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Abstract

Context-aware systems must manage the dynamic se-
lection, activation, and execution of feature variants ac-
cording to changing contexts, detected from data gath-
ered from their surrounding execution environment.
Many context-oriented programming languages focus
only on the implementation level by providing appropri-
ate language abstractions for implementing behavioural
variations that can adapt dynamically to changing con-
texts. They often ignore or presuppose the existence
of mechanisms to deal with earlier aspects such as the
gathering of sensory input and context discovery. In this
paper we propose a layered software architecture that
reconciles all these aspects in a single implementation
framework, which can be customized by application
programmers into actual context-aware applications.
This framework is currently being implemented in Ruby
on top of a reimplementation of the Phenomenal Gem
context-oriented language.

Categories and Subject Descriptors D.2.11 [Soft-
ware Engineering ]: Software Architectures—Languages,
Domain-specific architectures; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data
types and structures, modules

General Terms Languages, Design

Keywords Context-oriented programming, Software
architecture, Implementation framework

1. Introduction

Context-awareness is important, for example, when
building pervasive systems for the IoT, where devices
(through sensors and actuators) may vary their be-
haviour to interact with one another, or when creating
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personalised applications that adapt to users’ prefer-
ences and context of use. Context-aware systems adapt
their execution behaviour dynamically to particular
situations based on contextual information discovered
from their surrounding execution environment, such as
weather conditions, localisation information, remaining
battery power, user actions, system state, and so on.

1.1 Context-Oriented Programming

In context-aware systems, behavioural variations are
often managed by using a multitude of if-statements,
scattered all over the code, to dispatch the different
application behaviour, as exemplified below for the
receiveCall method of a phone device.

def receiveCall(call)

...

i f LowBattery

phone.forwardCall(call , s e l f .number)
end
i f QuietEnvironment

phone.vibrate (5)

end
end

To address the maintainability issues ensuing from
handling such scattered if-statements, recent devel-
opments in programming language research have given
rise to the novel paradigm of Context-Oriented Progra-
mming (COP) [7], a programming language approach to
enable programming behavioural variations to changing
contexts of use in a more modular fashion.

For example, the LowBattery case of the above call
reception feature could be modularised as follows in the
Phenomenal Gem [14] COP language:

context LowBattery do
adapt :receiveCall do
phone.forwardCall(call , s e l f .number)

end
end

Different such variants would be associated to different
contexts, thus enhancing modularity by reducing tan-
gling and scattering of contextual feature variants with
respect to the default behaviour and other contexts.



1.2 Adaptive Software Systems

Nonetheless, such code level handling of feature vari-
ants, their interactions and activations, based on con-
textual information discovered from the surrounding
environment, becomes a daunting task for larger sys-
tems. To minimise such complexity, Salehie and Tahvil-
dari [15] proposed an architecture for adaptive systems
in the form of a Monitoring, Analysis, Planning, Ex-
ecution, and Knowledge (MAPE-K) control feedback
loop. In this domain, many different proposals to de-
fine an architecture of adaptive systems have been pro-
posed [1, 6, 13, 16] (cf. Section 3). Most of these propos-
als, as exemplified in Figure 1, take a relatively high-
level view of the system, showing how the different com-
ponents defining its architecture can be adapted.
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Figure 1. Adaptive Systems’ Architecture Model [13]

However, such high-level architectural views of adaptive
systems are rather coarse-grained and do not highlight
the different variations and components that program-
mers need to code.

1.3 Contribution

In this paper we propose an architecture for context-
oriented software systems that reconciles the practical-
ity of encoding variations at the code level with COP
languages, with the clarity provided by high-level archi-
tectures of adaptive systems. The purpose of our archi-
tecture is to cover all levels required to enable context-
orientation in a software system, while making explicit
which parts are provided as part of the adaptation
framework (Section 2.2), and which are to be coded
by the application programmer (Section 2.3). We are
currently implementing this architecture on top of our
reimplementation of Phenomenal Gem [14], a COP lan-
guage extension for Ruby.

2. A Context-Oriented Architecture

2.1 A Layered Architecture

Our proposed context-oriented software architecture,
depicted in Figure 2, is a layered architecture consist-
ing of 4 layers. The interaction layer is in charge of the

interaction between the context-oriented system and its
external environment. The discovery layer ’s purpose is
to determine the current context of use based on the in-
formation received from the interaction layer. The han-
dling layer is in charge of activating the appropriate
contexts determined by the discovery layer, as well as
selecting, activating, and executing the feature variants
corresponding to those contexts. These three layers con-
stitute the adaptation framework (Section 2.2), which
can be regarded as an implementation framework con-
taining the machinery upon which context-oriented pro-
gram(mer)s can rely. The fourth application layer (Sec-
tion 2.3) contains the different components to be pro-
vided by an application programmer. The framework
calls these application components as needed.

2.2 The Adaptation Framework

Interaction Layer The interaction layer is in charge
of gathering information from the system’s surround-
ing environment. That is, information coming from the
physical environment (e.g., geographical localisation),
the user (e.g., user preferences), or the system’s com-
puting platform (i.e., hardware and software conditions,
such as the battery status). Environmental information
is gathered by two components: User Input and Sen-
sors. The User Input component gathers information
coming from the user (e.g., user preferences, particular
user actions or user input). Sensors gather information
through physical devices available in the environment,
as well as information monitored from the system’s ex-
ecuting platform (e.g., hardware conditions).

Discovery Layer This layer interprets and reasons
over the information gathered from the external envi-
ronment, with the objective of extracting those con-
texts that are semantically relevant for the application.
It identifies which contexts may become (in)active, ac-
cording to the information received from the interaction
layer via a set of listeners provided by the application
programmer, combined with the context declarations
specified by that programmer. The Interpretation com-
ponent first filters the received information with a set
of filters provided by the programmer. The Reasoning
component decides which of the declared contexts are
relevant to the application.

Handling Layer The handling layer analyses the
different kinds of dependencies that exists in and
between contexts and their features, to manage the
(de)activation and selection of contexts and their fea-
tures, in order to adapt the system’s behaviour in a
consistent way. It is partitioned in two sublayers.

Context handling decides which contexts get acti-
vated. The Context Activation component verifies if
a context can be (de)activated based on its declared
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Figure 2. Our context-oriented software architecture

dependencies. It can also keep track of the activation
state of contexts such as how many times a context has
been activated, and what is its activation scope.

Feature handling manages the selection, activation,
and execution of features whenever a context is active
(i.e., the system’s behaviour). Each of this sublayer’s re-
sponsibilities are realised by separate components. Fea-
ture Selection is in charge of acquiring all features as-
sociated to the currently active contexts. Feature Ac-
tivation verifies whether the selected features can be
(de)activated consistently according to their declared
dependencies with other features and contexts. Similar
to the Context Activation component, this component
also manages the scoping of features. Transition Selec-
tion determines what transitions need to be performed
upon the (de)activation of certain features. These tran-
sitions, declared by programmers, may vary with re-
spect to the currently active contexts in the system.
Finally, the Feature Execution component manages the
execution of the aforementioned transitions and features
to adapt the system’s behaviour at run time.

2.3 The Application Layer

The application layer specifies the different implemen-
tation components to be provided by an application de-
veloper to customise the adaptation framework (Sec-
tion 2.2) into an actual context-oriented application.

Listeners The first components to be provided by a
programmer to customise the framework are the lis-
teners. They intercept data coming from the user (In-
put listeners) or generated by sensors (Sensor listeners)
and are implemented according to the Observer pattern:
each listener is an Observable. Whenever a listener in-
tercepts some data, it converts it to JSON to preserve
this data and its types, and notifies the Interpretation
component of the framework. The code at the top of
the next page simulates a listener retrieving data from
a GPS sensor.

Filters Whenever the discovery layer receives user
and sensor data, the first thing that its Interpretation
component does is filtering out some of that data. Data
flows continuously to sensors while the application is
running. Analysing this flow constantly would cause sig-
nificant performance overheads, especially for contexts



c lass GpsListener

include Observable

attr_reader :latitude , :longitude

def initialize(latitude , longitude)

@latitude = latitude

@longitude = longitude

notify

end
end

that do not change often. For example, if the applica-
tion needs to adapt only to coarse-grained temperature
changes (e.g., ‘Hot’ or ‘Cold’), there is no need to check
the temperature sensor every second to decide whether
a context change should be triggered. Depending on
the application domain, coarser time intervals could be
used. To achieve this, the programmer can write a time
filter for the temperature listener to ensure that data
gets analysed only once every 5 minutes, as shown in
the code below. Other types of filters exist as well.

c lass TempFilter < TimeFilter

def initialize

super
@new_wait_to_filter = 5*60

end
end

Context declarations After having filtered and in-
terpreted the data coming from the listeners, and hav-
ing turned them into contextual objects, the reasoning
will verify which of those contexts can be activated, de-
pending on the context conditions expressed by the ap-
plication programmer in the Context Declarations. As
shown below on the example of a Temperature context,
a context declaration specifies the (unique) name of the
context, whether it is abstract or not, what sensor it is
coupled to, what subcontexts it has, and what are its
admissibility conditions. For example, the Hot subcon-
text makes sense only when a temperature of 25◦C or
higher is retrieved from the temperature sensor.

{ "contexts": {

"isAbstract": true ,
"subcontexts": {

"Temperature": {

"isAbstract": true ,
"sensors": ["TempSensor"],

"subcontexts": {

"Hot": {

"condition": "(TempSensor.

degree >= 25)"

},

"Cold": {

"condition": "(TempSensor.

degree < 25)"

} } } } } }

All context declarations are contained in a single JSON
object, from which the Reasoning component creates a
context graph. The code fragment below shows how this
component navigates the graph of all declared contexts
to find those that are admissible. To verify if a context is
admissible, all its conditions are checked; if satisfied, the
context is added to the list of admissible contexts. This
process is repeated for all of the context’s children, until
no contexts remain to be verified in the graph. Once this
procedure is terminated, the list of admissible contexts
is passed to the Handling component.

def getAdmissibleContexts(contextGraph , o)

admissibleContexts = []

queue = [contextGraph]

while !(queue.empty ?)

contextGraph = queue.shift

isOk = contextGraph.applyConditions(o)

admissibleContexts << contextGraph i f
isOk

queue = contextGraph.children + queue

end
admissibleContexts

end

Context dependency declarations Dependencies
between contexts (such as exclusion and requirement [5])
are also declared as a JSON object:

{ "dependencies": {

"Temperature": {

"xor": [] },

"GPSActivity": {

"requirement": [ "HighBattery" ] },

"EmergencyMode": {

"requirement": [ "LowBattery" ] }

} }

For example, the above code excerpt declares a xor
dependency1 between the different subcontexts of the
Temperature context (a temperature can be either cold
or hot, but not both), a requirement dependency of
GPSActivity on HighBattery (since the GPS consumes
too much battery it should not be allowed when the
battery is running low), and another requirement de-
pendency from the EmergencyMode to the LowBattery

context. The semantics of a requirement dependency is
that the required context must be active before the re-
quiring context can be activated. In this particular case,
EmergencyMode requires LowBattery to be active since
this mode is only supposed to run in that particular sit-
uation, by shutting down essential services to maintain
enough power to make emergency calls when needed.
Based on the activation semantics of the context de-
pendency declarations [4] provided by the application

1An exclusive-or can be regarded as syntactic sugar for multiple
exclusion dependencies. It is a useful notation when multiple
subcontexts of a same context all need to be mutually exclusive.



programmer, the Context Activation component de-
cides which contexts need to be activated. As in Ambi-
ence [9], Subjective-C [10] and Phenomenal Gem [14],
contexts can be activated more than once (e.g., a con-
text UserPresence could be activated as many times as
there are users present). The Context Activation com-
ponent takes care of these activation counters. The ac-
tivation counter is increased upon each activation and
decreased upon each deactivation. A context is consid-
ered inactive if its activation counter reaches zero, and is
then removed from the list of currently active contexts.

Feature Handling Due to space limitations and
since the Feature Handling sublayer of the architec-
ture is currently being reimplemented, we explain only
the principle of the code that needs to be provided by
the application programmer, and how this code is used
by the adaptation framework.

Context-feature mapping This mapping links features
(or feature variants) to their corresponding contexts.
This is similar to the example of Section 1.1 where a
call forwarding feature (which specializes the default
call reception feature) was linked to the LowBattery

context.

Feature declarations Similar to context declarations,
features form a graph consisting of many features and
subfeatures. Features are declared as a JSON object,
from which the Feature Selection creates a feature
graph.

Feature dependency declarations Similar to context
dependencies, dependencies can be declared between
features. The type of dependencies that can be declared
between features are the same as those that can be de-
fined between contexts (e.g., exclusion, requirement).

Context-feature interdependency declarations In addi-
tion to having intra-dependencies between contexts or
between features, inter-dependencies can exist between
features and contexts. Again, we allow for the same
types of dependencies as before. Dependencies declared
between features, and between contexts and features,
are used by the Feature Activation component to ac-
tivate the right features taking into account the con-
straints imposed by such dependencies.

The duality between features and contexts is novel in
our current architecture and approach, and is strongly
inspired by the work of Hartmann and Trew [11]. In
their work, they use a two-branched feature diagram
to model both the different features and their intra-
dependencies (one branch), as well as the different con-
texts and their intra-dependencies (second branch), plus
the inter-dependencies between nodes (i.e., features and
contexts) in these different branches, to model multiple
product lines for software product line chains. Capilla

et al. [3] observe that the same kind of modelling ap-
proach could be used to model context variability in
context-aware systems.

Transition definitions Another novelty in our architec-
ture is that, inspired by work on user interface adaptiv-
ity [8], we observed the need for having gentle transi-
tions when (de)activating features when switching from
one context to another. Although we still need to ex-
plore the use and relevance of such transitions for be-
havioural adaptations in practice, in the case of user
interface adaptations transitions can be useful to give
visual clues to the end-user that something has changed,
such as fading in or out a new user interface element.
The transition definitions, provided by the programmer,
contain the code to be executed for these transitions.

Transition mapping The transitions to be applied may
depend on the source context (old situation), the target
context (current situation), and the feature that needs
to be executed. The transition mapping is defined so
that the appropriate transitions, if any, get selected.

Feature definitions contain the actual code of the fea-
tures that need to be executed in certain contexts. They
constitute the code of the application to be executed.
These feature definitions are similar to second code frag-
ment of Section 1.1, i.e., the call forwarding behaviour,
except that the feature definition would contain only
the definition of the behaviour, whereas the linking of
this feature to the LowBattery context is part of the
Context-feature mapping.

3. Related Work

The development of COP languages focuses on intro-
ducing language abstractions to enable dynamic adap-
tations, loosely following a MAPE-K architecture [2].
However, their design often remains a bit ad hoc, focus-
ing mostly on the application layer of the architecture
—that is, the language-level abstractions to modularise
and activate adaptations with respect to the context.

Adaptive systems introduce a more structured ap-
proach to context-orientation by defining an architec-
tural design to manage the autonomous adaptation of
software components [12, 13]. Architectures for adaptive
systems are anchored in the MAPE-K loop, describ-
ing 3 layers to manage the adaptations of components
to context. In their architecture-based framework for
adaptation, Cheng et al. [6] introduce Probes to moni-
tor the system’s states and Gauges to aggregate mon-
itored information. Information coming from the sys-
tem (target environment layer) is then used by a model
manager component from which architecture adapta-
tions are evaluated, managed, and executed (abstrac-
tion / model layer). Once adaptations are introduced,
they can be used in the new system model (consumer



layer). FORMS [16] extends the general MAPE-K loop
architecture by introducing notions of reflection and dis-
tribution into the architectural model. FORMS intro-
duces the idea of working models, which constitute the
temporary representation of the system adapting the
base model. Working models are deployed according to
the information gathered from the monitoring compo-
nent of the architecture. DuSE [1] presents a general-
purpose control loop architecture, providing developers
with a framework to assess the trade-off in designing
their adaptive software.

The aforementioned architectures relate to our pro-
posal as they describe the components that interact
with the environment and adapt the executing system
based on such interactions. Our proposal goes beyond
this related work in making explicit the close link be-
tween the system architecture and the mechanisms to
realise adaptations at the programming language level.

4. Conclusion

We presented our 4 layer architecture (interaction, dis-
covery, handling, and application layer) depicting all
necessary components for building context-oriented sys-
tems. The architecture can be regarded as an implemen-
tation framework, the code of which partly is provided
by the adaptation framework (the interaction, discovery
and handling layers) and partly needs to be provided by
the application developer (the application layer). The
first 3 layers contain the machinery responsible for in-
teracting with the external environment, for discovering
contexts, selecting and activating contexts and features,
and for executing the application. The fourth layer,
provided mostly by the application developer, contains
the declaration of listeners, filters, contexts, features,
their mapping, and the intra- and inter-dependencies
between them. This architecture emerged as part of
an ongoing reimplementation effort of the Phenomenal
Gem COP language. Whereas the current implemen-
tation of the architecture is still a proof-of-concept, as
future work we will improve upon this initial implemen-
tation to make it into a full-fletched implementation ar-
chitecture. To demonstrate its usefulness we will use it
to build case studies of realistic context-oriented soft-
ware systems with Phenomenal Gem.
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