of the new approach, in particular
compared to the current practice in OMIE-PCR.
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4.2 Near-equilibrium and minimum profit conditions

4.2.1 Position of the problem: a toy example

In the following toy example whose data is provided in Table 4.1 and depicted on Figure
4.1, a bid curve (in blue) represents some elastic demand. To satisfy this demand, there
are two offer bids from two plants, each having different start-up costs (100 EUR and 200
EUR respectively), but the same marginal cost of 10 EUR / MW. Both plants bid their
marginal cost curve and their start-up cost to the auctioneer.

Figure 4.1: Marginal cost/utility curves (see Table 4.1 for related start-up costs)

Neglecting first the minimum income conditions stating that all costs should be recovered
for online plants (i.e. both start-up and marginal costs), we can clear the market auction
by matching the aggregated marginal costs (resp. utility) bid curves, as done in the left
part of Figure 4.2. In that case, the determined market clearing price would be 10 EUR
/MW, and obviously, both power plants won’t recover their costs for that market clearing
price.

However, if we allow the potentially paradoxical rejection of bids involving start-up costs,
which is also tolerated in all previous propositions considering minimum profit conditions
exposed in [27, 35, 37, 36, 84], then a ’satisfactory solution’ could be obtained by either
rejecting bid B or bid C. In that case, matching marginal cost/utility curves as in the
right Figure 4.2, we see that the market clearing price will rise to 50 EUR / MW and that,
whatever the chosen offer B or C, the corresponding plant will recover all its costs. Similar
examples could be given for demand bids with a maximum payment condition.

These observations help understanding why it is not possible to get a market equilibrium
such that all MP conditions are satisfied. It may be required to expel some bids from
the market clearing solution that would be profitable for the market clearing prices ob-
tained in that situation. On the other hand, including such ’paradoxically rejected bids’
would modify prices such that the MP condition of some bid would not be satisfied any
more.
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Figure 4.2: Matching MP bids

Bids Power (MW) Limit price (EUR/MW) Start-up costs
D1: Demand bid 1 11 50 -
D2: Demand bid 2 14 10 -

MP1: Offer MP bid 1 10 10 100
MP2: Offer MP bid 2 10 10 200

Table 4.1: Toy market clearing instance

Market Price Revenue Costs Profits
MP1 MP2 MP1 MP2 MP1 MP2

Matching MP1 & MP2 10 100 100 200 300 -100 -200
Matching MP1 50 500 0 200 0 300 0
Matching MP2 50 0 500 0 300 0 200

Table 4.2: Market outcomes

The second point is that, even if in both matchings the costs are recovered for the chosen
plant, both matchings are not equivalent from a welfare point of view if we include fixed
costs in the computation of the welfare.

Under current OMIE-PCR market rules, both matching possibilities are not distinguished
because fixed costs are not included in the welfare maximizing objective function which
only considers marginal costs (resp. utility) of selected plants (resp. consumers). In such
a case, welfare is considered to be 400 whatever the chosen matching. Let us note that
in the same way, in [37], the fixed costs that should be recovered are not included in the
welfare objective.

If we pay attention to fixed costs when computing welfare, matching MP1 yields a welfare
of 300 while matching MP2 yields a welfare of 200. Such a choice in terms of inclusion of
fixed costs in the welfare objective function is similar to what is done in [84].

4.2.2 Unrestriced welfare optimization

Notation used throughout the text is provided here for quick reference. The interpretation
of any other symbol is given within the text itself.
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Notation and Abbreviations

Abbreviations:

MP bids Stands for bids with either a minimum profit or a maximum
payment condition

MIC bids Stands for complex orders with a minimum income condition used
in OMIE-PCR

ITM Stands for ’in-the-money’
ATM Stands for ’at-the-money’
OTM Stands for ’out-of-the-money’

Sets and indices:

i Index for hourly bids, in set I
c Index for MP bids, in set C
hc Index for hourly bids associated to the MIC bid c, in set Hc

l Index for locations, l(i) (resp. l(hc)) denotes the location
of bid i (resp. hc)

t Index for time slots, t(i) (resp. t(hc)) denotes the time slot
of bid i, (resp. hc)

Ilt ⊆ I Subset of hourly bids associated to location l and time slot t
HClt ⊆ HC Subset of MP hourly suborders, associated to location l and time slot t

Parameters:

Qi, Qhc Power amount of hourly bid i (resp. hc),
Q < 0 for sell bids, and Q > 0 for demand bids

rhc ∈ [0, 1] minimum ratio parameter used to express minimum output levels
P i, P hc Limit bid price of hourly bid i, hc
am,k Abstract linear network representation parameters
wm Capacity of the network resource m
Fc Start-up or fixed cost associated to bid c

Primal decision variables:

xi ∈ [0, 1] fraction of power Qi which is executed
xhc ∈ [0, 1] fraction of power Qhc (related to the MIC bid c) which is executed
uc ∈ {0, 1} binary variable conditioning the execution or rejection of the MP bid c

(i.e. of the values of xhc)
nk variables used for the abstract linear network representation, related

to net export positions

Dual decision variables:
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πlt locational uniform price of electricity at location l and time slot t
vm ≥ 0 dual variable pricing the network constraint m,
si ≥ 0 dual variable interpretable as the surplus associated to the execution

of bid i ∈ I
smax
hc ≥ 0 dual variable related to the (potential) surplus associated to the execution

of bid hc
smin
hc ≥ 0 dual variable related to the (potential) surplus associated to the execution

of bid hc
sc ≥ 0 dual variable interpretable as the surplus associated to the execution

of the MP bid c

A classical hourly order corresponds to a step of a stepwise offer or demand bid curve
relating accepted power quantities to prices. For each such step, the variable xi ∈ [0, 1]
denotes which fraction of this step will be accepted in the market clearing solution. In
the same way, variables xhc denote these accepted fractions for bid curves associated to a
bid with a minimum profit condition or maximum payment condition (MP bids).

Concerning these MP bids, binary variables uc are introduced to model the conditional
acceptance of a set of hourly bids hc ∈ Hc, controlled via constraints (4.3), while con-
straints (4.4) enforce minimum acceptance ratios where applicable. They are used for
example to model minimum power outputs of power plants. The conditional acceptances
will be expressed as price-based decisions (as called in [104, 32]) using the primal-dual
formulation developed in Section 4.3.2, involving both quantity and price variables. Pa-
rameters Fc correspond to fixed/start-up costs incurred if the MP bid is accepted. Let
us also note that a block bid spanning multiple time periods as described in [27, 60, 54]
could be described as an MP bid c by using a suitable choice of associated bid curves
and minimum acceptance ratios, and setting the corresponding fixed cost parameter Fc

to 0 in (4.1). It turns out that in such a case, minimum profit or maximum payment
conditions as described below will exactly correspond to the European market clearing
conditions for block orders described in [27, 60, 54], essentially stating that no loss should
be incurred to any accepted block bid, but allowing some block bids to be paradoxically
rejected.

Constraint (4.6) is the balance equation at location l at time t, where the right-hand
side is the net export position expressed as a linear combination of abstract network
elements. Constraint (4.7) is the capacity constraint of the abstract network resource
m. This abstract linear network representation covers e.g. DC network flow models or
the so-called ATC and Flow-based models used in PCR (see [27]). The usual network
equilibrium conditions involving locational market prices apply, as they will be enforced
by dual and complementarity conditions (4.14), (4.20), see [54].

The objective function aims at maximizing welfare. For the sake of conciseness, we do
not consider ramping constraints of power plants in the main parts of the text, though
they can straightforwardly be included in all the developments carried out, as shown in
Section 4.4.

UWELFARE:
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max
x,y,u,n

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc (4.1)

subject to:

xi ≤ 1 ∀i ∈ I [si] (4.2)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [smax
hc ] (4.3)

xhc ≥ rhcuc ∀h ∈ Hc, c ∈ C [smin
hc ] (4.4)

uc ≤ 1 ∀c ∈ C[sc] (4.5)
∑

i∈Ilt

Qixi +
∑

hc∈HClt

Qhcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (4.6)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (4.7)

xi, uc ≥ 0, (xhc free) (4.8)

u ∈ Z (4.9)

4.2.3 Dual and complementarity conditions of the continuous
relaxation

We denote by UWELFARE-CR-DUAL the dual of the continuous relaxation of the welfare
maximization program stated above.

UWELFARE-CR-DUAL:

min
∑

i

si +
∑

c

sc +
∑

m

wmvm (4.10)

subject to:

si + Qiπl(i),t(i) ≥ QiP
i, ∀i [xi] (4.11)

(smax
hc − smin

hc ) + Qhcπl(hc),t(hc) = QhcP
hc, ∀h ∈ Hc, c [xhc] (4.12)

sc ≥
∑

h∈Hc

(smax
hc − rhcs

min
hc )− Fc, ∀c ∈ C [uc] (4.13)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K [nk] (4.14)

si, sc, shc, vm ≥ 0 (4.15)
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Complementarity conditions:

si(1− xi) = 0 ∀i ∈ I (4.16)

smax
hc (uc − xhc) = 0 ∀h, c (4.17)

smin
hc (xhc − rhcuc) = 0 ∀h, c (4.18)

sc(1− uc) = 0 ∀c ∈ C (4.19)

vm(
∑

k

am,knk − wm) = 0 ∀m ∈ N (4.20)

xi(si + Qiπl(i),t(i) −QiP
i) = 0 ∀i ∈ I (4.21)

uc(sc −
∑

h∈Hc

(smax
hc − rhcs

min
hc ) + Fc) = 0 ∀c ∈ C (4.22)

As it is well-known, these dual and complementarity conditions, which are optimality
conditions for the continuous relaxation of (4.1)-(4.9) denoted UWELFARE-CR, exactly
describe the nice equilibrium properties we would like to have for a market clearing solu-
tion. This could be easily seen from the economic interpretations given in Lemmas 4.1,4.2,
4.4 and Theorem 4.1 below.

Hence, equilibrium and integrality conditions for u cannot be both satisfied unless the
continuous relaxation UWELFARE-CR admits a solution which is integral in u. In the
particular case where there is no fixed cost (∀c ∈ C, Fc = 0), no minimum acceptance
ratios (rhc = 0 for all hc ∈ Hc, c ∈ C), and there is no condition restraining the conditional
acceptances modelled by the binary variables uc via constraints (4.3), it is always optimal
to set all uc := 1 and the problem amounts to solving a classical convex market clearing
problem where equilibrium can be found which optimizes welfare.

Also, even setting Fc := 0 in (4.1), adding MP conditions to the constraints (4.2)-(4.9),
(4.11)-(4.22) to deal with them as in OMIE-PCR (cf. the toy example above with the
remark about distinguishable cases, and also Section 4.3.3) would in most cases render
the problem infeasible. Hence, equilibrium restrictions must be relaxed, and this can be
done in different ways, which is the topic of the next section.

4.3 Modelling Near-equilibrium with MP Conditions

Section 4.3.1 reviews previous propositions to handle minimum profit conditions, includ-
ing the current practice in OMIE-PCR, while Section 4.3.2 proposes a new approach
which seems to be both more appropriate economically speaking, and computationally
more efficient. Section 4.3.3 makes further technical comparisons between the current
OMIE-PCR practice and the new proposition, and recalls an exact linearisation for min-
imum income conditions used by OMIE proposed in a previous contribution. Ramping
conditions are not explicitly considered here, but Section 4.4 shows how all results could
be derived when these are included as well in the models.
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4.3.1 Modelling minimum profit conditions: literature review

As stated above, when one considers MP conditions or indivisibilities, it is needed to relax
market equilibrium conditions to get feasible solutions. A first idea to relax these equi-
librium conditions is to relax the complementarity conditions (4.16)-(4.22) while making
them satisfied as closely as possible. With the present context and notation, the proposi-
tion in [37] is essentially to minimize the slacks, i.e. the deviations from 0, of the left-hand
sides in (4.16)-(4.22), while adding ad-hoc non-convex quadratic constraints guaranteeing
non-negative profits for producers, which are then approximated with linear constraints.
The idea is generalized in [35] which also considers the possibility of relaxing integral-
ity conditions and to minimize a weighted sum of deviations from complementarity, of
deviations from integrality (which could be required to be null), and of uplift variables
included in the statement of the minimum profit conditions, corresponding to side pay-
ments to ensure revenue adequacy for producers. Leaving aside relaxation of integrality
conditions and uplifts, to minimize deviations from complementarity, for each left-hand
side expression gl ≥ 0, slack variables ǫl are added together with constraints ǫl ≥ gl, and
the sum of the ǫl is minimized. Let us note that in the models considered, the fixed costs
involved in the minimum profit conditions are not part of the welfare maximizing function
in [37], while they are included in the welfare in [35].

The model and idea suggested in [35] is considered further in [84], where there is no
uplift variable in the statement of minimum profit conditions, therefore requiring revenue
adequacy from the uniform market prices only, and where it is observed that minimizing
the slacks amounts to minimizing the duality gap given with our notation by (4.10) minus
(4.1), subject to primal and dual constraints (4.2)-(4.15). The contribution [84] observes
that this is a significant improvement over the formulation proposed in [35].

In all these propositions, the choice is made to use uniform prices, to ensure minimum
profit conditions for producers, and to minimize the deviations from a market equilibrium
by minimizing the sum of slacks of all complementarity conditions. In such a case, there
is no control on which deviations from market equilibrium are allowed, and in particular,
network equilibrium conditions which correspond to optimality conditions of TSOs are
often not satisfied.

In the Pan-European PCR market, the choice has been made to ensure network equi-
librium conditions as well as equilibrium conditions for all ’classical convex bids’ corre-
sponding to steps of classical bid curves. The only allowed deviations from a market
equilibrium are that some ’non-convex bids’ involving minimum power output constraints
or minimum profit (resp. maximum payment) conditions could be paradoxically rejected
as in the toy example given above in Section 4.2.1. Let us note that such a ’paradoxical
rejection’ is also allowed in all other propositions.

Concerning complex bids with a minimum income condition used in OMIE-PCR [27, 28],
minimum profit conditions are of the form:

(uc = 1) =⇒
∑

h∈Hc

(−Qhcxhc)πl(hc),t(hc) ≥ F̃c +
∑

h∈Hc

(−Qhcxhc)Vc, (4.23)

where for the given market prices πl,t, classical bid curves and the network are ’at equi-
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librium’, describing in particular the fact that ITM hourly bids are fully executed, OTM
hourly bids are fully rejected, and ATM hourly bids could be executed or rejected. In the
condition, F̃c corresponds to a start-up cost, and Vc to a variable cost of production, while∑

h∈Hc

(−Qhcxhc)πl(hc),t(hc) denotes the revenue generated at the given market prices.

We have shown in a previous article [55], in which other related economic aspects are
considered, how to give an exact linearization of this kind of constraints in the whole
European market model which can then be formulated as a MILP without any auxil-
iary variables, relying on strong duality for linear programs to enforce equilibrium for
the network, classical hourly bids, and hourly bids related to accepted MIC bids. This
is reviewed (and extended to include minimum power output level conditions) below in
Section 4.3.3. Let us also note here that an exact linearisation similar to the one pro-
posed in [55] has been independently proposed in [32]. Though the derivation therein
is technically different and e.g. needs to introduce many auxiliary continuous variables
and constraints for a McCormick convexification of bilinear binary-continuous terms, a
parallel could be made between ideas of the two approaches, which is beyond the scope
of the present contribution.

The following Table comparatively summarizes some core characteristics of the previ-
ous propositions to model minimum profit conditions and the present one presented be-
low:

Proposition Start-up costs Variable costs Strict spatial
in the Welfare in the Min. Profit. Cond. price

equilibrium
Garcia-Bertrand et al. [37] No marginal costs No
Garcia-Bertrand et al. [36] No marginal costs No

Gabriel et al. [35] Yes marginal costs No
Ruiz et al. [84] Yes marginal costs No
OMIE-PCR [27] No Ad-hoc var. costs Yes

Present contribution Yes marginal costs Yes

Table 4.3: Comparison of propositions

4.3.2 A new proposition for modelling MP conditions

We use a slightly modified version of a MIP framework introduced in [55], to enforce
equilibrium for the convex bids and the network, and which is computationally efficient
in particular because it avoids explicitly adding complementarity conditions modelling
equilibrium for this convex part, and also any auxiliary variables. It is used to present
two distinct models for minimum profit conditions in this setting: one used in practice
for many years by OMIE now coupled to PCR, and the new one involving the ’MP bids’
introduced in the present contribution.
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Duality, uniform prices and deviations from equilibrium

Let us consider the primal welfare maximization problem UWELFARE stated in Section
4.2.2. Let us now consider a partition C = Cr∪Ca, and the following constraints, fixing all
integer variables to some arbitrarily given values (unit-commitment-like decisions):

− uca ≤ −1 ∀ca ∈ Ca ⊆ C [dua
ca

] (4.24)

ucr ≤ 0 ∀cr ∈ Cr ⊆ C [dur
cr

] (4.25)

Dropping integer constraints (4.9) not needed any more, this yields an LP whose dual
is:

min
∑

i

si +
∑

c

sc +
∑

m

wmvm −
∑

ca∈Ca

dua
ca

(4.26)

subject to:

si + Qiπl(i),t(i) ≥ QiP
i, ∀i [xi] (4.27)

(smax
hc − smin

hc ) + Qhcπl(hc),t(hc) = QhcP
hc, ∀h ∈ Hc, c [xhc] (4.28)

scr + dur
cr
≥
∑

h∈Hc

(smax
hc − rhcs

min
hc )− Fc, ∀cr ∈ Cr [ucr ] (4.29)

sca − dua
ca
≥
∑

h∈Hc

(smax
hc − rhcs

min
hc )− Fc, ∀ca ∈ Ca [uca ] (4.30)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K [nk] (4.31)

si, sc, shc, du
r
cr
, dua

ca
, vm ≥ 0 (4.32)

We now write down the complementarity constraints corresponding to these primal and
dual programs parametrized by the integer decisions. Economic interpretations are stated
afterwards:
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si(1− xi) = 0 ∀i ∈ I (4.33)

smax
hc (uc − xhc) = 0 ∀c, h ∈ Hc (4.34)

smin
hc (xhc − rhcuc) = 0 ∀c, h ∈ Hc (4.35)

sc(1− uc) = 0 ∀c ∈ C (4.36)

vm(
∑

k

am,knk − wm) = 0 ∀m ∈ N (4.37)

(1− uca)dua
ca

= 0 ∀c1 ∈ C1 (4.38)

ucrdu
r
cr

= 0 ∀cr ∈ Cr (4.39)

xi(si + Qiπl(i),t(i) −QiP
i) = 0 ∀i ∈ I (4.40)

ucr(scr + dur
cr
−
∑

h∈Hcr

(smax
hcr

− rhcrs
min
hcr

) + Fcr) = 0 ∀cr ∈ Cr (4.41)

uca(sca − dua
ca
−
∑

h∈Hca

(smax
hca

− rhcas
min
hca

) + Fca) = 0 ∀ca ∈ Ca (4.42)

In what follows, we consider uniform prices, that is all payments depend only and pro-
portionally on a single price πl,t for each location l and time period t.

In the following Lemmas, it is important to keep in mind the sign convention adopted,
according to which a bid quantity Q > 0 for a buy bid, and Q < 0 for a sell bid, cf. the
description of notation above.

Lemma 4.1 (Interpretation of si and equilibrium for hourly bids). Let us consider a
solution to (4.2)-(4.9), (4.24)-(4.25), (4.27)-(4.42). Variables si correspond to surplus
variables, i.e.:

si = (QiP
i −Qiπl(i),t(i))xi (4.43)

Moreover, the following equilibrium conditions hold, meaning that for the given market
prices πl,t, no other level of execution x∗i could be preferred to xi:

• An hourly bid i which is fully executed, i.e. for which xi = 1, is ITM or ATM, and
the surplus is given by si = (QiP

i −Qiπl(i),t(i))xi = QiP
i −Qiπl(i),t(i) ≥ 0,

• An hourly bid i which is fractionally executed is ATM, i.e. (QiP
i − Qiπl(i),t(i)) =

0 = si

• Fully rejected bids i, i.e. for which xi = 0, are OTM or ATM, and then si = 0, which
also corresponds to the surplus: si = 0 = (QiP

i−Qiπl(i),t(i))xi = (QiP
i−Qiπl(i),t(i))

+,

Hence, ITM hourly bids are fully accepted, OTM hourly bids are fully rejected, and
ATM hourly bids i can be either accepted or rejected, fully or fractionally.

Proof. If xi = 1, conditions (4.40) ensure that si = QiP
i − Qiπl(i),t(i) ≥ 0 (since si ≥ 0),

and the bid is ITM or ATM. Multiplying the obtained equality by xi = 1, we get identity
(4.43).
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If 0 < xi < 1, si = 0 = sixi according to (4.33), and (4.40) then gives si = QiP
i −

Qiπl(i),t(i) = 0: the bid is ATM. Multiplying these equalities by xi, we get identity (4.43).

If xi = 0, si = 0 according to (4.33), which used in dual conditions (4.27) gives QiP
i −

Qiπl(i),t(i) ≤ 0: the bid is OTM or ATM. As si = xi = 0, identity (4.43) is trivially
satisfied.

Lemma 4.2 (Interpretation of smax
hc , smin

hc ). Provided that uc = 1:

(smax
hc − rhcs

min
hc ) = (QhcP

hc −Qhcπl(hc),t(hc))xhc (4.44)

while if uc = 0, then the left-hand side is disconnected from the right-hand side which is
0. Economically speaking, this means that for rejected MP bids, the left-hand side only
corresponds to a potential surplus.

Proof. Multiplying (4.28) by xhc yields smax
hc xhc − smin

hc xhc = (QhcP
hc −Qhcπl(hc),t(hc))xhc.

Using complementarity conditions (4.34)-(4.35) where uc = 1, according to which smax
hc xhc =

smax
hc and smin

hc xhc = smin
hc rhc, we get the required identity (4.44).

For rejected MP bids, the sole deviation from an equilibrium affecting the corresponding
hourly bids is that some of them could be rejected paradoxically, since at equilibrium, they
should or could be rejected if they are out-of-the-money or at-the-money. The situation
for accepted MP bids is more interesting. Essentially, the situation is very similar to
the case of classical hourly bids described by Lemma 4.1, excepted that here, some ’MP
hourly bids’ could be incurring a loss due to the minimum acceptance ratio, and several
configurations should be distinguished:

Lemma 4.3 (Equilibrium and deviations for MP hourly bids of accepted MP bids). Let
us consider hourly bids associated to an accepted MP bid c, i.e. such that uc = 1. If:

• 0 ≤ rhc < xhc < uc = 1, then smax
hc = smin

hc = 0 , and the bid hc is at-the-money:

(smax
hc − rhcs

min
hc ) = 0 = (QhcP

hc −Qhcπl(hc),t(hc)) = (QhcP
hc −Qhcπl(hc),t(hc))xhc

• 0 ≤ rhc = xhc < uc = 1, then smax
hc = 0 and (smax

hc − rhcs
min
hc ) = (−rhcs

min
hc ) =

(QhcP
hc −Qhcπl(hc),t(hc))xhc ≤ 0. Noting that smin

hc ≥ 0 and xhc ≥ rhc ≥ 0, the bid is
ATM or OTM, and for rhc > 0, a loss could be incurred in that case.

• 0 ≤ rhc < xhc = uc = 1, then smin
hc = 0 and (smax

hc − rhcs
min
hc ) = smax

hc = (QhcP
hc −

Qhcπl(hc),t(hc))xhc ≥ 0: the bid is ITM or ATM.

• In the special case where rhc = 1 = xhc = uc, nothing could be inferred on smax
hc , smin

hc ,
and the bid could be ITM, ATM or OTM, depending on the sign of (smax

hc − rhcs
min
hc ).

Proof. This follows a direct discussion of the equality (4.44) of Lemma 4.2, using comple-
mentarity conditions (4.34)-(4.35), with uc = 1.

The following Lemma is key to derive Theorem 4.1 and then Corollary 4.1. These are
the main ingredients to derive a MILP formulation avoiding any auxiliary variables of the
new model for minimum profit conditions.
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Lemma 4.4 (Interpretation of dua, dur). (i) ∀ca ∈ Ca, du
a
ca
, is an upper bound on the

loss of order ca, given by

[
∑

h∈Hca

(smax
hca

− rhcas
min
hca

) − Fca ]− = [
∑

h∈Hca

(Qhca
P hca − Qhca

πl(hca),t(hca))xhca − Fca ]−,

where [a]− denotes the negative part of a, i.e. −min[0, a].

(ii) dur
cr

is an upper bound on the sum of the maximum missed individual hourly sur-
pluses (some of which could be negative) minus the fixed cost Fcr of the rejected MP
bid cr, that is:

dur
cr
≥
∑

h∈Hcr

(smax
hcr

− rhcrs
min
hcr

)− Fcr ≥
∑

h∈Hcr

(Qhcr
P hcr −Qhcr

πl(hcr),t(hcr))− Fcr .

Proof. (i) Since uca = 1, and using conditions (4.42), we have:

sca − dua
ca

=
∑

h∈Hca

(smax
hca

− rhcas
min
hca

)−Fca . Since, sca , du
a
ca
≥ 0, the observation follows (cf.

also Lemma 4.2 for the identity used to replace (smax
hca

− rhcas
min
hca

)).

(ii) Conditions of type (4.36) show that scr = 0, which used in (4.29) provide the first
inequality. Then, as rhcr ∈ [0, 1] and smin

hcr
≥ 0 , one has (smax

hcr
−rhcrs

min
hcr

) ≥ (smax
hcr
−smin

hcr
) =

QhcP
hc−Qhcπl(hc),t(hc) where this last equality is given by (4.28). The result immediately

follows.

Theorem 4.1 (MP conditions and shadow costs of acceptance dua). Let us consider a
given partition Ca ∪ Cr and a solution to (4.2)-(4.9), (4.24)-(4.25), (4.27)-(4.42):

• For an accepted sell bid ca ∈ Ca, i.e. for which ∀hca ∈ Hca, Qhca < 0:

(−
∑

h∈Hca

Qhcπl(hc),t(hc)xhc) ≥ (−
∑

h∈Hca

QhcP
hcxhc) + Fca ⇐⇒ dua

ca
= 0,

where the left-hand side of the equivalence expresses that the revenue from trade
is greater or equal to the sum of marginal costs plus the fixed cost Fc, which is a
minimum profit condition.

• For an accepted buy bid ca ∈ Ca, i.e. for which ∀hca ∈ Hca, Qhca > 0:

(
∑

h∈Hca

Qhcπl(hc),t(hc)xhc) ≤ (
∑

h∈Hca

QhcP
hcxhc)− Fca ⇐⇒ dua

ca
= 0,

where the left-hand side of the equivalence expresses that the total payments are lesser
or equal to the total utility reduced by the constant term Fc, which is a maximum
payment condition.

Proof. It is a direct consequence of Lemma 4.4. If dua
ca

= 0, then
∑

h∈Hca

(Qhca
P hca−Qhca

πl(hca),t(hca))xhca−Fca ≥ 0, which rearranged provides the result (the

converse holding as well: if this last inequality holds, the dua
ca

can be set to 0 without
altering the satisfaction of the other constraints).

Corollary 4.1. MP conditions could be expressed by requiring that shadow costs of ac-
ceptance could be set to zero, i.e.:

95



∀ca ∈ Ca, dua
ca

= 0 (4.45)

Naturally, not all MP bid selections Ca, Cr are such that these conditions hold for all
accepted MP bids ca ∈ Ca, cf. e.g. the toy example presented in Section 4.2.1. Moreover,
admissible selections Ca, Cr for which all shadow costs of acceptance could be set to zero
are not known in advance. However, following [55], we can provide a MILP formulation
without any auxiliary variables, exactly describing those admissible partitions Ca, Cr,
together with a corresponding solution to (4.2)-(4.9), (4.24)-(4.25), (4.27)-(4.42). This is
developed in the next subsection.

A MILP without auxiliary variables modelling MP conditions

To state Theorem 4.2 about the formulation UMFS, we need to include the following
technical constraint limiting the market price range

πl,t ∈ [−π̄, π̄] ∀l ∈ L, t ∈ T. (4.46)

π̄ can be chosen large enough to avoid excluding any relevant market clearing solution (see
for example the discussion of the analogue condition (18) in [54]). Under this assumption,
the parameters Mc below are chosen large enough not to arbitrarily constraint the range
of values of the variables da, dr. As these values respectively correspond to upper bounds
on actual losses and upper bounds on opportunity costs, the Mc can be straighforwardly
computed from the bid data provided by the market participants and the market price
range condition (4.46). Note that in practice, power exchanges actually do impose that
the computed prices πl,t stay within a given range in order to limit market power and
price volatility, see e.g. [27].

Uniform Market Clearing Feasible Set (UMFS):

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc

≥
∑

i

si +
∑

c

sc −
∑

c∈C

dua
c +

∑

m

wmvm (4.47)
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xi ≤ 1 ∀i ∈ I [si] (4.48)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [smax
hc ] (4.49)

xhc ≥ rhcuc ∀h ∈ Hc, c ∈ C [smin
hc ] (4.50)

uc ≤ 1 ∀c ∈ C [sc] (4.51)
∑

i∈Ilt

Qixi +
∑

hc∈HClt

Qhcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (4.52)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (4.53)

x, u ≥ 0, (4.54)

u ∈ Z (4.55)

si + Qiπl(i),t(i) ≥ QiP
i, ∀i ∈ I [xi] (4.56)

(smax
hc − smin

hc ) + Qhcπl(hc),t(hc) = QhcP
hc, ∀h ∈ Hc, c [xhc] (4.57)

sc + dur
c − dua

c ≥
∑

h∈Hc

(smax
hc − rhcs

min
hc )− Fc, ∀c ∈ C [uc] (4.58)

dur
c ≤Mc(1− uc) ∀c ∈ C (4.59)

dua
c ≤Mcuc ∀c ∈ C (4.60)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K[nk] (4.61)

si, sc, s
max
hc , smin

hc , dua, dur, vm ≥ 0 (4.62)

Theorem 4.2. (I) Let (x, u, n, π, v, s, dua, dur) be any feasible point of UMFS satisfying
the price range condition (4.46), and let us define Cr = {c|uc = 0}, Ca = {c|uc = 1}.

Then the projection (x, u, n, π, v, s, dua
ca∈Ca

, dur
cr∈Cr

) satisfies all conditions in (4.2)-(4.9),
(4.24)-(4.42).

(II) Conversely, any point

MCS = (x, u, n, π, v, s, dua
ca∈Ca

, dur
cr∈Cr

) feasible for constraints (4.2)-(4.9), (4.24)-(4.42)
related to a given arbitrary MIC selection C = Cr ∪ Ca which respects the price range
condition (4.46) can be ‘lifted’ to obtain a feasible point ˜MCS = (x, u, n, π, v, s̃, ˜dua, ˜dur)
of UMFS.

Sketch of the proof. This is a straightforward adaptation of Theorem 1 in [55]. Essentially:
(I) any feasible point of UMFS defines a corresponding partition Ca ∪ Cr of accepted
and rejected MP bids, and conditions (4.58)-(4.60) ensure that (4.29)-(4.30) are satisfied
whatever the corresponding partition is. It is then direct to check that conditions in
(4.2)-(4.9), (4.24)-(4.42) are all satisfied, since, provided (4.27)-(4.32), (4.47) can then
equivalently be replaced by the complementarity conditions (4.33)-(4.42) as optimality
conditions for the program (4.1) subject to (4.2)-(4.9), (4.24)-(4.25). (Let us note that as
dua, dur are upper bounds on losses or missed surpluses, see Lemma 4.4, the involved big-
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Ms in (4.59)-(4.60) are appropriately defined using the technical condition (4.46) bounding
the range of possible market prices.)

(II) Conversely, for any partition Ca ∪Cr and a solution to (4.2)-(4.9), (4.24)-(4.42) such
that the condition (4.46) is satisfied, we only need to define the additional values dua

c = 0
for c ∈ Cr and dur

c = 0 for c ∈ Ca. Since the big-Ms have been suitably defined using
(4.46), and using (4.29)-(4.30), it is straightforward to check that (4.58)-(4.60) will be
satisfied for all c ∈ C, and hence all conditions (4.47)-(4.62) defining UMFS are satisfied
(again relying on the equivalence of (4.33)-(4.42) and (4.47) as optimality conditions for
(4.1) subject to (4.2)-(4.9), (4.24)-(4.25) provided that (4.2)-(4.9),(4.24)-(4.25) and the
dual conditions (4.27)-(4.32) are satisfied).

As we want to enforce MP conditions, we need to add to UMFS the following condi-
tions:

∀c ∈ C, dua
c = 0 (4.63)

Since we set all the dua
c to 0, constraints (4.60) are not needed any more, and constraints

(4.58)-(4.59) reduce to (4.76) below. We hence get the following MILP formulation which
we denote ’MarketClearing-MPC’, enforcing all MP conditions, and which doesn’t make
use of any auxiliary variable.

MarketClearing-MPC

max
∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc (4.64)

subject to:
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∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc

≥
∑

i

si +
∑

c

sc +
∑

m

wmvm [σ] (4.65)

xi ≤ 1 ∀i ∈ I [si] (4.66)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [smax
hc ] (4.67)

xhc ≥ rhcuc ∀h ∈ Hc, c ∈ C [smin
hc ] (4.68)

uc ≤ 1 ∀c ∈ C[sc] (4.69)
∑

i∈Ilt

Qixi +
∑

hc∈HClt

Qhcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (4.70)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (4.71)

x, u ≥ 0, (4.72)

u ∈ Z (4.73)

si + Qiπl(i),t(i) ≥ QiP
i, ∀i ∈ I [xi] (4.74)

(smax
hc − smin

hc ) + Qhcπl(hc),t(hc) = QhcP
hc, ∀h ∈ Hc, c [xhc] (4.75)

sc ≥
∑

h∈Hc

(smax
hc − rhcs

min
hc )− Fc −Mc(1− uc) ∀c ∈ C[uc] (4.76)

∑

m

am,kvm −
∑

l,t

ekl,tπl,t = 0 ∀k ∈ K[nk] (4.77)

si, sc, shc, vm ≥ 0 (4.78)

4.3.3 Comparison to ’Minimum income conditions’ used by
OMIE-PCR

The way minimum profit conditions are handled in OMIE-PCR, described in Section 4.3.1,
presents two substantial differences compared to the MP bids introduced above. First,
start-up costs are not included in the welfare maximizing objective function, and second
there is the presence of a variable cost Vc which could have no relation to the marginal
cost curves described by the hourly bids hc, c ∈ Hc. In [55], we have shown how such
’minimum income conditions’ could be linearized exactly without any auxiliary variables,
in the frame of the PCR market rules. We adapt here this result to take into account
minimum acceptance ratios (corresponding e.g. to minimum output levels) modelled by
conditions (4.4), which were not considered in [55]. This helps considering more formally
the differences between MP bids and classical bids with a minimum income condition
currently in use in OMIE-PCR.

Let us denote by F̃c the actual start-up cost attached to some bid c provided by a producer.
As in OMIE-PCR, start-up costs F̃c are not considered in the welfare objective function,

99



it is first needed to set all parameters Fc = 0 in MarketClearing-MPC, but then, nothing
ensures that these start-up costs are recovered for executed bids. It is therefore needed
to explicitly include a condition equivalent to (4.23), and this can be done in a linear way
without any auxiliary variables and any approximation, using the following Lemma:

Lemma 4.5 (Adaptation of Lemma 3 in [55]). Consider any feasible point of
MarketClearing-MPC in the case where all parameters Fc are set to 0. Then, the following
holds:

∀c ∈ C,
∑

h∈Hc

(−Qhcxhc)πl(hc),t(hc) = sc −
∑

h∈Hc

(QhcP
hc)xhc (4.79)

Proof. The identity is trivially satisfied if uc = 0, thanks to conditions (4.3) and (4.36)
which are enforced for any feasible point of MarketClearing-MPC.

For uc = 1, summing up (4.44) in Lemma 4.2 over hc ∈ Hc, we get:

∑

hc∈Hc

(smax
hc − rhcs

min
hc ) =

∑

hc∈Hc

(QhcP
hc −Qhcπl(hc),t(hc))xhc (4.80)

Then, noting that MarketClearing-MPC enforces (4.42) with dua = 0, and that we have
set all Fc = 0 not to consider start-up costs in the welfare objective, we can replace the
left-hand side of (4.80) by sc to get the required identity.

Let us note that the economic interpretation of the algebraic identity provided by (4.79)
is straightforward: the total income in the left-hand side can be decomposed as the total
marginal costs plus the total surplus sc collecting individual surpluses of all the individual
bid curves associated to the MIC order.

Using Lemma 4.5, the MIC condition (4.23) can then be stated in a linear way as fol-
lows:

sc −
∑

h∈Hc

(QhcP
hc)xhc ≥ F̃c +

∑

h∈Hc

(−Qhcxhc)Vc −Mc(1− uc) (4.81)

where Mc is a fixed number large enough to deactivate the constraint when uc = 0. As
uc = 0 implies sc = 0 and xhc = 0, we set Mc := F̃c.

Let us emphasise that once this is done and that we have a linear description of the
feasible set handling minimum income conditions as done in OMIE-PCR, many objective
functions could be considered, including objective functions involving startup and variable
costs in the measure of welfare instead of the marginal costs described by the bid curves
associated to a given MIC order.

From a modelling point of view there are therefore two main differences between the MP
bids proposed here and the OMIE-PCR MIC orders. The first one is that we need to
explicitly state constraints (4.81), apart from the single constraint (4.65) that essentially
enforce all complementary conditions simultaneously. This is because in the OMIE-PCR
model, the fixed and variable costs of the MIC orders are not part of the objective function
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to be maximised. This is linked to the second difference that in the OMIE-PCR model,
there are two different variable costs for MIC orders: one that appears in the objective
function to be maximised P hc, and another one Vc that appears in the MIC condition
(4.81). It is questionable whether these two costs actually correspond to real costs of a
power plant. This makes the task of regulators in charge of monitoring market behaviour
of participants more difficult. Indeed it is not clear any more what is the normal or
justifiable market behaviour, and what constitutes gaming or a possible exercise of market
power.

4.4 Handling ramping constraints

Ramping constraints are also called ’load-gradient’ conditions in the PCR vocabulary, see
[27]. Let us suppose one wants to include in the primal program UWELFARE (4.1)-(4.9)
ramping constraints for each MP bid representing the technical conditions for operating
the corresponding power plant. Our goal is to show how to adapt all results of the
present contribution regarding minimum profit (resp. maximum payment) conditions in
this setting. Ramping constraints to add are of the form:

∑

hc∈Hc|t(hc)=t+1

(−Qhc)xhc −
∑

hc∈Hc|t(hc)=t

(−Qhc)xhc ≤ RUc uc

∀t ∈ {1, ..., T − 1}, ∀c ∈ C [gupc,t ] (4.82)

∑

hc∈Hc|t(hc)=t

(−Qhc)xhc −
∑

hc∈Hc|t(hc)=t+1

(−Qhc)xhc ≤ RDc uc

∀t ∈ {1, ..., T − 1}, ∀c ∈ C [gdown
c,t ] (4.83)

The occurrences of uc might seem unnecessary and optional as the conditions would be
trivially satisfied for uc = 0. However, these occurrences are technically required to derive
the appropriate dual program and adapt straightforwardly all previous results. They also
make the continuous relaxation of the resulting Integer Program stronger. The corre-
sponding complementarity conditions that will be enforced as all other complementarity
conditions in Theorem 4.2 are:

gupc,t(RUc uc −
∑

hc∈Hc|t(hc)=t

Qhcxhc +
∑

hc∈Hc|t(hc)=t+1

Qhcxhc) = 0 ∀t ∈ {1, ..., T − 1}, ∀c ∈ C

(4.84)

gdown
c,t (RDc uc −

∑

hc∈Hc|t(hc)=t+1

Qhcxhc +
∑

hc∈Hc|t(hc)=t

Qhcxhc) = 0 ∀t ∈ {1, ..., T − 1}, ∀c ∈ C

(4.85)
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Such constraints do not exist for t = 0 or t = T , but the following convention is useful for
writing what follows while avoiding distinguishing different cases: gupc,0 = gdown

c,0 = gupc,T =

gdown
c,T = 0.

The dual constraints (4.28), (4.29) and (4.30) should then respectively be replaced by:

(smax
hc − smin

hc ) + (Qhcgdown
c,t(hc)−1 −Qhcgup

c,t(hc)−1) + (Qhcgup
c,t(hc) −Qhcgdown

c,t(hc)) + Qhcπl(hc),t(hc)

= QhcP
hc, ∀h ∈ Hc, ∀c ∈ C [xhc] (4.86)

scr+dur
cr
≥
∑

h∈Hcr

(smax
hc −rhcs

min
hc )+

∑

t

(RUcrg
up

cr,t(hc)
+RDcrg

down
cr,t(hc))−Fcr , ∀cr ∈ Cr [ucr ]

(4.87)

sca−du
a
ca
≥
∑

h∈Hca

(smax
hc −rhcs

min
hc )+

∑

t

(RUcag
up

ca,t(hc)
+RDcag

down
ca,t(hc))−Fca , ∀ca ∈ Ca [uca ]

(4.88)

with the corresponding consequence in the formulation of UMFS (used in Theorem 4.2)
of replacing (4.58) by

sc+dur
c−dua

c ≥
∑

h∈Hc

(smax
hc −rhcs

min
hc )+

∑

t

(RUcg
up

c,t(hc)+RDcg
down
c,t(hc))−Fc, ∀c ∈ C [uc]

(4.89)

It is shown below that this is all we need to handle ramping constraints. Adaptation of
Lemma 4.4 and Theorem 4.1 are then straightforward, as it suffices to replace in the proofs

the occurrences of
∑

h∈Hc

(smax
hc − rhcs

min
hc ) by its analogue provided by the left-hand side of

(4.92) below, and the corresponding adaptations needed e.g. in MarketClearing-MPC
immediately follows.

These assertions rest on the follwing adaptation of Lemma 4.2:
Lemma 4.6 (Adaptation of Lemma 4.2 to handle ramping constraints). Provided that
uc = 1, :

1.

(smax
hc − rhcs

min
hc ) + (Qhcgdown

c,t(hc)−1 −Qhcgup
c,t(hc)−1)xhc + (Qhcgup

c,t(hc) −Qhcgdown
c,t(hc))xhc

= (QhcP
hc −Qhcπl(hc),t(hc))xhc (4.90)
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2.

∑

hc∈Hc

(Qhcgdown
c,t(hc)−1 −Qhcgup

c,t(hc)−1)xhc +
∑

hc∈Hc

(Qhcgup
c,t(hc) −Qhcgdown

c,t(hc))xhc

=
∑

t

(RUcg
up

c,t(hc) + RDcg
down
c,t(hc)) (4.91)

3.

∑

h∈Hc

(smax
hc −rhcs

min
hc )+

∑

t

(RUcg
up

c,t(hc)+RDcg
down
c,t(hc)) =

∑

h∈Hc

[QhcP
hc−Qhcπl(hc),t(hc)]xhc

(4.92)

Proof. 1. is obtained by multiplying equation (4.86) by the corresponding dual variable
xhc and by using as in Lemma 4.2 the complementarity conditions (4.34)-(4.35) with
uc = 1, according to which smax

hc xhc = smax
hc and smin

hc xhc = smin
hc rhc.

2. Summing equations (4.84) and (4.85) then summing up over t and rearranging the
terms provides the result, noting that it is assumed that uc = 1.

3. is a direct consequence of 1. and 2., obtained by summing up (4.90) over hc ∈ Hc

and using the identity provided by (4.91)

4.5 A decomposition procedure with Strengthened

Benders cuts

The contribution in this Section is essentially to show how the Benders decomposition
procedure with strengthened cuts described in [54] for fully indivisible block bids applies to
the present context of newly introduced bids with a minimum profit/maximum payment
condition (MP bids), providing an efficient method for large-scale instances where both
block and MP bids are present, as such decomposition approaches (see also [60, 27]) are
known to be efficient to handle block bids. The present extension includes as a special case
instances involving block bids with a minimum acceptance ratio as described in [27].

This Benders decomposition procedure solves MarketClearing-MPC , working with (an
implicit decription of) the projection G of the MarketClearing-MPC feasible set described
by (4.65)-(4.78) on the space of primal decision variables (xi, xhc, uc, nk). In particular,
we start with a relaxation of G, denoted G0 and described by constraints (4.66)-(4.73),
and then add Benders cuts to G0 which are valid inequalities for G derived from a so-
called worker program until a feasible - hence optimal - solution is found. The worker
program generates cuts to cut off incumbents for which no prices exist such that all MP
conditions could be enforced, see Theorems 4.3 and 4.4. It is shown that these Benders
cuts correspond indeed to ’no-good cuts’ rejecting the current MP bids combination, see
Theorem 4.5. We show how these cuts could be strengthened, providing stronger and
sparser cuts which are valid for G when they are computed to cut off solutions which
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are optimal for the master program (potentially with cuts added at previous iterations
where applicable), cf. Theorem 4.6. Instead of adding these cuts iteratively after solving
the augmented master program each time up to optimality, it could be preferable to
generate them within a branch-and-cut algorithm solving this master program (hence
also MarketClearing-MPC, as MP conditions will be checked and enforced when needed).
In that case, the strengthened cuts are locally valid, i.e. in branch-and-bound subtrees
originating from incumbents rejected by the worker program during the branch-and-cut
algorithm solving the master program, see Theorem 4.7. Adding cuts after solving master
programs up to optimality is similar to the original approach described in the seminal
paper [5], while adding cuts inside a branch-and-cut, which is often more efficient, is
sometimes called the ”modern version” of a Benders decomposition. Let us note that the
classical Benders cuts of Theorem 4.4 or their ”no-good” equivalent of Theorem 4.5 are
always globally valid, as opposed to their strengthened version of Theorem 4.7.

Let us also mention a very interesting result. The revised version of [65] appearing as
Chapter 2 in [64] and relying on [54] proposes an analogue of Theorem 4.7 in a context
which considers general ”mixed integer bids”, a careful analysis of which shows they en-
compass the MP bids proposed here (though there is no mention of applications such as
the modeling of start-up costs and the minimum profit conditions or ramping constraints,
etc). As noted therein, the author generalizes the applicability of the cuts of Theorem 6
in [54], similar to those of Theorem 4.7 below, to these general mixed integer bids (and
general convex bids besides) using a completely different technique than the present Ben-
ders decomposition which relies on other considerations and the primal-dual formulations
presented above (shadow costs of acceptance in Theorem 4.1, etc).

Let us consider a master branch-and-bound solving (4.64) subject to the initial con-
straints (4.66)-(4.73), and let (x∗i , x

∗
hc, u

∗
c , n

∗
k) be an incumbent satisfying (4.66)-(4.73) of

MarketClearing-MPC.

A direct application of the Farkas Lemma to the remaining linear conditions (4.65), (4.74)-
(4.78), which is detailed in appendix, yields:

Theorem 4.3 (Worker program of the decomposition). Let (x∗i , x
∗
hc, u

∗
c , n

∗
k) be an incum-

bent satisfying the ”primal conditions” (4.66)-(4.73), then there exists (π, s, v) such that
all MP conditions modelled by the other conditions (4.65), (4.74)-(4.78) in MarketClearing-
MPC are satisfied if and only if:

max
(x,u,n)∈P

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc −Mc(1− u∗c)uc

≤ (
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c), (4.93)

where P is the polyhedron defined by the linear conditions (4.66)-(4.72), that is the linear
relaxation of (4.66)-(4.73). This condition is also equivalent to
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max
(x,u,n)∈P |uc=0 if u∗

c=0

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc

≤ (
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c), (4.94)

where no ”big M’s” are involved.

Proof. See appendix.

A direct consequence of Theorem 4.3 is:

Theorem 4.4 (Classical Benders cuts). Suppose (x∗i , x
∗
hc, u

∗
c , n

∗
k) doesn’t belong to G, i.e.

there are no prices such that MP conditions could all be satisfied, i.e. for which the test
of Theorem 4.3 fails.

Then, the following Benders cut is a valid inequality for G and cuts off the current in-
cumbent (x∗i , x

∗
hc, u

∗
c , n

∗
k):

∑

i

(P iQi)x
#
i +

∑

c,h∈Hc

(P hcQhc)x
#
hc −

∑

c

Fcu
#
c −Mc(1− uc)u

#
c

≤ (
∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc), (4.95)

where (x#
i , x

#
hc, u

#
c , n

#
k ) is an optimal solution to the left-hand side worker program in

(4.93) (resp. (4.94)).

Lemma 4.7. In the feasible set of MarketClearing-MPC, welfare is univocally determined
by an MP bids combination, i.e., by given arbitrarily values for the variables uc.

Proof. Let us consider a feasible point of MarketClearing-MPC and the corresponding MP
bids combination Ca ∪ Cr. As detailed in Theorem 4.2 and its proof, this point is then
feasible for (4.2)-(4.9), (4.24)-(4.25), (4.27)-(4.32) and (4.33)-(4.42), which are optimality
conditions for the welfare maximization program (4.1)-(4.9), (4.24)-(4.25) where only the
integer values of the variables uc have been fixed.

Observation 4.1. An optimal solution of the left-hand side of (4.93) is always such that
u#
c = 0 if u∗c = 0, because of the penalty coefficients Mc, or alternatively because u#

c

corresponds to the optimal dual variable of (4.76) which is not tight when u∗c = 0.

Theorem 4.5 (No-good / Combinatorial Benders cuts). Suppose (x∗i , x
∗
hc, u

∗
c , n

∗
k) doesn’t

belong to G, i.e. there are no prices such that MP conditions could all be satisfied, i.e.
for which the test of Theorem 4.3 fails.

Then, the following ’no-good cut’ is a valid inequality for G and cuts off the current
incumbent:
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∑

c|u∗

c=1

(1− uc) +
∑

c|u∗

c=0

uc ≥ 1, (4.96)

basically excluding the current MP bids combination.

Proof. This is a direct consequence of Theorem 4.4. Suppose we need to cut off
(x∗i , x

∗
hc, u

∗
c , n

∗
k) by adding (4.95). For any other solution (xi, xhc, uc, nk) such that uc = u∗c

for all c ∈ C, the left-hand side value of (4.95) will trivially be the same as with u∗. The
right-hand side will also be the same as with u∗ according to Lemma 4.7, because welfare
is univocally determined by the values of the uc. Hence any such solution will also violate
(4.95) and it is therefore needed to change the value of at least one of the uc, providing
the result.

Theorem 4.6 (Globally valid strengthened Benders cuts). Let (x∗i , x
∗
hc, u

∗
c , n

∗
k) be an op-

timal solution for the master program (4.64) subject to (4.66)-(4.73), potentially with
additional valid inequalities. If the test of Theorem 4.3 fails, the following sparse cut is a
valid inequality for G:

∑

c|u∗

c=1

(1− uc) ≥ 1, (4.97)

meaning that at least one of the currently accepted MP bids should be excluded in any
valid market clearing solution satisfying MP conditions.

Proof. This is also a consequence of Theorem 4.4. First, observe that (4.97) trivially
implies (4.96) and hence cuts off (x∗i , x

∗
hc, u

∗
c , n

∗
k), according to Theorem 4.5. It remains

to show that it is also a valid inequality for G.

Let (x∗i , x
∗
hc, u

∗
c , n

∗
k) be the optimal solution considered that violates (4.95), i.e., such that:

∑

i

(P iQi)x
#
i +

∑

c,h∈Hc

(P hcQhc)x
#
hc −

∑

c

Fcu
#
c −Mc(1− u∗c)u

#
c

> (
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c), (4.98)

which using Observation 4.1 reduces to:

(
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c)

<
∑

i

(P iQi)x
#
i +

∑

c,h∈Hc

(P hcQhc)x
#
hc −

∑

c

Fcu
#
c (4.99)

Suppose (xi, xhc, uc, nk) is feasible for (4.66)-(4.73) (with the potential added valid in-
equalities obtained at previous iterations). Because of the optimality of (x∗i , x

∗
hc, u

∗
c , n

∗
k),
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(
∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc)

≤ (
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c)

<
∑

i

(P iQi)x
#
i +

∑

c,h∈Hc

(P hcQhc)x
#
hc −

∑

c

Fcu
#
c (4.100)

Now suppose (xi, xhc, uc, nk) does not satisfy (4.97), i.e., that
∑

c|u∗

c=1

(1 − uc) = 0. Then,

combined with Observation 4.1 exactly as to reduce (4.98) to (4.99), the valid cut (4.95)
that this other solution must satisfy to potentially be in G reduces to:

∑

i

(P iQi)x
#
i +

∑

c,h∈Hc

(P hcQhc)x
#
hc −

∑

c

Fcu
#
c

≤ (
∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc), (4.101)

which contradicts (4.100). Hence, (4.97) must hold for any other (xi, xhc, uc, nk) that is
in G.

Now, suppose we want to use the sparse cuts of Theorem 4.6 within the branch-and-bound
tree solving the master program, instead of adding them after solving up-to-optimality the
master program (together with the cuts obtained at previous iterations where applicable).
Then these cuts are valid locally, i.e. in the subtrees originating from the incumbents to
cut off, as their validity depends on the local optimality of this incumbent to cut off:

Theorem 4.7 (Locally valid strengthened Benders cuts). Let again (x∗i , x
∗
hc, u

∗
c , n

∗
k) be an

incumbent obtained via an LP relaxation at a given node of the branch-and-cut solving
the master program (4.64) subject to (4.66)-(4.73). If the test of Theorem 4.3 fails, the
following sparse cut is locally valid, i.e. is valid in the subtree of the branch-and-bound
originating from the current node providing the incumbent (x∗i , x

∗
hc, u

∗
c , n

∗
k):

∑

c|u∗

c=1

(1− uc) ≥ 1, (4.102)

meaning that at least one of the currently accepted MP bids should be excluded in any
solution found deeper in the subtree.

Proof. This is also a consequence of Theorem 4.4 and the proof is a slight variant of the
proof of Theorem 4.6. Since in the present case (x∗i , x

∗
hc, u

∗
c , n

∗
k) is just an incumbent and

no longer globally optimal for the master program, to reproduce the argument providing
(4.100), we use the local optimality of the incumbent (x∗i , x

∗
hc, u

∗
c , n

∗
k) obtained via an

LP relaxation, and the fact that the other solutions considered (xi, xhc, uc, nk) lie in the
subtree originating from the current node providing (x∗i , x

∗
hc, u

∗
c , n

∗
k).
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4.6 Numerical Experiments

Implementation of the models and algorithms proposed above have been made in Julia
using JuMP[51], an open source package providing an algebraic modelling language em-
bedded within Julia, CPLEX 12.6.2 as the underlying MIP solver, and ran on a laptop
with an i5 5300U CPU with 4 cores @2.3 Ghz and 8GB of RAM. The source code and
sample data sets used to compute the tables presented below are available online, see
[56] . Let us note that thanks to Julia/JuMP, it is easy to switch from one solver to
another, provided that all the required features are available. Raw implementations of
the primal-dual formulation MarketClearing-MPC, and the classic and modern Benders
decompositions all fit within 250 lines of code including input-output data management
(see the file ’dam.jl’ provided online), while some solution checking tools provided in an
auxiliary file span about 180 lines of code.

Our main purpose here is to compare the new approach proposed to the market rules used
until now by the power exchange OMIE (part of PCR). We thus have considered realistic
datasets corresponding to the case of Spain and Portugal. Notable differences compared
to real data for example available at [68] is that the marginal costs of the first steps of
each bid curve associated to a given MIC order have been replaced by the variable cost
of that MIC order whenever they were below the variable cost, and as a consequence, a
minimum acceptance ratio of 0.6 has been set for the first step of each of these bid curves.
The rationale for such modifications is the following: marginal costs for the first steps of
the bid curves are sometimes very low (even almost null) certainly to ensure a reasonable
level of acceptance of the corresponding offered quantities for operational reasons, and
increasing them would decrease too much the accepted quantities at some hours, which is
counterbalanced by setting an appropriate acceptance ratio at each hour in case the MP
order is part of the market outcome solution. Let us recall that an MP order can only
be accepted if the losses incurred at some hours (due to the minimum acceptance ratios
forcing paradoxical acceptances and which are ’measured’ by the dual variables smin

hc ) are
sufficiently compensated by the profits made at some other hours of the day. All the
costs have then been uniformly scaled to obtain interesting instances where e.g. the MP
conditions are not all verified if only the primal program (4.1)-(4.9) is solved. As network
aspects are not central here, a simple two nodes network corresponding to coupling Spain
and Portugal is considered.

As both market models, though different, pursue the same goal of modelling start-up
costs and marginal costs recovery conditions while representing in some ways indivisibil-
ities of production (with minimum acceptance ratios or using very low marginal costs for
the first amounts of power produced in some original datasets), Tables 4.4 & 4.5 propose
a comparison from a computational point of view, which shows the benefits of the new
approach. A key issue with the current practice is the absence of the fixed costs in the
objective function and the occurrence of an ’ad-hoc’ variable cost in the minimum income
conditions which is not related to the marginal costs used in the objective function. The
objective function in the continuous relaxations somehow ’goes in a direction’ which may
not be the most appropriate with respect to the enforcement of the minimum income con-
ditions. On the other side, the new approach seems more natural as it enforces minimum
profit conditions by requiring that the ’shadow costs of acceptance’ dua must all be null,
see Corollary 4.1.
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Inst. Welfare Abs. gap Solver’s Nodes Runtime # MP # Curve
cuts Bids Steps

1 151218658.27 0.00 24 388 72.63 92 14494
2 115365156.34 0.00 15 181 38.08 90 14309
3 112999837.94 1644425.79 21 4085 600.17 91 14329
4 107060355.83 0.00 16 0 7.63 89 14370
5 100118316.52 0.00 15 347 96.06 89 15091
6 97572068.18 0.00 18 1116 143.65 86 14677
7 87937471.32 1091700.74 27 4958 600.11 87 14979
8 89866979.23 0.00 87 1707 296.41 87 16044
9 86060320.81 0.00 97 361 57.27 81 15177
10 90800596.61 3755055.95 59 2430 600.02 90 16475

Table 4.4: Instances with ’MIC Orders’ as in OMIE-PCR

Inst. Welfare Abs. gap Solver’s Nodes Runtime # MP # Curve
cuts Bids Steps

1 151487156.16 0.00 11 9 17.36 92 14494
2 115475592.36 0.00 11 0 16.38 90 14309
3 114220400.20 0.00 24 0 17.23 91 14329
4 107219935.90 0.00 35 7 17.48 89 14370
5 100743738.16 0.00 14 0 14.74 89 15091
6 98359291.45 0.00 10 0 15.67 86 14677
7 89251699.16 0.00 84 3 22.92 87 14979
8 90797407.15 0.00 27 0 21.58 87 16044
9 86403721.22 0.00 35 7 25.04 81 15177
10 94034444.59 0.00 20 0 19.58 90 16475

Table 4.5: Instances with MP bids - MarketClearing-MPC formulation

Table 4.6 is to be compared with Table 4.5 e.g. in terms of runtimes and visited nodes,
as it solves exactly the same market model. Heuristics of the solver have been here
deactivated as primal feasible solutions found need to be obtained as optimal solutions of
the LP relaxation at the given node for the local cuts of Theorem 4.7 to be valid (cf. its
statement above). As it can be seen, the Benders decomposition is faster by an order of
magnitude for the instances at hand.

4.7 Conclusions

A new approach to minimum profit or maximum payment conditions has been proposed
in the form of a bidding product called ’MP bid’, which turns out to generalize both
block orders with a minimum acceptance ratio used in France, Germany or Belgium, and,
mutatis mutandis, complex orders with a minimum income condition used in Spain and
Portugal. The corresponding market clearing conditions such as minimum profit or max-
imum payment conditions can be expressed with a ’primal-dual’ MILP model involving
both primal decision variables such as unit commitment or power output variables, and
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Inst. Welfare Lazy Solver’s Nodes Runtime # MP # Curve
cuts cuts Bids Steps

1 151487156.16 2 0 5 2.66 92 14494
2 115475592.36 1 18 5 1.38 90 14309
3 114220400.20 1 28 3 1.81 91 14329
4 107219935.90 2 14 11 1.78 89 14370
5 100743738.16 1 12 3 1.36 89 15091
6 98359291.45 1 3 3 1.36 86 14677
7 89251699.16 1 29 8 1.54 87 14979
8 90797407.15 1 11 3 1.66 87 16044
9 86403721.22 2 1 13 2.24 81 15177
10 94034444.59 1 40 4 1.54 90 16475

Table 4.6: Instances with MP bids - Benders decomposition of Theorem 4.7

dual decision variables such as market prices or economic surpluses of market participants,
while avoiding the introduction of any auxiliary variables, whether continuous or binary.
Moreover, it can be used to derive a Benders decomposition with strengthened cuts of
a kind which is known to be efficient to handle block bids. These MP bids hence seem
an appropriate tool to foster market design and bidding products convergence among the
different regions which form the coupled European day-ahead electricity markets of the
Pan-European PCR project. Also, compared to the MIC orders currently in use at OMIE-
PCR, they have the following additional advantages. Firstly, they lead to optimisation
models that can be solved much more quickly. Secondly, the proposed instruments seem
to be more aligned with the operating constraints and cost structure of the power plants
that they are supposed to represent in the market. Finally, they are more natural (from
an economic point of view) and simpler (from a modelling point of view), leading to a
market model easier to understand for participants and monitor for regulators. All the
models and algorithms have been implemented in Julia/JuMP and are available online
together with sample datasets to foster research and exchange on the topic. The mod-
els and algorithms can also be used to clear instances involving block bids only (small
extensions could also be added to handle linked and exclusive block orders as described
in [27] if desired). European day-ahead electricity markets will certainly be subject to
a major evolution in the coming years, as many challenges are still to be faced, which
calls for further research within the academic and industrial communities. The present
contribution is a proposal made in that frame.

Acknowledgements: We greatly thank OMIE and N-Side for providing us with data
used to generate realistic instances. This text presents research results of the P7/36 PAI
project COMEX, part of the Interuniversity Attraction Poles (IAP) Programme of the
Belgian Science Policy Office.This work was also supported by EC-FP7-PEOPLE MINO
Marie-Curie Initial Training Network (grant number 316647) and by EC-FP7 COST Ac-
tion TD1207. The scientific responsibility is assumed by the authors.
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4.A Omitted proofs in main text

4.A.1 Proof of Theorem 4.3

Reminder of the Farkas Lemma [87], which is used in the proof afterward:

∃x : Ax <= b, x ≥ 0 if and only if ∀y : y ≥ 0, yA ≥ 0 ⇒ yb ≥ 0

Proof. Applying the Farkas lemma, given an incumbent (x∗i , x
∗
hc, u

∗
c , n

∗
k),

a solution (si, s
max
hc , smin

hc , sc, πl,t, vm) to the remaining linear conditions (4.65), (4.74)-(4.78)
exist if and only if:

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc −Mc(1− u∗c)uc

≤ σ(
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c) (4.103)

∀(σ, xi, xhc, uc, nk) such that:

xi ≤ σ ∀i ∈ I [si] (4.104)

xhc ≤ uc ∀h ∈ Hc, c ∈ C [smax
hc ] (4.105)

xhc ≥ rhcuc ∀h ∈ Hc, c ∈ C [smin
hc ] (4.106)

uc ≤ σ ∀c ∈ C[sc] (4.107)
∑

i∈Ilt

Qixi +
∑

hc∈HClt

Qhcxhc

=
∑

k

ekl,tnk, ∀(l, t) [πl,t] (4.108)

∑

k

am,knk ≤ wm ∀m ∈ N [vm] (4.109)

xi, xhc, uc, σ ≥ 0 (4.110)

Since the condition described by (4.103)-(4.110) is trivially satisfied when σ = 0 (techni-
cally assuming that network conditions (4.108)-(4.109) could be satisfied when xi = xhc =
0), we can normalize, i.e. set σ := 1 and the condition becomes

max
∀(xi,xhc,uc,nk)∈P

∑

i

(P iQi)xi +
∑

c,h∈Hc

(P hcQhc)xhc −
∑

c

Fcuc −Mc(1− u∗c)uc

≤
∑

i

(P iQi)x
∗
i +

∑

c,h∈Hc

(P hcQhc)x
∗
hc −

∑

c

Fcu
∗
c , (4.111)
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where P is the polyhedron defined by the linear conditions (4.66)-(4.72), that is the linear
relaxation of (4.66)-(4.73). This provides the first result (4.93).

Now, observe that an optimal solution of the left-hand side of (4.93) or (4.111) is always
such that u#

c = 0 if u∗c = 0, because of the penalty coefficients Mc, or alternatively because
u#
c = 0 corresponds to the optimal dual variable of (4.76) which is not tight when u∗c = 0.

This proves (4.94).
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Appendix A

Convex Quadratic Programming
Duality

Let us note that the duality results presented here could be derived from the general Lan-
gragean duality theory: both classical Lagrangean duality results in convex programming
and the derivation of Dorn’s duality results for convex quadratic programs are for exam-
ple exposed in [39] (relying also on a general fact about attained bounds by quadratic
programs with bounded objective function values), while [89] derives Dorn’s main results
from KKT conditions and considers extensions to the non-convex quadratic programming
case. Let us note that a quadratic dual has also been proposed by Jack Bonnell Dennis
[19], and that an extensive technical review of duality results in non-linear programming
including a unified presentation of these duality results can be found in [91]. For our
needs, we focus here on presenting Dorn’s results as first derived by Dorn, i.e. via duality
for linear programs, while adopting a more modern approach, in particular distinguishing
between the weak and strong duality parts of the general theorem and underlining the
role of algebraic arguments in these two parts. Compared to the historical presentation,
the equivalence between complementarity conditions and equality of objective functions
for particular pairs of feasible primal and dual solutions is also detailed. Additional
general basic facts on quadratic programming proposed by Wolf [102] and used at some
points are also proposed as they are also of interest and not always mentioned in classical
introductory textbooks in non-linear programming.

A.1 Basic facts

Let us consider the following convex quadratic program:

(QP ) max
x

1

2
xTQx + cTx (A.1)

s.t.

Ax ≤ b (A.2)

x ≥ 0 (A.3)
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where Q is a negative semi-definite matrix, the objective function to maximize hence
being concave.

Observation A.1. Qx = Qy ⇒ xTQy = yTQx = xTQx = yTQy

Lemma A.1. [102] If Q is negative semi-definite (the same holds if Q is positive semi-
definite),

xTQx = 0 ⇒ Qx = 0

Proof. As Q is negative semi-definite, ∀t ∈ R, y ∈ R
n, (y + tx)TQ(y + tx) ≤ 0,

which expanded, and since xTCx = 0, gives:

t2xTCx + yTCy + 2yTCx = yTCy + 2tyTCx ≤ 0 for all t and y.

Since the inequality should hold for all t, yTCx = 0. Since yTCx = 0 for all y, Cx = 0.

Lemma A.2. [102, Lemma 2]

If QP has an optimal solution x∗, any other feasible solution x̃ is optimal if and only if
it satisfies Qx∗ = Qx̃ and cx∗ = cx̃.

Proof. Let x∗ and x̃ be two optimal solutions to (QP ). As the objective function, here
denoted f , is concave, ∀λ ∈ [0, 1], f(λx∗+(1−λ)x̃) ≥ λf(x∗)+(1−λ)f(x̃) = f(x∗) = f(x̃)
which is the optimal value, hence f(λx∗ + (1 − λ)x̃) = f(x∗) and f is constant over any
segment joining x∗ and x̃, the whole segment still lying in the feasible set.

Hence, setting w := (x̃− x∗), ∀λ ∈ [0, 1], f(x∗ + λw) = f(x∗), that is:

c(x∗ + λw) +
1

2
(x∗ + λw)TQ(x∗ + λw) = cx∗ +

1

2
(x∗)TQx∗ (A.4)

which rearranged gives λcw + λ21

2
wTQw + λwTQx∗ = 0 for all λ ∈ [0, 1], and:

∀λ ∈]0, 1], (cw + wTQx∗) + λ
1

2
wTQw = 0 (A.5)

This last equation trivially implies wTQw = 0 and by Lemma A.1, Qw = 0, hence:

Qx∗ = Qx̃.

As Qw = 0, wTQx∗ = 0, and (A.5) reduces to cw = 0, hence:

cx∗ = cx̃

Finally, for the converse assertion, it is direct to check that any other feasible x̃ satisfying
these two conditions will provide the same objective value as any optimal x∗, and will
therefore also be optimal.
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A third (trivial) Lemma is of interest as it is used in the brief proof of the Weak Duality
Theorem below:

Lemma A.3. If the real numbers cij are coefficients of a negative semi-definite matrix
Q, then, for every x, u:

∑

ij

cijxi(xj − uj) ≤
1

2
(
∑

ij

cijxixj −
∑

ij

cijuiuj).

Proof. For any u, x, as Q is negative semi-definite:

(x− u)Q(x− u) ≤ 0, i.e.
∑

i,j

cij(xi − ui)(xj − uj) ≤ 0

⇔
∑

i,j

cijxixj +
∑

i,j

cijuiuj − 2
∑

i,j

cijxiuj ≤ 0

⇔ −
∑

i,j

cijxiuj ≤ −
1

2
(
∑

i,j

cijxixj +
∑

i,j

cijuiuj)

And adding
∑

i,j

cijxixj on both sides:

⇔
∑

i,j

cijxixj −
∑

i,j

cijxiuj ≤
1

2
(
∑

i,j

cijxixj −
∑

i,j

cijuiuj)

Finally, the following Lemma is key to derive the strong duality theorems for convex
quadratic programs from strong duality for linear programs:
Lemma A.4. Let x∗ be an optimal solution to (QP ). Then it is also optimal for the
following program where the objective has been replaced by an analogue linear form where
x∗ appears:

max
x

cTx + (x∗)TQx (A.6)

subject to (A.2)-(A.3)

N.B. This result could also be easily derived via KKT optimality conditions as follows.
If x∗ is optimal for (QP ), there exist optimal multipliers λ∗ such that (x∗, λ∗) satisfies
the KKT conditions of the problem which are necessary and sufficient (the problem is
convex and classical constraint qualifications are satisfied). One then directly verifies
that it would hence be a solution to the KKT conditions of the program A.6, proving
that x∗ would therefore be optimal for it as well. Here, in order to rely only on linear
programming and basic algebra, the proof provided in [23] is presented.
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Proof. Suppose on the contrary that there exists a solution x such that :

cTx + (x∗)TQx > cTx∗ + (x∗)TQx∗, (A.7)

contradicting the optimality of x∗ for A.6. We show that we can then contradict the
optimality of x∗ for (QP ) using x and basic algebraic arguments, hence proving optimality
of x∗ for A.6.

Let us consider a convex combination of x∗, x: x̃ = x∗+k(x−x∗), for some 0 < k ≤ 1. Any
such convex combination remains feasible. It is now shown that appropriately choosing k
would provide a point x̃ contradicting the optimality of x∗:

1

2
x̃TQx̃+cT x̃ = (

1

2
(x∗)TQx∗+cTx∗)+

1

2
k(x−x∗)TQk(x−x∗)+cTk(x−x∗)+x∗Qk(x−x∗)

It remains to choose k to enforce
1

2
k(x−x∗)TQk(x−x∗)+cTk(x−x∗)+(x∗)TQk(x−x∗) > 0,

or rearranging terms, to have:

k

[
k

2
(x− x∗)TQ(x− x∗) + [cT + (x∗)TQ](x− x∗)

]
> 0 (A.8)

Rewritting (A.7) shows that [cT + (x∗)TQ](x− x∗) > 0, and hence that:

k∗ = −
[cT + (x∗)TQ](x− x∗)
1
2
(x− x∗)TQ(x− x∗)

> 0. (A.9)

Note that we can assume here that the denominator is strictly negative, as otherwise,
Lemma A.4 is easily proven to hold: according to Lemma A.1, Qx = Qx∗, and using
Observation A.1 in that case shows that (A.7) reduces to cTx > cTx∗, since we have then
(x∗)TQx∗ = xTQx∗. Hence, x would trivially provides a feasible point contradicting the
optimality of x∗ for (QP ).

Now, let us observe that any k such that 0 < k < k∗ ensures that both factors of the
left-hand side of (A.8) are strictly positive, making the condition holds.

To enforce (A.8) with a 0 < k ≤ 1, it hence suffices to choose k such that:

0 < k < min

[
−

[cT + (x∗)TQ](x− x∗)
1
2
(x− x∗)TQ(x− x∗)

; 1

]
(A.10)

This shows that contradicting the optimality of x∗ for A.6 implies contradicting the op-
timality of x∗ for (QP ) and completes the proof.
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A.2 Dorn’s quadratic programming dual

The following program (DQP ) is called the Dorn’s dual of (QP ), and standard duality
theory assertions hold for this pair of programs, see Theorems A.1, A.2 and A.3.

(DQP ) min
u,v

bTu−
1

2
vTQv (A.11)

s.t.

ATu−Qv ≥ c (A.12)

u ≥ 0 (A.13)

It directly follows from Observation A.1 that if (u, v) is an optimal solution to (DQP ),
then (u, ṽ) is also optimal for all ṽ such that Qṽ = Qv. Indeed, all optimal solutions
verify this condition, as shown by Lemma A.2.
Theorem A.1 (Weak duality). For every pair x and (u, v) of respectively primal and
dual feasible points, i.e. satisfying (A.2)-(A.3) and (A.12)-(A.13), the following holds:

1

2
xTQx + cx ≤ bTu−

1

2
vTQv (A.14)

Proof. The proof is almost as short and straightforward as for linear programming. We
start by multiplying (A.2) by the dual variable u and (A.12) by its dual variable x, which
provides:

uTAx ≤ uT b (A.15)

cTx ≤ xTATu− xTQv (A.16)

Using the first of these two inequalities for substitution in the second one gives:

cTx ≤ uT b− xTQv (A.17)

Now observe that, according to Lemma A.3, the term (−xTQv) is bounded above by

(−
1

2
xTQx−

1

2
vTQv), hence:

cx ≤ bTu−
1

2
vTQv −

1

2
xTQx (A.18)

which rearranged provides the result.

Theorem A.2 (Strong duality for convex QP, Theorem ’Dual’ in [23]). (I) If x∗ is an
optimal solution for (QP ), then there exists an optimal solution (u∗, v∗) for (DQP ) such
that v∗ = x∗ and such that the optimal objective values are equal:
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1

2
(x∗)TQx∗ + cx∗ = bTu∗ −

1

2
(x∗)TQx∗.

(II) Conversely, suppose that (u∗, v∗) is optimal for (DQP ), then there exists an optimal
solution x∗ for (QP ) such that Qx∗ = Qv∗ and such that the optimal objective values are
equal.

Proof. See Section A.3 for a proof relying on linear programming strong duality and
Lemma A.4.

Though the dual variable v somehow corresponds to the primal variable x, one should
be careful in observing that, given an optimal dual solution (u∗, v∗), v∗ could be neither
optimal nor feasible for the primal, as shown by the toy example below: what is guaranteed
by the strong duality theorem is the existence of an optimal primal x∗ such that Qx∗ =
Qv∗. Let us observe however that if Q is non-singular, then both (QP ) and (DQP )
admit unique optimal solutions x∗ and (u∗, v∗) such that x∗ = v∗. If Q is singular, it
may happen, as in the toy example, that (QP ) still admits an optimal solution which is
unique, but not the dual.

Example A.1. Let Q =

(
−2 0
0 0

)
, c = (0, 1), A = Id and b =

(
1
1

)
, (QP ) and (DQP )

are:

max
x1,x2

−x2
1 + x2 s.t.

x1 ≤ 1 [u1]

x2 ≤ 1 [u2]

x1, x2 ≥ 0

min
u1,u2,v1,v2

u1 + u2 + v21

u1 + 2v1 ≥ 0 [x1]

u2 ≥ 1 [x2]

u1, u2 ≥ 0

It is staightforward to check that (0, 1) is optimal for (QP ) and (0, 1, 0, 0) is optimal for
(DQP ), as would indeed be any point of the form (u1, u2, v1, v2) = (0, 1, 0, v2). However,
such an optimal point for (DQP ) could provide (v1, v2) which is not optimal (e.g. (0, 0)),
or even not feasible (e.g. (0, 2)) for (QP ).

Theorem A.3. Let x∗ and (u∗, v∗) be primal and dual feasible respectively. Then the
following conditions are equivalent:

1. x∗ and (u∗, v∗) are optimal for their respective programs

2.
1

2
(x∗)TQx∗ + cx∗ = bTu∗ −

1

2
(v∗)TQv∗ [equality of objective function values]

3. Qx∗ = Qv∗ and complementarity constraints hold:

∀i, x∗i (A
Tu∗ −Qv∗ − c)i = 0 (A.19)

∀j, u∗j(Ax
∗ − b)j = 0 (A.20)

or equivalently, as both (u∗)T (Ax∗−b) and (−x∗)T (ATu∗−Qv∗−c) are non-positive,
and in matrix form:
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(u∗)T (Ax∗ − b)− (x∗)T (ATu∗ −Qv∗ − c) = 0 (A.21)

Proof. (1) ⇒ (2) is a direct consequence of the strong duality theorem, while (2) ⇒ (1)
is a direct consequence of the weak duality theorem.

For (2) ⇒ (3), as the points x∗ and (u∗, v∗) are then optimal solutions for their respective
programs, by Lemma A.2 and the strong duality Theorem A.2, we know that Qx∗ = Qv∗,
which trivially implies (x∗)TQx∗ = (x∗)TQv∗ = (v∗)TQx∗ = (v∗)TQv∗ (see Observation
above), and we thus have:

((u∗)TAx∗ − (u∗)T b)− ((x∗)TATu∗ − (x∗)TQv∗ − cTx∗)

= cTx∗ − (u∗)T b + (x∗)TQv∗ =⋆⋆ 1

2
(x∗)TQx∗ + cTx∗ − bTu∗ +

1

2
(v∗)TQv∗ =⋆⋆⋆ 0 (A.22)

where =⋆⋆⋆ is simply (2) rearranged, and the sequence of equalities (A.22) show that the
condition (A.21), i.e. (3), holds if (2) holds.

For (3) ⇒ (2) the same equalities (A.22) are used safe that the equality =⋆⋆ here holds
because Qx∗ = Qv∗ is part of the stated condition (3).

A.3 Proof of Dorn’s strong duality theorem

As mentioned above, Dorn’s strong duality theorem could be derived from general Lan-
grangean duality results as presented in [39] or from KKT optimality conditions as de-
scribed e.g. in [89]. We instead follow here the original approach of Dorn, deriving the
result as a consequence of strong duality for linear programs plus a few additional algebraic
arguments.

To slightly simplify the proof of Part (II) of the Theorem as presented in [23], we shall rely
on [33] proving by recurrence that any quadratic function achieves its maximum (resp.
minimum) on any closed polyhedral convex set on which it is bounded from above (resp.
below). Details are provided below when proving (II). Another option in our context
would simply be to make the extra assumption that the feasible set is a polytope (i.e.
bounded and hence compact), as this assumption holds in all the applications considered
in the present thesis.

Proof. (I) Let x∗ be an optimal solution for (QP ). To prove the result, we show that
there exists a feasible (u∗, x∗) such that the dual program attains there the primal lower
bound given by the weak duality theorem (Theorem A.1). Such a (u∗, x∗) must hence
satisfy:

ATu∗ −Qx∗ ≥ c (A.23)

u∗ ≥ 0 (A.24)
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1

2
(x∗)TQx∗ + cx∗ ≥ bTu∗ −

1

2
(x∗)TQx∗ (A.25)

Note that (A.25) rearranged is simply:

bTu∗ ≤ cx∗ + (x∗)TQx∗ (A.26)

To show that such a u∗ exists, we consider (DQP ) where v is fixed to x∗, and denoted
(RDQP ). As (QP ) admits an optimal solution,(RDQP ) also admits an optimal solution
u∗: otherwise, relying on linear programming duality, one can contradict Lemma A.4
where the linear programming dual of (RDQP ) appears. By linear programming strong
duality, optimality of u∗ is characterised by the existence of y such that:

Ay ≤ b (A.27)

ATu∗ −Qx∗ ≥ c (A.28)

y ≥ 0, u∗ ≥ 0 (A.29)

bTu∗ ≤ (c + Qx∗)Ty (A.30)

These last optimality conditions indeed imply (A.26), completing the proof. This follows
from the fact that (c+Qx∗)Ty = cTy+yTQx∗ ≤ cx∗+(x∗)TQx∗ for any y primal feasible,
i.e. satisfying Ax ≤ b, x ≥ 0, this last inequality being a consequence of Lemma A.4.

(II) As mentioned above in the introduction, a possibility is to proceed as in [23], essen-
tially applying Part (I) of the Theorem to the dual modulo a few algebraic reformulations.
We present here a slightly shorter alternative.

First, note that if (QP ) has an optimal solution, it must be such that (a) Qx∗ = Qv∗ and
(b) the optimal objective values are equal. Otherwise, using (I), one could construct an
optimal solution (ũ, x∗) to (DQP ) (a) such that Qx∗ 6= Qv∗, contradicting Lemma A.2,
or (b) such that the optimal dual objective value would be different from the current one,
also a contradiction. The problem is hence reduced to proving that (QP ) has indeed an
optimal solution.

The result then directly follows from the fact that any quadratic function achieves its
maximum (resp. minimum) on any closed polyhedral convex set on which it is bounded
from above (resp. below) [33]: if (DQP ) has an optimal solution (u∗, v∗), by weak duality,
(QP ) is bounded from above and the maximum of the objective is achieved for a x∗.

(As mentioned above, the use of the result in [33] could be avoided if one makes the
extra assumption that the feasible set is compact, which always holds in the applications
considered in the present text.)
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Appendix B

Spatial price equilibrium

In 1952, Paul Samuelson published a seminal paper [85] showing how a spatial price
equilibrium that he calls a ”Cournot-Enke equilibrium” - of which the precise definition
is recalled below - could be determined by solving a social welfare optimization problem.
It seems that this paper is the first proposing the equivalence between market equilibrium
and welfare optimization, and moreover in the general context of spatially separated
markets, rather than in the simpler particular case where there is only one given market
at hand. Regarding this, Paul Samuelson points out in his paper that ”the first explicit
statement that competitive market price is determined by the intersection of supply and
demand functions seems to have been given by A. A. Cournot in 1838 in connection,
curiously enough, with the more complicated problem of price relations between two
spatially separate market”.

The work of Cournot evoked [17, Chapter 10] is entitled ”De la communication des
marchés”, where several interesting observations are made regarding markets coupled
with what would be called today a transportation model. In particular, it is observed
therein that coupling two markets can result both in a decrease of production of a good,
as well as a decrease of the total value of production at the new market prices, though
it always results in an increase of social welfare. The topic is standard and the article of
Samuelson pleasant to read, yet it does not contain any explicit mathematical develop-
ment, certainly as the target audience at the time were economists not always technically
acquainted with the newly born field of linear programming.

Our main purpose here is to present the key underlying ideas in the context of the abstract
network model used in the three contributions presented in Part II, and which could then
be specialized e.g. (a) to a transportation model as considered by Samuelson (called
Available-to-Transfer Capacity model in the PCR jargon), or (b) to a DC model where
Kirchhoff’s laws are linear or their non-linear AC versions have been linearised. As in the
classical case, the spatial price equilibrium properties still include optimality conditions
for ’arbitrageurs’ between local markets, here Transmission System Operators.

The seminal paper [85] focuses on linear programming, but also mentions that the results
presented still hold for more general monotonically increasing (resp. decreasing) offer
(resp. demand) curves. Regarding this possibility, Takayama [93] considers piecewise
linear curves and use KKT conditions to derive the appropriate economic interpretations.
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The presentation here also considers piecewise linear curves and makes explicit use of
Dorn’s dual presented in Appendix A. It is all we need in our context where (offer or
demand) bid curves submitted to power exchanges are either stepwise (e.g. in Belgium
and the Netherlands) or piecewise linear (e.g. in France or Germany).

In a few words, for a spatial price equilibrium to hold given some production, consumption
and trading decisions such that the market clears, prices must be determined for each
location where the commodity is traded, such that among price-taker market participants
- among which an arbitrageur potentially buying in one market to resell in another - no
one could be better off with another decision. (By price-taker, we mean here market
participants without market power taking market prices as given to take their decisions,
and not participant indifferent to the given market prices.) In other words, for the given
prices, the current state of affairs corresponds to optimal decisions of participants, and the
market clears. Paul Samuelson’s result is that, under some classical assumptions regarding
the welfare optimization problem, locational equilibrium prices can be determined as
optimal dual variables to the constraints which, for each market, relate net import-export
positions to the flows of transported commodities between these markets.

Here, one should be cautious when defining the notion of market equilibrium and include
optimality conditions of the ’arbitrageurs’/Transmission System Operators, to avoid con-
fusion as examples presented in [103] may suggest.

B.1 Spatial Price Equilibrium with an abstract linear

network model

The context is the following: a commodity is traded in different locations connected with
a capacitated network - such as high-voltage transmission lines in the case of electricity -
which can be described by linear inequalities. Let us note that in the case of AC power
flows, linear transmission models are only approximations of the real power flow models
which are non-linear and much more difficult to deal with.

Each market participant has preferences regarding the limit price at which she is willing
to buy or sell the commodity, and these limit prices are related to the quantities traded.
Limit offer prices correspond, in an ideal so-called competitive market, to the marginal
costs of the producers which we assume increase with the quantity that is produced. Limit
demand prices correspond to the consumption utility, and are assumed to be decreasing
with the quantity consumed.

Let us consider the following welfare maximizing program, where xi ∈ [0, 1] is the decision
variable determining which fraction of demand Qi > 0 or offer Qi < 0 is accepted in the
market clearing solution. The marginal utility/cost of bid i is described by the line
segment joining (P i

0, 0) to (P i
1, Q

i) for demand bids with Qi > 0 and P i
0 > P i

1, or (P i
0, 0) to

(P i
1,−Q

i) for offer bids with Qi < 0 and P i
0 < P i

1. Conditions (B.3) are balance constraints
relating the net export position of a given market (on the left-hand side) to a certain usage
of network resources described by a linear form in the right-hand side. Conditions (B.4)
describe in a linear way the scarcity of the network resources nk. These resources have a
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marginal cost given by the parameters ck The welfare maximizing objective is then given
by:

max
xi

∑

i

P i
0Q

ixi +
1

2

∑

i

(P i
1 − P i

0)Q
ix2

i −
∑

k

cknk (B.1)

subject to

xi ≤ 1 ∀i ∈ I [si] (B.2)
∑

i∈Ilt

Qixi =
∑

k

ekl,tnk, ∀(l, t) ∈ L× T [πl,t] (B.3)

∑

k

am,knk ≤ wm ∀m ∈ N [um] (B.4)

xi ≥ 0, ∀i ∈ I (B.5)

The (Dorn’s) dual program is written with vi := xi as we know there is always an optimal
dual solution (u, v) with v = x provided that the primal has an optimal solution x:

min
si,πl,t,um,vi

∑

i

si +
∑

m

wmum −
∑

i

Qi(P i
1 − P i

0)
x2
i

2
(B.6)

s.t.

si + Qiπl(i),t(i) ≥ QiP i
0 + Qi(P i

1 − P i
0)xi ∀i ∈ I [xi], (B.7)

∑

m

am,kum −
∑

l,t

ekl,tπl,t = −ck ∀k ∈ K [nk] (B.8)

si, um ≥ 0 ∀i ∈ I,m ∈ N (B.9)

And the related complementarity conditions:

si(1− xi) = 0 ∀i ∈ I (B.10)

xi(si + Qipl(i),t(i) −QiP i
0 −Qi(P i

1 − P i
0)xi) = 0 ∀i ∈ I (B.11)

um(
∑

k

am,knk − wm) = 0 ∀m ∈ N (B.12)

We now briefly review the fact that the primal, dual and complementarity conditions just
written, which are optimality conditions for the welfare optimization problem (B.1)-(B.5),
include in particular optimality conditions for price-taker profit maximizing market partic-
ipants including Transportation/Transmission System Operators acting as ’arbitrageurs’
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between local markets. This shows that the market prices πl,t support a spatial price
equilibrium.

Let us note that fixing π in (B.6)-(B.9) renders the problem separable by market partici-
pant. Accordingly, a Langrangian dualization of the balance constraints (B.3) with dual
multipliers π provides a dual aiming at finding prices π minimizing the maximum sum
of economic surpluses attainable with this balance constraints relaxed (payments depen-
dent on the prices π now appear in the objective), a problem easily seen to be separable
by market participant as well (including arbitrageurs between local markets). It is then
straightforward to see that the separated maximization subproblems thus obtained for
each (type of) market participant are those presented in the next sections. The results
following in the next brief sections can hence readily be obtained by using the strong
duality property holding for the primal welfare maximization problem (B.1)-(B.5) and
the Langrangian dual obtained by dualizing the balance constraints (B.3) (strong duality
generalizing classical duality for linear programs, see [39]).

B.1.1 Price-taker Market Participants

For the given market prices πl,t, the following problem is solved by each profit maximizing
price-taker market participant or bid i.

max
xi

P i
0Q

ixi +
1

2
(P i

1 − P i
0)Q

ix2
i − πl(i),t(i)Q

ixi (B.13)

subject to:

xi ≤ 1 [si] (B.14)

xi ≥ 0 (B.15)

Optimality conditions for this problem, namely dual and complementarity conditions (see
Appendix A), are exactly given by (B.7),(B.9) and (B.10)-(B.11), where again the dual
and complementarity conditions are written with ’v := x’, cf. the remark above just
before writing the previous dual (B.6)-(B.9).

Note that the corresponding economic interpretation of these dual and complementarity
conditions are described in the first contribution presented in Chapter 2, see Definition 6
and the paragraph which follows. Essentially, the level of acceptance xi of the bid is then
completely appropriate regarding the market price and the expressed preferences. In case
xi is fractional, the market price is given by the appropriate interpolation between the
prices P0 and P1.

B.1.2 The Transmission System Operator

The problem of the Transportation/Transmission System Operator (TSO) is to optimize
import/export decisions given the locational market prices πlt, assuming ”infinite market
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depth” when buying or selling at each given location. As the import/export positions are

given by
∑

k

ekltnk, which is negative when the local market (l, t) sells/exports, i.e. sells

to the TSO, and positive when the local market imports, i.e. buys from the TSO, the
corresponding optimization problem is:

max
nk

∑

l,t

[
∑

k

ekltnk]πlt (B.16)

subject to:

∑

k

am,knk ≤ wm ∀m ∈ N [um] (B.17)

Again, optimality conditions are included in the optimality conditions for the welfare
optimization program described above, being given by the dual conditions (B.8)-(B.9)
and complementarity conditions (B.12).

It should be noted that, for example, Propositions 3 and 4 in [13] adapted from [43] are
a special case of this fact and the notion of spatial price equilibrium.

B.1.3 Solution to the transmission/transportation problem

Beyond the notion of spatial price equilibrium and as initially observed by Samuelson,
one may also check straightforwardly that any optimal solution to the welfare maximiza-
tion problem (B.1)-(B.5) should provide optimal values nk for the following transporta-
tion problem (here in our slightly more general context), where import/export quantities
are known and fixed, and which aims at minimizing the corresponding transportation
costs:

max
nk

∑

k

(−ck)nk ≡ min
nk

∑

k

cknk (B.18)

subject to:

∑

k

ekl,tnk =
∑

i∈Ilt

Qixi, ∀(l, t) ∈ L× T [pl,t] (B.19)

∑

k

am,knk ≤ wm ∀m ∈ N [um] (B.20)

(B.21)
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losses are incurred. The present thesis proposes mixed integer 

programming models and algorithms for such non-convex uniform 
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