
 1

Multi-Model and Multi-Level Development of User Interfaces

Jean Vanderdonckt*, Elizabeth Furtado, João José Vasco Furtado, Quentin Limbourg*,
Wilker Bezerra Silva, Daniel William Tavares Rodrigues, and Leandro da Silva Taddeo

*Université catholique de Louvain
ISYS/BCHI
Institut d’Administration et de Gestion
Place des Doyens, 1
Louvain-la-Neuve, B-1348 Belgium
vanderdonckt@isys.ucl.ac.be
limbourg@isys.ucl.ac.be

Universidade de Fortaleza
NATI - Célula EAD
Washington Soares, 1321 – Bairo Edson Queiroz
Fortaleza (Ceará), BR-60455770 Brazil
elizabet@unifor.br, vasco@unifor.br,
wilker@unifor.br, danielw@unifor.br,
taddeo@unifor.br

Abstract

Universal design of user interfaces addresses design issues in multiple contexts of use where multiple types of
users carry out multiple tasks, possibly in multiple domains of interest. Existing development methods do not
necessarily support the development of such user interfaces, as they do not establish commonalities and
differences between these multiple interfaces in different contexts of use. To address this need, a new
development method is presented based on three levels of abstraction: (i) a conceptual level where a domain
expert defines an ontology of concepts, relationships, and attributes of the domain of discourse, including user
modelling; (ii) a logical level where a designer specifies multiple models based on the previously defined
ontology and its rules; and (iii) a physical level where a developer develops multiple user interfaces from the
previously specified models based on characteristics in the user models.

Keywords

Automated generation of user interfaces, computer-aided design of user interfaces, conceptual level, context of
use, instantiation, logical level, model-based approach, modelling, multi-level, multi-model, ontology, physical
level, universal design.

Introduction
In universal design [18], user interfaces (UIs) of interactive applications are developed for a wide population of
users in different contexts of use by taking into account factors such as preferences, cognitive style, language,
culture, habits and system experience. Universal design of single or multiple UIs (MUIs) poses some difficulties
due to the consideration of these multiple parameters. In particular, the multiplicity of parameters dramatically
increases the complexity of the design phase by adding a large number of design options. The number and scope
of these design options increase the variety and complexity of the design. In addition, methods for developing
UIs have difficulties with this variety of parameters because the factors are not necessarily identified and
manipulated in a structured way nor truly considered in the standard design process.

The goal of this chapter is to present a structured method addressing certain parameters required for universal
design. The method is supported by a suite of tools based on two components: (i) an ontology of the domain of
discourse and (ii) models that capture instantiations of concepts identified in this ontology in order to produce
multiple UIs for multiple contexts of use. These different UIs exhibit different presentation styles, dialogue
genres and UI structures.

The remainder of this chapter is structured as follows:
• The first section provides a state of the art of methods for developing UIs with a focus on universal design.
• The next section defines a model in this development method, along with desirable properties. As this

chapter adopts a conceptual view of the problem, the modelling activity will be organized into a layered
architecture manipulating several models.

• The three levels are then described respectively in the three next sections: conceptual in the third section,
logical in the fourth section, and physical in the fifth section.

 2

• The application of this method is demonstrated through the example of a UI for patient admission at a
hospital.

• The last section summarizes the main points of the paper.

Related Work
The authors’ Interactive Dialogue Environment (AIDE) [7] is an integrated set of interactive tools enabling
developers to implement UIs by directly manipulating and defining UI objects, rather than by the traditional
method of writing source code. AIDE provides developers with a more structured way of developing UIs as
compared to traditional “rush-to-code” approaches where unclear steps can result in a UI with low usability.

The User-Centered Development Environment (UCDE) [2] is an object-oriented UI development method for
integrating business process improvements into software development. Business-oriented components are
software objects that model business rules, processes and data from the end-user’s perspective. The method maps
data items onto UI objects that are compatible with the parameters of the data item (e.g., data type, cardinality).
The advantage of UCDE is that it provides a well-integrated process from high-level abstraction to final UI.

Another methodological framework for UI development described by Hartson and Hix [9,10] integrates usability
issues into the software development process from the beginning. The focal point of this approach is a
psychologically based formal task description, which serves as the central reference for evaluating the usability
of the user interface under development. This framework emphasizes the need for a task model as a starting point
for ensuring UI usability, whereas UCDE emphasizes the need for a domain model.

The MUSE method [11] uses structured notations to specify other elements of the context of use, such as
organizational hierarchies, conceptual tasks and domain semantics. In addition, structured graphical notations are
provided to better communicate the UI design to users.

The above approaches illustrate the importance of using a structured method to capture, store, and manipulate
multiple elements of the context of use, such as task, domain and user. Although the above methods partially
consider this information, they do not consider designing multiple UIs where task [5,6], domain and user
parameters vary, sometimes simultaneously. The Unified User Interface design method [18] was the first method
to suggest deriving multiple variations of a task model so as to take into account individual differences between
users. The different variations of a task model are expressed by alternative branches showing what action to
perform depending on particular interaction styles.

Thevenin and Coutaz [19,20] go one step further by introducing the concept of decorating a task, which is a
process that introduces graphical refinements in order to express context ualisation. The task is first modelled
independently of any context of use, and thus independently of any type of user. Depending on the variations of
the context of use to be supported, including variations of users, the initial task model is refined into several
decorated task models that are specific to those contexts of use.

Paternò and Santoro [14] show the feasibility of deriving multiple UIs from a single model by decomposing the
task differently based on different contexts of use. For each context of use, different organizations of
presentation elements are selected for each task .

In this paper, we consider how a single task model can represent the same task across different user profiles. In
the following sections we address the following questions: Do we need to create a single task model where all
differences between users are factored out? In this case, do we start by creating a different task model for each
user stereotype and then create a unified model that describes only the commonalities? Or do we start with a
single task model that includes both commonalities and differences between users? And if so, how do we isolate
commonalities from differences? To address these questions, we first set up the foundations for our modelling
approach.

Definition of Model
Several computer science methodologies decompose a modelling activity into a multi-leveled architecture where
models are manipulated explicitly or implicitly: model engineering (e.g., Object-Modelling Technique [17],
UML [1]), database engineering and certain information system development methodologies (e.g., SADT [12]).
Similarly, the method proposed here structures the UI development process into three levels of abstraction
(Figure 1):

 3

1. The conceptual level allows a domain expert to define the ontology of concepts, relationships, and attributes

involved in the production of multiple UIs.
2. The logical level allows designers to capture requirements for a specific UI design case by instantiating

concepts, relationships, and attributes with a graphical editor. Each set of instantiations results in a set of
models for each design case (n designs in Figure 1).

3. The physical level helps developers derive multiple UIs from each set of models with a model-based UI
generator: in Figure 1, m possible UIs are obtained for UI design #1, p for UI design #2,…, r for UI design
#n. The generated UI is then exported to a traditional development environment for manual editing.
Although the editing can be performed in any development environment, the tools dis cussed here support
code generation for Microsoft Visual Basic V6.0.

Ontology editor

Concept editor (graphical)

Model-based UI generator

Microsoft Visual Basic

Ontology for UI design

Models for
UI design #1

Models for
UI design #2

Models for
UI design #n

UI 1.m for
UI design #1

UI 1.2 for
UI design #1

UI 1.1 for
UI design #1

UI 2.p for
UI design #2

UI 2.2 for
UI design #2

UI 2.1 for
UI design #2

UI n.r for
UI design #n

UI n.2 for
UI design #n

UI n.1 for
UI design #n

Final UI 1.m
for design #1

Final UI 1.2
for design #1

Final UI 1.1
for design #1

Final UI 2.p
for design #1

Final UI 2.2
for design #1

Final UI 2.1
for design #2

Final UI n.r
for design #n

Final UI n.2
for design #n

Final UI n.1
for design #n

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

Conceptual level

Logical level

Physical level

Universal design

Ontology editor

Concept editor (graphical)

Model-based UI generator

Microsoft Visual Basic

Ontology for UI design

Models for
UI design #1

Models for
UI design #2

Models for
UI design #n

Models for
UI design #1

Models for
UI design #2

Models for
UI design #n

UI 1.m for
UI design #1

UI 1.2 for
UI design #1

UI 1.1 for
UI design #1

UI 2.p for
UI design #2

UI 2.2 for
UI design #2

UI 2.1 for
UI design #2

UI n.r for
UI design #n

UI n.2 for
UI design #n

UI n.1 for
UI design #n

UI 1.m for
UI design #1

UI 1.2 for
UI design #1

UI 1.1 for
UI design #1

UI 1.m for
UI design #1

UI 1.2 for
UI design #1

UI 1.1 for
UI design #1

UI 2.p for
UI design #2

UI 2.2 for
UI design #2

UI 2.1 for
UI design #2

UI 2.p for
UI design #2

UI 2.2 for
UI design #2

UI 2.1 for
UI design #2

UI n.r for
UI design #n

UI n.2 for
UI design #n

UI n.1 for
UI design #n

UI n.r for
UI design #n

UI n.2 for
UI design #n

UI n.1 for
UI design #n

Final UI 1.m
for design #1

Final UI 1.2
for design #1

Final UI 1.1
for design #1

Final UI 2.p
for design #1

Final UI 2.2
for design #1

Final UI 2.1
for design #2

Final UI n.r
for design #n

Final UI n.2
for design #n

Final UI n.1
for design #n

Final UI 1.m
for design #1

Final UI 1.2
for design #1

Final UI 1.1
for design #1

Final UI 1.m
for design #1

Final UI 1.2
for design #1

Final UI 1.1
for design #1

Final UI 2.p
for design #1

Final UI 2.2
for design #1

Final UI 2.1
for design #2

Final UI 2.p
for design #1

Final UI 2.2
for design #1

Final UI 2.1
for design #2

Final UI n.r
for design #n

Final UI n.2
for design #n

Final UI n.1
for design #n

Final UI n.r
for design #n

Final UI n.2
for design #n

Final UI n.1
for design #n

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .

Conceptual level

Logical level

Physical level

Universal design
Figure 1. Levels of the proposed method for universal design of user interfaces

A UI model is a set of concepts, a representation structure and a series of primitives and terms that can be used to
explicitly capture knowledge about the UI and its related interactive application using appropriate abstractions. A
model is assumed to abstract aspects of the real world. Any concept of the real world can therefore lead to
multiple possibilities of abstraction depending on how we want to develop UIs. Ideally, a model should be

 4

declarative rather than imperative or procedural. It should also be editable, preferably through tools, and finally it
should be analysable, so as to allow some degree of automation.

A model consists of a number of features (Figure 2). It is typically built as a hierarchical decomposition of
abstract concepts into more refined sub-concepts. Any concept can then be characterized by a name, a
description and properties of interest. A model should also encompass relationships between these concepts with
roles. These relationships apply both within models (called intra-model relationships) and between models
(called inter-model relationships). Any of these relationships (i.e., the definition, the decomposition, the intra- or
inter-model relationships) can possess a number of attributes.

MODEL

Features

MODEL RELATION

Relation features

DEFINITION

Definition attributes

CONCEPT

Name
Description
Properties

DECOMPOSITION

Decomp. attributes

CONCEPT RELATION

Concept rel. attributes

Is composed ofIs decomposed into

0-n0-n

Figure 2. Definition of the user interface model

How many models do we need? A single UI model is probably too complex to handle because it combines all
static and dynamic relationships in the same model. It is also preferable to avoid using a large number of models,
because this requires establishing and maintaining a large number of relationships between the models. Model
separability is desirable in this case. Model separability adheres to the Principle of Separation of Concerns,
which states that each concept should be clearly separated from the others and classified in only one category.
Therefore, the quality of separability depends on the desired results and the human capacity to properly identify
and classify concepts. Table 1 summarizes a list of desirable model properties.

Property Definition
Completeness Ability of a model to abstract all real world aspects of interest via appropriate concepts and

relationships
Graphical
completeness

Ability of a model to represent all real world aspects of interest via appropriate graphical
representations of the concepts and relationships

Consistency Ability of a model to produce an abstraction in a way that reproduces the behaviour of the real
world aspect of interest in the same way throughout the model and that preserves this
behaviour throughout any manipulation of the model

Correctness Ability of a model to produce an abstraction in a way that correctly reproduces the behaviour
of the real world aspect of interest

Expressiveness Ability of a model to express any real world aspect of interest via an abstraction
Conciseness Ability of a model to produce compact abstractions of real world aspects of interest
Separability Ability of a model to classify any abstraction of a real world aspect of interest into one single

model (based on the Principle of Separation of Concerns)
Correlability Ability of two or more models to establish relationships between themselves so as to represent

a real world aspect of interest
Integrability Ability of a model to bring together abstractions of real world aspects of interest into a single

model or a small number of models
Table 1. Desirable properties of a model

With respect to these properties, some research proposes that model integrability (where all abstractions are
concentrated into one single model or, perhaps, a few of them) can avoid model proliferation and can better
achieve modelling goals than model separability (where the focus is only on one particular aspect of the real
world at a time to be represented and emphasized). On one hand, integrability promotes integration of concepts
and relationships, thus reducing the need to introduce artificial relationships to maintain consistency.
Integrability also improves access to the concepts. On the other hand, integrability demands a careful
consideration of the concepts to be integrated and may become complex to manipulate. In contrast, with

 5

separability, each concept is unequivocally classified into one and only one model. However, this may increase
the number of models and relationships needed to express all dependencies between the models. In the following
sections, different types of models will be defined for different levels of abstraction. We begin with the top level
and continue with the subsequent levels.

Conceptual Level
Definition
Each method for developing UIs possesses its own set of concepts, relationships and attributes, along with
possible values and ways to incorporate them into the method. However, this set is often hidden or made implicit
in the method and its supporting tool, thus making the method insufficiently flexible to consider multiple
parameters for universal design. When the set of concepts, relationships and attributes is hidden, we risk
manipulating fuzzy and unstructured pieces of information. The conceptual level is therefore intended to enable
domain experts to identify common concepts, relationships and attributes of the models involved in universal
design. The identification of these concepts, relationships and attributes will govern how they will be used in
future models when manipulated by the method.

An ontology explicitly defines any set of concepts, relationships, and attributes that need to be manipulated in a
particular situation, including universal design [6,18]. The concept of ontology [8] comes from Artificial
Intelligence where it is identified as the set of formal terms with which one represents knowledge, since the
representation completely determines what “exists” for the system. We hereby define a context of use as the
global environment in which a user population, perhaps with different profiles, skills and preferences, carries out
a series of interactive tasks on one or multiple semantic domains [15]. In universal design, it is useful to consider
many types of information (e.g., different user profiles, different skills, different user preferences) in varying
contexts of use. This information can be captured in different models [13,16].

A model is a set of postulates, data and inferences presented as a declarative description of a UI facet. Many
facets exist that are classified into one of the following models: task, domain, user, interaction device, computing
platform, application, presentation, dialogue, help, guidance, tutorial, organizational environment. A model is
typically built as a hierarchical decomposition of abstract concepts into several refined sub-levels. Relationships
between these concepts should be defined with roles, both within and between models.

To avoid incompatible models, a meta-model defines the language with which any model can be specified. One
of the most frequently used meta-models, but not the only one, is the UML meta-model. The concepts and
relationships of interest at this level are meta-concepts and meta-relationships belonging to the meta-modelling
level. Figure 3 exemplifies how these fundamental concepts can be defined in an ontology editor.

In Figure 3, the core entity is the concept, characterized by one or many attributes, each having here a data type
(e.g., string, real, integer, Boolean, or symbol). Concepts can be related to each other. Relationships include
inheritance (i.e., “is”), aggregation (i.e., “composed of”) and characterization (i.e., “has”). At the meta-modelling
stage, we do not yet know what type of concepts, relationships, and attributes will be manipulated. Therefore,
any definition of a UI model, as represented in Figure 2, can be expressed in terms of the basic entities as
specified in Figure 3.

 6

Figure 3. The ontology editor at the meta-modelling level

Case study
The context of use can theoretically incorporate any real world aspect of interest, such as the user, the
software/hardware environment, the physical and ambient environment, the socio-organizational environment,
etc. For the simplicity of this paper, the context of use focuses on three models:

1. A domain model defines the data objects that a user can view, access, and manipulate through a UI [16].

These data objects belong to the domain of discourse. A domain model can be represented as a
decomposition of information items, and any item may be iteratively refined into sub-items. Each such item
can be described by one or many parameters such as data type and length. Each parameter possesses its own
domain of possible values.

2. A task model is a hierarchical decomposition of a task into sub-tasks and then into actions, which are not
decomposed [14,15,21]. The model can then be augmented with temporal relationships stating when, how
and why these sub-tasks and actions are carried out. Similarly to the domain model, a task model may have
a series of parameters with domains of possible values -- for instance, task importance (low/medium/high),
task structure (low/medium/high decomposition), task critical aspects (little/some/many), and required
experience (low/moderate, high).

3. A user model consists of a hierarchical decomposition of the user population into stereotypes [16,22]. Each
stereotype brings together people sharing the same value for a given set of parameters. Each stereotype can
be further decomposed into sub-stereotypes. For instance, population diversity can be reflected by many
user parameters such as language, culture, preference (e.g. manual input vs. selection), level of task
experience (elementary, medium, or complex), level of system experience (elementary, medium, or
complex), level of motivation (low, medium, high), and level of experience of a complex interaction
medium (elementary/medium/complex).

Other characterization of these models in terms of their parameters, or even other model definitions, can be
incorporated depending on the modelling activity and the desired level of granularity.

 7

Figure 4. The ontology editor at the modelling level

Figure 4 graphically depicts how the ontology editor can be used at the modelling stage to input, define and
structure concepts, relationships and attributes of models with respect to a context of use. Here, the three models
are represented and they all share a description through parameters. Each parameter has a domain; each domain
has a set of values, possibly enumerated. The “composed-of” relationship denotes aggregation, while “has”
denotes properties.

The definition of an ontology encourages structured UI design based on explicit concepts, relationships, and
attributes. This structured approach contrasts with eclectic or extreme programming where the code is produced
directly; it also contrasts with design methods that are not open to incorporating new or custom information as
required by universal design. A UI ontology facilitates multi-disciplinary work where people from different
backgrounds need to gather for collaborative or participatory design. The advantage of this level is that the
ontology can be defined once and used as many times as desired. When universal design requires the
consideration of more information within models or more models, the ontology can be updated accordingly,
thereby updating the method for universal design of UIs. This does not mean that the subsequent levels will
change automatically, but their definition will be subsequently constrained and governed so as to preserve
consistency with the ontology. Once an ontology has been defined, it is possible to define the types of models
that can be manipulated in the method, which is the goal of the logical level.

Logical Level

Definition
Each model defined at the conceptual level is now represented with its own information parameters. For
example, in the context of universal UI, a user model is created because different users might require different
UIs. Multiple user stereotypes, stored as user models, allow designs for different user types in the same case
study. Any type of user modelling can be performed since there is no predefined or fixed set of parameters. This
illustrates the generality of the method proposed here to support universal design. The set of concepts and
attributes defined in the ontology are instantiated for each context of use of a domain. This means each model,
which composes a context of use, is instantiated by defining its parameters with domains of possible values .

 8

Case study
In this example we use the ontology editor to instantiate the context of use, the relationships and attributes of
models for the Medical Attendance domain involved in patient admission. Figure 3 graphically depicts the
Emergency Admission context of use and the attributes of models of task, user and domain. Two tasks are
instantiated: Admit patient and Show patient data. The first one is activated by a Secretary and uses Patient
information during its execution. For the user model of the secretary, the following parameters are considered:
the user’s experience level, input preference and information density with the values low or high.

The data elements describing a patient are the following: date, first name, last name, birth date, address, phone
number, gender and civil status. Variables for insurance affiliation and medical regime can be described
similarly. The variable parameters of a domain model depend on the UI design process. For instance, parameters
and values of an information item used to generate UIs in [22,23] are: data type (date, Boolean, graphic, integer,
real, or alphanumeric), length (n>1), domain definition (know, unknown, or mixed), interaction direction (input,
output, or input/output), orientation (horizontal, vertical, circular, or undefined), number of possible values
(n>1), number of values to choose (n>1), and preciseness (low or high).

Figure 5.The ontology editor at the instance level

Figure 6 shows parameters of the model that has been previously introduced. At this stage the parameters are
listed but not instantiated. The parameters will be instantiated at the instance level. All of this information can
then stored in a model definition file that can be exported for future use.

 9

Figure 6. Some definitions at the modelling level

Models defined and inputted at the logical level are all consistently based on the same ontology. The advantage
is that when the ontology changes, all associated models change accordingly since the ontology is used as the
input to the graphical editor. The graphical nature of the editor improves the legibility and the communicability
of information, while information that cannot be represented graphically is maintained in text properties. The
models are used for both requirements documentation and UI production in the next level.

As we have mentioned, it is possible to use any method for modelling tasks and users since there is no
predefined or fixed set of parameters. Since there are many publications describing the rules for combining these
parameters in order to deduce UI characteristics, we developed a rule module linked to the ontology editor. The
rules can manipulate only entities in the logical level. The meta-definition at the conceptual level can be changed
by domain experts (e.g., adding/deleting/modifying any attribute, model or relationship, but not by designers.
Once the meta-definition is provided to designers, they can only build models that are compatible with the meta-
definition.

Figure 7. The editing of a rule using model parameters

Figure 7 shows the editing of a rule for optimising user interaction style based on several parameters [24]. The
rule depicted in Figure 7 suggests natural language as the interaction style when the following conditions are
met: the task experience level (attribute coming from the user model) is rich, the system experience of the user is

 10

moderate, task motivation is low, and the user is experienced with modern interactive devices (e.g. touch screen,
track point, trackball). When natural language is selected, appropriate design choices can be inferred. The
advantage of this approach is that it is possible to easily define new rules when a new parameter is added to the
models. Any rule can be produced to derive new design elements from user, task and system characteristics in a
systematic way.

Physical Level

Definition
The main goal of the physical level lies in its ability to exploit instantiations captured in individual models to
produce multiple UIs for different computing platforms, development environments and programming
languages. This level is the only one that is dependent on the target hardware/software configuration intended to
support the UI. Instantiations of the previously defined models, along with the values of their parameters, are
stored in the logical level in specification files. Each specification file consists of a hierarchical decomposition of
the UI models into models, parameters, values, etc. maintained in an ASCII file. Each instance of each concept is
identified by an ID. All relationships and attributes are written in plain text in this file in a declarative way (e.g.,
Define Presentation Model Main;…; EndDef;). This file can in turn be imported into various UI editors as
needed.

Here, the SEGUIA [23] tool is used (Figure 8): it consists of a model-based interface development tool that is
capable of automatically generating code for an executable UI from a file containing the specifications defined in
the previous step. Of course, any other tool that is compliant with the model format, or that can import the
specification file, can be used to produce an executable UI for other design situations, contexts of use, user
models, or computing platforms. SEGUIA is able to automatically generate several UI presentations to obtain
multiple UIs. These different presentations are obtained either:

a) In an automated manner, where the developer launches the UI generation process by selecting which layout

algorithm to use (e.g. two -column format or right/bottom strategy)
b) In a computer-aided manner, where the developer can see the results at each step, can work in collaboration

with the system, and can control the process.

Figure 8. SEGUIA environment displaying the case study specifications before UI generation

Import list box Current item definition

 11

In Figure 8, the left-hand column contains the information hierarchy that will be used to generate multiple
presentation styles for MUIs. The right-hand column displays individual parameters for each highlighted data
item in the hierarchy.

Case study
In our case study, information items and their values introduced at the modelling stage (Figure 5 and 6) are
imported into an Import list box of data items (left-hand side of Figure 8). Each of these items is specified
separately in the Current item definition for viewing or editing (right-hand side of Figure 8). By selecting
Generation in the menu bar, the developer launches the UI generation process and produces different user
interfaces depending on the rules used for this purpose.

Selection rules automatically select concrete interaction objects (or widgets) by exploiting the values of
parameters for each data item. For instance, the PatientFirstName information item is mapped onto a single
line edit box (as Abstract Interaction Object) that can be further transformed into a Single-line entry field (as
Concrete Interaction Object belonging to the MS Windows computing platform). Selection rules are gathered in
different selection strategies. Once concrete widgets are defined, they can be automatically laid out.

Figure 9 shows the results of the code generation for the Patient Admission as defined in this case study. This
layout strategy places widgets in two balanced columns by placing widgets one after another. This procedure can
result in unused screen space, thus leading to a sub-optimal layout (Figure 9)

Figure 9. Patient admission window statically generated by the two-columns strategy (with unused screen

spaces).

Unused screen spaces

 12

Figure 10. Patient admission window interactively generated by the right/bottom strategy

To avoid unused screen space and to improve aesthetics, a right/bottom layout strategy has been developed and
implemented [22,23]. Figure 10 shows how this strategy can significantly improve the layout. Note the
optimisation of the upper-right space to insert push buttons, the right alignment of labels (e.g. between the date
and the “Patient” group box) and the left alignment of edit fields. The method is very flexible at this stage,
allowing the designer to experiment with different design options such as selection of widgets and layout
strategies. For instance, some strategies apply rules for selecting purely textual input/output widgets (e.g. an edit
box), while others prefer widgets displaying graphical representations (e.g. a drawn button or an icon). The
layout can also change according to the native language of the end-user.

Figure 11 shows the Patient Admission window re-generated after switching the Gender group box from a
textual modality to a graphical modality (here, a radio icon) and switching the end user native language from
English to French. The previous generation process can be reused for the logical positions of widgets. Thus by
changing the value of just one parameter in the existing design options, it is possible to create a new UI in
another language with an alternative design. Note in Figure 11 that some alignments changed with respect to
Figure 10 due to the length of labels and new widgets introduced in the layout. The layout itself can be governed
by different strategies ranging from the simplest (e.g., a vertical arrangement of widgets without alignment as in
Figure 12 but for the Apple Macintosh computing platform) to a more elaborate one (e.g., layout with spatial
optimisation as in Figure 11).

Figure 11. Patient admission window re-generated for a graphical icon and a different user language

 13

Figure 12. Patient admission re-generated for a different computing platform

At this stage it is possible to share or reuse previously defined models for several UI designs, which is
particularly useful when working in the same domain as another UI. The approach also encourages users to work
at a higher level of abstraction than merely the code and to explore multiple UI alternatives for the same UI
design case. This flexibility can produce UIs with unforeseen, unexpected or under-explored features. The
advantage of this method is that when the set of models change, all UIs that were created from this set can
change accordingly on demand.

The design space is often referred to as the set of all possible UIs that can be created from an initial set of models
for one UI design. When a UI is generated for a target context of use, for example a target computing platform, it
can be edited not only in SEGUIA, but also in the supported development environment for this computing
platform. For example, Figure 13 represents the dialogue box of widget parameters generated in SEGUIA for a
particular UI. The developer can of course edit these parameters, but should be aware that any change at this step
can reduce the quality of what was previously generated. Changing the values of parameters in an inappropriate
way should be avoided. Once imported in MS Visual Basic, for instance, these parameters can be edited by
changing any value.

Figure 13. Parameters of a concrete interaction object (widget)

 14

Summary of Development Process

The three levels of the development method are represented in Figure 14. This figure shows that each level,
except the ultimate one, is governed by concepts defined at the next higher level. The meta-model level is
assumed to remain stable over time, unless new high-level objects need to be introduced. Only the main objects
of the model definition in Figure 2 are incorporated. Possible models and their constituents are then defined at
the model level as concepts, relationships, and attributes of the meta-model level. Again, the model level should
remain stable over time, unless new models need to be introduced (e.g., a platform model, an organization
model) or existing models need to be modified (e.g., the user model needs to include a psychological and
cognitive profile).

Figure 14. The different levels of the proposed method

For each case study, a new instance level will be produced for each model level. For instance, figures 15 and 16
exemplify UIs generated by the method with the SEGUIA tool for another context of use. The task consists of
regis tering a child for leisure activities in a children’s club. In the domain model, each child has specific
information (such as first name, birth date), is related to one or many parents (described by their first name, last
name, address, phone number, phone number in case of need) and at most two recreation activities (described by
a name, a monitor, beginning and ending dates and times). The user model is restricted to only one profile: a
secretary working in a traditional office environment. The upper left part of the window reproduced in Figure 15
illustrates the task status based on another rule defined at the model level: for the task to be completed, all
information related to the child, at least one corresponding parent or relative, and two recreation activities are
required. Therefore, a green or red flag is highlighted according to the current status of the task: here, the parent
has been completely and properly input, but not yet the child and the activities. The second activity is still greyed
out as nothing has been entered yet. The presentation is governed by the following rule: each object should be
presented in the same window (to avoid confusing users), but in different tabs of the window (here, “Parent”,
“Enfant”, “Activité 1”, and “Activité 2”).

 15

Figure 15. Case study: registering a child for recreational activities (first part)

Figure 16 presents another rule working this time on the presentation model. Each group of information items
related to the same entity (i.e., a child, a parent, an activity) is assembled in a group box; this box is laid out
using the optimised algorithm presented above and emphasized in a distinctive colour scheme. The group boxes
are therefore presented in blue (parent), yellow (child), red (first activity), and green (second activity). The
colours are chosen from the standard palette of colours. Such rules cannot be defined in a logical way in
traditional development environments. But they can of course be defined manually, which becomes particularly
tedious for producing MUIs.

 16

Figure 16. Case study: registering a child for recreational activities (second part)

For the same case study, Figure 17 presents an alternative UI for a slightly different profile requiring more
guidance to achieve the task step by step. Rather than using a graphical overview in the upper part of the window
(as in Figure 15) and multiple tabs, the UI progressively proceeds from one task to the next by adding tabs each
time a sub-task is finished. Therefore, the rule coded here is: present each object in a separate tab; once a
subtask is carried out, add a new tab with the next object for the next sub-task to be carried out and add buttons
to move forward and backward as in a set-up wizard.

Figure 17. Alternate layout for the task: registering a child to leisure activities.

 17

Conclusion
The UI design method can be explicitly structured into three separate levels (i.e., conceptual, logical, and
physical), as frequently found in other disciplines such as databases, software engineering and
telecommunications. Each level can be considered a level of abstraction of the physical level as represented in
Figure 14. The physical level is the level where instances of the case study are analysed. The logical level is the
model level where theses instances are mapped onto relevant abstractions. The conceptual level is the meta-
model level where abstractions manipulated in the lower levels can be combined to identify the concepts,
relationships, and attributes used in a particular method.

The three levels make it possible to apply the Principle of Separation of Concerns as follows: (i) a definition of
useful concepts by someone who is aware of UI techniques such as user-centred design, task analysis, and
human factors; (ii) a model definition where, for each UI design, multiple sets of models can be defined on the
same basis with no redefinition of previously defined concepts; and (iii) multiple UI creation: for each set of UI
models, several UIs can be created by manipulating parameters supported by the UI generator and manual
editing is allowed when needed.

The advantage of the method is that changes at any level are instantly propagated to other levels: when the
ontology changes, all possible models change accordingly; when a model change, all possible specifications
change accordingly as well as the set of all possible UIs that can be created (the UI design space).

The use of an ontology editor not only allows model definition at the highest level of abstraction (i.e. the meta-
model) but also prevents any designer from defining:

• Models that are not compatible with the model definition
• Models that are error-prone and that do not satisfy desirable properties (Table 1), and
• Models that are not supported by code generation tools (e.g. when a design option is not supported).

Model-based approaches for designing UIs have been extensively researched for more than fifteen years. These
different approaches have worked in similar ways at the model level as indicated in Figure 14. For the first time,
a complete method and supporting environment has the ability to increase the level of abstraction of these
approaches one step further. Today, we are not aware of any similar approach that offers the designer the ability
to work at the meta-model level while maintaining the ability to propagate changes at the highest level to the
underlying levels. This capability can be applied to a single UI or to multiple UIs, especially when multiple
contexts of use need to be considered. In this way, any work done at the meta-model level for one particular
context of use can be reused directly at the same level of abstraction for another context of use.

Acknowledgments
This work is a joint effort of the CADI-CADINET research project under the auspices of University of Fortaleza ,
Brazil (http://ead.unifor.br/) and the SEGUIA tool developed by J. Vanderdonckt, BCHI, Université catholique de
Louvain, Belgium (http://www.isys.ucl.ac.be/bchi/research/seguia.htm), a component of the TRIDENT research
project, funded by Institut d’Informatique, Facultés Universitaires Notre-Dame de la Paix, Belgium
(http://www.info.fundp.ac.be/~emb/Trident.html). We gratefully acknowledge the support of the above
organizations for funding the respective projects and the connections between them. The authors would also like
to thank the anonymous reviewers for their constructive comments on an earlier version of this chapter.

References
1. Booch, G., Jacobson, I., and Rumbaugh, J., The Unified Modelling Language User Guide, Addison-

Wesley, Reading, 1998.
2. Butler, K.A., Designing Deeper: Towards a User-Centered Development Environment Design in Context,

Proceedings of ACM Symposium on Designing Interactive Systems: Processes, Practices, Methods, &
Techniques DIS´95 (Ann Arbor, 23-25 August 1995), ACM Press, New York, 1995, pp. 131-142.

3. Calvary, G., Coutaz, J., and Thevenin, D ., A Unifying Reference Framework for the Development of Plastic
User Interfaces, in R. Little and L. Nigay (Eds.), Proceedings of 8th IFIP International Conference on
Engineering for Human-Computer Interaction EHCI’2001 (Toronto, 11-13 May 2001), Lecture Notes in
Computer Science, Vol. 2254, Springer-Verlag, Berlin, 2001, pp. 173-192.

4. Calvary, G., Coutaz, J., and Thevenin, D., Supporting Context Changes for Plastic User Interfaces: a
Process and a Mechanism, in A. Blandford, J. Vanderdonckt, and Ph. Gray (Eds.), People and Computers
XV – Interaction without Frontiers, Joint Proceedings of AFIHM-BCS Conference on Human-Computer

 18

Interaction IHM-HCI’2001 (Lille, 10-14 September 2001), Vol. I, Springer-Verlag, London, 2001, pp. 349-
363.

5. Card, S., Moran, T.P., and Newel, A., The Psychology of Human-Computer Interaction , Lawrence Erlbaum
Associates Pub., Hillsdale, 1983.

6. Gaines, B., A Situated Classification Solution of a Resource Allocation Task Represented in a Visual
Language, Special Issue on Models of Problem Solving, International Journal of Human-Computer Studies,
Vol. 40, No. 2, 1994, pp. 243-271.

7. Gimnich, R., Kunkel, K., and Reichert, L., A Usability Engineering Approach to the Development of
Graphical User Interfaces, Proceedings of the 4th International Conference on Human-Computer
Interaction HCI International’91 (Stuttgart, 1-6 September 1991), Vol. 1, Elsevier Science Pub.,
Amsterdam, 1991, pp. 673-677.

8. Guarino, N., Formal Ontology, Conceptual Analysis and Knowledge Representation: The Role of Formal
Ontology in the Information Technology, International Journal of Human-Computer Studies, Vol. 43, Nos.
5/6, 1995, pp. 625-640.

9. Hartson, H.R. and Hix, D., Human-Computer Interface Development: Concepts and Systems for its
Management, ACM Computing Surveys, Vol. 21, No. 1, 1989, pp. 241-247.

10. Hix, D., Developing and Evaluating an Interactive System for Producing Human-Computer Interfaces,
Behaviour and Information Technology, Vol. 8, No 4, 1989, pp. 285-299.

11. Lim, K.Y. and Long, J., Structured Notations to Support Human Factors Specification of Interactive
Systems Notations and Tools for Design, Proceedings of the BCS Conference on People and Computers IX
HCI’94 (Glasgow, 23-26 August 1994), Cambridge University Press, Cambridge, 1994, pp. 313-326.

12. Marca, D.A. and McGowan, C.L., SADT: Structured Analysis and Design Techniques, McGraw-Hill,
Software Engineering Series, 1988.

13. Paternò, F., Model-based Design and Evaluation of Interactive Applications, Springer-Verlag, Berlin, 1999.
14. Paternò, F. and Santoro, C., One Model, Many Interfaces, in Ch. Kolski and J. Vanderdonckt (Eds.),

Computer-Aided Design of User Interfaces III , Proceedings of 4th International Conference on Computer-
Aided Design of User Interfaces CADUI’2002 (Valenciennes, 15-17 May 2002). Kluwer Academics
Publishers, Dordrecht, 2002, pp. 143-154.

15. Pribeanu, C., Vanderdonckt, J., and Limbourg, A., Task Modelling for Context Sensitive User Interfaces, in
Ch. Johnson (Ed.), Proceedings of 8th International Workshop on Design, Specification, Verification of
Interactive Systems DSV-IS’2001 (Glasgow, 13-15 June 2001), Lecture Notes in Computer Science, Vol.
2220, Springer-Verlag, Berlin, 2001, pp. 49-68.

16. Puerta, A.R., A Model-Based Interface Development Environment, IEEE Software, Vol. 14, No. 4,
July/August 1997, pp. 41-47.

17. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W., Object-Oriented Modelling and
Design, Prentice Hall, New Jersey, 1990.

18. Savidis, A., Akoumianakis, D., and Stephanidis, C., The Unified User Interface Design Method, Chapter
21, in C. Stephanidis (Ed.), “User Interfaces for All: Concepts, Methods, and Tools”, Lawrence Erlbaum
Associates Pub., Mahwah, 2001, pp. 417-440.

19. Thevenin, D. and Coutaz, J., Plasticity of User Interfaces: Framework and Research Agenda, in
Proceedings of 7th IFIP TC 13 International Conference on Human-Computer Interaction Interact’99
(Edinburgh, 30 August 1999-3 September 1999), IOS Press, London, 1999, pp. 110-117.

20. Thevenin, D., Adaptation en Interaction Homme-Machine : le cas de la plasticité, Ph.D. thesis, Université
Joseph Fourier, France, 21 December 2001.

21. Top, J. and Akkermans, H., Tasks and Ontologies in Engineering Modelling , International Journal of
Human-Computer Studies, Vol. 41, No. 4, 1994, pp. 585-617.

22. Vanderdonckt, J. and Bodart, F., Encapsulating Knowledge for Intelligent Automatic Interaction Objects
Selection, in S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, and T. White (Eds.), Proceedings of the
ACM Conf. on Human Factors in Computing Systems INTERCHI’93 (Amsterdam, 24-29 April 1993),
ACM Press, New York, 1993, pp. 424-429.

23. Vanderdonckt, J. and Berquin, P., Towards a Very Large Model-based Approach for User Interface
Development, in N.W. Paton and T. Griffiths (Eds.), Proceedings of 1st Int. Workshop on User Interfaces to
Data Intensive Systems UIDIS’99 (Edinburg, 5-6 September 1999), IEEE Computer Society Press, Los
Alamitos, 1999, pp. 76-85.

24. Vanderdonckt, J., A Small Knowledge-Based System for Selecting Interaction Styles, Proceedings of
International Workshop on Tools for Working with Guidelines TFWWG’2000 (Biarritz, 7-8 October
2000), Springer-Verlag, London, 2000, pp. 247-262.

