
 

1 INTRODUCTION 

Structural analysis of historical structures is a deli-
cate matter because it must deal with complex geo-
metrical data and incomplete knowledge of the actu-
al characteristics of its material. The safety of 
ancient masonry structures is particularly difficult to 
assess. However, plastic theory and limit state analy-
sis provides powerful theoretical tools to understand 
their stability. Initially formulated for steel structures 
presenting a certain degree of hyperstaticity, plastic 
theory could advantageously be applied to masonry 
structures providing certain assumptions were made 
on the materials. (Heyman 2008) 

 These assumptions must ensure that the three 
fundamental structural requirements are achieved: 
− The structural material shows a ductile behavior. 
− The working deformations are small compared to 

the overall dimensions of the structure. 
− The stability of all structural members should be 

ensured: a decrease of load may not be observed 
with increasing deformation. 
If so, the three plastic theorems can be used to 

evaluate the load factor that corresponds to the limit 
state of the structure before it collapses. This load 
factor is defined as the ratio between the load lead-
ing to the collapse of the structure and the actual 
load applied to it: 

λc =
Fc
F

 (1) 

The three plastic theorems may be expressed in 
the following way: 
− Static theorem (lower bound/safe theorem): the 

load factor λs calculated on basis of a statically 
compatible distribution of internal forces and ap-
plied loads that respect the yield conditions is 
lower than or equal to the collapse load factor λc; 

− Kinematic theorem (upper bound/unsafe theo-
rem): the load factor λk calculated on basis of a 
kinematically compatible mechanism is greater 
than or equal to the collapse load factor λc; 

− Uniqueness theorem: the collapse factor λc is 
unique. 

Synthetically:  
λs ≤ λc ≤ λk  (2) 

Despite the brittleness of the singular elements 
and the discontinuous character of the assembly, 
masonry taken as a whole can be considered as a 
ductile material in which failure occurs when the 
loading induces the formation of a certain number of 
plastic hinges. (Heyman 1998) This ductile behavior 
could be evidenced experimentally in the case of 
masonry arches. (Gilbert 1997) 

Applying elastic analysis procedures to masonry 
is problematic as there is no unique calculable equi-
librium state. Contrariwise, using limit analysis 
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methods to study complex masonry structures, espe-
cially when presenting a high degree of hyperstatici-
ty, considerably simplifies the problem. Further-
more, the incomplete knowledge of the actual 
composition of historical masonry structures and of 
their history of loading or movements makes the use 
of limit analyses particularly appropriate for struc-
tural assessment. 

The very first concern of the structural analysis of 
such structures is to assess their stability. There is 
consequently usually no interest to know the actual 
distribution of efforts inside the structure. In addi-
tion the only information provided about these struc-
tures is most often exclusively geometrical, obtained 
from the survey which result is given as 2D draw-
ings, exceptionally 3D. Therefore the use of an ex-
clusively graphical method to assess the stability of 
such structures should be very appropriate. 

In this paper, we first present the graphical prin-
ciples and geometrical properties on which graphic 
statics is based. Then we briefly recall the Principle 
of Virtual Works we use to apply the kinematic the-
orem of plasticity to a simple trussed framework and 
to basic structures in bending to determine an upper 
value for the load factor (λk). Each of these struc-
tures is also analyzed from a static point of view by 
means of the geometrical relationships on which 
graphic statics is based in order to determine a lower 
value for the load factor (λs). Finally we discuss the 
conditions of its applicability to historical masonry 
structures by means of the analysis of a simple ma-
sonry arch and suggest some ideas for further re-
search. 

2 GRAPHIC STATICS 

The main concern of this paper is the application of 
graphic statics to the limit state analysis of struc-
tures. Based on the graphical principle of vectorial 
addition first expressed for forces by S. Stevin 
(1548-1620) graphic statics determines the ways a 
set of forces can respect the equilibrium conditions. 
The application by J.C. Maxwell (1831-1879) of re-
ciprocal figures properties to graphic statics – also 
studied around the same time by L. Cremona – pro-
vided a potent tool: each segment on the “form dia-
gram” represents the action line of a force which 
magnitude is expressed in the reciprocal “force dia-
gram” by the length of the corresponding segment. 
The two following relations between the reciprocal 
diagrams need to satisfy the reciprocity: 
− Each segment in a diagram is related to only one 

sole segment in the other diagram, parallel to the 
latter. The parallelism could be replaced by any 
other lead angle providing that this angle is the 
same for all the segments. 

− All the segments that are connected to a single 
point in one diagram need to form a closed poly-

gon in its reciprocal. This relationship ensures 
that the structure represented by the form diagram 
respects the rotational and translational equilibri-
ums. 
It must be underlined that, because of the reci-

procity between the two diagrams, each of them can 
be considered as a form diagram as well as a force 
diagram. They constitute dual structures that provide 
graphical insight into each other (Baker 2015). In 
Maxwell's conjecture it is stated that in order for the 
reciprocal diagrams to exist, both of them must be 
perspective projections of reciprocal plane-faced 
polyhedra. One very interesting result is that it helps 
assessing mechanisms and states of self-stress in 
structures. This is done using the relation between 
the Maxwell rigidity numbers of both diagrams, de-
fined as the difference between the number of mech-
anisms and states of self-stress of a structure: N = 
m– s. (Fig.1) 

The rigidity number N of one of the dual struc-
tures and the one N* of its reciprocal are related by: 
N + N*= −2  (3) 

Figure 1. Reciprocal diagrams of dual structures S – S* 
 
Recent developments in graphic statics, by means 

of parametrical construction of both diagrams on 
which nodes geometrical constraints can be applied, 
offer the opportunity to control the range of possible 
equilibriums by limiting, for instance, the length of 
some segments in the force diagram or by constrain-
ing the action lines in the form diagram to pass 
though determined nodes. As a result, every node in 
either diagram can be constrained to remain inside a 
graphical region so that it respects the yield condi-
tions and the equilibrium conditions of the structure. 
This ensures that the conditions of application of the 
lower bound plastic theorem are satisfied and that 
graphic statics can be applied to study limit states of 
structures by determining a lower value for the load 
factor λs. 

In the next section we recall the Principle of Vir-
tual Works (PVW) we will apply to some canonical 
structures in order to find an upper value of the load 
factor (λk), so that we can compare it to the one de-
termined by the static method (λs). 



3 PRINCIPLE OF VIRTUAL WORKS 

The PVW states that in a structure the work of ex-
ternal forces is equal to the one of the internal 
stresses. Being (y, k, q) a set of kinematically com-
patible deformations that satisfies the displacement 
boundary conditions of a linear structure in bending; 
being (w, W, M) a set of linear or concentrated ap-
plied loads and bending moments in equilibrium that 
satisfies the loading boundary conditions; then the 
virtual works equation can be written as: 

Wiyi + wy∫
i
∑ dθ = M jθ j + Mκ dΩ∫

j
∑  (4) 

with Wi the concentrated loads, w the linear loads, y 
the perpendicular deflections, κ the curvature, Mj the 
value of bending moments where the hinge disconti-
nuities θj are observed and M the value of bending 
moment elsewhere. 

Adapted to trussed frameworks, this equation can 
be written as: 

Fnδn//F
n
∑ = NbΔLb

b
∑  (5) 

with Fn the external load applied to joint n, Nb the in-
ternal force acting on bar b, δn//F the displacement of 
node n in the direction of Fn and ΔLb the extension 
of bar b. 

In the next section, PVW is applied to several ca-
nonical structures giving an upper value for the load 
factor λk since it allows the application of the kine-
matic theorem of plasticity. 

4 GEOMETRICAL LIMIT STATES 

In this section we apply both static and kinematic 
approaches to four canonical structures. The first 
one is a simple trussed framework presenting a pos-
sible self-stress state on which one external horizon-
tal load is applied. Then we study two isostatic 
beams (simply supported; cantilever) using the same 
methodology that we finally apply to a hyperstatic 
beam (propped cantilever). The static approach is 
based on graphic statics (GS) and the kinematic one 
on the Principle of Virtual Works (PVW): the corre-
sponding load factors (λs, λk) are calculated inde-
pendently. Finally we study the case of a single ma-
sonry arch submitted to a horizontal thrust. 

4.1 Trussed framework 
GS – The two reciprocal diagrams have the particu-
larity to present exactly the same geometry when not 
submitted to any external loading. (Fig. 1) Therefore 
they must have the same number of mechanisms and 
states of self-stress: N = m – s = N* = m* – s* = -1 
because of (3). (Baker 2015) It corresponds to a 

unique case of self-stress since there is obviously no 
mechanism possible. 

When adding a set of forces (FA, FB, FD) in equi-
librium to both diagrams, it affects N and N* by de-
creasing the first of one unity and increasing its re-
ciprocal equally by the addition of a possible 
mechanism in the dual structure that correspond to 
an indeterminacy in the construction of the force di-
agram. (Fig. 2a-b) In this case, the following relation 
can be deduced graphically from the geometrical 
properties of similar triangles in its reciprocal force 
diagram (Fig. 2b):  

FD =
N6 − N5

2
 (6) 

 
 

 
Figure 2. Trussed framework: limit state analysis 



The limit state is reached when both bars 5 and 6 
are solicited by the ultimate tension ± Nc in traction 
or compression. In this case, the corresponding force 
diagram is unique for a fixed direction of FD (Fig. 
2c): 

FD,c =
N +
6,c − N

−
5,c

2
=
Nc + Nc

2
= 2 ⋅Nc  (7) 

λs =
FD,c
FD

=
2 ⋅Nc

FD
 (8) 

PVW – Applying the virtual works equation to 
this hyperstatic simple trussed framework (Fig. 2d) 
gives the same relation governing the intensity of the 
forces produced in the two diagonal members in 
function of the intensity of the applied force FD, and 
consequently the same value for λk as for λs: 

FD,c ⋅δD = N5,c ⋅ ΔL5 + N6,c ⋅ ΔL6 = 2 ⋅Nc ⋅
δD
2

 (9) 

we can easily compare to (8), so that: 

λk =
2 ⋅Nc

FD
= λs = λc  (10) 

We consider now a constant cross section recti-
linear beam in bending presenting three different end 
conditions. 

4.2 Simply supported beam 
GS – The application of the static theorem of plastic-
ity to the isostatic simply supported beam gives a 
lower value for the load factor. Using the similar tri-
angles relationships between the two reciprocal dia-
grams (Fig. 3a-b) we can then determinate this value 
of λs: 

µ1
L1
=
FA
H
; µ1
L − L1

=
FB
H
;FA +FB = F1

FA =
F1 ⋅ (L − L1)

L
;FB =

F1 ⋅L1
L

  

λs =
F1,c
F1

=
Hc

H
⋅
µc

µ1

⎛

⎝
⎜

⎞

⎠
⎟=

Mc

FB ⋅ (L − L1)
=

Mc ⋅ L L1
F1 ⋅ (L − L1)

 (11) 

PVW – The application of the PVW to this same 
beam gives the classical result for the value of the 
kinematic load factor λk (Fig. 3c): 

λk ⋅F1Δ1 =Mc ⋅ (θA +θB ) =Mc ⋅
Δ1
L1
+

Δ1
L − L1

⎛

⎝
⎜

⎞

⎠
⎟

 

λk =
Mc ⋅ L L1
F1 ⋅ (L − L1)

 (12) 

 
Figure 3. Simply supported beam: limit state analysis 

 

As these two approaches give the same load fac-
tor, (11) and (12) ensure that: λk = λs = λc  

4.3  Cantilever beam 
GS – In order to use the similar triangles relation-
ships in the reciprocal diagrams, we need to find out 
a way to model the bending moment at the clamped 
end of the beam in the field of graphic statics. From 
the equivalence between bending moment and cou-
ple of forces, we build up a graphical moment unit 
composed of two couples of forces in equilibrium. 
The graphical condition for this to exist is simply 
that they form similar rectangles in both form and 
force diagrams. (Fig. 4a-b-c) 

 
 
 



 
Figure 4. Bending moment in graphic statics 

 
Figure 5. Cantilever beam: limit state analysis 

 
Applying the relationships in similar triangles in 

the reciprocal diagrams for this isostatic structure 
(Fig. 5a-b) gives: 

λs =
F1,c
F1

=
Hc

H
⋅
µc

µA

⎛

⎝
⎜

⎞

⎠
⎟=

Mc

F1 ⋅L1
 (13) 

PVW – The application of the PVW to the corre-
spondent collapse mechanism (Fig. 5c) gives a simi-
lar result for λk as the factor found in (13):  
λk ⋅F1Δ1 = λk ⋅F1 ⋅θAL1 =Mc ⋅θA

 

λk =
Mc

F1 ⋅L1
 (14) 

So that (13) and (14) ensure that: λk = λs = λc . 
These results can be extended to multi-forces 

loadings. For example for the cantilever beam sub-
mitted to two forces F1, F2 we obtain: 

λs = λk =
Mc

F1L1 +F2L2
= λc  (15) 

More interesting is the application of this meth-
odology to hyperstatic structures. 

4.4 Propped cantilever beam 
GS – In order to construct the reciprocal polygons 
corresponding to this structure, we apply the princi-
ple of superposition of two equilibrium systems, cor-
responding to the ones analyzed for the two isostatic 
basic cases, on which we applied alternatively F1 
and a couple of forces FM-FM* at distance µA. (Fig. 
6a) If we assume the normal force in the beam being 
zero, then FM-FM* have the same magnitude (Fig. 
6b) H as the other polar rays (q1, q2…). As we can 
see, the resulting combined force polygon presents a 
mechanism, corresponding to the state of self-stress 
in the form-diagram, so that the rule exposed for the 
reticular trusses can also be applied. Relations in 
similar triangles give: 

F1 = FA +FB = H ⋅
µA +µ1
L1

+
µ1

L − L1

⎛

⎝
⎜

⎞

⎠
⎟  

At the limit state when F1,c is applied, µA = µ1 = 
µc. Then the value of λs is given by: 

λs =
F1,c
F1

=
FA,c +FB,c

F1
=
H
F1
⋅
µc +µc

L1
+

µc

L − L1

⎛

⎝
⎜

⎞

⎠
⎟

=
Mc

F1
⋅
2
L1
+

1
L − L1

⎛

⎝
⎜

⎞

⎠
⎟

 (16)  

So, with the proper constructions of reciprocal di-
agrams, we can build up a model able to define in a 
geometric way the load factor of hyperstatic struc-
tures. The graphic statics constructions ensure that 
the set of efforts in the beam is in equilibrium with 
the external loads. 

PVW – Applying the PVW to this same hyper-
static structure (Fig. 6c) gives: 

λk ⋅F1Δ1 =McθA +Mc (θA +θB ) =Mc 2
Δ1
L1
+

Δ1
L − L1

⎛

⎝
⎜

⎞

⎠
⎟

 



 

 

Figure 6. Propped cantilever beam: limit state analysis 

 

λk =
Mc

F1
2
L1
+

1
L − L1

⎛

⎝
⎜

⎞

⎠
⎟  (17) 

The result of (17) is once more the same as the 
one obtained in (16) by the static approach for the 
corresponding collapse mechanism. Because of (2) 
we know it gives the value of the actual collapse 
load factor λc. 

The graphical interpretation of the allowable po-
sitions of the pole O must take into account that the 
distance H on the force diagram linearly affects the 
value of Mc. (Fig. 7) 
Mc = µc ⋅H ⋅ (n ⋅ k)  (18) 

where n and k the scales on which the form- and 
force diagrams are drawn, respectively. 
 

 
Figure 7. Propped cantilever beam: λs graphical interpretation 
 

Therefore, if we want to keep the same envelope 
of bending moments we used in the form diagram 
(fixed µc), we must also keep the length H un-
changed. Il means that the pole O must move onto a 
vertical line; this constraint is very simple to imple-
ment. The length of the segment on which O must be 
placed, gives indirectly the value of the load factor λs 
corresponding to the limit state taken into account 
since: 

λs =
Fc
F1
=
F1 +ΔF( )
F1

⋅
H
H
⎛

⎝
⎜

⎞

⎠
⎟=1+

ΔH
H

 (19) 

Since the force diagram (Fig. 7b) is drawn at a 
scale k, the load factor λs as expressed in (19) may 
be interpreted as the scale factor to apply to the ac-
tual force polygon (Fig. 7b - black) to transform it 
onto a limit state polygon (Fig. 7b - green). 

In the next section we will apply a graphical limit 
state analysis to a single masonry arch submitted to 
its weight and to a horizontal thrust H. 

4.5 Four voussoirs arch 
We construct the successive funicular polygons cor-
responding to the different limit states of an arch 
composed by four squared stones (Fig. 8). Each limit 
polygon on the form diagrams is related to one spe-
cific pole (O+ O- O* O’ O”) of the force diagrams.  



 
Figure 8. Four voussoirs arch: graphical limit state analysis 

In order to simplify the construction of the limit 
form diagrams, we suppose them producing hinges 
only at the intersection between the action lines of 
the resulting weight of each of the four voussoirs 
and their outline shape. We also suppose the classi-
cal hypotheses about the structural behavior of ma-
sonry being applicable: the resistance of masonry is 
supposed infinite in compression but zero in traction 
and sliding cannot occur. So a limit state is reached 
when the funicular polygon forms at least three 
hinges on the intrados or extrados of the arch (Fig. 8 
– bold circles). Each limit polygon corresponds to a 
specific pole. (Fig. 8 – bold circles) These poles are 
the nodes of an open polygon in which the pole O of 
any other funicular polygon must stay to ensure the 
stability of the arch. (Fig. 8 – red-dot lines 3-2-1-4-
5-6) Bearing in mind that there is no compressive 
strength limitation, this domain is logically not lim-
ited on his right side and forms consequently an 
open polygon. 

In this latter section we have shown that graphic 
statics is a very powerful tool when dealing with 
equilibrium of isostatic structures as well as with 
limit state analysis of hyperstatic structures. More 
precisely, we have shown how a lower value of the 
load factor can be calculated for a simple trussed 
framework and for isostatic and hyperstatic canoni-
cal structures in bending by means of graphical con-
siderations on reciprocal diagrams. For each one of 
these cases, we showed that the load factor λs calcu-
lated only using geometrical properties of similar 
triangles is equal to the one λk obtained by applica-
tion of the PVW. After having applied this graphical 
methodology to a single arch, we give some insights 
on the application of this method in the case of real 
and complex historical masonry structures.  

5  HISTORICAL MASONRY STRUCTURES 

Although identical results are given by traditional 
algebraic formulations in the most frequently used 
structures (trusses, beams, frames etc.), graphic stat-
ics makes the analysis of historical masonry struc-
tures simpler when the geometric complexity and 
unknown material properties disadvantage the alge-
braic formulation of Virtual Works. Following the 
three classical assumptions about the behavior of 
masonry (infinite strength in compression but none 
in traction; no sliding) this can be seen as an assem-
blage of stones shaped to pack together into a coher-
ent structural form being maintained by compressive 
forces only transmitted within the mass of the mate-
rial, that never reach such a compressive level able 
to reach the crushing constraint. (Heyman 1995 & 
2008) 

The idea that tension is not permissible is signifi-
cant: it means that the action line of the resultant of 
the compressive forces – line of thrust – must of ne-



cessity lie inside the masonry envelope. Assuming 
that slip does not occur, we just need the value N of 
the normal – compressive – force together with its 
eccentricity e from the centerline to formulate the 
structural assessment. It is usual to work with the 
bending moment: M = N.e as second variable in-
stead of using directly this eccentricity e, because of 
the better convenience in tracing an N-M diagram 
defining the stress state of each peculiar section. 
When using graphic statics on masonry structures, 
this transformation is neither opportune nor conven-
ient since we can represent the eccentricity on the 
form diagram by the distance µ. 

When the eccentricity e is such that it corre-
sponds to the limit of the masonry envelope (µ = µc), 
then the compressive force is forced to pass by this 
point. This corresponds to the existence of a hinge at 
that point. This involves the assumption that materi-
al possesses an infinite compressive strength: real 
stone with a finite crushing strength does not permit 
the line of thrust to pass by a point lying on the bor-
der of the masonry envelope (Smars 2000). Taking 
that into account leads to limit e to a value: 

elim =
h
2
−

2N
3⋅b ⋅σ adm

 (20) 

that should be used as value for µc. 
The M-N relations are usually sketched in figures 

that represent the yield surfaces used in plastic theo-
ry, and plastic principles may be applied: a general 
point (N, M) lying within the full yield surface rep-
resents a safe state for the structure. Applied to ma-
sonry and graphic statics by means of the (N, e) cou-
ple, all what the analyst needs to show is that the 
line of thrust occupies such a position that it lies 
completely within the masonry. If one such position 
can be found, it is absolute proof – by the static the-
orem of plasticity – that the structure is safe. 

6 CONCLUSION 

This paper deals with graphic statics and its applica-
tion to the limit analysis of a trussed framework, 
some bended structures as well as to a simple ma-
sonry arch. We place the research within the context 
of plastic theory in order to make use of the three 
fundamental theorems of plasticity. We applied them 
to a series of simple structure by means of graphic 
statics on one side and of the Principle of Virtual 
Works on the other and compare the results ob-
tained. The way the reciprocal polygons of graphic 
statics are constructed and constrained ensures that 
the structure is in equilibrium and that the yield con-
ditions are fulfilled. These are the two conditions for 
the static theorem of plasticity to be applied in order 
to determinate a lower bound value of the collapse 
load factor using graphic statics. For some canonical 

isostatic and hyperstatic study cases we show that 
the graphic statics approach applied to specific col-
lapse modes, gives an equal magnitude for the load 
factor that the one obtained by the application of the 
Principle of Virtual Works to the corresponding col-
lapse mechanism. This latter principle is related to 
the kinematic theorem and provides an upper bound 
value for the load factor. Consequently the applica-
tion of the third (uniqueness) theorem ensures that 
this load factor is the collapse one. If such a collapse 
mode cannot be identified because of the geomet-
rical complexity of the structure or because of a lack 
of reliable information about the mechanical proper-
ties, as it is often the case for historical buildings, 
the static approach ensures that any load factor that 
can be found is lower than or equal to the collapse 
load factor. 

A next step in this research will be to apply this 
method to structures presenting a higher degree of 
hyperstaticity as well as a more complex geometry. 
We will particularly focus in the future on historical 
masonry structures like retaining walls, three-leaf 
walls, arches, etc. and take into account a refiner 
model for the mechanical behavior of masonry. New 
potentialities offered by parametric-oriented CAO 
software’s can also be used to construct and con-
strain the reciprocal diagrams and provide an effi-
cient program to assess graphically the security of 
ancient masonry structures or others. 
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