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Abstract We present a multibody simulator being used for compliant humanoid
robot modelling and report our reasoning for choosing the settings of the simu-
lator’s key features. First, we provide a study on how the numerical integration
speed and accuracy depend on the coordinate representation of the multibody sys-
tem. This choice is particularly critical for mechanisms with long serial chains (e.g.
legs and arms). Our second contribution is a full electromechanical model of the
inner dynamics of the compliant actuators embedded in the COMAN robot, since
joints’ compliance is needed for the robot safety and energy efficiency. Third, we
discuss the different approaches for modelling contacts and selecting an appropri-
ate contact library. The recommended solution is to couple our simulator with an
open-source contact library offering both accurate and fast contact modelling. The
simulator performances are assessed by two different tasks involving contacts: a
bimanual manipulation task and a squatting tasks. The former shows reliability of
the simulator. For the latter, we report a comparison between the robot behaviour
as predicted by our simulation environment, and the real one.
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1 Introduction

In this paper, we investigate the COMAN humanoid robot [1] and develop a multi-
body simulator with the following key features:

1. an efficient multibody dynamics offering fast computation;
2. the full electromechanical model of compliant actuators [2] made up with or-

dinary differential equations of the actuators’ inner dynamics;
3. a reliable mesh-to-mesh contact processing in order to simulate the robot self-

collision and contacts with the environment.

For deriving the multibody equations, the Robotran symbolic generator was
selected due to its reliability and efficiency [3]. This work further builds upon
[4] by proposing a new actuator modeling and more powerful contact processing.
Accurate mesh-to-mesh contacts were obtained through a coupling between the
C-code provided by the Robotran generator and C++ functions provided by the
open-source library Simbody [5]. This model proved to be useful to support the
design phase of the robot [6] providing data for the sizing and selection of actua-
tion systems as well as other mechanical components like bearings and structural
parts, and to speed up the synthesis and tuning of control algorithms, like e.g.
a locomotion controller [7]. It can further be straightforwardly adapted to the
simulation of other robots.

The structure of the article is the following. In Section 2, we describe the
multibody system (MBS) of the humanoid robot being simulated and present the
general structure of a simulator. In Section 3, we discuss how the MBS formal-
ization (particularly, the choice of the coordinates and the equations’ generating
procedure) influences the speed and accuracy of the simulation. We compare three
open-source multibody platforms used in robotics – which are the Robotran gen-
erator [3], Open Dynamics Engine ODE [8] and Simbody [5]. In Section 4, the
electromechanical model of the compliant actuators is discussed. In Section 5, we
describe two approaches for contact simulation — rigid and compliant contact —
and show our reasoning for choosing one of them. Also we share the technical
details for coupling the C-code of the Robotran generator with the contact mod-
ule of the open-source physics engine Simbody. The analysis of a manipulation
task’s simulation is provided in Section 6. It was performed in order to assess
the overall behaviour of the simulator, its real-timeness, and to investigate the
influence of some parameters (i.e. the actuators stiffness). Section 7 describes a
squatting experiment, emphasizing the comparison between the simulated results
and experimental data.

2 Structure of the robot and simulator overview

The multibody model of COMAN consists of 24 absolutely rigid bodies and has a
tree-like structure as shown in Fig. 1. A floating base is attached to the waist of the
robot and has 6 degrees of freedom (DOF). The other 23 bodies (4 segments for
the torso, 4 for each arm and 6 for each leg) are serially attached to their parents
by revolute joints. So, the model has 29 mechanical DOF (6 for the floating base
and 23 for the actuated joints).
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Fig. 1 MBS COMAN model. The cylinders and the cubes show rotational and translational
degrees of freedom.

The choice of floating base attachment has a significant impact on the kine-
matic and dynamic models of a humanoid robot. The most common choices are
to attach the floating base either to the feet or to the waist. Attachment of the
floating base to the waist displays a number of advantages. First, the mass-inertia
matrix structure depends on the floating base attachment and has a smaller con-
dition number if the floating base is attached to the largest mass in the MBS,
i.e. the waist in our case. Moreover, the symmetry naturally obtained by putting
the floating base to the waist is desirable in developing locomotion algorithms.
Consequently, attaching the floating base to the waist is common practice in the
literature of humanoid modelling [9,10]. This is also what we performed here.

Similarly to the real robot, the model is equipped with 23 series elastic actua-
tors in the revolute joints, each producing a motor torque. It depends on the cor-
responding joint angle, joint velocity and the motor angle and velocity. Dynamics
of this inner actuator variable is governed by a differential equation involving the
current in the motor, which in turn satisfies a DC motor differential equation with
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a controllable input voltage . Furthermore, the pitch leg joints can be equipped
with tunable springs going in parallel to the motors [2]. These springs deliver addi-
tional torques depending on the controllable springs’ pretensions. Physical models
of both types of actuators and differential equations that govern the variables are
discussed in details in Section 4.

To accurately simulate this MBS, we need a simulator which combines several
modules, being connected as represented in Fig. 2. The simulator core is a direct
dynamics module (block A) deriving the acceleration of the MBS links based on
the MBS structure and forces (external and control) applied to the different bodies.
The way to represent the MBS structure influences the speed of simulation as well
as its accuracy (see Section 3).

A critical component of an integrated robotic simulator is an algorithm for
contact processing (block B in Fig. 2). Contacts between two segments of a robot
(i.e. self-collisions) and with the environment (ubiquitous in walking or grasping),
produce external forces that strongly influence the system dynamics. The inputs
of block B are the state variables in the general sense, i.e. also including variables
capturing the environment state, and the outputs are the contact forces. We discuss
this block in Section 5.

To model the actuators used in COMAN, a simulator should provide a tool
that allows to integrate the differential equations for the actuators’ internal state
variables together with the MBS mechanical equations (so-called “strong coupling”
for multi-physics systems [3]). For the series elastic actuators equipping this robot,
these equations are those governing the motor current dynamics and external
position. The inputs of this block (C in Fig. 2) are the control input (in our
case, voltages and spring pretensions) and the state variables. The outputs are
the actuator forces and the derivatives of the actuator state variables. Block D
transmits bodies’ positions and velocities from direct dynamics block A to the
controllers. Thus, the block D represents the sensors and inertial measurement
units in the simulator.

A unified interface between the robot controller and simulator is very helpful
for facilitating the development of the controller robot. Ideally, the developed
controller should not depend on the specific command and data format of the
simulator (Fig. 2, block E) (see, e.g., [11]). This can be achieved through the
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interacting of the simulator with a middleware that permits the easy transfer of
the controller code to the real robot or to other simulators, providing connections
to a unique interface [12].

3 The influence of the MBS formalism

The direct dynamics module aims at establishing the equation of motion of the
MBS using a formalism based on Newton-Euler, virtual work or Lagrange equa-
tions. The modules computes the derivatives with respect to time of the MBS’s
coordinates and velocities knowing the structure of the MBS and applying forces
(internal and external ones). In [16], the mentioned three methods were compared
for different types of MBS’s structure: in particular, the generation time and mem-
ory consumption were analyzed. The analysis was done for symbolic generation
in relative coordinates on the Robotran direct dynamics module [3]. Here we fo-
cus on the influence of the MBS formalization in the direct dynamics module (in
particular, relative vs. absolute and symbolical vs. numerical approaches) on three
different engines – Robotran [3], Open Dynamics Engine ODE [8] and Simbody
[5]. We chose this three engines because they are open-code and freely available
for scientific research. Moreover, they are popular in the robotics community for
humanoids modelling, according to [13], and use different approaches to derive and
compute the direct dynamics equations (for a review of different simulators, see
also [14]).

3.1 Relative vs. absolute coordinates

The dynamic equations’ algorithm computes the MBS velocities and accelerations
when the initial positions, velocities and the time evolution of the external and
internal forces are given. To this respect, two approaches compete in the literature,
namely those based on relative and absolute coordinates.

Most physics engines (e.g., Robotran, MuJoCo [15], and Simbody) use a min-
imal set of relative coordinates to determine the state of a multibody system and
to avoid introducing algebraic constraints when possible. It means that for tree-
structured multibody systems – in which bodies are connected without explicit
constraints between the generalized coordinates and velocities – the number of
generalized coordinates introduced in the system of equations is equal to the num-
ber of degrees of freedom of the system. To capture the connection between two
adjacent bodies, for example by means of a revolute joint, only one coordinate
and one velocity are needed – namely an angle and its time derivative. The set
of Newton-Euler equations governing the dynamics of such a system is typically
built by a recursive algorithm [16].

Alternatively, in the physics engines that were initially built for video-games
and now are widely used in robotics (e.g. Open Dynamics Engine (ODE) [8],
Bullet [17]), absolute coordinates are used to specify the positions of rigid bodies.
Absolute coordinates require three Cartesian coordinates for the center of mass
of each body, expressed in the inertial frame, and some representation of the
orientation matrix for each body again. To represent a connection between two
adjacent bodies (e.g. a revolute joint), such an engine introduces bilateral algebraic
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constraints. This paradigm likely emerged because of the necessity to compute a
lot of random impacts, ubiquitous in video games. The impacts were treated as
simultaneously added algebraic unilateral constraints. However, this approach may
lead to unrealistic behaviour of the systems, constraint violations and inaccuracies
(about artefacts in video-game engines and their reasons, see chapter 1.2 in [18]).

We carried out a comparison of absolute and relative approaches on two simple
examples: a single pendulum and a double pendulum. A single pendulum is a rigid
body that can freely rotates about the fixed horizontal axis in a homogeneous
gravity field. The mass, the length l of a segment between the fixed point and
the center of mass (COM), gravity acceleration g are normalized to 1 (so time
is non-dimensional), the inertia matrix about COM is diagonal with principal
moments equal to 5.5. The double pendulum is a chain of two rigid bodies. The
first body rotates freely around fixed horizontal axis, while the second one rotates
with respect to the first body around the parallel axis. All the parameters for the
first body were the same, the distance between two axis equals is 2l, the distance
between the moving rotation axis and the second body’s COM equals 2.5, the
second body’s inertia matrix about COM is diagonal with principal moments equal
to 2. Ideally, both models should conserve the mechanical energy; i.e. E(t) = const.

Robotran uses relative coordinates to represent MBS systems: for pendulums,
these are the angles of rotation about the horizontal axis. ODE, which uses abso-
lute coordinates, introduces 3 Cartesian coordinates for the COM of each body.
Orientation is represented with four numbers to form the quaternion. The quater-
nion should have unity length (one constraint). The cylindrical joint introduces
five additional algebraic constraints.

For ODE, we used a built-in numeric integrator with fixed time-step and the de-
fault parameters for the variables governing stability and accuracy: the constraint
force mixing parameter (CFM) equals 10−10, the error reduction parameter (ERP)
equals 0.2 [19]. Robotran generated equations were integrated by Runge-Kutta
4th-order integrator with fixed time step.

For both models and for different time-steps, Table 1 reports the following
parameters: number of coordinates #Q and number of algebraic constraints #AC,
maximum of the energy violation ∆E = (E(t)−E(0))/E(t) during 10 time-units1

of simulation, maximum of algebraic constraint violation ∆AC (we use the relative
error in the distance between the COM and the axis of rotation), and average real-
time factor parameter (RTF) — the ratio of the simulated time (10 sec) to the
time spent for the simulation. ∆AC is calculated only for ODE, since the Robotran
does not use algebraic contraints for these models. Robotran achieves precision of
double type for time-step ∆t = 10−4, with RTF around 20. The same precision
on ODE was not achieved even for smaller time-steps.

Energy and constraints violation signalize that time evolution of MBS coordi-
nates could be inaccurate. To show it properly, we consider the following example.
The lengths and inertia parameters of the double pendulum were selected such
that theoretically the pendulum allows the synchronous bodies’ movement, if they
have any equal initial angular velocities. It means, that the angle between the
bodies remains zero. Thus, the solution is one-periodic, and the period can be
analytically computed. For the angular velocity equal to 2.1 rad/time-unit, this

1 One time-unit equals
√
l/g seconds, where g and l are in meters/sec2 and meters, respec-

tively.
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Robotran ODE

∆t #Q #AC ∆E RTF #Q #AC ∆E ∆AC RTF

Single
Pendulum

10−2

1 0
3 · 10−8 800

7 6
2·10−3 10−3 103

10−4 10−13 31 8·10−6 10−7 26

10−6 10−13 0.3 8·10−8 10−11 0.3

Double
Pendulum

10−2

2 0
3 · 10−8 500

14 12
6·10−3 10−3 700

10−4 10−13 18 10−5 10−7 10

10−6 10−13 0.2 10−7 10−11 0.1

Table 1 Comparison of Robotran and ODE in simulating a single and a double pendulum.
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Fig. 3 Double pendulum simulation. On the left: period of rotation versus time for Robotran
(green line) and ODE (blue line); on the right: Height of the first segment’s COM versus time,
calculated by Robotran (solid green line) and ODE

period equals approximately Ttheor = 3.15 time-units2. The left plot on Fig. 3
shows the evolution of the period of simulated rotations versus time for ODE and
Robotran for 300 time-units simulation with a time-step of ∆t = 10−2. The period
of rotations calculated with the Robotran fluctuates of about 5 · 10−9 about the
theoretical value Ttheor. For ODE, the same period grows up almost linearly. On
the right panel the height of the first segment’s COM is shown: at the beginning
the time curves coincides, while after 80 time-units the difference between the sim-
ulated curves aproaches 50% of maximum height and still continues to increase;
at 124 time-unit the pendulums in ODE and Robotran rotate in antiphase.

The models we took as examples are very simple comparing to the real hu-
manoid robot we need to simulate. But even on these two simple models, we see
that the simulation accuracy significantly depends on internal representation of the
MBS system. The simulations of larger MBS systems require relative coordinates
to be accurate and fast.

3.2 Symbolic vs. numeric generation

Again, the symbolic and numerical methods compete regarding the computa-
tion of the direct dynamic model. A symbolic generation for a given system is

2 Analytical result was obtained by Maxima computer algebra system [20], with numerical
precision 3.5 · 10−14.
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Fig. 4 CPU time for the computation of generalized accelerations versus number of DOF
for the COMAN multibody system in Simbody (blue line) and Robotran (green line) physics
engines.

run only once. Its output is a symbolic code providing the time derivatives of
the state variables in an analytical form. Examples of multibody simulators us-
ing symbolic algorithms are Robotran, openSYMORO [21] and MapleSim [22].
This approach permits automatic symbolic simplifications of the dynamic equa-
tions during the equation generation. For example, the Robotran symbolic gen-
erator performs trigonometric simplifications (like ‘sin2(qi) + cos2(qi) = 1’ and
‘2 sin(qi) cos(qi) = sin(2qi)’) and grouping and factoring in more complicated for-
mulae. In the case of sparse mass matrices, it further disregards the terms which
are not necessary for later computations. In the case of recursive simplifications,
the full equations that are not used in the subsequent steps are also eliminated
(for details see [3]).

The automatic procedure for numeric generation of derivatives is the same for
all MBS, so it is impossible to perform system-specific simplifications, as offered by
the symbolic approach. This automatic rebuilding of the derivatives during time-
integration is potentially helpful if event-based changes appear in the system, for
instance if the system includes unilateral constraints like rigid contacts. (We will
focus on the connection between the contact algorithm and symbolic/numerical
algorithms in Section 5.) In the symbolic approach, it is necessary to regenerate the
symbolic code, when some structural changes occur. However, in case of compliant
contact processing, the structure of the humanoid robot does not change.

As an illustration of the potential superiority of the symbolic vs. numerical
approach in the direct dynamics module when accuracy and speed are required,
we carried out a comparison between two representative algorithms of each family.
The tested setup was a tree-like multibody system representing a humanoid robot
(full description is provided in Section 2). This MBS was created in two different
simulators: Robotran, adopting the symbolic approach, and Simbody, adopting the
numerical one (both in relative coordinates), with identical inertial and geometric
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parameters. For both engines, we provided the same discrete random inputs: 29
joint positions, 29 joint velocities, and 23 generalized torques in the rotational
joints. We then compared the generalized accelerations and computation time.
The accelerations were not integrated through time to eliminate issues related
to the selection of a specific time integrator. These simulations revealed that the
average relative difference in the generated accelerations was about 1.9 · 10−11%.
Both physics engines are thus eligible. The computation speed for full COMAN
is approximately 3.5 times faster for the Robotran physics engine as compared
to that of Simbody (on the same computer). Figure 4 shows an evolution of the
computational time required to compute the joint accelerations, as a function
of the number of degrees of freedom in the system. Comparison was performed
for 12 (waist and one leg), 18 (waist and two legs), 21 (full torso and two legs,
without arms), and 29 degrees of freedom. It shows that for both algorithms, the
computational time increases as a linear function of the number of DOF: for inertia
matrix decomposition both engines use the algorithms that linearly depends on
the number of DOF. However, the Robotran slope is about 2 times smaller than
the one of Simbody. Therefore, the relative superiority of the symbolic vs. numeric
approach further magnifies with the number of DOF.

4 Dynamic equations and compliant actuators model

Based on the comparison and arguments provided in Section 3, the Robotran sym-
bolic generator was selected for symbolical generation of MBS dynamic equation
for the DirectDynamics module together with the compliant contact processing.
Thus, the second-order mechanical multibody model of the robot is provided by
Robotran in the symbolic form:

M(q)q̈+C(q, q̇) +G(q) +Nc(q)n(q, q̇) = T 1(q)τ (q, q̇, qm, q̇m) +T 2(q)τp(p, q),
(1)

where q = (q1, . . . , q29) is the vector of angular joint positions plus cartesian coor-
dinates of the floating base, M(q) is the mass-inertia matrix, C(q, q̇) represents
Coriolis and centrifugal forces, G(q) represents gravitational forces and torques.
Contact forces and torques n(q, q̇) have 6Nc components, where Nc is the number
of active contacts. During walking, for example, we have Nc equal to 1 or 2 de-
pending on the walking gait phase. Control is provided by the 23 serial actuators
torques τ (q, q̇, qm, q̇m) and 6 parallel actuators torques τp(p, q). Control torques
and contact forces propagate through the MBS by 29 × 23, 29 × 6 and 29 × 6Nc

matrices T 1(q), T 2(q), and Nc(q) correspondingly. All the matrices were symbol-
ically generated and simplified by Robotran by reccurent Newton-Euler method
and stored automatically in C-functions.

Dynamic models of realistic actuators are often missing in existing simulators,
where the joint actuators are rather considered as sources of pure torque or position
(depending on the mode of control). The motor inertia when reflected to the output
of the gearbox often has the same order of magnitude as the link inertia. On
the other hand, the robotics community recently promoted the use of compliant
actuators to enhance robot safety and energy efficiency, mainly when contacts
with the environment are ubiquitous. Typically, these solutions require to design
flexible joint robotic systems, where the electric motors are connected in series
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with a compliant element to mainly provide better force regulation and also shock
absorption against environmental impacts. A diagram of such actuators as used
in [2] is shown in Fig. 5. Therefore the links in robots with flexible joints are
indirectly driven by the torque provided by the spring deflections.

For each actuated joint we have an equation that governs the motor’s inner
variable qmi :

Jq̈mi +Dmq̇
m
i + τi(qi, q̇i, q

m
i , q̇

m
i ) = Kt I

m
i , i = 1, . . . , 23 (2)

where J is the motor inertia (including rotor and the moving parts such as gear-
box), Dm is the motor mechanical damping, Kt is torque constant and Im is the
motor current. This equation approximates well the motor dynamics if two as-
sumptions hold [23]. They are: A1) the rotor kinetic energy is due to the rotor
own rotation and A2) the rotor inertia is symmetric about the rotor axis of rota-
tion. Both of them are justified for COMAN actuators, because of the symmetry
of rotors and high gear ratios (ni ≈ 80 − 100) [24, Paragraph 13.1.1].

The motor load torque is given by

τi(qi, q̇i, q
m
i , q̇

m
i ) = Ks(qi − qmi ) +Ds(q̇i − q̇mi ), (3)

where Ks and Ds are stiffness and damping of the serial spring, respectively.
The current dynamics for i-th motor is modelled as

Lİmi +RImi +Kω q̇
m
i = Vi (4)

where L,R,Kω and Vi are motor inductance, resistance, back EMF constant and
applied input voltage.

If a parallel spring is further added, its torque is given in Eq. (5), where r is the
radius of the joint’s pulley, kp and dp are the spring stiffness and damping. The leg
pitch joints with a parallel spring are indexed with qi where i = 7, 10, 12, 13, 16, 18
according to Fig. 2.

τpj (pj , qi) =

{
kp(pj − rqi) + dp(ṗj − rq̇i), if (pj − rqi) < 0

0, if (pj − rqi) ≥ 0
, j = 1, . . . , 6.

(5)
The compliant actuators described here require simultaneous integration of

MBS equations (1) and additional differential equations (2), (4) governing the
inner variables. This model of the actuators can be easily changed on any other
multi-physics model, e.g. hydraulic.

The last term that we need to describe here is the contact term n(q, q̇). A
contact dynamics module does not exist in Robotran and has to be implemented.
In the following section, we provide some details about the algorithms and share
our experience of coupling the Robotran simulator with an external contact library.

5 Contact processing

The physics of contact is very complicated by itself [25]. Developers of contact
modules face different types of problems, from the challenges of establishing the
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Fig. 5 The series and parallel branch of a compliant actuator of the COMAN.

constitutive laws of impacts to the mathematical problems of stability and con-
vergence of numerical methods. Imprecisions of the contact model and parameters
introduce the largest inaccuracies in simulation [26]. Contact algorithms are quite
expensive in terms of computational cost. Moreover, a given algorithm that a sim-
ulator uses for contact modeling influences the choice of the associated numeric
integrators and the internal representations of the equations of motion. Choosing
a contact algorithm is thus challenging. Here we provide some reasoning to help in
making this choice. It is important to make a distinction between compliant and
rigid contacts. Precise definitions and extended comparisons between these two
approaches for contact modeling can be found in [27]. Here below, the pros and
cons of rigid and compliant contact modeling are overviewed with a global point
of view, i.e. with the objective to emphasize connections between the different
contact modules with the equation formalism as discussed above.

5.1 Rigid Contact

Briefly speaking, rigid contact means that a contact between two (or more) bodies
is treated as an instantaneously imposed unilateral constraint without interpene-
tration of bodies. So the inputs of such algorithms are the positions and velocities
of bodies before contact, the constitutive impact law (i.e. the rule to compute the
post-impact velocities in the simplest case, through a restitution coefficient), and
some properties of the system, like inertial matrices and bilateral constraints. The
outputs of the algorithm are the velocities of all bodies after impact and the corre-
sponding reaction forces. These velocities should satisfy all constraints (unilateral
and bilateral). There is thus no interpenetration of the bodies and the mechanical
compression and decompression phases are not explicitly calculated. The contact
reaction forces making the contact constraints to be satisfied depend on other
(bilateral or unilateral) constraints that are imposed on the system. Different al-
gorithms exist for rigid contact processing (see [27], [28]): LCP (linear comple-
mentarity problem), NLCP methods (non-linear complementarity problem) and
others. In fact all of them implement different numeric algorithms for solving the
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M1

M2

Fig. 6 Compliant contact of two triangular meshes.

same systems of equations (sometimes called complementary slackness mechanical
systems, see [27]).

We identified two bottlenecks related to this approach. First, regarding the
constitutive impact law, for complicated systems and multiple impacts, a simple
restitution coefficient may vary depending on the impact conditions. Second, rigid
algorithms treat unilateral constraints as imposed to points and not to surfaces.
So it is necessary to specify the points where the contact constraints (i.e. no
interpenetration) are expected to be fulfilled. While this is reasonably easy to
do for primitive shapes like spheres and boxes, this is much more challenging
for complex and possibly non-convex surfaces covering robots. The localization
of the contact points in this case is a difficult mathematical problem. Also, rigid
algorithms could introduce inaccuracies when used with some passive compliances
like rubber covers of some parts of robots. Nevertheless, these algorithms are fast
and solve impacts in a single time step, ideally preventing penetration of the
bodies. All absolute coordinate engines (ODE, Bullet) and MuJoCo implement
rigid contact algorithms.

5.2 Compliant Contact

Compliant contact algorithms integrate contact modelling within the time-depen-
dent multibody equations, through a compression and decompression phase. A
repelling force is calculated via a visco-elastic model using the relative distance
and velocity between pairs of points on the surfaces M1 and M2 of the bodies in
contact (elastic foundation model, EFM) [5,27]. In general, for two bodies bounded
by triangular meshes M1 and M2 (Fig. 6), a resulting contact force and torque is
a sum:

fcontact(qc, q̇c) =
1

2

∑
1 (fn + fτ ) + 1

2

∑
2 (fn + fτ ) (6)

τ contact(qc, q̇c) =
1

2

∑
1ri × (fn + fτ ) + 1

2

∑
2ri × (fn + fτ ) (7)

The summation
∑

1 goes through the triangles of the mesh M1 that overlap
the mesh M2 and vice versa for

∑
2. Forces fn and fτ are normal and tangent

components of the elementary repelling force which are applied to the current
triangle. They depend on relative propagation and velocity of the corresponding
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triangle with respect to the opposite mesh; ri is a vector from a center of a contact
patch to the center of the triangle. Thus, such an algorithm calculates a force and a
torque (applied to the computed center of patch) from the positions and velocities
of both bodies in contact, i.e. qc and q̇c. Models for fn and fτ can vary for
particular models (vicso-elastic models, viscous, dry, or Stribeck friction, etc).

The main shortcomings of this approach are (i) the difficulties of selecting
the appropriate parameters for the elastic layer; and (ii) a ubiquitous trade-off
between keeping the interpenetrations of the bodies within reasonable limits and
maintaining the computational cost low enough. Indeed, the stiffness of the associ-
ated differential equations correlates with the interpenetration magnitude: for high
stiffness k, the bodies interpenetrations are of order O(k−2/3) and the time-step
is of order O(k−1/2) [27]. Thus, the computational speed and accuracy critically
depends on this parameter. The EFM algorithm is faster and at the same time well
approximates finite elements algorithms (FEM), which is considered as the etalon
for the deformable bodies [29], [30]. EFM algorithms can simulate interpenetration
of the body pairs, micro-slips, and repeated impacts which also occur in the real
world.

To summarize, rigid contacts are fast and generate zero or negligible interpen-
etration of the bodies. This approach is more suitable for perfectly rigid bodies,
for example, for stainless balls, or railway wheels. It can be adapted to real-time
applications when some lack of accuracy can be permitted. Rigid contact model-
ing can also produce incorrect output, mainly for complex body shapes. Since it
is difficult to separate the direct dynamics module from the contact module, the
potential inaccuracy source is usually challenging to identify. This approach can
further produce inaccuracies in simulations of robots with passive compliance, for
example, covered by a deformable layer. Compliant contact algorithms are more
expensive regarding computational load and imply additional stiffness to the nu-
merical solutions of the ordinary differential equations. These algorithms can be
easily isolated from the other parts of the simulator and thus coupled with any
core of the multibody simulator. They are more accurate for deformable bodies
such as rubber foots and hands, if appropriate parameters are well estimated.
These algorithms require more computational power to be executed in real-time
applications, although not out of the capacities of modern computers.

We propose to capture the contact forces (i.e. n(q, q̇) in (1)) with a compliant
model as provided in Eqs. (6,7): n(q, q̇) = (fcontact

1 , τ contact
1 , . . . , fcontact

Nc , τ contact
Nc ),

where Nc is the number of contacts. Here, we augment the Robotran simulator
with an external open-source library providing compliant contact. This offers a
general algorithm for handling contact in the Robotran framework, especially for
complex objects whose shape requires to be modeled by a polygonal mesh. In the
next section we explain how we coupled the Simbody compliant library with the
MBS equations of motion generated by Robotran.

5.3 Coupling the Robotran simulator with a compliant contact library

Contact processing was made possible by coupling Robotran with an external C++
contact library developed by the Simbody team [5]. This library was selected based
on the following reasons:

– It is open-source and is distributed under permissive Apache 2.0 License;
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Fig. 7 Scheme of coupling between Robotran (light blue blocks) and Simbody (green blocks).
User provides information about contact that are stored in red blocks. Blocks for coupling are
grey.

– It provides compliant contact of two types: Hertz-model and elastic foundation
model (EFM, more details can be found in [5,30]).

– It allows to use WaveFront object files encoding triangular meshes to define
complex body shapes.

The scheme of coupling is shown on Fig. 7. Concretely, during the building of
the multibody structure (that has to be constructed in the Robotran’s GUI-editor
MBSPad), the user needs to add S-sensors and F-sensors for each body which
will have contact surfaces (i.e. the so-called contact bodies, CBs). A “S-sensor”
is a Robotran tool that is used for mapping relative coordinantes and velocities
to absolute coordinates and velocities of the CBs. A “F-sensor” is a Robotran
tool that allows to define user-external forces. The Robotran server then generates
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both the MBS equations of motion, and the coordinate tranforms required to
manage contacts through S-sensors and F-sensors. The user further needs to specify
the number of CBs, the physical properties governing contact (such as stiffness,
viscosity, friction coefficients) for each of them (including ground) and to define
the surface of contact, through primitives or meshes, in a C-code template.

The execution starts with the initialization of all the variables that are used
during the simulation loop. An instance of the Simbody class world is created. In
this world, a shadow floating body with 6 DOF for each CB is created. The compu-
tation is thus separated between Robotran (in charge of the dynamic integration,
complying with the mechanical constraints between the successive bodies) and
Simbody (in charge of the computation of the contact forces through the 6-DOF
shadow bodies). Simulating COMAN walking on a rough terrain requires creating
only two shadow bodies, i.e. one for both feet, with mesh contact surfaces and a
ground in the Simbody world.

In the simulation loop, relative positions and velocities are transformed into
absolute positions and velocities, through the code generated for the S-sensors.
These positions and velocities are then imposed for each shadow CB in the Sim-
body world. Then the Simbody library processes the contact and returns values
of external forces and moments due to contacts. These forces and moments are
then applied to the MBS in Robotran (relying on the F-sensors) and included to
update the bodies’ dynamics.

Figure 8 shows two representative tasks that extensively use 3D mesh-to-mesh
contact: a manipulation task and a locomotion task (with a gait controller pre-
sented in [6]). Animations for these two tasks are attached as supplementary ma-
terials.

Fig. 8 On the left: Manipulation task – COMAN takes a box from a table. On the right:
Locomotion task – COMAN goes over a 3D bump .

6 Manipulation task

To test the model with compliant actuators and mesh contacts, we simulated a
bimanual manipulation task (see Fig. 8). Initially, the robot stands in its natural
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Name Type N of faces
Friction Coefs
[-, -, N·m

sec
]

Young
modulus
[Pa]

Dissipation
[ sec
m

]

Box Mesh 588 0.9, 1.1, 0.5

Wrisp Primitive - 1.05, 1.1, 0.5 10

Foot Mesh 504 1.9, 2.1, 0.5 104

Ground Primitive - 0.9, 1.1, 0.5

Table Mesh 12 0.9, 1.1, 0.5 0.1

Table 2 The contact characteristics.

position. A cubic box (15 cm side length, 1.5 kg weight) lies 20 cm in front of the
robot on a table, 47.5 cm above the ground. Three pairs of surfaces are initially
in contact: the box with the table, and each of the two feet with the ground.
The surface of the box is a mesh automatically generated by Simbody internal
procedure, each wrist is a sphere primitive with radius 2 cm, while the feet and
the table are defined as mesh objects by Wavefront obj files. Finally, the ground
is defined as a one-half-space. The number of faces for meshes, friction coefficients
(dynamic, static and viscous respectively), stiffness and dissipation coefficients are
shown in the Table 2 (the details about the contact parameters’ meaning are given
in [30,31]) .

For the arm joints (right arm joints are from 22 to 25, left arm — from 26
to 29, see Fig. 1) the motors’ inner variables qmi , i = 22..25, 26..29 are controlled:
in position (i.e. tracking a trajectory). The voltages Vi (see Section 4) are calcu-
lated by PI-controllers. The arms move symmetrically, the references for qmi are
some piece-wise linear functions of time (showed by the dashed lines in Fig. 9).
Solid lines shows the simulated joint positions qi. For all other actuated joints,
zero-references are used for the inner motor variables, so that the corresponding
joints are requested to avoid moving. We defined the arms’ reference trajectories
such that after approximately one second of simulation, two new contacts appear
(between each of the wrists and the box). The grasping force and dry friction in
this contact phase causes the robot to lift up the box.

The MBS equation (1) were integrated by Runge-Kutta 4th-order algorithm
with a fixed time-step on a 6-core AMD 3.5 GHz processor under 64-bit Ubuntu
OS. The simulation sampling frequency was taken equal to 1 kHz. A 2-sec sim-
ulation with ∆t = 1 · 10−4 sec takes 150.6 sec (the real-time factor is 0.013). A
2-sec simulation without the calculation of the contact between the feet and the
ground (i.e. considering the feet being locked on the ground) and the same ∆t
takes 60 sec (the real-time factor is 0.033). The largest time-step for numerically
stable simulation with fixed feet is ∆t = 9 · 10−4 sec. In this case, the simulation
takes 7.1 sec (the real-time-factor is 0.28). In the following, we present the results
involving five bodies with contact surfaces (i.e. both the feet unlocked), simulated
with ∆t = 1 · 10−4 sec.

At t ≈ 1.06 sec, both wrists touch the box, and start to slowly raise it up.
In the left upper corner of Fig. 10, the sum of all contact forces, acting on the
box in the z-direction is shown. During the first 0.2 sec, we see the relaxation
of the oscillation that occurs due to the compliance of the contact between the
table and the box; after that time and till t ≈ 1.06 sec, the gravitational force is
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compensated by the contact force, being equal to 14.715 N. After the wrists touch
the box, two vertical dry friction forces between the wrists and the box occur,
and the box is raised upward. The pressing contact force that acts between the
box and each wrist is shown on the right upper panel. The contact force between
the foot and the ground is shown in the left lower panel. We can also see the
relaxation oscillation till 0.2 sec, and some perturbations after the robot takes the
box. Due to the rotation of the box and the non-zero contact patch between each
wrist and the box, the dry friction torque in the y-direction appears (in the lower
right panel), stopping the rotation of the box.
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Fig. 9 References for motor’s variables (dashed) and simulated curves for right arm joints
(solid).

To illustrate the compliance in the elbow actuator, we also performed the
same simulation for much smaller KS coefficients (see Eq. (3)). (For the previous
simulation KS = 1.2 · 102 N·m, for this one KS = 1.2 · 10−3 N·m.) The left panel
of Fig. 11 shows the grasping force for both simulations. Naturally, stiffer springs
cause higher grasping forces than the softer springs. The right panel shows the
time-curves for qm25 and q25 for softer spring: we see that after the wrist touches
the box (t > 1.2 sec), the inner spring starts to deform, resulting in a decrease of
the grasping force.

7 Squatting task

In order to validate the proposed simulator, the WALK-MAN humanoid robot
[32] was simulated with it (Fig. 12, top left). The WALK-MAN is an adult-size
humanoid robot that has the same MBS structure as COMAN (except for the
head, that is attached to its torso by revolute actuated joint), but with different
mass and inertia and more powerful compliant actuators. It can thus be modeled
with the proposed simulator after tuning some parameters. The data predicted
by the model were compared with the one measured from the sensors of the real
robot.

A squatting task was selected. As the simulator and the robot platform are
both interfaced with the YARP middleware [11], the exact same controller can
be run on both. This experiment was initially performed to highlight the ease to
switch between a simulator and a real robot [12]. In this task, the controller follows



18 Alexandra A. Zobova et al.

Box z-force Left Wrist y-force

F z
 [N

] 

0

10

20

30

t [sec]
0 0.5 1 1.5 2

F y
 [

N
]

0

20

40

60

П
о

д
п

и
сь

 о
си

 Y

t [sec]
0 1 2

 Left Wrisp y-force

Foot z-force Right Wrist y-torque

F z
 [N

]

0

100

200

300

400

t [sec]
0 0.5 1 1.5 2

M
y [

N
∙m

]

0

0.1

0.2

t [sec]
0 1 2

  Right Wrisp y-torque

Fig. 10 The contact forces; z is the vertical axis, y the horizontal one in the lateral plane.
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Fig. 11 The softer springs in elbow joints give smaller pressing contact forces between the
wrists and the box (left graph) and larger difference between joint angle q25 (blue line) and
inner motor variable qm25 (green line).

a joints trajectory where the robot squats down by 30 cm and returns to its initial
posture. The joints position, torque and the 6 DOF force torque sensor of the feet
were logged during 4 cycles of 7 seconds each, see Fig. 12.

The top right panel represents the evolution of the position tracking of the
Hip joint (other joints show similar comparison between the experimental and
simulated results). It appears that the joints controller properly tracks the desired
joints trajectory, both in simulator and with the real robot. However, experimental
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time-curve for the joint torque in knee joints is more oscillatory and the average
torque profile is slightly higher in the experiment. We suggest two main reasons of
this difference: first, the joints torque sensors of the real platform were suffering
poor measurement due to backlash in its inner mechanism. This has been improved
later on. Second, the weight and inertia of the actual robot’s segments is a bit big-
ger because of unmodelled shock absorbing plastic covering the robot body and
electronic boards. The bottom left panel shows the measurement of the vertical
force in the foot sensor. During the first second of the task, the simulated data
displays fast damping oscillations. This is due to the compliant contact model,
compare with left upper panel of Fig. 10, and an initial error of the feet-ground
propagation in the simulator. Then the simulated normal force oscillates due to
the robot’s center of mass acceleration. The experimental curve is also more os-
cillatory, probably due to sensor imprecisions and poor fitting of the compliant
model parameters. However, the simulation results are satisfactory matching the
experimental data, validating the use of the proposed simulator for supporting the
design and controller tuning of advanced robots.
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Fig. 12 Squatting task performed by a simulated and real WALK-MAN robot (from [12]).

8 Conclusions

In the frame of this work, a simulator for humanoid robots was developed and
the following questions were studied. We investigated, how the inner MBS rep-
resentation in the direct dynamics module influences the simulator speed and
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accuracy. In particular, we showed that for the chain MBS systems, ODE, which
adopts the absolute coordinates with algebraic constraints, is less accurate than
Robotran with relative coordinates. The code of the symbolically simplified MBS
equations takes less time to be calculated than the automatically generated one.
Next, a full electromechanical actuators model was built. It requires the simultane-
ous time-integration of MBS equations and equations governing the inner actuator
dynamics. Finally, our reasoning for compliant algorithms of contact processing
were reported. Concretely, this was achieved through the coupling of the Simbody
open-source contact library and our MBS simulator.

The performance of the simulator was quantified via two examples. First, we
analysed the simulation of bimanual manipulation regarding the time evolution
of joint angles, contact forces, and inner motors variables. Second, the reliability
of the simulator was investigated through by the comparison with a squatting
experiment, performed with a simulated and actual WALK-MAN robot.

The simulator offers to simulate at least the COMAN and WALK-MAN robots,
and can be adopted for other humanoid robots with custom multi-physics actuators
in joints, e.g. compliant, hydraulic, or electrical. The simulator code is publicly
available via an open-source platform [33].
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